菌种选育方法1

合集下载

微生物菌种的选育方法

微生物菌种的选育方法

微生物菌种的选育方法菌种选育Loremreferentibus(英语:Strain selection 日语:ひずみの选択法语:la sélection des souches 俄语:Штаммвыбор 德语:Stammselektion )微生物菌种是决定发酵产品的工业价值以及发酵工程成败的关键,只有具备良好的菌种基础,才能通过改进发酵工艺和设备以获得理想的发酵产品。

菌种用途广泛涉及食品、医药、工农业、环保等诸多领域。

自然选育自然选育的菌种来源于自然界、菌种保藏机构或生产过程,从自然界中选育菌种的过程较为复杂,而从生产过程或菌种保藏机构得到菌种的自然选育过程较为简单。

自然选育的步骤主要是:采样,增长培养,培养分离和筛选等。

采样筛选的菌种采集的对象以土壤为主,也可以是植物、腐败物品和某些水域等。

土壤是微生物的汇集地,从土壤中几乎可以分离到任何所需的微生物,故土壤往往是首选的采集目标。

微生物的营养需求和代谢类型与生长环境有很大关系。

富集培养由于采集样品中各种微生物数量有很大差异,若估计到要分离的菌种数量不多时,就要人为增加分离的概率,增加该菌种的数量,称为富集培养。

纯种培养尽管通过增长培养的效果很好,但是得到的微生物还是处于混杂状态,因为样品中本身含有许多种类的微生物。

所以,为了取得所需的微生物纯种,增殖培养后必须进行分离。

平板分离法由接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来。

如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。

分离方法有三种:即划线分离法、稀释法和组织分离法。

稀释分离法在溶液中再加入溶剂使溶液的浓度变小。

亦指加溶剂于溶液中以减小溶液浓度的过程。

浓溶液的质量×浓溶液的质量分数=稀溶液的质量×稀溶液的质量分数生产能力考察初筛一般通过平板稀释法获得单个菌落,然后对各个菌落进行有关性状的初步测定,从中选出具有优良性状的菌落。

菌种选育的常用途径

菌种选育的常用途径

菌种选育的常用途径引言菌种选育是一种重要的微生物学研究领域,通过对不同菌种的筛选和改良,可以获得具有特定功能的菌株,应用于农业、医药、食品等领域。

本文将详细介绍菌种选育的常用途径,包括菌种筛选、遗传改良和代谢工程等方面。

菌种筛选菌种筛选是菌种选育的第一步,通过对大量的菌株进行筛选,找到具有特定功能的菌种。

常用的菌种筛选途径包括:1. 传统筛选法传统筛选法是指通过传统的培养基和培养条件,观察菌株在不同环境下的生长情况和代谢产物的产量,从中选出具有优良性状的菌株。

这种方法简单易行,但效率较低。

2. 高通量筛选法高通量筛选法是利用自动化设备和高通量平台,对大量的菌株进行快速筛选。

常用的高通量筛选方法包括微孔板筛选、流式细胞术和荧光素酶报告基因等。

这种方法高效快速,能够同时处理多个菌株。

3. 分子生物学筛选法分子生物学筛选法是通过对菌株的基因组进行分析,筛选出具有目标基因或特定代谢途径的菌株。

常用的分子生物学筛选方法包括PCR技术、基因芯片和下一代测序等。

这种方法能够准确地确定菌株的遗传特征,对于寻找具有特定功能的菌株具有重要意义。

遗传改良遗传改良是菌种选育的关键步骤,通过对菌株的基因进行改造或调控,使其具有更好的性状和功能。

常用的遗传改良途径包括:1. 诱变诱变是指通过物理或化学手段对菌株的基因进行改变,产生突变体。

常用的诱变方法包括辐射诱变和化学诱变。

诱变可以导致菌株的遗传多样性增加,从而增加筛选到具有特定功能的菌株的概率。

2. 基因工程基因工程是指通过外源基因的引入或菌株内部基因的改造,使菌株具有特定的性状和功能。

常用的基因工程方法包括基因克隆、基因敲除和基因表达调控等。

基因工程可以准确地改变菌株的遗传特征,实现对菌株的精确改良。

3. 重组DNA技术重组DNA技术是指通过DNA片段的重组和重排,实现对菌株基因组的改造。

常用的重组DNA技术包括PCR扩增、限制酶切和连接等。

重组DNA技术可以实现对菌株基因组的精确改造,为菌种选育提供了有力的工具。

常用菌种选育原理的种植方法

常用菌种选育原理的种植方法

常用菌种选育原理的种植方法今天给大家介绍一下常用菌种选育原理的种植方法!一、人工选种的方法:1.自然选种:该法是通过广泛异地引种、野生采集、孢子分离等途径获得菌种,将其进行驯化移栽,使其逐渐适应当地环境条件,并从中选优汰劣,选出性状优异的菌株。

在菌种生产以及试验性栽培中,反复进行比较和选择,最终确定优良的食用菌品种。

2.杂交育种:该法是通过将不同遗传性状的亲本之间进行交配,使遗传物质重新组合配对,通过双亲性状的优势互补或借助于以一个亲本的优点去克服另一亲本的缺点,产生具有其双亲优点的育种方法。

杂交育种一般有单孢杂交、多孢杂交、单双核杂交、原生质体融合等方法,一般科研、育种上多采用单孢杂交或原生质体融合,通过这些办法处理的菌种常常可表现出较强的“杂交优势”。

3.诱变育种该法是利用物理的或化学的方法处理细胞群体,促使菌种的细胞遗传物质发生性状的改变,然后从变异的菌种中选出具有优良性状的菌种的方法。

科研上常用的主要有辐射诱变育种,如紫外线照射、X射线等高能量射线,以及用一些化学药剂进行诱变育种。

4.基因工程育种该法是在基因分子水平上的遗传工程,又称基因操作、基因克隆、脱氧核糖核酸(DNA)重组技术等,基本原理就是把我们需要的目标基因通过载体DNA与原品种的DNA结合,然后人工导入一个受体细胞内,以让外来的遗传物质在其中“着生”,进行正常的复制,从而获得预先设计的新菌种。

二、菌种分离技术方法:多孢分离:该法是利用子实体弹射许多孢子在同一培养基上,让其萌发、自由交配,从而获得纯母种的方法。

该法简便易行,在食用菌选种中应用普遍。

(1)整菇孢子弹射法:该法适用于伞菌类的孢子采集。

在无菌室(箱)中,将经消毒处理的整只种菇插入无菌平皿孢子收集器里,之后使用透明玻璃钟罩将其罩住,于见光、适温下使菇自然弹射孢子。

24h后,将玻璃钟罩打开,从培养皿内获取孢子。

(2)试管插割法:在无菌箱内,迅速用无菌试管插割种菇有菌褶一侧,直至取下组织块。

菌种的选育

菌种的选育

第一章菌种选育第一节工业常用微生物及要求一、常见微生物(一)细菌(bacteria)发酵工业中常用的细菌主要是杆菌,主要有:醋杆菌属(Acetobacter)乳杆菌属(Lactobacillus)杆菌属(Bacillus):α-淀粉酶,蛋白酶,肌苷、鸟苷等核苷。

其中最为重要的是枯草芽孢杆菌(Bacillus subtilis)短杆菌属(Brevibacterium):谷氨酸棒杆菌属(Corynebacterium):谷氨酸(二)放线菌(actinomyces)属原核微生物(有菌丝体,无横隔,不具完整的核。

)最大的经济价值在于产生多种抗生素(antibiotic)。

链霉菌(Streptomyces):红,金,土,氯,链霉素小单孢菌属(Micromonospora):庆大霉素(三)霉菌(mould)亦称丝状真菌(不是分类学上的名词,凡在营养基质上形成绒毛状,网状或絮状菌丝的真菌统称霉菌。

)1.曲霉属(Aspergillus)黑曲霉(A. niger)产蛋白酶,淀粉酶,果酸酶,变异菌株产柠檬酸米曲霉(A. oryzae)产淀粉酶,蛋白酶,酿酒的糖化曲和酱油曲黄曲霉(A. flavus)产黄曲霉毒素米曲霉和黄曲霉均为半知菌。

2.青霉属(Penicillum):例如桔子上的绿色斑点桔青霉(P. citrinum):产生5’-磷酸二酯酶,降解核糖核酸为四个单核苷酸。

3.根霉属(Rhizopus)接合菌米根霉(R. oryzae)华根霉(R. chinensis)酒药和酒曲中含有米根霉或华根霉。

4.红曲霉属(Monascus)淀粉酶,麦芽糖酶,蛋白酶,柠檬酸等。

可生产食用红色素。

(四)酵母(yeast)单细胞真核微生物,低等真菌。

①酵母属(Saccharomyces)啤酒酵母(Saccharomyces cerevisiae)②假丝酵母属(Candida)产朊假丝酵母(Candida utilis)生产饲料酵母,其蛋白质和维生素含量都比啤酒酵母高。

选育菌种的方法

选育菌种的方法

选育菌种的方法一、引言菌种的选育是微生物学研究中的重要环节,它对于促进农业、食品工业、医药领域的发展具有重要意义。

本文将介绍一些常用的选育菌种的方法,包括传统的筛选方法和基于分子生物学的筛选方法。

二、传统的筛选方法1. 随机筛选法随机筛选法是最常用的菌种选育方法之一。

其步骤包括:从自然环境中收集样品,如土壤、水体等,将样品制成适宜的培养基,然后进行培养。

在培养过程中,通过观察菌落的形态、颜色、生长速度等特征,筛选出具有特殊性状或功能的菌株。

2. 生理选育法生理选育法是根据菌株的生理特性进行选育的方法。

通过调节培养条件,如温度、pH值、氧气浓度等,筛选出适应特殊环境的菌株。

例如,有些菌株能够在高温或低温环境中生长,有些菌株能够在酸性或碱性环境中生长,这些菌株可以被应用于相关领域。

3. 抗性筛选法抗性筛选法是利用抗生素或其他抑制性物质来筛选菌株的方法。

通过将菌株培养在含有抗生素或抑制性物质的培养基上,只有具有抗性的菌株才能够生长并形成菌落。

这种方法可以筛选出具有抗生素抗性、耐酸碱或耐高温的菌株。

三、基于分子生物学的筛选方法1. PCR筛选法PCR筛选法是利用聚合酶链反应(PCR)技术来筛选菌株的方法。

通过设计特异性引物,扩增目标基因片段,然后通过电泳分析扩增产物,筛选出具有特定基因的菌株。

2. 基因克隆筛选法基因克隆筛选法是将目标基因插入表达载体中,然后转化到宿主菌中,通过观察宿主菌的表型变化来筛选菌株。

例如,将具有抗性基因的载体转化到宿主菌中,只有转化成功的菌株才能够生长在含有抗生素的培养基上。

3. 荧光筛选法荧光筛选法是利用荧光蛋白标记目标基因,通过观察菌株产生的荧光信号来筛选菌株。

例如,将荧光蛋白基因与目标基因融合,将融合基因转化到宿主菌中,通过观察菌株产生的荧光信号来筛选具有目标基因的菌株。

四、总结菌种的选育是微生物学研究中不可或缺的一环。

传统的筛选方法包括随机筛选法、生理选育法和抗性筛选法,它们通过观察菌株的形态、生长特性和抗性等来筛选菌株。

选育菌种的方法

选育菌种的方法

选育菌种的方法菌种的选育是微生物研究中的重要环节,合适的菌种对于实验结果的准确性和可靠性起着至关重要的作用。

本文将介绍几种常用的选育菌种的方法。

1. 采样菌种的选育首先需要进行采样,即从自然环境中获取潜在的菌种。

采样时需要选择合适的样品,如土壤、水样、植物表面等,以获取丰富的微生物资源。

采样时要注意避免污染和混杂,使用无菌工具和容器进行采样。

2. 前处理采样回来后,需要进行前处理,以去除不需要的杂质和其他微生物。

常用的前处理方法包括表面消毒、筛选、稀释等。

表面消毒可以使用酒精或含氯消毒剂对样品进行处理,以杀灭表面的细菌和真菌。

筛选可以通过过滤或离心等方法,以去除大颗粒的杂质。

稀释可以将样品进行适当的稀释,以分离出单个菌落。

3. 菌落分离菌种的选育需要从复杂的微生物群落中分离出单个菌落。

常用的方法有平板分离法和液体分离法。

平板分离法是将前处理后的样品均匀涂布在含有适宜培养基的琼脂平板上,通过菌落的形态、颜色等特征进行分离。

液体分离法是将前处理后的样品接种在含有适宜培养基的液体培养基中,通过菌落的沉降速度、浑浊度等特征进行分离。

4. 纯化与鉴定分离出的单个菌落需要进行纯化和鉴定。

纯化是指将单个菌落进行传代培养,使其形成纯种。

常用的方法有传代培养、穿刺法等。

鉴定是指对菌种进行鉴定和分类,常用的方法有形态学观察、生理生化特性检测、基因测序等。

鉴定的目的是确定菌种的物种分类、代谢特性和潜在应用价值。

5. 保存与培养选育出的菌种需要进行保存和培养,以便后续的研究和应用。

保存常用的方法有冷冻保存、干燥保存、液氮保存等。

培养则需要选择适宜的培养基和培养条件,以保证菌种的生长和繁殖。

通过以上几种方法,可以选育出适合研究和应用的菌种。

菌种的选育是微生物研究中的重要环节,只有选育出合适的菌种,才能保证实验结果的准确性和可靠性。

选育菌种需要耐心和细心,同时还需要对微生物的特性有一定的了解和认识,以便进行正确的操作和判断。

五种菌种选育的方法

五种菌种选育的方法

五种菌种选育的方法1. 筛选优良菌株:通过对菌种进行筛选,选出具有较高产量、快速生长、稳定性等良好性状的菌株。

可以通过观察菌株的形态特征、生长速度以及产物产量等指标进行初步筛选。

2. 交配选育:将具有不同有益特征的两个菌株进行交配,产生具有更优秀性状的杂种,进一步提高菌种的产量和品质。

3. 基因工程改良:通过基因工程技术对菌株的基因进行修改和调整,强化其有益性状,例如提高产量、耐逆性或产物纯度。

4. 微生物育种:利用微生物的自然变异、诱变或基因重组等方法,通过筛选和选育,培育出具有优良性状的菌株。

5. 隔离培养:从自然环境或特定寄主体内分离出有良好性状的菌株,单独培养并进行繁殖,以保持其稳定性和纯度。

6. 高通量筛选:利用高通量技术,如高通量测序、高通量筛选装置等,对大量菌株进行快速筛选和检测,以选取具有优良性状的菌株。

7. 环境适应培养:通过将菌株暴露在不同环境条件下,如不同温度、盐度、pH值等,挑选出能适应多种环境的菌株,提高其应用广泛性和稳定性。

8. 选择性培养基:根据特定的性状需求,调配选择性培养基,利用特定生理功能或代谢产物的需求,筛选出具有目标性状的菌株。

9. 抗菌素筛选:利用抗菌素对菌株进行筛选,选择出对某种特定抗菌素敏感或耐药的菌株,为后续应用提供基础。

10. 应激培养:通过暴露菌株于适宜剂量的外界应激因子,如氧化应激、低温应激等,筛选出对应激因子具有较高耐受能力的菌株。

11. 连续培养:通过在连续培养系统中进行菌株的增殖和筛选,选出适应此种培养方式的优良菌株。

12. 自动化选育:利用自动化系统对菌株进行快速筛选、监控和评价,提高选育效率和可控性。

13. 发酵条件优化:通过改变发酵条件中的温度、pH值、气体供应等参数,优化菌株的生长和产物产量,提高其应用效果。

14. 组合选育:将具有不同优势特征的菌株进行组合,形成互补优势,从而提高整体产量和产品品质。

15. 代谢工程优化:通过调整和改变菌株的代谢途径和代谢产物分布,来增强产物的产量和纯度。

菌种选育方法

菌种选育方法

组 织 或 细 胞 染 色 体 D N A
限 制 性 内 切 酶
基因片段
克隆载体
重 组 DNA分 子
受体菌
精选完含 整pp重 t课件组 分 用细胞总mRNA 制备全套双链cDNA后, 建立的基因。简称 c-。cDNA
复制
双链cDNA 载体
精选完整ppt课件
39
工程菌不稳定性的表现(倾向)
工程菌的不稳定包括质粒的不稳定及其表达产物的不稳定两个 方面。
质粒的丢失;
由于质粒的丢失,工程菌的发酵过程实际上是两种菌的 混合物。在非选择性条件下,含有重组质粒的工程菌的 比生长速率往往小于不含重组质粒的比生长速率,即宿 主细胞的生长优势对工程菌的发酵极为不利。
精选完整ppt课件
17
(二)克隆载体的选择
精选完整ppt课件
18
(三)外源基因与载体的连接
粘性末端连接
GGATCC GGATCC CCTAGG CCTAGG
G GATC GCGAT CCTG AGCCTG AG
DNA连接酶
GGATCC
CCTG AG
精选完整ppt课件
19
(四)重组DNA导入受体菌
精选完整ppt课件
22
抗药性标记选择(插入失活法):
将目的基因插入带ampr和tetr基因的载 体中,则tetr基因失活。在分别 含有氨苄青霉素和含四环素的两个培养基中 培养,进行筛选。
精选完整ppt课件
23
精选完整ppt课件
24
标志补救(marker rescue)
若目的基因能够在宿主菌表达,且表达 产物与宿主菌的营养缺陷互补,就可利用对 营养素的依赖表型来筛选。
精选完整ppt课件

菌种选育

菌种选育
1.遗传:单细胞生物能够产生遗传学上与亲种相同的产物,指生物上一代将所有的遗传因子传给下一代的行为习惯。
2.变异:微生物种发生频率很低的可遗传的变化,指生物体在某种外因的作用发生遗传物质结构或数量的改变
3.饰变:不涉及遗传物质结构的改变,而只发生在转录翻译水平上的表型变化,特点是整个群体发生变化,群体中几乎没有个体都发生改变
B.抗原突变型:引起抗原结构的改变
C.产量突变型:基因突变引起代谢产量升高或降低
四、基因突变的特点
1.不对应性:与基因突变的性状与引起突变的原因没有直接关系
2.自发性:指在没有明显的外界因素影响下也可发生突变
3.稀有性:发生的变异是稀有的,导致筛选非常困难
4.独立性:在某一群体中,发生的不同基因突变几率是相等的,独立的,并无联系
十五、变异菌的分离和筛选:诱变处理经过培养后得到液体培养传代,再分离,初筛,复筛
1野生型菌株:从自然界分离到的微生物在其发生突变前的原始菌株
营养缺陷型:野生型菌株经人工诱变或自然突变失去合成某种营养的能力,只有在基本培养基中补充所缺乏的营养因子才能生长,称为营养缺陷型
原养性:营养缺陷型菌株经回复突变或重组变异后产生的菌株,其营养要求在表型上与野生型相同
D.易位:非同源染色体之间部分连接或交换
3.染色体局部座位类的变化(基因突变)
A.碱基置换:在DNA链上的碱基序列中的一个碱基被另一个碱基代替的现象
a.转换:嘌呤一嘌呤或嘧啶与嘧啶之间发生互换
b.颠换:一个嘌呤替换另一个嘧啶或一个嘧啶替换另一个嘌呤
B.移码突变:在DNA碱基序列中有一个或几个碱基增加或减少而产生的变异,可产生回复突变(变异越小,回复突变率越多)

微生物菌种选育

微生物菌种选育

形态观察
活菌计数
平板涂布 诱变处理
性能初测
斜面传代
性能精测
放大试验
用于生产
3、出发菌株的选择
出发菌株即用于育种的原始菌株。选择好出发 菌株,相当重要。根据实践经验:
1)选用已经经过生产选育过的菌株;
2)选用本身起码能少量积累所需产品或其前体
的菌株;
3)选用几次诱变处理均能提高产量的菌株;
4)选用形态发生变异以后的菌株等,效果较好。
抗药性突变株的筛选
梯度平板法:在含有药物的平板上定向培育筛选 抗抗代谢物异烟肼(吡哆醇类似物)突变株。
异烟肼
抗性突变株的两种可能: a.有解异烟肼酶 b.产吡哆醇更多√
吡哆醇
营养缺陷型突变株的筛选
营养缺陷型突变株选育方法:
要尽快分离。
2、增殖培养
原因:采集到的样品,可能含有我们所需要的微
生物,但往往数量较少,而且杂菌混生,因而不易
直接分离纯化,需要增殖培养。 方法:往样品中加入适合某些微生物生长繁殖的物 质,或创造适合某些微生物生长繁殖的环境条件,这 样就促进了某些微生物的大量繁殖。
举例: 1)往上样中加入一些石油,能利用石油的微
5、毒性试验
保证食品的安全性
二、诱变育种
诱变育种是利用物理诱变剂、化学诱变剂和生
物诱变剂处理微生物群体,诱发基因发生突变,
然后根据育种目标,从无定向的突变株中,筛 选出我们所需要的菌种。
化学致癌物质的检测——Ames试验 美国加利福尼亚大学的Bruce Ames教授 于1966年发明,因此称为Ames试验。 检测鼠伤寒沙门氏菌组氨酸营养缺陷 型菌株的回复突变率。
6.中间培养 表型延迟:表型的改变落后于基因型改 变的现象。可分为分离性延迟和生理性 延迟

微生物菌种选育

微生物菌种选育
主要从事农业、遗传学、应用微生物、免疫学、细胞生 物学、工业微生物学、菌种保藏方法、医学微生物学、分 子生物学、植物病理学、普通微生物学、分类学、食品科 学等的研究。该中心保藏有藻类111株,细菌和放线菌 16865株,细胞和杂合细胞4300株,丝状真菌和酵母46000株, 植物组织79株,种子600株,原生动物1800株,动物病毒、 衣原体和病原体2189株,植物病毒1563种。另外,该中心 还提供菌种的分离、鉴定及保藏服务。该中心保藏的菌种 可出售
株,苏云金杆菌模式菌株等细菌、食用菌等大型真菌、林 木病原菌、菌根菌、病虫生防菌、木腐菌、病毒和植原体 类等。 中国工业微生物菌种保藏管理中心:保藏各种工业微生物菌种 资源包括:细菌、放线菌、酵母菌、丝状真菌和大型真菌 。 中国医学细菌保藏管理中心: 兽医微生物菌种保藏管理中心:
美国典型菌种保藏中心 (American Type Culture Collection, ATCC)
三、菌种分离思路
1:新菌种的分离是要从混杂的各类微生物中依照生产的要 求、菌种的特性,采用各种筛选方法,快速、准确地把所 需要的菌种挑选出来。
2:实验室或生产用菌种若不慎污染了杂菌,也必须重新进行 分离纯化。
3:有了优良的菌种,还要有合适的工艺条件和合理先进的 设备与之配合。
8、几种微生物纯培养分离方法的比较
1)固体稀释平皿法: 即可定性,又可定量,用途广泛;
2)平皿划线分离法: 方法简便,多用于分离细菌;
3)组织分离法: 高等真菌及植物病原菌。
4)单细胞挑取法: 局限于专业化的科学研究;
5)利用选择培养基法: 适用于分离某些生理类型较特殊的微生物。
二、菌种的来源
1、根据资料直接向有科研单位、高等院校、工 厂或菌种保藏部门索取或购买;

菌种选育

菌种选育

(2)抗性菌株的产量试验 在选育抗噬菌体菌株时, 既要求具有抗性,同时亦要求生产能力不低于原敏感 菌株。
(3)其正抗性与溶源性的区别试验 菌株的抗噬菌体 特性具有遗传的相对稳定性。 抗性表现力多种多样,可因细胞壁结构的改变而阻 止噬菌体吸附侵入,也可因生理代谢的改变,使噬菌 体不能侵染,即使侵染后也不能增殖释放。这些菌株 都具有真正的抗性。溶原性菌株则因细胞中存在原噬 菌体,对同一类型噬菌体具有免疫性。表面上看来, 这种菌株具有抗性,但可采用物理、化学因素诱导不 同的敏感菌看它是否会释放噬菌体。出现噬菌斑的菌 株就是溶源菌,而不是真正抗性菌。
E N一甲基一N′硝基一N一亚硝基弧(NTG)
亚硝基胍是亚硝基烷基类化合物的一种,可诱发 营养缺陷型突变,不经淘汰便可直接得到12%一80% 的营养缺陷型菌株,故有超诱变剂之称。它在pH低 于5-5.5的条件下,形成HNO2 而引起菌种突变;在 碱性条件下以重氮甲烷的形式对DNA起烷化作用; 在pH6时,两者均不产生,此时的诱变效应可能是由 于NTG本身对核蛋白体引起的变化所致。 在缓冲液中较难溶解,而在甲酰胺中溶解度较大,因 此用甲酰胺溶解NTG,可以提高处理浓度。通常在 浓度为300 μg/mL,温度为28℃和时间为60分钟的 条件下进行处理,容易得到高产菌株。
2.2.3.3 噬菌体的防治
不同发酵类型遭到不同种类噬菌体侵染所出现的现 象是不同的,而同一菌种被相同的噬菌体侵染,由于 侵染的时间不同,也会造成不同的后果。但都会出现 畸形菌丝,菌体迅速消失,pH上升,发酵产物停止积 累,甚至下降等现象。
噬菌体的防治是多方面的。大概可以分以下几个方 面:
(1)正确判断 (2)普及有关噬菌体的知识 (3)选育抗噬菌体菌株 (4)消灭噬菌体
E 高产菌株的获得需要筛选条件的配合

菌种选育

菌种选育

2.2.2.4 介绍几种物理、化学诱变剂的使用方法
A 紫外线 紫外线是一种使用时间较久、值得推广的诱变剂, 它的辐射光源便宜,危险性小,诱变效果好,故应用 最广泛,研究得也最多。虽然紫外线的波长范围很宽, 但对诱变最有效的波长仅仅是260 nm左右(253-265) nm一般诱变时用菌(孢子)悬浮液进行处理,紫外 灯的功率为15W,距离固定在30 cm左右。 紫外线的作用机制主要是形成胸腺嘧啶二聚体以 改变DNA生物活性,造成菌体死亡和变异。
(2)诱发突变 敏感菌株先经诱变因素处理,然后将 处理过的孢子液分离在含有高浓度的噬菌体的平板培 养基上,经诱变后的存活孢子中,如存在抗性变异菌 株就能在此平板上生长。这种菌落生长的速度一般与 正常菌落的生长速度相近,诱变可以提高抗性菌株的 频率。
除上述方法外,还可将敏感菌孢子经诱变后接入 种子培养基,待菌丝长浓后加入高浓度的噬菌体再继 续培养几天,再加入噬菌体反复感染,使敏感菌被噬 菌体所裂解,最后取再生菌丝进行平板分离,从中筛 选抗性菌株。
2.2.2.2 诱变育种的一般步骤
• 诱变育种的一般步骤见P38,如图2-2所示 • 注意事项:选择好出发菌株;正确和灵活 使用各种诱变剂;诱变剂的选择;变异株 的筛选和筛选条件的确立;高产菌株的获 得与筛选条件的配合。 • 具体内容详见40页。
2.2.2.3 诱变育种工作中几个应注意的问题
A 选择好出发菌株 选好出发菌株对诱变效果有着极其重要的作用。 有些微生物比较稳定,其遗传物质耐诱变剂的作用 强。如果用这种菌株于生产是很有益的,而用作出 发菌株则不适宜。 用作诱变的出发菌株必须对它的产量、形态、生 理等方面有相当了解。挑选出发菌株的标准是产量 高、对诱变剂的敏感性大、变异幅度广,再确定诱 变剂的使用及筛选条件。

微生物菌种的选育方法(两篇)2024

微生物菌种的选育方法(两篇)2024

引言:微生物菌种的选育是一项重要的研究领域,其在农业、医药、环境保护等多个领域具有广泛的应用价值。

本文结合相关研究成果,探讨了微生物菌种选育的方法,旨在为相关领域的科研工作者提供参考。

概述:微生物菌种的选育是指通过对微生物的筛选和培养,选择出具有特殊功能或者优良特性的微生物菌株。

其方法包括了菌种筛选、培养条件优化等多个环节。

本文将以此为主线,结合实际案例,详细阐述微生物菌种选育的方法。

正文内容:1. 菌种筛选1.1 传统筛选方法传统筛选方法包括菌落形态观察、生理生化指标检测、抗性测定等。

通过对菌落形态和生理生化特性的观察,可以初步确定菌株的特性。

同时,通过对菌株的抗性测定,可以筛选出具有耐药或者耐环境逆境特性的菌株。

1.2 分子生物学方法分子生物学方法可以应用PCR等技术,快速检测目标菌株的特定基因或者特性。

这些特定基因可能与目标菌株的优良性状相关,通过筛选出含有这些特定基因的菌株,可以更加精确地进行微生物菌种的选育。

2. 菌种培养条件优化2.1 培养基配方优化培养基是微生物菌种培养的基础,其配方的优化对于菌种的生长和代谢具有重要影响。

通过调整培养基中的碳源、氮源、矿质元素等成分,可以优化菌株的生长条件。

2.2 培养条件控制培养条件的控制对于微生物菌株的生长和产生特定代谢产物等方面具有重要影响。

温度、pH值、培养时间等因素的调控,可以使菌株在适宜的环境中进行生长和代谢,从而保证其优良特性的表达。

3. 菌株遗传改良3.1 重组DNA技术重组DNA技术可以通过将目标基因导入到菌株中,使其具有特定的功能特性。

通过引入外源基因,可以使菌株产生特定的代谢产物,或者具有特定的酶活性等特性。

3.2 融合技术融合技术是指将两个或者多个菌株进行融合,从而形成新的菌株。

融合后的菌株可能具有不同菌株的优点,如抗性能力、代谢能力等,从而提高菌株的综合性能。

4. 菌株功能验证4.1 体外实验通过在实验室中建立靶点验证体系,对选育出的菌株进行功能验证。

食用菌的菌种选育与改良技术

食用菌的菌种选育与改良技术

食用菌的菌种选育与改良技术食用菌是指可以作为食品或药物的真菌,被广泛应用于食品加工、养殖业和药物制造等领域。

菌种的选育和改良技术是食用菌生产的重要环节之一,下面将从以下几个方面介绍菌种选育与改良技术。

一、菌种选育技术1. 选择合适的基因库:通过分离、筛选和保存各类菌种的母菌和种菌,建立一套完整的、丰富的、有代表性的基因库,有利于对菌种进行选育。

2. 优质母菌的筛选:通过对不同菌种进行品种鉴定、酶活性测定等手段,选择出产量高、品质好、病害抗性强的菌株作为母菌,为后续菌种选育打下基础。

3. 优质种菌的培育:通过选择适宜的培养基、优化培养条件并进行筛选,选择出生长快速、产量高、菌丝规整的种菌。

二、菌种改良技术1. 交配育种:不同菌株之间进行有性交配,通过亲本间的基因重组,获得新菌株。

利用此技术可以提高菌株的产量、耐病性等性状。

2. 辐射诱变育种:将菌株暴露在适量的辐射源下,使其产生基因突变,从而改变菌株的特性。

这种方法可以快速获得新的优质菌株。

3. 基因工程育种:通过基因的克隆、转移和重组,将具有特定特性的基因导入到目标菌株中,以增强菌株的抗性、产量等性状。

菌种选育和改良的目的是为了获得更优质、更高效的食用菌菌种,并提高食用菌的产量和质量。

通过这些技术手段,可以针对具体问题进行菌株的选择和改良,在提高菌株产量的同时,降低病害的发生和产量的波动,提高食用菌产业的可持续发展水平。

当然,在菌种选育和改良的过程中需要注意以下几个问题:1. 合理利用遗传资源:合理利用、保存和开发菌种的遗传资源,是有效进行菌种选育和改良的重要基础。

2. 密切结合实际需求:在菌种选育和改良的过程中,需密切结合实际需求,选择具有优异种质的菌株进行深入研究和培育。

3. 引进外来菌种的评估:在引进外来菌种时,需进行系统评估和鉴定,确保其适应当地环境和生产技术水平。

总之,菌种选育与改良技术是食用菌生产过程中的重要环节。

通过选择合适的基因库、优质母菌筛选、优质种菌培育等手段,可以获得优质的菌种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
主要内容

菌种的来源


生物物质产生菌的筛选
微生物选择性分离的原理和发展 重要工业微生物的分离

菌种选育

自然选育 诱变育种
ቤተ መጻሕፍቲ ባይዱ
抗噬菌体菌株的选育
杂交育种 原生质体融合技术 DNA重组技术 菌种保藏
4
2.1 菌种的来源

生物物质产生菌的筛选 微生物选择性分离的原理和发展

菌的营养特征:廉价、来源广。

菌的生长温度:高于40 ℃,

降低冷却成本; 提高反应速度;

有时利于产物分离,如乙醇发酵,高温产物的蒸馏变得容易。

菌对设备和生产过程的适应性。 菌的稳定性。 菌的产物得率和产物在培养液中的浓度 容易从培养液中回收产物。
产物的毒性。
30
(1) 施加选择压力的分离方法


定向的分离培养基配方的选择

取决于对微生物营养生理的了解程度和经验,以选择更合理的培养 基配方。

分子生物学技术的应用

DNA杂交技术 基因芯片的发展
26
1
空气调节器

Water Level
7
8
储液瓶
磁力搅拌器
发酵液
恒化器示意图
27
2.1.3 重要工业微生物的分离

分离/isolation 是指获得纯的或混合的培养物。 筛选工业微生物
14
极端嗜压菌 (Barophiles)

一般生活在深海底 ,能耐普通微生物不能忍耐的高压。低于 0.4-0.5MPa则不能生长。

美国发现的一些种能够生长在 1.3-1.4MPa环境中。日本在 3000-6000m深的深海鱼类肠道内发现了极端嗜压菌。多为古 细菌。

应用

日本发现的深海鱼类肠道内的嗜压古细菌 ,80 %以上的菌株可以生产 EPA和DHA,最高产量可达 36%和 2 4%。
特殊环境微生物的开发利用

极端环境微生物的代谢产物
10
极端嗜热菌 (Thermophiles)

最适生长温度在 90℃以上的微生物 ,被称做 极端嗜热菌。 2 0多个属 ,大多是古细菌 ,生活在深海火山 喷口附近或其周围区域。 嗜热菌的营养范围很广 ,多为异养菌 ,其中 许多能将硫氧化以取得能量
在pH9~10的琼脂培养基(含有均匀的不溶性蛋白质)表面。

碱性蛋白酶产生菌能消化平板上的不溶性蛋白,产生一清 晰圈。清晰圈的大小可以初步作为选择高产菌的依据。
36
平板分离培养
大肠杆菌平板菌落
细菌菌落
霉菌菌落
裴氏着色芽菌的菌落
37
硅酸盐细菌菌落
海洋微生物菌落
38
(2) 随机分离方法

大多数情况下,采用随机分离方法分离菌株。
7
材料的预处理
(1) 含微生物材料的选择

材料来源的广泛性 特定环境压力下的材料更容易筛选到特定的微生物类群

耐高温、嗜高温——温泉、火山口、海底热液喷口

耐低温/嗜低温——海底、雪山
嗜酸:矿山酸性废水


脂肪酶产生菌:屠宰场土壤
(光合细菌:池塘、污水处理厂)

8
特殊环境
台北阳明 山小油坑
9

13
极端嗜碱菌 (Alkaliphiles)


盐碱湖或碱湖、碱池中 ,生活环境 pH值可达 11.5以上 , 最适 pH值 8-10。 应用

如用耐碱蛋白酶和碱性纤维素酶作洗涤剂的添加成分; 碱性淀粉酶用于纺织品退浆; 用于皮革工业中的脱毛工艺以提高脱毛效率和质量; 利用嗜碱菌进行苎麻脱胶。

材料的预处理
18
(3) 所需菌种的分离

适当的培养基: 广泛使用的三种培养基为:

几丁质培养基—土壤和水中的放线菌
淀粉-酪素培养基——分离的放线菌种类与几丁质培养基
相似,但菌落密度更大、色素更多,细菌容易生长。 M3培养基——容易分离链霉菌以外的其他放线菌如红球 菌。

19
所需菌种的分离(续)
嗜冷菌:4-10 ℃

培养的时间

一般的嗜温菌链霉菌、小单胞菌7-14d 嗜热菌1-2d 长时间培养可能得到不寻常的菌种
21
菌落的选择

菌落的选择非常重要,决定筛菌的成功以及使筛菌的效率。 具体方法取决于筛菌的目的。

常用方法:

铺菌法:一个分离平板试验一种菌测定各个菌落的抗生
素产生能力。缺点:菌落被污染。
31
嗜中温浸矿微生物富集

温泉水样 液体培养基配方:9k基本盐【(NH4)2SO4 3g/L ; KCl 0.1g/L ; K2HPO4 0.5g/L ; MgSO4.7H2O 0.5g/L ;
Ca(NO3)2 0.01g/L】

能源:液体培养以S粉做能源物质,设计S粉浓度分别为5 g/L,Yeast extract浓度0.5 g/L

嗜压菌可以用于高压生物反应器。
15
极端嗜冷菌 (Psychophiles)

深海的极端嗜压菌往往也是极端嗜冷菌。在真核 生物中也有一些嗜冷的真菌和藻类 ,它们在两极冰 雪和高山雪坡上生长。极端嗜冷菌的最适生长温度 一般为 - 2℃以上 ,高于 1 0℃则不能生长。

应用

国内的应用报道较少。 国外有人将嗜冷酶应用于洗涤剂中。
16

(2) 材料的预处理

热处理:减少细菌数量,因为许多放细菌的孢子和菌丝片断比G(-)细菌
细胞耐热。同样也减少放细菌的数目;

水样品的浓缩:滤膜过滤、离心; 添加固体基质或喷淋可溶性养分,增加特定微生物的数量; 或诱使特定微生物附着在固体基质上。


黄瓜+菜园土——腐酶 花粉+土壤——小瓶菌 腐霉菌(Pythium spp.17 )

随机分离培养基制作原则:

制备一系列培养基,其中有各种类型的养分成为生长限制因素(C、 N、P、O); 使用一聚合或复合形式的生长限制养分; 避免使用容易同化的碳源(葡萄糖)或氮源(NH4+),它们可能引 起分解代谢物阻遏(与容易同化的碳源接触,而使酶合成速率相对 降低的作用); 确定含有所需的辅因子(Co2+、Mg2+、Mn2+、Fe2+),以利于酶的 活性; 加入缓冲液减少pH变化。
Thermus aquaticus



应用

利用菌体发酵 :有人用极端嗜热菌生产乙醇。
Mud Volcano Area

利用菌体产生的酶 :如用于PCR技术的TaqDNA
聚合酶 ,是从嗜热古细菌Thermus aquaticus中 分离出来的。

为基因工程菌提供特异性基因
11
极端嗜酸菌 (Acidophiles)
复印平板法
印章复印菌落
原始菌落
试验菌平板
产生抑菌圈
25
未来的发展

天然基质的选择:特定的天然环境必定有特定的微生物。重视微环
境的变化,如厌氧微生物。

富集技术的发展

(1)分离前改变天然菌群的组成,利用微生物生理知识,如前体的 加入可以富集合成相应次级代谢物的菌类。 (2)恒化器(Chemostat) 培养混合菌,富集目的菌。

A:诺尔斯氏链霉菌;
B:皮疽诺卡氏菌;
C:酒红指孢囊菌; D:游动放线菌;
E:小单胞菌;
F:皱双孢马杜拉放线菌
23
产抗菌素的放线菌的菌落特征

A:卡特利链霉菌; B:弗氏链霉菌; C:吸水链霉菌金泪亚种; D:卡那霉素链霉菌; E:除虫链霉菌; F:生磺酸链霉菌





24
选择性
灵敏度
6
2.1.2 微生物选择性分离的原理和发展
介绍放线菌纲为主的分离方法原理的发展。

选择性分离方法大致可分为五个步骤:

含微生物材料的选择
选择压力,或进化压力,可 以被认为是外界施与一个生 所需菌种的分离 物进化过程的压力,从而改 变该过程的前进方向。所谓 菌株的培养 达尔文的自然选择,或者物 竞天择,适者生存,即是说, 菌落的选择和纯化 自然界施与生物体选择压力 以上任何一个阶段都可引入选择压力: 从而使得适应自然环境者得 以存活和繁衍。
欲筛选耐高温微生物,在高温(>50 ℃)条件下连续培养;
欲培养降解PCP(五氯酚)的微生物,在基质中加入
PCP。
35
B 固体培养基的使用

常用于分离某些酶产生菌,其选择性培养基常含有所 需酶的基质,以促进酶产生菌的生长。如蛋白酶、脂 肪酶。

例:分离产生碱性蛋白酶的芽孢杆菌属

土壤须经巴氏法消毒,以减少不产孢子的微生物。然后铺

适当的pH条件

大多数放线菌为中性,培养基pH为6.7-7.5。 分离嗜酸性放线菌,pH4.5-5.0。

加入抗生素

抗真菌抗生素,对放线菌无影响;

抗细菌抗生素同时影响放线菌数量,选择合适的抗细菌
抗生素如新生霉素、亚胺环己酮能分离出普通高温放线
菌。
20
菌种的培养

培养的温度

常温:25-30 ℃ 嗜热菌:45-55 ℃

培养基pH值设臵:分别用2.0、3.0、4.0进行实验 培养条件:50度,200rpm。
32
连续培养筛选菌株
相关文档
最新文档