整式与整式的加减

合集下载

整式及其加减 知识点总结

整式及其加减 知识点总结

整式及其加减知识点总结一、整式的概念整式是由数字、字母和它们的乘积或商从而可以化简成(即分母不含字母的)整数幂次的代数和所组成的代数表达式叫做整式。

(a、b是常数,x是变量)二、整式的表达形式整式的表达形式主要有以下几种:1. 单项式:一个单独的数字、字母或者它们的乘积或商。

例如:3x、-5、a、bc、-7m^2n^32. 二项式:由两个单项式相加或相减而成。

例如:2x+3y、a^2-5b、-3x^2+4y^33. 多项式:由两个以上的单项式相加或相减而成。

例如:5x+3y-7、4a^2b+2ab^2+6、-2m^2n^2+3mn三、整式的基本性质1. 整式相加:只有同类项才能相加。

2. 整式相减:也只有同类项才能相减。

3. 同类项:具有相同的字母变量和其指数的项叫做同类项。

4. 单项式的加减法:单项式相加减时,先合并同类项,再进行加减运算。

四、整式的加减运算1. 合并同类项:将同类项合并成一项,系数相加。

例如:3x+2x+5x=10x2. 加减运算:合并同类项后,进行系数的加减运算。

例如:2x^2-3x^2= -x^2五、整式的乘法1. 单项式的乘法:用单项式乘以多项式时,将单项式的每一项与多项式进行乘法运算。

例如:2x(3x+5)=6x^2+10x2. 多项式的乘法:用多项式乘以多项式时,将每一项与另一个多项式进行乘法运算,然后将结果合并。

例如:(3x+2)(4x-7)=12x^2-21x+8x-14=12x^2-13x-14六、整式的除法整式的除法相对来说较为复杂,主要需要将被除式与除数进行长除法运算,得到商和余数。

例如:(3x^2+2x-5)/(x-3)=3x+11+28/(x-3)七、整式的加减乘除综合运算整式的加减乘除综合运算需要遵循一定的运算法则,主要是化整法、分解因式、提公因式、分项分式等运算方法。

八、整式方程整式方程是指含有未知数的整式的等式,例如:2x+3=7,4x^2-5x=0。

《整式》整式的加减

《整式》整式的加减

合并同类项
在处理函数表达式时,需要合并同 类项,以简化表达式。
化简二次根式
对于包含二次根式的函数表达式, 需要利用化简二次根式的方法,将 表达式转化为更简单的形式。
03
整式加减的注意事项
确定符号
确定符号
01
在进行整式加减时,首先要确定每个项的符号,以便正确进行
运算。
括号内的项要一起加减
02
在处理括号时,需要将括号内的每一项都按照运算顺序进行加
减。
先化简,再加减
03
为了使运算更加简便,可以先对每个项进行化简,例如合并同
类项、提取公因式等,然后再进行加减运算。
符号运算规则
同号相加
同号是指相同的符号,如两个正 数或两个负数相加。同号相加时
,只需要将系数相加即可。
异号相加
异号是指不同的符号,如一个正 数和一个负数相加。异号相加时 ,需要先取绝对值较大的数的符 号作为结果的符号,然后将绝对
掌握有理数的加减法规则
有理数的加减法包括同号有理数相加、异号有理数相加、有理数的减法等,相加时需要将 绝对值相加,符号相同的数相加结果仍为同号有理数,异号有理数相加时需要取绝对值较 大的有理数的符号。
运用有理数的加减法解决实际问题
有理数的加减法可以用于解决一些实际问题,例如计算数值、解方程等。
THANK YOU
抽象思维
整式的加减涉及到抽象的数学概念,教师需要培养学生的抽象思维 能力,让学生能够将具体问题抽象成数学模型。
批判性思维
教师需要引导学生对解题方法和答案进行批判性思考,鼓励学生提 出疑问和不同的观点,培养学生的批判性思维能力。
06
整式加减的进一步学习建议
学习因式分解

整式的加减法运算

整式的加减法运算

整式的加减法运算整式是指由数字、字母和加减乘除符号组成的表达式,其中字母表示数,整式的加减法运算主要是对整式中的相同项进行合并和整理。

下面将分为两个部分,分别介绍整式的加法运算和减法运算。

一、整式的加法运算整式的加法运算是指将两个或多个整式相加得到一个简化的整式。

在加法运算中,我们首先需要对整式中的相同项进行合并。

相同项是指具有相同字母和相同幂次的项。

具体的步骤如下:1. 将所有的整式按照相同的字母和幂次进行分类,将相同的项放在一起。

2. 对于每一组相同项,将系数相加得到合并后的系数,并保留相同的字母和幂次。

3. 将合并后的每一组项按照字母和幂次的顺序排列。

4. 最后将合并后的项按照加号连接起来并进行简化。

举例说明:假设有两个整式:3a^2b-2ab^2和2ab^2+5a^2b-4ab。

我们按照上述步骤进行计算。

首先,按照相同的字母和幂次进行分类:3a^2b、5a^2b:系数3和5相加得到8;字母和幂次不变,为a^2b。

-2ab^2、2ab^2:系数-2和2相加得到0;字母和幂次不变,为ab^2。

-4ab:和其他项没有相同的字母和幂次,无需合并。

然后,将合并后的每一组项按照字母和幂次的顺序排列:8a^2b、0ab^2、-4ab。

最后,将合并后的项按照加号连接起来并进行简化:8a^2b+0ab^2-4ab。

因为0ab^2的系数为0,所以可以省略该项,简化后的结果为:8a^2b-4ab。

二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式得到一个简化的整式。

在减法运算中,我们可以通过将减数取相反数,再进行整式的加法运算,从而将减法运算转化为加法运算。

具体的步骤如下:1. 将减数的每一项取相反数,得到相反数式。

2. 将相反数式与被减数进行整式的加法运算。

3. 对加法运算得到的整式进行简化。

举例说明:假设有两个整式:4x^2-3xy和2x^2+xy+3ab。

我们按照上述步骤进行计算。

首先,将减数的每一项取相反数:相反数式为:-2x^2-xy-3ab。

整式及其加减教案

整式及其加减教案

整式及其加减教案教学目标:1. 理解整式的概念及其性质;2. 掌握整式的加减运算方法;3. 能够应用整式的加减解决实际问题。

教学内容:第一章:整式的概念与性质1.1 整式的定义1.2 整式的项1.3 整式的度1.4 整式的系数第二章:整式的加减运算2.1 整式加减的法则2.2 同类项的合并2.3 整式的加减步骤2.4 整式加减的例子第三章:整式加减的应用3.1 实际问题转化为整式加减问题3.2 列出一元一次方程3.3 解一元一次方程3.4 应用实例第四章:整式的加减综合练习4.1 选择题4.2 填空题4.3 解答题4.4 应用题第五章:整式加减的拓展与提高5.1 多项式的概念5.2 多项式的加减运算5.3 多项式加减的例子5.4 多项式加减的应用教学方法:1. 采用讲解法,讲解整式的概念、性质和加减运算方法;2. 通过示例,引导学生掌握整式加减的步骤;3. 利用实际问题,培养学生的应用能力;4. 布置练习题,巩固所学知识。

教学评估:1. 课堂练习:检查学生对整式加减运算的掌握程度;2. 课后作业:布置相关习题,要求学生独立完成;3. 单元测试:评估学生对整式加减的综合运用能力。

教学资源:1. PPT课件:展示整式的概念、性质和加减运算;2. 练习题:提供不同难度的题目,满足学生的学习需求;3. 实际问题:用于引导学生将所学知识应用于实际情境中。

教学进程:第一章:整式的概念与性质1课时1.1-1.4第二章:整式的加减运算1课时2.1-2.4第三章:整式加减的应用1课时3.1-3.4第四章:整式的加减综合练习1课时4.1-4.4第五章:整式加减的拓展与提高1课时5.1-5.4总计:5课时教学反思:在教学过程中,关注学生的学习情况,针对不同学生的需求进行针对性指导;注重培养学生的动手能力,提高他们解决实际问题的能力;及时调整教学方法和策略,使学生在轻松愉快的氛围中掌握整式加减的知识。

第六章:多项式的概念与性质6.2 多项式的项6.3 多项式的度6.4 多项式的系数第七章:多项式的加减运算7.1 多项式加减的法则7.2 同类项的合并7.3 多项式的加减步骤7.4 多项式加减的例子第八章:多项式加减的应用8.1 实际问题转化为多项式加减问题8.2 列出一元二次方程8.3 解一元二次方程8.4 应用实例第九章:多项式加减的综合练习9.1 选择题9.2 填空题9.3 解答题9.4 应用题第十章:多项式加减的拓展与提高10.1 高于一次多项式的加减10.2 多项式的乘法10.4 多项式加减在实际问题中的应用教学方法:1. 采用讲解法,讲解多项式的概念、性质和加减运算方法;2. 通过示例,引导学生掌握多项式加减的步骤;3. 利用实际问题,培养学生的应用能力;4. 布置练习题,巩固所学知识。

整式加法和减法

整式加法和减法
括号内正负号不变
在去括号时,应注意保持括号内整式的正负号不变,遵循去括号的 规则。
合并同类项时注意符号
在合并同类项时,应注意保持同类项的符号一致,避免因符号错误 导致结果错误。
简化表达式的注意事项
1 2
合并同类项
在整式加减过程中,应尽量合并同类项,简化整 式的形式。
化简到最简形式
在完成整式加减后,应将结果化简到最简形式, 确保结果的简洁明了。
在日常生活中的应用
整式加减法在日常生活中也有广泛的应用。例如,在购物 时计算找零、在计算时间和速度等方面都需要使用整式加 减法。
例如,在购物时,收银员需要使用整式加减法计算顾客应 该找回的零钱;在计算时间和速度时,也需要使用整式加 减法进行计算。
05
整式加减法的注意事 项
运算顺序的注意事项
先乘除后加减
整式减法的运算规则
减去一个数等于加上这个数的相反数 :a-b=a+(-b)。
减去整式等于加上这个整式的相反数 :a-b=(a+(-b))。
03
整式的混合运算
整式的加减混合运算
整式的加减混合运算是指在一个数学 表达式中同时包含加法、减法和乘法 、除法等运算。
在进行整式的加减混合运算时,需要 注意括号的作用,括号内的运算需要 优先进行。
整式的乘除混合运算的顺序是先进行乘除运算,再进行 加减运算,即遵循“先乘除后加减”的原则。
整式的乘除混合运算可以通过化简表达式、利用分配律 等方法简化计算过程。
整式的幂的混合运算
整式的幂的混合运算是指在一个数学表达式中同时包 含幂运算和加法、减法、乘法、除法等运算。
输标02入题
整式的幂的混合运算的顺序是先进行乘方和开方运算 ,再进行乘除运算,最后进行加减运算,即遵循“先 乘方和开方后乘除再加减”的原则。

初中数学教案:整式与整式的加减乘除

初中数学教案:整式与整式的加减乘除

初中数学教案:整式与整式的加减乘除整式是初中数学的重要内容之一,也是高中数学的基础。

它涉及到整数、有理数、未知数和运算符号等概念,是用来表示加、减、乘、除等运算过程的代数表达式。

本文将围绕整式与整式的加减乘除展开讲解,并给出了相应的教案。

一、什么是整式1. 整式的定义在代数中,如果一个代数表达式只包含有理系数与未知数,并且只进行加减乘除运算,那么这个代数表达式就称为整式。

2. 整式的组成一个整式通常由有理系数与多项式(由未知数及其幂次按照加减乘除规则连接而成)组成。

例如:4x + 3y - 2z^2 + 53. 整式的分类根据项数和各项次数组合不同,整式可以分为单项式、多项式和零多项式三种形态。

- 单项式: 只有一个项构成的整式,如2xy;- 多项式: 由两个或两个以上非零单项组成的整式,如3x^2 + 4xy - 5;- 零多项: 没有任何一项构成时得到的整式,记作0。

二、整式的加减运算1. 整式相加减的基本法则整式相加减的基本法则是首先对应排列各项按同类合并,然后进行有理系数的加减运算。

2. 示例教学案例:整式求和及差教学目标:通过示例讲解,使学生熟练掌握整式相加减的基本方法。

教学内容:- 例题1:已知a + b = 3,c - d = 5,求a + b + c - d。

解析:根据整式相加减的基本法则,将对应项进行合并得到(a + b) + (c - d),然后根据已知条件代入计算即可。

最终结果为8。

- 例题2:已知3x^2 + 4xy - 5z = 0,2xy - z = 7,求3x^2 + xy - z。

解析:同样按照整式相加减的基本法则进行操作,最终化简得到3x^2 + xy - z = -(7)。

三、整式的乘法运算1. 整式相乘的基本规律两个单项式或多项式相乘时,可以按照分配律将一个多项式中每一项与另一个多项式中每一项分别进行乘法运算,并将结果进行合并。

2. 示例教学案例:整式的乘法教学目标:通过示例讲解,使学生掌握整式相乘的基本方法。

《代数式》整式及其加减

《代数式》整式及其加减

整式的运算,通过整式的计算可以得出实际问题的解决方案。
03也经常需要用到整式。例如,计算两
地之间的行程时间,或者根据速度和时间求解距离,都需要运用整式进
行运算。
THANKS
感谢观看
整式的化简
去括号法
通过去括号的方式将整式 化简,使其更为简洁易算 。
合并同类项法
将同类项合并,达到整式 化简的效果,简化计算过 程。
分式分解法
将复杂的分式整式通过分 解分式的方法化简为更简 单的形式。
整式的求值方法
直接代入法
将给定的变量值直接代入整式中 ,进行计算求出整式的值。
公式法
应用已知的代数公式,简化整式的 求值过程。
同类项的合并
01
02
03
定义
同类项是指字母部分完全 相同,并且相同字母的次 数也相同的项。
合并方法
直接将同类项的系数进行 相加或相减,字母及其次 数保持不变。
示例
$3x^2y$ 与 $-2x^2y$ 是同类项,合并后为 $x^2y$。
整式加减法的应用举例
多项式加减法
多项式中的每一项都可以视为一个整式,因此可以直接应 用整式的加减法法则进行运算。例如:$(3x^2 + 2xy y^2) - (x^2 - 2xy + y^2) = 2x^2 + 4xy - 2y^2$。
分类
整式可分为单项式和多项式两大类。单项式是由数 或字母的积组成的整式,而多项式则是由若干个单 项式的和组成的整式。
整式的次数与项数
次数
整式的次数是指该整式中最高次项的次数,即该整式中所有字母的指数之和的 最大值。例如,多项式 3x^2y + 2xy + y 的次数为 3。

《整式的加减》整式及其加减

《整式的加减》整式及其加减
整式的加减法运算的实质
实质就是去括号、添括号,合并同类项。
03
整式的混合运算
乘法与除法运算规则
乘法运算规则 系数相乘:将系数相乘得到新的系数。
相同字母的幂相加:相同字母的幂相加,作为新的幂。
乘法与除法运算规则
• 不同字母的幂相乘:不同字母的幂相乘,作为新 的幂。
乘法与除法运算规则
01
除法运算规则
幂的运算规则
同底数幂相乘:同底数幂相乘,底数不 变,指数相加。
整式的混合运算应用
多项式乘以多项式
将一个多项式的每一项乘以另一个多项式的每一项,再把所得的 积相加。
多项式除以多项式
用多项式中的多项式去除另一个多项式,得到商和余数。
整式的混合运算顺序
先算乘方和乘除,再02
括号在不同的情况下会影响运算的次序,这也是一个容易出错
的地方。
公式的记忆和使用
03
对于一些基本的公式,如平方差公式、完全平方公式等,学生
可能会出现记忆混乱或使用不当的情况。
难点解析与突破
1 2
符号问题的解决
在处理符号问题时,要时刻注意保持符号的一致 性,例如在合并同类项时,要确保每一项的符号 都是正确的。
多项式
定义
多项式是由几个单项式的 和组成的代数式。
特点
多项式的次数是最高次项 的次数。
例子
如3x^2y + 4x - 5, 2x^3 + 3x^2y + 4y^2等都是 多项式。
整式的加减法
定义
整式的加减法是对同类项进行合 并的过程。
方法
通过去括号、合并同类项,将整 式化简到最简形式。
例子
如(3x + 4x) - (5x + 3y) = 2x 3y。

整式 - 整式加减运算习题

整式 - 整式加减运算习题

教案 教学内容知识回顾:1.整式的加减整式的加减的运算法则:如遇到括号,则先 去括号 ,有同类项的,再 合并同类项 .2.本章需要注意的几个问题:①分母中含有字母的代数式一定不是整式.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数和符号.知识梳理:1.运用整体思想速解整式求值问题在进行整式求值问题的运算时,运用整体思想对某些数学问题进行处理,常能收到事半功倍之效.2.利用整式的加减解决无关型问题一般地,整式的值随字母的取值不同而不同,但整式中的字母取不同值时,整式的值不变,则这个整式的值一定是常数.若与某个字母无关,就是合并同类项以后,含这个字母的项的系数为0.3.整式加减在现实中的应用 现实生活中的一些问题与整式加减有着密切的关系,常常可用整式的加减知识来解决这些问题.单项式:数或字母的乘积叫单项式。

单个的数字和字母也是单项式;单项式的系数:单项式中数字因数角单项式的系数;单项式的次数:单项式中所有字母的指数的和叫单项式的次数;多项式:几个单项式的和叫做多项式;整式——整式加减运算习题单项式的定义多项式 单项式 整式 单项式的次数 单项式的系数 整式的定义 多项式的的次数 多项式的常数项 多项式的项 多项式的定义多项式的项:多项式中每个单项式叫做多项式的项;多项式的常数项:多项式中不含字母的项叫做常数项;多项式的次数:多项式中次数最高项的次数叫做多项式的项;整式:单项式和多项式统称整式。

(一)在研究单项式的系数问题时,要注意:1. 当单项式的系数是1或-1时,“1”通常省略不写。

2.圆周率π是常数。

3.当单项式的系数是带分数时,通常写成假分数。

4.单项式的系数应包括它前面的性质符号。

(二)规定:单独一个非零数的次数是0。

00是没意义的例题:1.整式的大小比较【例1】设M=x2﹣8x+22,N=﹣x2﹣8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定总结:比较两个整式大小,可以使用作差比较法.(1)若两整式的差大于0,则前一个整式大;(2)若两整式的差小于0,则后一个整式大;(3)若两整式的差等于0,则两整式一样大.练1若A=3x2﹣5x+2,B=4x2﹣5x+6,则A与B的大小关系是()A.A>B B.A=B C.A<B D.无法确定2.整式化简后整体代入求值【例2】已知a+2b=3,则代数式2(2a﹣3b)﹣3(a﹣3b)﹣b的值为()A.﹣3 B.3 C.﹣6 D.6总结:从表面看,待求值的整式与已知条件没有关系,实际上待求值整式经过去括号、合并同类项后,就会得到和已知条件相关的式子,进而求解.练2已知x2﹣3xy=9,xy﹣y2=4,则代数式y2﹣x2的值为()A.﹣7 B.1 C.7 D.﹣13.解决整式化简后与某项无关的问题【例3】若多项式x kxy y xy22338--+-化简后不含xy项,求k的值.总结:多项式中不含某一项,说明这项的系数为0. 从而令其系数为0,列出方程进行求解即可.练3甲对乙说:“有一个游戏,规则是:你任想一个数,把这个数乘以2,结果加上8,再除以2,最后减去你想的数,此时我就知道结果.”请你说明理由,甲为什么能知道结果.4.利用整式加减解决实际问题【例4】甲、乙两家公司招人,甲家年薪20000元,每年加工龄工资600元;乙家半年薪10000元,每半年加工龄工资300元,问:选择哪家公司有利?总结:用整式正确表示出第n年甲、乙两公司的年薪是解本题的关键. 用整式作差可以得出甲、乙两个公司的年薪差.练4某房产公司卖出A,B两套公寓,售出后两套公寓都得到a万元,其中公寓A亏本20%,公寓B盈利20%.(1)用代数式表示公寓A,B的原价;(2)设房产公司则这两笔交易中的盈亏为p万元,写出用a表示p的代数式,并说明a=80时的盈亏情况.练习:一、选择题1.设A=2x2﹣x+1,B=x2﹣x﹣2,若x取任意实数,则A与B的关系为()A.A>B B.A=B C.A<B D.无法比较2.已知多项式M=5m2﹣8m+1,N=4m2﹣8m﹣1(m为任意有理数)则M、N的大小关系是()A.M>N B.M=N C.M<N D.不能确定3.已知x﹣y=3,那么代数式3(x﹣y)2﹣2(x﹣y)﹣2(x﹣y)2+x﹣y的值是()A.3 B.27 C.6 D.94.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm5.若整式2a﹣[a+2(ka﹣1)]的值与a的取值无关,则k为()A.1 B.﹣1 C.12D.﹣126.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是( )A .甲>乙B .甲=乙C .甲<乙D .不能确定,与桶中原有水的重量有关7.某人从一个水果摊上买了三斤苹果,平均每斤a 元,他又从另一个水果摊上买了两斤苹果,平均每斤b 元,后来,他以2a b 元的价格把苹果全部卖掉,结果赔了钱,原因是( ) A .a <b B .a >b C .a =b D .与a 、b 的大小无关二、填空题8.如果m 、n 是两个不相等的实数,且满足m 2﹣2m =1,n 2﹣2n =1,那么代数式2m 2+4n 2﹣4n +1994=____________.9.若x ﹣y 看成一个整体,则化简(x ﹣y )2﹣3(x ﹣y )﹣4(x ﹣y )2+5(x ﹣y )的结果是______.三、解答题10.两个多项式:A =2a 2﹣4a +1,B =4(a 2﹣a )+3,比较A 与B 的大小.11.小明在实践课中做了一个三角形模型,模型的周长为5m +3n ﹣2,第一条边长为m ﹣n ,第二条边长是第一条边长的2倍,求第三条边长.12.已知A =2x 2+3ax ﹣4,B =﹣x 2+ax ﹣8,且3A +6B 的值与x 无关,求a 的值.13.莱蒙托夫是俄国著名的诗人,爱好数学,有一次,他给一些军官表演猜数游戏,他请一名军官随便想好一个数,不要说出来,然后请这位军官将想好的数加上25,再加上125,再减去37,再减去最初想好的数,把所得的数乘以5,最后再除以2.这时莱蒙托夫说,我可以猜出你算出的结果,他问那位军官是282.5吗,那位军官非常吃惊,莱蒙托夫是怎样算出正确结果的,解释其中的道理.14.一个三位数,百位数是a ,十位数是b ,个位数是c ,且a >b ,把百位数与个位数的位置交换得到一个新的三位数.试说明:原三位数与新三位数的差一定是99的倍数.15.小雯乘公共汽车到图书城买书,上车时发现车上有(3a﹣b)人,车到中途站时,下车一半人,但又上车若干人,这时车上共有乘客(8a﹣5b)人,问:(1)中途上车的乘客是多少人?(2)当a=4,b=2时,上车乘客是多少人?16.(2014秋•萧山区期末)已知A=y2﹣ay﹣1,B=2by2﹣4y﹣1,且多项式2A﹣B的值与字母y的取值无关,求2(a2b ﹣1)﹣3a2b+2的值.17.已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6,试说明无论x,y,z 取何值,A+B+C均为常数.18.小马买了一套经济适用房,他准备将地面铺上地砖,地面结构如图3所示.根据图中的数据(单位:米),解答下列问题:(1)用含x,y的整式表示地面总面积;(2)若铺1米2地砖的平均费用为80元,求当x=4,y=32时,铺地砖的总费用为多少元?19.李华老师给学生出了一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3ba2-10a3+3的值.题目出完后,小明说:“老师给的条件a=0.35,b=-0.28是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?20.一个三角形一边长为a+b,另一边比这条边长b,第三边比这条边短a.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形的周长.11.一个多项式,当减去2x2﹣3x+7时,因把“减去”误认为“加上”,得5x2﹣2x+4,试求这个多项式.12.先化简,再求值:ab﹣2{ab﹣[3a2b﹣(4ab2+32ab)]﹣4a2b}﹣4ab2,其中a=﹣1,b=1.13.计算:5(mn﹣m2)﹣m2﹣2mn﹣2(mn﹣3m2).。

整式的加减知识点总结

整式的加减知识点总结

整式的加减知识点总结整式的加减知识点总结一、整式的加法整式是指由常数、变量和它们的乘积及乘方组成的代数式。

整式的加法是指将同类项相加的运算。

1. 同类项同类项是指具有相同字母和相同指数的项。

例如,a^2b和2a^2b是同类项,但a^2b和ab^2不是同类项。

2. 加法法则将同类项的系数相加,字母和指数保持不变。

例如,将3ab+2ab相加时,可将系数相加得到5ab,字母和指数保持不变。

3. 零多项式零多项式是指系数为0的整式。

将零多项式与任何整式相加的结果都是原来的整式。

例如,将3ab+(-3ab)相加,结果为0。

二、整式的减法整式的减法是指将两个整式相减的运算。

1. 减法法则将减数改变符号后,再按照加法法则进行运算。

例如,将3ab-2ab相减,可将减数改变符号得到-2ab,然后按照加法法则将同类项相减得到ab。

2. 减法的特例减法的特例是指减数和被减数相等的情况,结果为零多项式。

例如,a^2b-a^2b的结果为0。

三、整式的加减混合运算整式的加减混合运算是指包含加法和减法的整式运算。

1. 先化简同类项在进行加减混合运算时,首先将同类项按照加法法则化简。

例如,将3ab-2ab+5ab-4ab化简为(3-2+5-4)ab。

2. 再合并同类项化简后,将同类项的系数相加,字母和指数保持不变。

例如,将(3-2+5-4)ab合并为2ab。

3. 注意符号在进行加减混合运算时,注意同类项前的正负号。

对于同类项之间的减法,可以看作是将减数改变符号后与被减数进行加法运算。

例如,将3ab+(-2ab)相加,得到ab。

四、实例分析下面通过一些实例来对整式的加减进行更详细的说明。

例1:将4a^2b-3ab+2b^2-5a^2b化简为最简整式。

解:首先化简同类项,得到(4-5)a^2b+(-3)b^2。

然后合并同类项,得到(-1)a^2b+(-3)b^2。

最终结果为-a^2b-3b^2。

例2:将a^3+2a^2-3ab+4b^2-5a^3+6ab-7b^2化简为最简整式。

4.2 整式的加法与减法 整式的加减(化简求值)-人教版(2024)数学七年级上册

4.2 整式的加法与减法 整式的加减(化简求值)-人教版(2024)数学七年级上册
4.2整式的加法与减法 整式的加减(化简求值)
1. (1)已知 x =-2,则 x2+1的值为 5 ,- x2+1的值为 -3 ;


(2)已知 x =-8, y = ,则 xy2=

-2 .
2. 计算:-4( a3-3 b2)+(-2 b2+5 a3).
解:原式=-4 a3+12 b2-2 b2+5 a3= a3+10 b2.
=(1- b ) x2+( a +2) x -11 y +8.
因为与 x 的取值无关,
所以1- b =0, a +2=0.所以 b =1, a =-2.
所以2( a2- ab + b2)-3( a2+ ab + b2)
=2 a2-2 ab +2 b2-3 a2-3 ab -3 b2
=- a2-5 ab - b2=-(-2)2-5×(-2)×1-12
(1)求 A - B ;
解:(1) A - B =(3 x2 y +3 xy2+ y4)-(-8 xy2-2 x2 y -2 y4)
=3 x2 y +3 xy2+ y4+8 xy2+2 x2 y +2 y4
=5 x2 y +11 xy2+3 y4.

(2)求 A + B .



2
2
4
(2) A + B =(3 x y +3 xy + y )+ (-8 xy2-2 x2 y -2 y4)
C. - x -2 y
D. - x +2 y
A
)
2. 某天数学课上,老师讲了整式的加减.放学后,小明回到家拿出
课堂笔记复习老师课上讲的内容,他突然发现一道题:( x2+3 xy )-(2 x2
+4 xy )=- x2-*,其中*代替的地方被钢笔水弄污了,那么*对应的是

《整式》整式及其加减

《整式》整式及其加减
《整式》整式及其加减
2023-11-05
contents
目录
• 整式概述 • 整式的加减法运算 • 整式的混合运算 • 整式的简化 • 整式的应用 • 复习与总结
01
整式概述
什么是整式
定义
整式是由整数或整式乘除得到的代数式,例如:x^2,3y,2x+3,4b^23b+2等。
特点
整式中不含分母,也不含根号。
删除系数1的例子
$- 3y + 2y = (-3 + 2)y = -y$。
去掉分母的例子
$\frac{2x}{3} + \frac{5x}{3} = \frac{(2 + 5)x}{3} = \frac{7x}{3}$。
05
整式的应用
整式在生活中的应用
建筑学
在建筑设计中,整式可以用于 计算面积、体积和周长等。
检验答案
在得到答案后,要检验其是否符合 实际情况和数学逻辑。
06
复习与总结
本章重点回顾
整式的概念
整式是单项式与多项式的统称,其加减运算不改变代数式的次数 。
整式的加减法
整式的加减法主要涉及去括号、合并同类项等基本运算,是代数 式的基础。
整式的乘除法
整式的乘除法是建立在加减法基础上的,需要灵活运用单项式乘 单项式、单项式乘多项式、多项式乘多项式等运算法则。
本章难点解析
括号前是负号时去括号
括号前有负号时,去括号后各项都要变号 ,这是整式加减法中的难点之一。
VS
合并同类项
合并同类项时,系数相加,字母及其指数 不变,这是整式加减法中的另一个难点。
整式加减法在中考中的考点分析
整式的加减运算

《整式的加减》整式及其加减PPT课件

《整式的加减》整式及其加减PPT课件

巩固练习
变式训练
(2)(3a2-ab+7)-(-4a2+2ab+7); 解:(3a2-ab+7)-(-4a2+2ab+7)
=3a2-ab+7+4a2-2ab-7 =7a2-3ab;
巩固练习
变式训练
(3)2n-(2-n)+(3n-2); 解:2n-(2-n)+(3n-2)
=2n-2+n+3n-2 =6n-4;
连接中考 已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B; (2)若3A+6B的值与x无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1)
=6x2+9xy-6x-3-6x2+6xy-6 =15xy-6x-9; (2)原式=15xy-6x-9=(15y-6)x-9 要使原式的值与x无关,则15y-6=0,
=-16-12+10+5 =-13.
课堂小结
整式加减的步骤 整 式 的 加 减
整式加减的应用
去括号 合并同类项
=2ab+2bc+2ca+6ab+8bc+6ca =(8ab+10bc+8ca)(cm2 ).
巩固练习 (2)做大纸盒比小纸盒多用料多少平方厘米?
小纸盒的表面积是(2ab+2bc+2ca)cm2 大纸盒的表面积是(6ab+8bc+6ca)cm2
解:做大纸盒比做小纸盒多用料
(6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca-2ab-2bc-2ca =(4ab+6bc+4ca)(cm2)

第二章 整式 及整式的加减 知识点

第二章 整式 及整式的加减  知识点

数字或字母的乘积叫单项式 第二章 整式的加减【名词解释】1、代数式:2、有理式:3、整式:4、分式:5、单项式: 单项式的系数: 单项式的次数:6、多项式:多项式的项: 多次项的次数: 常数项: (多项式中)最高次项: (多项式中)最高次项的系数:单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

含有加、减、乘、除、乘方运算的代数式叫做有理式。

除式中含有字母的有理式叫做分式。

除式中不含有字母的有理式叫做整式。

代数式的一种,含有根式的代数几个单项式的和。

多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的加减1、整式加减的理论根据是:去括号法则合并同类项法则以及乘法分配率去括号法则:如果括号前是“十”号,把括号和它前面的“十”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

整式 - 整式加减运算

整式 - 整式加减运算

教案教学内容整式——整式加减运算知识回顾:1.去括号法则是什么?如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.如何合并同类项?在整式中,如果出现了同类项,那么就可以把这些同类项合并为一项,即合并同类项.其法则是:把同类项的系数相加,所得的结果作为结果的系数,字母和字母的指数不变.可简记为“一个相加,两个不变”,即系数相加,字母与其指数不变.知识梳理:1.整式加减的运算法则几个整式先加减,如果有括号,先去括号;如果有同类项,再合并同类项.2.整式加减的步骤(1)如果有数字与多项式相乘,先把数字与多项式的各项相乘,放在括号内;(2)去括号:按照先小括号,再中括号,最后大括号的顺序;去括号,看符号,是“+”号,不变号,是“-”号,全变号.(3)计算:①找同类项,做好标记;②利用加法的交换律和结合律把同类项放在一起;③利用乘法分配律计算结果;④按要求按某字母的升幂或降幂排列.3.整式的化简求值整式的化简求值,一般先按照整式的加减运算法则,把原式化简,再代入整式中字母的值,进行计算.单项式:数或字母的乘积叫单项式。

单个的数字和字母也是单项式;单项式的系数:单项式中数字因数角单项式的系数;单项式的次数:单项式中所有字母的指数的和叫单项式的次数;多项式:几个单项式的和叫做多项式;多项式的项:多项式中每个单项式叫做多项式的项;多项式的常数项:多项式中不含字母的项叫做常数项;多项式的次数:多项式中次数最高项的次数叫做多项式的项;整式:单项式和多项式统称整式。

(一)在研究单项式的系数问题时,要注意:1. 当单项式的系数是1或-1时,“1”通常省略不写。

2.圆周率π是常数。

3.当单项式的系数是带分数时,通常写成假分数。

4.单项式的系数应包括它前面的性质符号。

(二)规定:单独一个非零数的次数是0。

00是没意义的 例题:1.两个整式的和与差【例1】一个整式减去x 2﹣y 2等于x 2+2y 2,则这个整式是( )A .﹣3y 2B .2x 2+y 2C .3y 2﹣2x 2D .3y 2总结:1. 一般地,求几个整式的和或差,可以把每个整式看做一个整体,用括号把整式括起来,并用加号或减号连接,然后再去括号、合并同类项.2. 特别地,几个整式相减,第一个整式作为被减式出现可以不加括号,但其余的减式一定要加括号.单项式的定义多项式 单项式 整式单项式的次数 单项式的系数 整式的定义 多项式的的次多项式的常数多项式的项 多项式的定义练1.x2+2xy﹣13y2﹣(x2+3xy)=﹣xy﹣13y2.练2.一个多项式加上2x2y﹣3xy2﹣2x+1的2倍等于4x2y+5xy2+3x﹣2y+5,求这个多项式.2.整式的加减混合运算【例2】计算:ab﹣{2ab﹣2[3a2b﹣(4ab2+0.5ab)﹣6ab]}﹣3ab2.总结:整式加减实质上就是去括号、合并同类项.计算过程中需要注意:(1)整式加减的结果是单项式或者是没有同类项的多项式.(2)结果一般按照某个字母的降幂或升幂排列;(3)每一项的数字系数写在字母前面,系数是带分数的,带分数要化成假分数;(4)结果中一般不再有括号.练3.代数式(xyz2﹣1)+(3xy+z2yx)﹣(2xyz2+3xy)的值是()A.无论x、y取何值,都是一个常数B.x取不同值,其值也不同C.y取不同值,其值也不同D.x、y取值不同,其值也不同练4.计算:﹣2(a2b﹣14ab2+12a3)﹣(﹣2a2b+3ab2)=.3.整式的化简求值——加减混合运算【例3】(1)当32m ,n=-1时,代数式3mn﹣2m2+(2m2﹣2mn)﹣(3mn﹣n2)的值是()A.3 B.4 C.5 D.6(2)已知xy+x=﹣1,xy﹣y=﹣2,求代数式﹣x﹣[2y﹣2(xy+x)2+3x]+2[x+(xy﹣y)2]的值.总结:求整式的值,一般先根据整式的加减法则将整式化到最简,再代入求值.(1)如果已知条件给出字母的具体数值,则代入已给的数值,然后按照有理数的运算法则和运算律进行计算;(2)如果已知条件中没有给出具体字母的取值,只给出了某些条件等式,则在整式化简的过程中要想办法将整式变形,化为与条件等式有关的关系式,然后将已知条件整体代入求解.练5.已知A=2x2﹣3xy+2y2,B=2x2+xy﹣3y2,C=x2﹣xy﹣2y2,其中x=﹣1,y=﹣12.求A﹣(B﹣(C﹣(A+B))的值.练6.若m﹣n=2,mn=1,则多项式(﹣2mn+2m+3n)﹣(3mn+2n﹣2m)﹣(m+4n+mn)的值是.练习:一、选择题1.一个整式减去3m,结果等于5m2﹣3m﹣5.这个整式是()A.5m2﹣5 B.5m2﹣6m﹣5 C.5m2+5 D.﹣5m﹣6m+52.一个两位数的个位数字是a,十位数字是b,把它们对调后得到另一个两位数,则下列说法正确的是()A.这两个两位数的和是2a+2b B.这两个两位数的和是9a+9bC.这两个两位数的和11a+11b D.这两个两位数的差是9a﹣9b3.已知a+2b=3,则代数式2(2a﹣3b)﹣3(a﹣3b)﹣b的值为()A.﹣3 B.3 C.﹣6 D.64.当x=2时,多项式﹣(9x3﹣4x2+5)﹣(﹣3﹣8x3+3x2)的值为()A.﹣4 B.4 C.﹣6 D.65.化简x﹣(1﹣2x+x2)+(﹣1+3x﹣x2)所得结果是()A.2x﹣2 B.﹣2x2+6x﹣2 C.2x D.2x2﹣6x+26.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣12y2)﹣(﹣12x2+4xy﹣32y2)=﹣12x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.﹣xy C.7xy D.+xy二、填空题7.+(4xy+7x2﹣y2)=10x2﹣xy.8.已知a﹣b=4,ab=1,则(2a+3b﹣2ab)﹣(a+4b+ab)﹣(3ab+2b﹣2a)=.9.化简:4a2﹣3a+3﹣3(﹣a3﹣2a3+1)=.三、解答题10.已知a2﹣a﹣4=0,求4a2﹣2(a2﹣a+5)﹣12(a2﹣a﹣4)﹣4a的值.11.一个多项式,当减去2x2﹣3x+7时,因把“减去”误认为“加上”,得5x2﹣2x+4,试求这个多项式.12.先化简,再求值:ab﹣2{ab﹣[3a2b﹣(4ab2+32ab)]﹣4a2b}﹣4ab2,其中a=﹣1,b=1.13.计算:5(mn﹣m2)﹣m2﹣2mn﹣2(mn﹣3m2).。

《代数式》整式及其加减

《代数式》整式及其加减

与不等式结合
整式加减法也常常与不等式结合使用,通过不等式的 研究和分析,可以更好地掌握整式的加减法技能。
感谢您的观看
THANKS
整式的乘法运算
3. 多项式与多项式的乘法运算
将每个多项式分别展开,然后根据乘法分配律进行计算。
公式示例
$(2x^2 + 3x) \times (x + 2) = 2x^3 + 4x^2 + 3x^2 + 6x = 2x^3 + 7x^2 + 6x$。
整式的除法运算
• 总结词:整式的除法运算主要涉及单项式与单项式、单项式与 多项式、多项式与多项式的除法运算。
要点二
解决物理问题
整式加减法在解决物理问题中也有很多应用,例如牛 顿第二定律$F=ma$,其中$F$表示力,$m$表示质量 ,$a$表示加速度,通过整式加减法可以方便地求解加 速度。
在日常生活中的应用
计算购物优惠
在日常生活中,整式加减法可以用来计算购物优惠。例 如,如果一件商品的原价为$x$元,折扣为$y$元,那么 实际支付的金额为$(x-y)$元,这个可以通过整式加减法 来计算。
合并同类项
将相同项合并,简化表达式。
平方差公式
利用平方差公式简化表达式。
提取公因数
将公因数提取出来,简化表达式。
完全平方公式
利用完全平方公式简化表达式。
整式的约分技巧
找分子分母的最大公约数
约分的关键是找到分子分母的最大公约数。
将公约数约简
将分子分母同时除以它们的最大公约数。
化简分数
将分子分母化为互质的整数。
去括号、移项等基本技能。
02
提高解题速度
多做习题能够提高解题速度,因为熟能生巧。在面对考试时,能够更加

整式及其加减知识点知识点

整式及其加减知识点知识点

整式及其加减知识点知识点整式是指由数字和字母按照加法、减法和乘法运算规则组成的多项式。

整式是代数中的基本概念,其理解和运算是学习代数的基础。

一、整式的定义和形式整式是由数字和字母按照加法、减法和乘法运算规则组成的多项式。

整式的形式可以是常项、单项或多项式。

常项是指只由数字组成的整式,单项是指只有字母与一定次数的乘方的整式,而多项式是由字母与各种次数的乘方的连乘积的和。

二、整式的加法和减法运算整式的加法和减法是整式运算的基本方法,其组合规则如下:1.同类项的加减法:同类项指的是指数部分相同的项。

对于同类项,只需将系数相加或相减,指数不变。

例如:3x^2+2x^2=5x^22.同类项之外的项相加减:对于不同类项,不能直接相加减。

只能合并同类项后再进行运算。

例如:3x+2x^2-4x^2+5x=2x^2-x+5x。

3.括号展开运算:对于整式中有括号的情况,可以通过分配律将括号内的整式与外部整式相乘。

例如:(3x+2)(x+1)=3x^2+3x+2x+2=3x^2+5x+2三、整式的乘法运算整式的乘法是通过对各项的系数和指数进行相乘得到的。

乘法运算的规则如下:1. 系数相乘:将整式中各项的系数进行相乘。

例如:2x * 3y = 6xy。

2.指数相加:对于同一个字母,如果有两个或多个指数,则将这些指数相加。

例如:x^2*x^3=x^(2+3)=x^53.同类项相乘:将系数和指数分别相乘,得到同类项的乘积。

不能合并同类项之外的项。

例如:2x*3x=6x^24.括号的乘法:将括号内的整式与外部整式分别进行乘法运算。

结果通过分配律得出。

例如:3x*(2x+1)=6x^2+3x。

四、整式的综合运算整式的综合运算是指整式的加减法和乘法在一起进行的运算。

综合运算需要根据题目给出的式子和要求进行相应的计算步骤。

在进行整式运算时,可以利用运算法则和分配律进行合理的转换和化简。

整式的加减法和乘法都需要注意合并同类项和保持字母指数的正确运算。

整式的加减及经典例题

整式的加减及经典例题

《整式及整式的加减》要点梳理及经典例题一、整式的有关概念1.单项式(1)概念:注意:单项式中数与宇母或宇母与宇母之间是乘积关系,例如:2可以看2 1r 2 X成三所以:是单项式;而一表示2与X的商,所以:不是单项式,凡是分母中含有宇2 2 x 2母的就一定不是单顶式.(2)系数:单项式中的数宇因数叫做这个单项式的系数.例如:-的系教是—[;2龙尸的系数是2兀注意:①单项式的系数包括其前面的符号;②当一个单顼式的系数是1或-1时,“1” 通常省珀不写,但符号不能省晒.女口: -小/庆•等;③龙是数宇,不是宇母.(3)次数:一个单顶式中,所有宇母指数的和叫做这个单顶式的次数.注意:①计算单顶式的次教时,不要漏掉宇母的指数为1的情况.如2xy3z2的次数为1 + 3+2 = 6,而不是5;②切勿加上系数上的指数,如2’Q2的次数是3,而不是8; -2兀十)“ 的次数是5,而不是6.2.多项式(1)槪念:几个单项式的和叫做多项式.其含义是:①必须由单顶式组成;②体现和的运算法则.(2)项:在多项式中,每一个单项式叫做多项式的项,其中不含宇母的项叫常教项;一个多项式含有几个单项式就叫几项式•例如:2x2-3y-l共含有有三项,分别是2迅-3”-1,所以2x2-3y-\是一个三项式.注意:多项式的项包括它前面的符号,如上例中常数项是-1,而不是1.(3)次数:多项式中,次数最高项的次数,就是这个多项式的次数.注意:要防止把多项式的次数与单项式的次数相混淆,而误认为多项式的次数是各顼次数之和.例如:多顼式2x2y2-3x4y + 5xy2中,2x2y2的次数是4, -3x4y的次数是5, 5xy2 的次数是3,故此多项式的次数是5,而不是4+5 + 3 = 12.3.整式:单项式和多项式统称做整式.4.降幕排列与升冨排列(1)降篡排列:把一个多项式按某一个宇母的指数从大到小的顺序排列起来叫做把这个多项式按这个宇母的降幕排列.(2)把一个多顼式按某一个宇母的指数从小到大的顺序排列起来叫做把这个多项式按这个宇母的升幕排列.注意:①降(升)躍排列的根据是:加法的交换律和结台律;②把一个多项式按降(升) 舄重新排列,移动多顶式的项时,雲连同项的符号一起移动;③在进行多顶式的排列时,要先确定按哪个宇母的指数来排列.例如:多项式^2-x4-/-3x2/-2x3y按x的升磊排列为:-/ + xy^2-3x2y3-2x3y-x4;按y 的降冨排列为:-y4-3x2y3+xy2-2x3y-x4.二、整式的加减1.同类项:所含的宇母相同,并且相同宇母的指教也分别相同的项叫做同类项.注意:同类项与其系数及宇母的排列顺序无关.例如:2/戻与—3Z//是同类项;而2/戻与5"怙彳却不是同类项,因为相同的宇母的指数不同.2.台并同类项(1)槪念:把多项式中相同的顼合并成一项叫做台并同类顶.注意:①台并同类项时,只能把同类项台并成一项,不是同类项的不能台并,如2a+3b = 5ab 显然不正确;②不能台并的项,在每步运算中不要漏掉.(2)法则:台并同类项就是把同类顼的系数相加,所得的结果作为系数,宇母和宇母的指数保持不变.注意:①台并同类顼,只是系数上的变化,宇母与宇母的指数不变,不能将宇母的指数相加;②合并同类顼的依据是加法交换律、结台律及乘法分配律;③两个同类顼台并后的结果与原来的两个单顶式仍是同类顼或者是0.3.去括号与埴括号(1)去括号法则:括号前面是“ + ”,把括号和它前面的“ + ”去掉,括号内的各项都不变号;括号前面是“一”,把括号和它前面的“一”去掉,括号內的各项都改变符号.注意:①去括号的依据是乘法分配律,当括号前面有教宇因数时,应先利用分配律计算, 切勿漏乘;②明确法则中的“都”宇,变符号时,各项都变;若不变符号,各项都不变.例如:a + (b-c) = a+b-c;a-(h-c) = a-b+c ;③当出现多层括号时,一般由里向夕卜逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号•(2)埴括号法则:所添括号前面是“ + ”号,添到括号内的各项都不变号;所添括号前面是“一”号,添到括号内的各项都改变符号.注意:①添括号是添上括号和括号前面的“ + ”或“一”,它不是原来多项式的某一项的符号“移”出来的;②添括号和去括号的过程正好相反,添括号是否正确,可用去括号来检验.例如:a+”—c = d + (b—c);o—b+c = d-(b—c).4.整式的加减整式的加减实质上是去括号和合并同类项,其一般步骤是:(1)如果有括号,那么先去括号;(2)如果有同类项,再台并同类项.注意:整式运算的结果仍是整式・经典例题透析类型一:用字母表示数it关系aV 1.埴空题:⑴香蕉每千克售价3元,m千克售价____________ 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步步高升课堂讲义任课老师:李老师2014\1\19
整式与整式的加减
定义:单项式与多项式统称为整式。

单项式:由数与字母或字母与字母相乘组成的代数式。

单项式的系数
(1)单项式中的常数因数叫做单项式的系数.如3x的系数是3。

(2)如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1. (3)如果只是一个数字,系数是本身。

如5的系数还是5.
单项式的次数
一个单项式中,所有字母指数的和叫做这个单项式的次数。

例如6xy^2中字母x的次数是1,字母y的次数是2,则6xy^2的次数为1 2=3.
单独一个非零数的次数是1。

例如:4xy的系数为4,次数为2。

x的指数是1,y的指数是1,指数相加得2.
多项式:几个单项式的和。

多项式的系数
多项式中,次数最高的项的次数,就是这个多项式的次数.
多项式的项
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号.一元N次多项式最多N 1项。

例:在多项式2x-3中,2x和-3是它的项,其中-3是常数项。

同类项:在一个多项式中,所含字母相同并且相同字母的指数也分别相等的项叫同类项。

合并同类项的法则:所含字母相同,且相同字母的指数也相同的项叫做同类项.将多项式中的同类项合并为一项,叫做合并同类项。

合并时,将系数相加,字母和字母指数不变。

整式加减的一般步骤:
1.根据题意列出代数式;
2.如果遇到括号,按去括号法则先去括号;
3.合并同类项.。

相关文档
最新文档