2017年春季新版北师大版八年级数学下学期5.4、分式方程教案13

合集下载

北师大版数学八年级下册5.4《分式方程》教学设计1

北师大版数学八年级下册5.4《分式方程》教学设计1

北师大版数学八年级下册5.4《分式方程》教学设计1一. 教材分析北师大版数学八年级下册5.4《分式方程》是学生在学习了分式、分式运算、函数等知识的基础上学习的。

本节课主要让学生掌握分式方程的定义、解法以及应用。

通过本节课的学习,学生能够理解和掌握分式方程的概念,熟练运用解法求解分式方程,并能够将分式方程应用到实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,对分式运算有一定的了解。

但部分学生对分式的理解不够深入,解题思路不够清晰,需要在解题过程中进行引导。

此外,学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,需要通过实例进行启发。

三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。

2.能够将分式方程应用到实际问题中,提高解决问题的能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.分式方程的定义及解法。

2.将分式方程应用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的学习材料,如教材、课件、练习题等。

2.准备实际问题案例,用于引导学生应用分式方程解决实际问题。

七. 教学过程1.导入(5分钟)通过一个实际问题引出分式方程的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解分式方程的定义,演示解法,让学生理解并掌握分式方程的基本知识。

3.操练(10分钟)让学生独立解决一些简单的分式方程,检验学生对知识点的掌握情况。

4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和辅导,使学生进一步巩固知识点。

5.拓展(10分钟)让学生尝试解决一些较复杂的分式方程,提高学生的解题能力。

6.小结(5分钟)总结本节课所学内容,强调分式方程的解法和应用。

7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。

8.板书(5分钟)整理本节课的主要知识点和解题方法,方便学生复习。

北师大版八年级数学下册54.《分式方程》教学设计

北师大版八年级数学下册54.《分式方程》教学设计
2.创设轻松愉快的学习氛围,鼓励学生积极参与,培养学生的自信心。
3.强化学生的问题意识,引导学生善于发现、提出和解决问题。
4.突出学生的主体地位,教师扮演引导者、组织者和合作者的角色,促进师生互动、生生互动。
5.注重培养学生的综合素质,将分式方程知识与实际生活相结合,提高学生的应用能力。
四、教学内容与过程
4.小组成果展示:每组选派一名代表进行成果展示,分享解题过程和经验。
(四)课堂练习
1.练习题设计:设计难易程度不同的练习题,涵盖分式方程的各种类型,使学生在练习中巩固所学知识。
2.学生独立完成:要求学生在规定时间内独立完成练习题,提高学生的解题能力。
3.解题指导:针对学生练习中出现的共性问题,进行集中讲解,帮助学生突破难点。
(一)导入新课
1.教学活动设计:以学生熟悉的生活场景为背景,提出一个关于速度的问题。例如:“小明和小华同时从同一地点出发,小明以4千米/小时的速度跑步,小华以5千米/小时的速度骑自行车,问他们分别在多长时间后相遇?”
2.引导学生思考:这个问题中涉及到哪些数学知识?能否用我们学过的方程来解决这个问题?
7.课后作业与反思:布置适量的课后作业,要求学生独立完成,并进行自我反思,总结解题过程中的优点和不足。
8.教学评价:采用多元化评价方式,关注学生的知识掌握程度、解题能力、合作意识等方面,全面评估学生的学习效果。
在教学过程中,教师应注重以下方面:
1.关注学生个体差异,因材施教,使每位学生都能在原有基础上得到提高。
4.布置课后作业:布置适量的课后作业,要求学生独立完成,并进行自我反思。
五、作业布置
为了巩固学生对分式方程知识的掌握,培养其运用所学解决实际问题的能力,特布置以下作业:

北师大版八年级下册数学教案设计:5.4分式方程

北师大版八年级下册数学教案设计:5.4分式方程

《分式方程(二)》教学设计教学目标(1)经历探索分式方程解法的过程,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径,了解解分式方程的一般步骤,使学生进一步体会数学思想中的“转化”思想.(2)经历探究增根产生的原因的过程,使学生理解解分式方程时,可能出现增根,方程无解的原因,明确分式方程验根的必要性,并掌握解分式方程的验根方法,培养学生的逻辑分析能力.教学重点:探索解分式方程的步骤,熟练掌握分式方程的解法;体会解分式方程验根的必要性.教学难点:如何将分式方程转化为整式方程;理解解分式方程时可能无解的原因,明确分式方程验根的必要性.教学过程(一)复习回顾1.请写出214x -与42-x x 的最简公分母. 2.解一元一次方程 21134x x +-= 3.什么叫做分式方程?它有哪些特点?如何解分式方程呢?师生行为:学生回顾最简公分母、一元一次方程的解法以及已学分式方程相关知识;教师点拨去分母,为下一步解分式方程做准备;提醒学生注意解一元一次方程每一步易犯的错误,尤其是去分母时每一项都要乘以最简公分母,不能漏乘,同时还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.设计目的:回顾最简公分母,解一元一次方程的解法,做好新知学习的铺垫.由于本节课的内容是紧接在分式的运算之后,多数学生在解分式方程时会对方程进行通分,所以着重复习去分母的步骤以及提醒漏乘现象,为学生过渡到分式方程去分母打下基础.(二)探究新知活动一:自主探索例1.类比上述方法,大胆尝试解分式方程:xx 321=- 师生行为:学生自主探索或互相讨论完成,老师巡视学生完成情况;有些学生可能会采用交叉法,也有些学生可能采用去分母,甚至有些学生可能受刚学习的分式加减法的影响进行通分,对于学生可能出现的几种典型的解法用多媒体展示台展示,让同学讨论,得出较好的解法,引导学生体会解分式方程的关键是把分式方程转化为整式方程.教师在活动中关注:(1) 学生能否观察出分式方程与整式方程的区别.(2) 学生是否有利用“转化思想”解决问题的意识.(3) 学生是否在参与合作交流的活动中获取知识,学生是否从多角度来研究分式方程的解法.(4) 引导学生检验刚才求得的解是否是原方程的解.设计目的:主要让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所得结果的合理性,培养学生的发散思维.通过教师对例题讲解,让学生初步体会解分式方程的一般步骤,了解解分式方程的关键是把分式方程转化为整式方程.练习:解分式方程(1)xx 413=- (2)1-2321x x =+ 师生行为:学生独立求解,老师巡视学生完成情况,对有困难度的学生给予帮助.对学生不同的解法或学生解题中一些错误的做法在多媒体上展示.设计目的:通过一组练习题,让学生熟练解简单的分式方程.活动二:深入探究例2.解分式方程:22121--=--xx x 师生行为:学生独立求解,解得2=x .教师提出问题:(1)你认为2x =是原方程的根?(2)例1和例2两个方程中,为什么例1去分母后所得整式方程的解3=x 是它的解,而例2去分母所得整式方程的解2x =却不是它的解呢?(3)探究:分式方程无解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解,我们称它为原方程的增根)(4)探究:如何检验分式方程的解?①直接代入原方程(计算量大,很少用) ②间接代入最简公分母(常用检验方法)设计目的:主要让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性.学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实,突出本节课重点.在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.以此让学生领会这一类题目的解法.同时强调不要漏乘.活动三:规范解法例3.解方程 )1(516++=+x x x x 师生行为:学生独立解题,其中一名学生上黑板完成,教师巡视,并对个别有困难的学生进行指导,等学生完成后,师生共同讲评,规范解题过程.设计目的:经历前两个活动后,再次让学生解分式方程,规范解题步骤,同时为下一个归纳解分式方程的步骤的活动积累经验.活动四:探究归纳解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?师生行为:师生共同分析交流归纳总结.解分式方程的基本思路是:分式方程通过去分母转化成整式方程.设计目的:通过探究,引发学生的思考,让学生在自主探究合作交流中归纳总结解分式方程的基本思路和步骤,在合作交流中获得成功的快乐。

北师大版八年级下册数学5.4 分式方程教案设计

北师大版八年级下册数学5.4 分式方程教案设计

5.4.2 分式方程
教学目标:
1.经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;
2.经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

教学重点:
1.解分式方程的一般步骤,熟练掌握分式方程的解决.
2.明确解分式方程验根的必要性.
教学难点:明确分式方程验根的必要性.
教学过程:
教学补充 一、复习引入:
同学们你认识下面的方程吗? 会对它们求解吗?
3x -2y = 6
2x + y = 8
6
22213--=-x x
二、讲授新课
解方程6
22213--=-x x 解:方程两边都乘以6,得 6*)622(6*213--=-x x
3(3x-1)=12-(x-2)
解这个方程,得x=
1017 仿上例完成 例1.解方程:452600480=-x
x 解:方程两边都乘以2x ,得x x x
x 2*452)2600480(=- 960-600=90 x
解这个方程,得x = 4
检验:将x=4代入原方程,得 左边=45=右边
所以,x=4是原方程的根。

解分式的关键:把分式方程化为整式方程。

()x x -=-11432{
3129+=x x。

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计一. 教材分析北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)的内容包括分式方程的定义、性质和列分式方程的方法。

本节课内容是在学生已经掌握了分式的概念、性质、运算的基础上进行的,是初中数学的重要内容,也是解决实际问题的重要工具。

分式方程在实际生活中的应用非常广泛,如解决利润问题、浓度问题等。

通过本节课的学习,使学生掌握分式方程的基本概念和列方程的方法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、性质和运算,具备了一定的数学基础。

但是,对于分式方程的概念和列方程的方法,学生可能还比较陌生,需要通过实例来理解和掌握。

此外,学生可能对解决实际问题中的方程有一定的恐惧心理,需要教师通过引导和鼓励来激发学生的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握分式方程的定义、性质,学会列分式方程的方法。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:分式方程的定义、性质和列分式方程的方法。

2.难点:理解分式方程的实际意义,学会解决实际问题。

五. 教学方法1.自主学习:引导学生通过自主学习,掌握分式方程的基本概念和性质。

2.合作交流:学生进行小组讨论,分享彼此的学习心得和解决问题的方法。

3.实例分析:通过具体的实例,使学生理解和掌握分式方程的列法。

4.实践操作:让学生亲自动手解方程,提高学生的操作能力。

六. 教学准备1.课件:制作课件,展示分式方程的定义、性质和列方程的方法。

2.实例:准备一些实际问题,用于引导学生解决实际问题。

3.练习题:准备一些练习题,用于巩固学生对分式方程的理解和掌握。

七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如利润问题、浓度问题等,引导学生思考如何用数学方法解决这些问题。

【核心素养】北师大版八年级数学下册5.4第3课时分式方程的应用教案

【核心素养】北师大版八年级数学下册5.4第3课时分式方程的应用教案
作业布置与反馈
1. 作业布置:
(1)请同学们完成课后练习题,巩固今天课堂上所学的分式方程解法及其应用。
(2)选取一个实际问题,运用所学的分式方程知识进行解决,并将解题过程和答案写在作业本上。
(3)阅读一篇关于分式方程在实际问题中的应用的文章,并写一篇读后感,分享你的收获和体会。
2. 作业反馈:
(1)我将及时批改同学们的作业,并给出具体的评价和反馈。对于正确完成作业的同学,我会给予肯定和鼓励;对于存在问题的同学,我会指出存在的问题,并给出改进建议。
反思改进措施
一、教学特色创新
1. 实际问题引入:我用了生活实例来引入新课,学生们都很感兴趣,这一点我觉得做得不错。
2. 案例分析法:通过分析具体案例,让学生自己尝试解决问题,这样能更好地让他们理解分式方程的应用。
3. 小组项目学习:让学生们分组解决实际问题,这样既能培养他们的合作意识,也能提高他们解决问题的能力。
4. 组织学生进行小组讨论或研究,分享各自搜集到的分式方程相关资料,相互学习和交流,提高合作能力。
5. 鼓励学生利用课余时间,参加学校或社区举办的数学讲座或活动,拓宽自己的数学视野,提升自己的数学素养。
课后拓展
1. 拓展内容:
(1)阅读材料:《分式方程的应用案例》、《分式方程在实际问题中的应用》等,让学生进一步了解分式方程的实际应用。
学具准备
Xxx
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学方法与策略
1. 针对本节课的教学目标和学生的实际情况,采用讲授法、案例研究和项目导向学习相结合的教学方法。通过教师的讲解,使学生掌握分式方程的解法;通过案例分析,让学生体会分式方程在实际问题中的应用;通过项目学习,培养学生解决实际问题的能力。

北师大版数学八年级下册5.4《分式方程》说课稿

北师大版数学八年级下册5.4《分式方程》说课稿

北师大版数学八年级下册5.4《分式方程》说课稿一. 教材分析北师大版数学八年级下册5.4《分式方程》是学生在学习了分式、分式运算、函数等知识的基础上,进一步研究分式方程的性质、解法及其应用。

本节课的内容分为两大部分:一是分式方程的定义及基本性质;二是分式方程的解法及应用。

在教材的处理上,我将以学生已有的知识为基础,引导学生探究分式方程的性质,通过自主学习、合作交流的方式,让学生掌握解分式方程的方法,并能够应用于实际问题中。

二. 学情分析面对八年级的学生,他们已经掌握了分式的基本知识,具备了一定的逻辑思维能力。

但是,对于分式方程这一部分内容,他们可能还存在以下问题:1. 对分式方程的概念理解不深;2. 解分式方程的方法不明确;3. 在解决实际问题时,难以将分式方程与实际问题相结合。

针对以上问题,我在教学过程中将注重引导学生深入理解分式方程的概念,讲解解分式方程的方法,并通过实例让学生体验分式方程在实际问题中的应用。

三. 说教学目标1.知识与技能目标:理解分式方程的定义,掌握分式方程的基本性质,学会解分式方程的方法,能够应用分式方程解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,体会数学在生活中的应用,培养学生的数学素养。

四. 说教学重难点1.教学重点:分式方程的定义及其基本性质,解分式方程的方法。

2.教学难点:分式方程的解法,如何将分式方程应用于实际问题。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生探究分式方程的性质,掌握解分式方程的方法。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习任务单、实例分析等,提高教学效果。

六. 说教学过程1.导入新课:通过一个实际问题,引入分式方程的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究分式方程的定义和基本性质,培养学生独立解决问题的能力。

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)说课稿

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)说课稿

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)说课稿一. 教材分析《分式方程的解法》是北师大版数学八年级下册第五章第四节的内容,本节内容是在学生已经掌握了分式方程的概念和性质的基础上进行讲授的。

分式方程是初中数学中的重要内容,也是学生学习高中数学的基础。

本节课主要让学生掌握分式方程的解法,培养学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了分式方程的基本概念和性质,对分式方程有一定的认识。

但是,学生在解分式方程时,往往因为对运算法则掌握不熟练,导致解题过程中出现错误。

此外,学生在解决实际问题时,往往不知道如何将实际问题转化为分式方程,从而解决问题。

因此,在教学过程中,教师需要帮助学生巩固分式方程的基本概念和性质,引导学生掌握解分式方程的方法,并培养学生将实际问题转化为分式方程的能力。

三. 说教学目标1.知识与技能目标:使学生掌握分式方程的解法,能够熟练运用解法解分式方程。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 说教学重难点1.教学重点:分式方程的解法。

2.教学难点:如何将实际问题转化为分式方程,以及解分式方程时的运算技巧。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法。

2.教学手段:利用多媒体课件辅助教学,引导学生直观地理解分式方程的解法。

六. 说教学过程1.导入新课:通过复习分式方程的基本概念和性质,为学生学习本节课的内容做好铺垫。

2.自主学习:让学生自主探究分式方程的解法,引导学生发现解题规律。

3.合作交流:学生之间相互讨论,分享解题心得,教师巡回指导。

4.教师讲解:针对学生普遍存在的问题,进行讲解和辅导。

5.应用拓展:出示实际问题,让学生运用所学知识解决问题。

6.总结归纳:对本节课的内容进行总结,使学生形成知识体系。

七. 说板书设计板书设计如下:1.分式方程的概念和性质2.分式方程的解法–方法一:(去分母)–方法二:(去分母)3.实际问题与分式方程的转化八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养和情感态度三个方面进行。

北师大版八年级数学下册优秀教学案例5.4分式方程

北师大版八年级数学下册优秀教学案例5.4分式方程
2.学生在解决实际问题中运用分式方程的能力,以及团队合作、沟通表达等方面的发展。
3.学生对数学学科的兴趣、自信心及科学态度的培养。
六、教学反思
在教学过程中,要关注学生的个体差异,针对不同学生制定合适的教学策略,使每位学生都能在课堂上得到充分发展。同时,注重培养学生的数学思维,提高学生运用数学知识解决实际问题的能力。在教学评价方面,要关注学生的全面发展,既要关注学生的知识与技能,也要关注过程与方法、情感态度与价值观的培养。不断反思教学,调整教学策略,提高教学质量。
(三)小组合作
1.小组讨论:将学生分成若干小组,针对问题进行讨论,培养学生的团队协作能力和沟通能力。
2.分工合作:在解决分式方程的过程中,让学生分工合作,每个人都有明确的任务,提高工作效率。
3.分享与交流:小组成员将各自的研究成果进行分享,互相学习,共同提高。
(四)反思与评价
1.自我反思:让学生在课后对所学内容进行反思,总结自己的学习心得,发现自身不足,为下一步学习做好准备。
3.实际应用:让学生运用分式方程解决实际问题,培养学生的应用能力。
五、教学拓展
1.开展数学活动:组织数学竞赛、讲座等活动,激发学生学习兴趣,提高学生的数学素养。
2.家庭作业设计:结合学生实际情况,设计富有挑战性的家庭作业,让学生在课后进行思考和探索。
3.学科交叉:与其他学科相结合,如科学、信息技术等,让学生感受到数学的广泛应用。
2.同伴评价:学生之间相互评价,给出建设性意见,促进共同进步。
Hale Waihona Puke 3.教师评价:教师要对学生的学习情况进行评价,关注学生的知识掌握程度、思维发展水平、情感态度等方面,为下一步教学提供参考。
四、教学实践
1.课堂讲解:结合具体案例,讲解分式方程的解法,引导学生主动思考。

八年级数学下册 第五章 分式与分式方程 4 分式方程教案 (新版)北师大版

八年级数学下册 第五章 分式与分式方程 4 分式方程教案 (新版)北师大版

4 分式方程第1课时一、教学目标 1.知识与技能(1)理解分式方程的概念;(2)能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 2.过程与方法体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 3.情感态度及价值观在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力. 二、教学重点、难点重点:能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 难点:能根据实际问题中的等量关系列出分式方程. 三、教具准备 课件. 四、教学过程(一)创设情境,引入新课[师]在这一章的第一节《认识分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1)我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型. 接下来,我们再来看几个这样的例子. (二)讲授新课列出刻画现实世界的数学模型——方程.(多媒体出示) 1.[小麦实验田问题]有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦 9 000 kg 和15000 kg .已知第一块试验田每公顷的产量比第二块少3 000 kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中所有的等量关系吗?如果设第一块试验田每公顷的产量为x kg ,那么,第二块试验田每公顷的产量是____________kg .根据题意,可得方程_________ ___.[师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生1]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积. [师]你能找出这一问题的所有等量关系吗?[生2]第一块试验田的面积=第二块试验田的面积.(a ) [生3]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量(b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg ,那么第二块试验田每公倾的产量是多少千克呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000)kg . [生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流,我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程:x 9000+3000=x15000.(3) [师]接下来,我们再来看一个问题.(多媒体出示) 2.[电脑网络培训问题]王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元.原定的人数是多少? 这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊____________元;人数增加到原定人数的2倍后,每人平均分摊____________元. 根据题意,可得方程____________. [师]我们先来审题,找到题中的等量关系. [生]由题意,可知:实际参加活动的人数=原定人数×2倍.(c ) [生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元.(d ) [师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢? [生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]很好!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢? 讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.我们设未知数的方法采用中方法: 设原定是x 人,那么每人平均分摊x 300元;人数增加到原来人数的2倍后,每人平均分摊x2480元,根据题意,利用等量关系(d ),得方程x 300-4=x2480.(4) [生]我们组没有按照投影片上的设法,而是设原定每人平摊y 元,那么原定人数为y300;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y ,根据题意,利用等量关系(c ),得方程2×y 300=4480-y .(5) [师]上面两个组的回答都很精彩,鼓励一下他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好. 观察方程:x 2400-302400+x =4 (1) x 9000=300015000+x (2) x 9000+3000=x15000 (3) x 300-4=x2480 (4) 2×y 300=4480-y (5) 上面所得到的方程有什么共同特点?[生]方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.(三)随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x+102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元. 解:x 满足的方程是101×x+102000=200.2.某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,根据题意得x x +-8040=41.(四)课堂小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程. (五)教学反思第2课时教学目标 1.知识与技能(1)掌握解分式方程的一般步骤; (2)理解检验分式方程的根的必要性. 2.过程与方法(1)通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤; (2)使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径. 3.情感态度及价值观(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度; (2)运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.二、教学重点、难点重点:(1)解分式方程的一般步骤; (2)检验分式方程的根的必要性. 难点:明确解分式方程验根的必要性. 三、教具准备 课件. 四、教学过程(一)提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程:213-x +325+x =2-624-x[师生共解]解:去分母,方程两边同乘分母的最小公倍数6,得 3(3x -1)+2(5x +2)=6×2-(4x -2), 去括号,得9x -3+10x +4=12-4x +2, 移项,得9x +10x +4x =12+2+3-4, 合并同类项,得23x =13, 系数化为1,得x =2313. (二)讲解新课,探索分式方程的解法[师]刚才我们一同回忆了解一元一次方程的步骤.下面我们来看一个分式方程. [例1]解方程:21-x =x3. (1) [师]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢? [生]可以.[师]同学们可以接着讨论,方程两边同乘什么样的整式(或数),可以去掉分母呢? [生]乘分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘x (x -2),得x (x -2)·21-x =x (x -2)·x3, 整理,得x =3(x -2). (2)[师]我们可以发现,采用去分母的方法把分式方程转化为了整式方程,而且是我们曾学过的一元一次方程.再往下解,我们就可以像解一元一次方程一样,解出x .即去括号,得x =3x -6.移项、合并同类项,得2x =6.系数化为1,得x =3.[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)[师]x =3是由一元一次方程x =3(x -2)(2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解. [师]请同学们用同样的方法完成例2的解答. [例2]解方程:x 300-x2480=4. (由学生在练习本上试着完成,然后师生共同解答). 解:方程两边同乘2x ,得600-480=8x. 解这个方程,得x =15.检验:将x =15代入原方程,得左边=4,右边=4,左边=右边, 所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.我这里还有一个题,我们再来一起解决一下.(多媒体出示,先隐藏小亮的解法) 议一议: 解方程:32--x x =x-31-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并共同分析)[师]我们来看小亮同学的解法:32--x x =x-31-2. 解:方程两边同乘(x -3),得2-x =-1-2(x -3) 解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解. [师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根. [师]它是去分母后得到的整式方程的根吗? [生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根,那么是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? 学生先思考,教师再讲解.[师]产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误. (三)应用,升华 1.解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 2.回顾,总结想一想:解分式方程一般需要经过哪几个步骤? [师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根. 3.解分式方程: (1)x 9000=300015000+x ; (2)x h 2=xa a -(a ,h 常数).(四)课堂小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可.[生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.(五)教学反思第3课时一、教学目标1.知识与技能会利用分式方程的数学模型反映、解决现实情境中的实际问题.2.过程与方法经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力;3.情感态度及价值观(1)经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣;(2)培养学生的创新精神,从中获得成功的体验.二、教学重点、难点重点:(1)审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.(2)根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系.三、教具准备课件.四、教学过程(一)提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.(二)讲授新课做一做(多媒体出示)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?[师]现在我们一起来寻求这一情境中的等量关系.[生]第二年每间房屋的租金=第一年每间房屋的租金+500元.(1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租? [生]问题也可以是:这两年每年房屋的租金各是多少?[师]很好,下面我们就来先解决第一个问题:每年各有多少间房屋出租? [师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x96000元,第二年每间房屋的租金为x 102000元.根据题意,得x 102000=x96000+500. 解这个方程,得x =12.经检验x =12是原方程的解,也符合题意. 所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得 第一年每间房屋的租金为1296000=8 000(元), 第二年每间房屋的租金为12102000=8 500(元). [师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得 x 96000= 500102000+x . 解得x = 8000.x +500=8 500(元).经检验,x =8 000是原分式方程的解,也符合题意. 所以这两年每间房屋的租金分别为8 000元,8 500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.[例]某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元?[师]解决实际情境问题,最关键的是什么呢? [生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表).[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费. [师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水每立方米收费为x 元,则1月份张家超出5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x55.15.17⨯- m 3,总用水量为5+x55.15.17⨯- m 3;李家超出5 m 3部分的水费为(27.5-1.5×5)元,超出5 m 3的用水量为x55.15.27⨯- m 3,总用水量为(5+x55.15.27⨯-)m 3.根据等量关系,得x 55.15.17⨯-+5=(x55.15.27⨯-+5)×32.解这个方程,得x =2. 经检验x =2是所列方程的根.所以超出5 m 3部分的水每立方米收费2元. (三)随堂练习小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本每本的价格各是多少?[师]我们先来找到题中的等量关系.[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本;硬皮本的价格=软皮本的价格×(1+21). [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本每本的价格为x 元,则硬皮本每本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )211(15+本.根据题意,得,x 15=x )211(15++1 解得x =5.经检验x =5是原方程的根,也符合题意.所以(1+21)x =23×5=7.5(元). 答:软皮本每本的价格为5元,硬皮本每本的价格为7.5元.(四)课堂小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.(五)教学反思。

北师大版数学八年级下册5.4《分式方程》教学设计2

北师大版数学八年级下册5.4《分式方程》教学设计2

北师大版数学八年级下册5.4《分式方程》教学设计2一. 教材分析《分式方程》是北师大版数学八年级下册第5章第4节的内容。

本节课的主要任务是让学生掌握分式方程的解法,理解分式方程的解法在实际问题中的应用。

教材通过引入实际问题,让学生感受分式方程的重要性,进而学习分式方程的解法。

教材内容由浅入深,循序渐进,符合学生的认知规律。

二. 学情分析学生在学习本节课之前,已经学习了分式的概念、性质和运算。

他们具备了一定的数学基础,能够理解和掌握分式方程的基本概念和解法。

但是,学生对分式方程在实际问题中的应用可能还不够清晰,需要通过实例让学生感受和理解。

三. 教学目标1.知识与技能:学生会解分式方程,理解解分式方程的思路和方法。

2.过程与方法:学生通过自主学习、合作交流,培养解决问题的能力。

3.情感态度与价值观:学生感受数学与生活的紧密联系,提高学习数学的兴趣。

四. 教学重难点1.重点:分式方程的解法。

2.难点:理解分式方程的解法在实际问题中的应用。

五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考,培养学生的解决问题的能力。

2.案例教学:通过实际问题的引入,让学生感受分式方程的重要性,提高学生的学习兴趣。

3.合作学习:学生分组讨论,培养学生的团队合作意识和沟通能力。

六. 教学准备1.教学课件:制作课件,展示分式方程的解法及实际问题。

2.教学素材:准备一些实际问题,用于引导学生学习分式方程的解法。

3.黑板:用于板书 key points 和解题步骤。

七. 教学过程1.导入(5分钟)教师通过提问,回顾分式的概念和性质,为学生学习分式方程做好铺垫。

2.呈现(10分钟)教师展示一些实际问题,引导学生思考如何用数学方法解决这些问题。

学生通过讨论,发现这些问题可以用分式方程来表示。

3.操练(10分钟)教师引导学生学习分式方程的解法,让学生通过自主学习、合作交流,掌握解分式方程的方法。

教师在这个过程中给予学生适当的指导,帮助学生克服解题过程中的困难。

北师大版八年级数学下册教案附教学反思板书设计5.4 第2课时 分式方程的解法

北师大版八年级数学下册教案附教学反思板书设计5.4 第2课时 分式方程的解法

第2课时分式方程的解法1.在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;(重点)2.了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.(难点)一、情境导入方程5x-2=3x与以前学习的方程有什么不同?怎样解这样的方程?二、合作探究探究点一:分式方程的解法【类型一】解分式方程解方程:(1)5x=7x-2;(2)1x-2=1-x2-x-3.解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x(x-2),得5(x-2)=7x,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】 由分式方程的解确定字母的取值范围关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是____________.解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a x -1=1的解是正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为()A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x-2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为()A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,。

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案一. 教材分析《分式方程的概念及列分式方程》是北师大版数学八年级下册第5.4节的内容。

本节课主要让学生掌握分式方程的概念,学会如何列分式方程,并能够解简单的分式方程。

这一内容是学生学习了分式运算和一元一次方程的基础上进行的,为后续解决实际问题打下基础。

二. 学情分析学生在八年级上学期已经学习了分式的概念、分式的运算以及一元一次方程的解法,对于分式的基本概念和运算规则有一定的了解。

但部分学生在分式运算中还存在一定的困难,对于分式方程的理解和应用还需要加强。

此外,学生对于实际问题的解决能力有待提高。

三. 教学目标1.了解分式方程的概念,理解分式方程与一元一次方程的联系和区别。

2.学会列分式方程,并能解简单的分式方程。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.重点:分式方程的概念,列分式方程的方法,解分式方程的步骤。

2.难点:理解分式方程与一元一次方程的联系和区别,解决实际问题中的分式方程。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学PPT2.教学素材(实际问题)七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。

通过分析,引入分式方程的概念。

2.呈现(10分钟)讲解分式方程的概念,解释分式方程与一元一次方程的联系和区别。

通过示例,展示如何列分式方程。

3.操练(10分钟)让学生分组讨论,尝试解决一些简单的实际问题,引导学生运用分式方程来解决问题。

每组选择一个问题,列出分式方程,并求解。

4.巩固(10分钟)选取部分学生的解题过程和答案,进行讲解和分析。

针对学生解题中出现的问题,进行讲解和指导。

5.拓展(10分钟)让学生尝试解决一些稍复杂的实际问题,引导学生运用所学的分式方程知识来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式方程》第1课时教学目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想.2.经历探索分式方程概念,分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系.教学重难点教学重点:分式方程解法的过程,检验根的合理性.教学难点:能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想. 教学过程1.创设情景,探索交流情景一:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中的所有等量关系吗?如果设第一块试验田每公顷的产量为xkg ,那第二块试验田每公顷的产量是_______kg . 根据题意,可行方程_____________________.答案:等量关系包括:第一块试验田每公顷的产量+3000kg =第二块试验田每公顷的产量.土地面积总产量每公顷的产量= 第一块试验田的面积=第二块试验田的面积;第二块试验田每公顷的产量是(x +3000)kg . 方程为3000150009000+=x x . 情景二:从甲地到乙地有两条公路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路.某客车在高速公路上的行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙的所需的时间.这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙的所需的时间为xh ,那么它由普通公路从甲地到乙地所需的时间为___________h .根据题意,可得方程_____________________.答案:等量关系包括:600km =客车在普通公路上行驶的平均速度×客车由普通公路从甲地到乙地的时间. 480km =客车在高速公路上行驶的平均速度×客车由高速公路从甲地到乙地的时间. 客车在高速公路上行驶的平均速度-客车在普通公路上行驶的平均速度=45km /h . 由高速公路从甲地到乙地所需的时间=1/2×由普通公路从甲地到乙地所需的时间.4526004802=-xx x ; 通过几个实际问题,让学生经历从实际问题抽象、概括分式这一“数学化”的过程.在教学过程中,引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力.2.深入探讨,概括概念做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐灾.已知第一次捐款的总额为4800元,第二次捐款的总额为5000元,第二次捐款的人数比第一次多20人,而且两次人均捐款额刚好相等.如果设第一次捐款的人数为x 人,那么x 满足怎样的方程? (注意让学生努力寻找等量关系,加强学生的思维能力.) 答案:等量关系为2050004800+=x x . 议一议:上面所得到的方程有什么共同的特点?(鼓励学生认真观察、独立思考,并用自己的语言描述,然后再与同拌讨论、交流自己的结果.通过这一过程加强学生的观察能力、语言概括能力.)分母中含有未知数的方程叫做分式方程.3.巩固应用,拓展研究练习1:甲6小时完成的工作改由甲、乙合作4小时可以完成,问乙单独做多少小时可以完成?设乙单独做x 小时可以完成,那么x 应满足怎样的方程?练习2:王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊 元.人数增加到原定人数的2倍,每个平均分摊 元.根据题意,可行方程. . 等量关系包括:人数总费用每人分摊的费用=. 实际参加培训的人数=2×原定参加培训的人数.原计划每人平均分摊的费用-实际每人平均分摊的费用=4元; 方程为:42480-300=xx . 4.回顾联系,形成结构什么是分式方程?怎样列分式方程?(通过问题的提出,总结本节课的相关知识,让学生再次体会“实际问题——分式方程模型”的过程,嘉庆学生的建模意识.)第2课时教学目标1.经历探索分式方程概念,分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系.2.经历“实际问题——分式方程模型——求解——解释几解的合理性”的过程,发展学生分析问题的能力,培养学生的应用意识.教学重难点教学重点:分式方程解法的过程,检验根的合理性.教学难点:掌握“实际问题——分式方程模型——求解——解释几解的合理性”的过程. 教学过程1.创设情景,引出问题 解方程:1733+=x x .你能设法求出上节课中的分式方程的解吗? 2.探索交流,发现规律回顾: 解方程1733+=x x 时,我们一般是先去分母,两边同时乘以最小的公分母3×7,得1737373373⨯⨯+⨯⨯=⨯⨯x x ,即7x =9x +21,这种形式相对就容易计算.通过移项,合并同类项求得x =-10.5.联系: 对于分式方程300150009000+=x x ,如果两边同时乘以分母最小的公因式,是不是也能像上面的方程一样的解决呢?请你试试看!(通过一元一次方程的解法的展示后让学生探索交流,发现解分式方程的一般步骤.) 解:方程的两边都乘以x (x +3000),得9000(x +3000)=15000x解这个方程,得x =0.5思考:如何检验x =0.5是方程的解?检验:将x =0.5代入原方程,如果得到的左边的值等于右边的值,则它就是原方程的解. 请你检验一下x =0.5是不是方程的解?(同过检验,体验方程解的意义,同时为分式方程的增根的研究作好准备.)3.例题讲解,加深印象例1:解方程:xx 321=-. 解:方法一:方程两边都乘以2x ,得960-600=90x解这个方程,得x =4检验:将x =4代入原方程,得左边=45=右边,所以,x =4是原方程的根.方法二:先化简得方程两边都乘以x ,得32-20=3x 解这个方程,得x =4检验:将x =4代入原方程,得左边=45=右边,所以,x =4是原方程的根.4.应用拓展,深化研究 议一议:在解方程22121--=--xx x 时,小亮的解法如下: 方程两边都乘以x -2,得1-x =-1-2(x -2)解这个方程,得x =2.你认为x =2是原方程的根吗?与同伴交流.(让学生充分进行讨论、交流,寻找增根产生的原因.)在这里,x =2不是原方程的根,因为它使得原分式方程的分母为零,我们称之为原方程的增根.产生增根的原因是,我们在方程的两边同时乘了一个可能使分母为零的整式.事实上,对于分式方程,当分式中分母的值为零时没有意义,所以分式方程不允许未知数取那些分母为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了.换言之,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.因为解分式方程可能会出现增根,所以解分式方程时,验根是必要步骤.验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误;另一种是把求得未知数的值代入分式的分母,看分母的值只否为零,这种方法不能检查解方程过程中出现的计算错误.5.回顾联系,形成结构想一想:解分式方程一般需要经历哪几个步骤?(让学生总结,通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)第3课时教学目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想.2.经历探索分式方程概念、分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系.3.经历“实际问题——分式方程模型——求解——解释几解的合理性”的过程,发展学生分析问题的能力,培养学生的应用意识.教学重难点教学重点:分式方程解法的过程,检验根的合理性.教学难点:掌握“实际问题——分式方程模型——求解——解释几解的合理性”的过程. 教学过程1.创设情景,探索交流做一做:某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有的房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情景中的等量关系吗?(2)根据这一情景你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?(引导学生从不同角度寻求等量关系,让学生明白解决此类问题的关键是找出等量关系.) 答案:(1)第二年每间房屋的租金=第一年每间房屋的租金+500元;第一年出租的房屋的间数=第二年出租的房屋的间数;每间房屋的租金所有出租房屋的租金出租房屋的间数=. (2)求出租的房屋总间数;分别求出两年每间房屋的租金.(3)设第一年每间房屋的租金为x 元,则第二年每间房屋的租金为(x +500)元,根据题意,得,50010200096000+=x x 解得x =8000. 2.例题讲解,分析应用例:某市从今年1月1日起调整居民用水价格,每立方米水费上涨1/3.小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5m 3,求该市今年居民用水的价格.此题的主要等量关系是什么?请大家找找看.主要的等量关系是:小丽家今年7月份的用水量-小丽家去年12月份的用水量=5m 3所以,首先要表示出小丽家这两个月的用水量,而用水量可以用水费除以水的单价得出. 解:设该市去年居民用水的价格x 元/m 3 ,则今年的水价为(1+1/3)x 元/m 3,根据题意,得51531130=-+x x )(. 解这个方程,得x =1.5.经检验,x =1.5是所列方程的根.1.5×(1+1/3)=2(元)所以,该市今年居民用水的价格2元/m 3.(本例密切联系学生生活实际,又关注社会热点——水资源问题.让学生将实际问题转化为数学模型,并进行解答、解释解的合理性,通过本例对学生进行节约用水的教育.)3.练习巩固,促进迁移(1)为了方便广大游客到昆明参加游览“世博会”,铁道部临时增开了一列南宁——昆明的直达快车,已知南宁——昆明两地相距828km ,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h ,比普通快车早4h 到达昆明,求两车的平均速度?解:设普通快车的平均速度为xhm /h ,则直达快车的平均速度为1.5km /h ,依题意,得 xx x 5.18286-828=. 解得:x =46.经检验,x =46,是方程的根,且符合题意.∴x =46,1.5x =69(2)编一道可化为一元一次方程的分式方程的应用题,并解答,编题要求:①要联系实际生活,其解符合实际;②根据题意列出的分式方程中含两项分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程;③题目完整,题意清楚.(此题让学生去发现显示生活中的素材,可创编电费、卫生费等问题,发展学生提出、分析、解决问题的能力,增强他们的应用意识.)解:所编应用题为:甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用时间与乙做6个所用的时间相等,求甲、乙每小时各做多少个?解:设甲每小时做x 个,那么乙每小时做(x -2)个,根据题意,有:2610-=x x . ∴x =5,x -2=5-2=3答:甲每小时做5个,乙每小时做3个.(3)甲、乙两地相距500千米,两车都从甲地开往乙地,大汽车早出发2小时,小汽车比大汽车晚到20分钟,已知小汽车和大汽车速度比是5:3,求两车的速度.4.回顾联系,形成结构想一想:用分式方程解应用题一般需要经历哪几个步骤?(让学生总结,通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)。

相关文档
最新文档