论-煤与生物质流化床共气化的研究进展

合集下载

流化床生物质与煤共气化特性的初步研究

流化床生物质与煤共气化特性的初步研究

关键词 : 生物质 ; ; 煤 共气化 ; 流化床
中图分类号 : Q 4 . T 562 文献标识码 : A
Ex e i n a t d n C - a ii a i n o i m a sa d c a p rme t ls u y o O g sfc to fb o s n o l
3 安徽理工大学 化工系 , . 安徽 淮南 2 20 3 0 1)

要: 在热天平 和流化床实验装 置中研究了生物质 与煤 的共气化特性 , 采用程序升温热重法对稻秆 焦 、 高粱秆焦 、 玉米秆焦
和神木煤焦 以及生物质焦 与煤焦混合物进行水蒸气气化研究 。结果表 明, 生物质焦和煤焦 的反应活性依 次增大 , 序为高 其顺
Ab ta t h aict no emitr f imasa dc a i emo rv tca prts( G sr c :T eg s a o f h xueo o s n o lnat r ga i r p aa i f i t b h me i u T A)ad a n
l d z d b d wa n e t t d f i i e . e s i v si ae . TGA s u e O c a a trz e H, c a a i c t n o c a l c a , u g wa s d t h ce ie t O—h g s ai f r e h u m h r h r i f o i r b o mc r a l c a , o s l a l c a n h n O l h .Th e u t h w h tt eo d ro a t i r o o n h u m h r c r t k h u m h a d S e mu C a a n a r cr er s l s o t a r e fr c vt s h e i y o a i u h s Sa o lws h n o l h f v ro sc a sf l r i o :S e mu c a a < c r sa a l c a < rc a l c a < b o mc m a l cr o tl h u m h n k r i e h u m h r r o o h u m c a .Th O g s c t n r t ft e m x u eo i ma sc a d c a h u d t e h g e a er t u h r e C . a i ai ae o t r fb o s h a o l a i f n b i h r n t ae s m i f o h i r n cr so o h t h o i g e c a h n i g e b o s h , i h s g e t a y e g s c e f c k s lc u e C - ai f s l o l a a d s l i ma sc a wh c u g ss t s n r i f t a e a e d et t O g s- n cr n r h t a i t e t p Oh i t .I i ie — e a i c t n e p r n s h a o o v r i o tn u b e g so O f ai n n fu d z d b d g sf a o x e me t ,t e c b n c n e s n a d t e c n e t fb r a l a fC - c o l i > 神木煤焦。一定温度下, 生物质焦与煤焦混合物的气化碳转化率高于各 自气化碳转化率的加和。

生物质的特性对其与煤共气化过程的影响

生物质的特性对其与煤共气化过程的影响

生物质的特性对其与煤共气化过程的影响生物质是一种可再生资源,与煤相比,具有以下几个特点:首先,生物质的含氧量高于煤。

生物质通常含有大量的碳氢化合物,以及氧、氮、硫等元素。

这些元素与煤的主要成分相比,会产生显著的影响。

生物质中富含的氧原子有效地增加了气化反应的速率,但同时也影响了气化产物的组成。

生物质所含的含氧化合物会引起CO2的生成,而且由于生物质的含氧量高,也会使得气化反应的过程中生成的CO2增多。

此外,同时存在的氮和硫元素也会影响气化产物的组成和燃气品质。

其次,生物质的灰分含量相对较高。

生物质中的灰分主要由无机盐组成,包括钾(K)、钠(Na)、钙(Ca)、镁(Mg)等元素。

这些无机盐会在气化过程中发生解离和变化,并影响反应物质的转化率和产物的组成。

同时,高灰分含量也会导致催化剂的积碳和催化剂的失活,影响气化反应的稳定性和效果。

第三,生物质的挥发分含量较高。

生物质中的挥发分主要包括纤维素、半纤维素和木质素等有机物。

这些有机物在气化过程中会析出大量的挥发性气体和液体产物,如甲烷(CH4)、一氧化碳(CO)、二氧化碳(CO2)、乙烯(C2H4)、苯(C6H6)等。

此外,生物质的挥发分中还常含有大量的水分,这些水分在气化反应中也会起到溶剂的作用,促进气化反应的进行。

最后,生物质的纤维结构影响了气化过程的反应速率和产物分布。

生物质中的纤维素和半纤维素等有机物,由于其复杂的结构,不容易被气化反应所迅速分解。

因此,需要适当的温度和时间来实现其有效转化。

另外,生物质中的木质素比较耐高温,需要较高的温度才能进行气化反应。

这些特性会影响气化过程中的反应动力学和产物组成,对共气化过程的效果产生重要影响。

总结起来,生物质的特性对其与煤共气化过程产生多方面的影响。

其中,含氧量高、灰分含量高、挥发分含量高以及纤维结构复杂等特性,都会对气化过程的反应速率、产物组成、气化效果等方面产生重要影响。

为了最大程度地利用生物质的特性,提高气化产率和产物的质量,需要选择合适的反应条件和催化剂,以及优化反应系统的设计和操作。

生物质气化利用技术的研究现状及发展前景

生物质气化利用技术的研究现状及发展前景

生物质气化利用技术的研究现状及发展前景随着我国生态文明建设的不断推进,生物质能成为可再生的能源资源备受重视。

而生物质气化利用技术则是将生物质转化为高热值气体的重要方法,具有清洁环保、高效节能的特点,因此备受关注。

本文将就生物质气化利用技术的研究现状及发展前景进行探讨。

一、生物质气化利用技术的概念及分类生物质气化利用技术指的是利用生物质作为原料,在高温下进行热解反应,产生一种可用于发电、热供应和合成化学品的气体混合物。

根据热解过程和反应条件的不同,可以将生物质气化利用技术分为各种类型,如焦化、高温气化、湿式气化、微波气化等。

其中,焦化是最古老的一种生物质气化利用技术,适用于对生物质进行干馏后产生焦炭和气体的过程。

而高温气化则是指将生物质进行高温加热达到裂解的目的,从而使其分解为气体。

湿式气化则是将生物质与水蒸气一起加热,使之分解产生氢气、一氧化碳等气体。

微波气化是指在微波电场下,利用微波加热将生物质分解产生气体的过程。

二、生物质气化利用技术的研究现状(一)生物质气化反应的影响因素生物质气化利用技术的效果和产物种类,取决于许多因素,其中最重要的包括反应温度、反应压力、原料的物理性质和结构等。

研究要探索上述因素对反应的影响和相互作用,以寻找最佳的反应条件和提高反应效率。

(二)反应器的设计和优化反应器是进行生物质气化反应的核心,其设计和优化对反应效果有着决定性的影响。

当前,反应器的设计多以提高气化效率、增加产气量和降低污染物排放为目的,同时还要考虑生产成本和运营安全等因素。

反应器设计的创新和改进,将能使生物质气化利用技术更具经济和环保价值。

(三)催化剂的优化与应用催化剂对气化反应有很大的影响。

研究人员利用催化剂在气化反应中加速分解、增加反应温度和提高反应产物的选择性等效应,并已经取得了令人瞩目的成果。

当前,常用的催化剂主要包括氧化物、固体酸、碱催化剂和金属异构催化剂等,这些催化剂的优化和适用,将带动生物质气化利用技术的进一步发展和推广。

煤与生物质共热解工艺的研究进展

煤与生物质共热解工艺的研究进展

煤与生物质共热解工艺的研究进展摘要:热解是将固态原料转化为液体燃料、可燃气和焦的重要途径,是实现生物质资源清洁、高效利用的重要技术。

将生物质与煤混合共热解是生物质资源利用的重要方法,两者混合热解不仅有助于降低CO2的排放量,还能有效地解决能源短缺和环境污染带来的问题。

文章综述了煤与生物质共热解技术的研究进展,系统地介绍了共热解过程中煤与生物质的相互作用以及热解温度、混合比例、滞留时间、升温速率、矿物质成分、物料粒径和热解反应器类型等因素对热解过程的影响,并对煤与生物质共热解技术的发展前景进行了展望。

前言工业革命以来,化石资源的过度开发带来了资源短缺、环境污染、温室效应和全球气候变化等一系列问题[1]。

我们必须要加快能源结构体系的调整,加快可再生能源的开发、利用,以及实现资源的分级转化与梯级利用。

生物质是一种重要的可再生资源,具有与化石燃料相似的一些特性,能够部分替代化石能源,维持环境碳平衡,并具有较低的硫含量[2]。

生物质的利用不仅可以充分发挥农林废弃物等资源的价值、降低化石燃料的消耗,还可以降低燃料燃烧过程中污染物的排放量[3]。

与燃烧相比,热解能够实现生物质资源的高效、清洁利用,煤炭与生物质都可以通过热解的方式得到焦炭、热解气和焦油,并进一步合成化工原料,提取化工中间体[4]。

目前,对于煤和生物质单独热解气化方面的研究比较多。

Frau Caterina利用Sotacarrrbo型小规模气化炉对褐煤和木屑分别进行气化实验,当气化原料的进料速率同为24kwh时,获得的两种粗合成气的产率分别为79.67kg/h和23.32kg/h,热值分别为5.14MJ/kg和7.49MJ/kg[5]。

Li利用新型热解反应器对废木屑进行热解试验,在填料速率为300kg/h,热解温度为500℃的工况下产物中焦油、合成气和焦炭的含量(质量分数)分别为52.5%,27%和20.5%[6]。

相比于单独热解.煤与生物质的共热解不仅可以减少CO2,SOx和NOx的排放,减少因厌氧发酵而产生的NH3,H2S、氨基化合物和挥发性有机酸等化学成分的释放.而且可以改善生物质资源自身水分含量高、热值低和密度低等不利于单独热解的问题。

流化床煤气化技术的分析研究进展

流化床煤气化技术的分析研究进展

流化床煤气化技术的研究进展煤气化技术有多种分类法,按煤的进料状态可分为干块进料、干粉进料和煤浆进料。

煤层中燃料运动状态,可分为固定床<亦称移动床)、流化床、气流床和熔融床. 按床层压力等级,可分为低压< < 0.3MPa)、中压<0.3 MPa ~4.5 MPa)和高压< > 4.5MPa)。

按排渣状态,可分为干法<固态)、熔聚和熔渣<液态)。

目前,应用较广泛的煤气化技术有如下几种:1)加压固定床气化技术加压鲁奇炉是典型的加压固定床气化技术,技术成熟,能利用高灰分煤,并且能在2.41 MPa 压力下运行,适合合成液体燃料合成所需要的操作压力,可节约投资和能耗,但过程中产生大量的焦油和酚。

为克服上述缺点,又进行了新的开发,主要技术升级包括进一步提高压力、提高温度和两段引气。

2)流化床气化技术温克勒气化工艺是典型的流化床技术,最早用于工业生产,第一台工业生产装置于1926 年投入运行。

这种炉型存在严重的缺陷,只能利用高活性褐煤,排灰含碳多,飞灰带出碳损失严重,致使碳利用率降低。

针对这些问题开发了新的流化床技术,如高温温克勒<HTW)、灰熔聚气化<KRW ,U-gas)和循环流化床气化工艺。

3)水煤浆气流床气化技术水煤浆气流床气化又称湿法进料气流床气化,其中Texaco 炉是一种率先实现工业化的水煤浆气流床气化技术,其进料方式简单,工程问题较少,具有大的气化能力,可以实现高压力<8 MPa ~ 10MPa)操作。

但冷煤气效率较低,氧耗较高。

为了降低过程氧耗,提高冷煤气效率,在Texaco 气化技术基础上发展了两段进煤煤气化工艺。

4)干粉进料气流床气化技术干粉进料气流床气化技术相对湿法进料具有氧耗低,煤种适应广和冷煤气效率高等优点. 其代表技术有Shell,Prenflo 和日立气流床等。

Shell SCGP 工艺是在K-T炉的基础上所开发的加压K-T气化炉。

生物质热解与煤热解气化比较与现状

生物质热解与煤热解气化比较与现状

生物质热解与煤热解气化比较与现状关键词:生物质煤热解研究表明[1],生物质与煤的热解特性差异很大;生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高。

现今单一煤种的热解在各方面都已经得到广泛的研究,而生物热解方面也正在取得巨大的研究成果。

煤热解的气体产物以一氧化碳、甲烷和氢气为主,其中固体产物为固体焦和焦油。

生物质热解气化产物主要是不饱和烃类气体和大量的氢气,还有不饱和烃类液体例如苯等。

但是相比之下,由于大量水分的存在,生物质热解气化失重率比较大,而由于硫的掺杂,煤气化热解的产物中含有大量含硫氮化合物,使之燃烧会造成严重的环境污染。

为了提高脱硫脱氮的效率和改善煤单独热解产物不饱和度较高的问题,科学各界开始对生物质同煤共热解进行了研究和探索。

研究结果[2]表明,生物质可阻止强粘结性煤热解过程中颗粒之间的粘结,得到粒状焦炭;生物质热解生成较多的H2,有利于煤中硫和氮的脱除;同时随着温度的升高、煤粒度的减小和煤变质程度的降低,热解脱硫和脱氮率增大。

根据研究[2]可知,生物质热解的最大热解峰(低于400摄氏度)和煤的最大热解峰(高于400摄氏度)不重合,而且差值有的在100摄氏度以上。

由此可知,生物质与煤共同热解没有明显的协同作用。

为了解决不同步热解的问题,科学界提出了两步法煤与生物热解、利用煤的黑度比生物质高的特点以辐射的加热方式进行同步加热、两段管式炉分步控温进行热解等。

这些方法的核心都在于利用生物质的富氢产物为煤脱硫脱氮提供天然低廉的氢来源,同时也提高了煤的轻质液相产率,气体中的不饱和烃含量降低,将富裕的生物氢转移到了缺氢的煤焦中。

鉴于生物质与聚合物及生物质与煤的共热解或两步法热解具有很大的优势,加强生物质与聚合物的共热解和生物质与煤的共热解及两步法热解的研究显得很有必要。

深入研究生物质与聚合物共热解的协同作用的机理,加强研究生物质与煤共热解中脱硫、脱氮及固体焦具有较强吸附能力的机理,同时,进一步研究改进生物质与煤两步法热解的工艺,为实现生物质中富裕的氢向煤的转移提供可能。

生物质气化及生物质与煤共气化技术的研发与应用

生物质气化及生物质与煤共气化技术的研发与应用

生物质气化及生物质与煤共气化技术的研发与应用摘要:总结了生物质原料的特点及生物质单独气化的缺点;介绍了国内外生物质气化技术及生物质与煤共气化技术的研发与应用现状;分析了在此领域国内外的发展趋势与前景;概括了开展生物质与煤共气化技术研发的意义。

生物质包括植物、动物及其排泄物、垃圾及有机废水等几大类。

与煤炭相比,生物质原料具有如下特点:①挥发分高而固定碳含量低。

煤炭的固定碳一般为60%左右;而生物质原料特别是秸秆类原料的固定碳在20%以下,挥发分却高达70%左右,是适合热解和气化的原料。

②原料中氧含量高,灰分含量低。

③热值明显低于煤炭,一般只相当于煤炭的1/2~2/3。

④低污染性。

一般生物质硫含量、氮含量低,燃烧过程中产生的SO2、NOx较低。

⑤可再生性。

因生物质生长过程中可吸收大气中的CO2,其CO2净排放量近似于零,可有效减少温室气体的排放。

⑥广泛的分布性。

生物质气化是生物质利用的重要途径之一。

生物质气化技术已有一百多年的发展历史,特别是近年来,对生物质气化技术的研究日趋活跃。

但生物质单独气化存在一些缺点。

首先,生物质的产生存在季节性,不能稳定供给;其次,由于生物质处理后形成的颗粒具有不规则性,在流化床气化炉内不易形成稳定的料层,需要添加一定量的惰性重组分床料如河砂、石英砂等;第三,生物质单独气化时生成较多的焦油,不仅降低了生物质的气化效率,而且对气化过程的稳定运行造成不利影响。

生物质与煤共气化不仅可以很好地弥补生物质单独气化的上述缺陷,同时在碳反应性、焦油形成和减少污染物排放等方面可能会发生协同作用。

1国外的研究与应用情况(1)生物质气化发电生物质气化及发电技术在发达国家已受到广泛重视,如美国、奥地利、丹麦、芬兰、法国、挪威和瑞典等国家生物质能在总能源消耗中所占的比例增加相当迅速。

美国在利用生物质能发电方面处于世界领先地位,美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平。

在流化床气化炉中生物质与煤共气化的研究(I)以空气-水蒸汽为气化剂生产低热值燃气

在流化床气化炉中生物质与煤共气化的研究(I)以空气-水蒸汽为气化剂生产低热值燃气

为煤 的 1 ) 灰分含 量极少 , / , 4 生物 质容 重约 为煤 的 1 / 产低 热值燃 气 , 化 炉 本 体 为 内 有 耐 火材 料 衬 里 外 气 5 。从元 素分 析 可 以看 出 , 为 碳 氢化 合 物 , 煤 生物 质 有钢 板外 壳 的圆柱 体 , 体 炉底 部 直径 为 20 m, 炉 7m 气

要 :在 60W 流化床气化炉工业示范装置上以空气一 0k 水蒸汽 为气 化剂 , 将生物 质, 煤按 不同 比例 进行 了共 气化
的实验研究 。在实验研究的运行条件下 , 得到 了生物质/ 煤混合 比例对气化炉工作 温度 、 燃气热值 、 体产率 和气化 气
效率等重要技术参数的影响。对玉米 芯/ 的 比例 为 8 /9 的典型实验结果表 明 : 煤 11 时 气化 炉工作温度 89C, 6  ̄ 空气当
0 引 言
不仅 可 以改善 流 化 特 性 , 而且 能 改善 气 化 特 性 。共
气化 实验 表 明 , 化 温 度 提 高 使 产 出气 中焦 油 含 量 气 生物 质 容 重小 、 灰分 少 、 固定 碳 少 , 其气 化 明显 减少 , 含 在 气化 性 能 明显改 善 。 过程 中不 易形 成稳 定 的料 层 , 以在 流 化 床 中需 要 所 我们 在 6 0 W 工 业规模 流 化床气 化炉 上 以生物 0k 加 入一定 惰性 粒子 ( 如河砂 等 ) 以改 善 流化 床气 化 炉 质 和煤 的不 同 比例 , 空气 一 蒸汽 及 纯 水蒸 汽 2种 用 水 的流化特 性 。近 几年 国 内有 关文 献 ¨ 提 及 煤 与 生 气化 剂 , 进行 连续 运行 试 验并 获 得 很 好 的结 果 。本 物 质在 流化床 中共 气化 的概 念 , 其 主 要 研究 共 燃 文论述 以空 气一 蒸 汽 为 气 化 剂 生 产 低 热 值 燃 气 的 但 水 烧 。 国外 也有 少量共 气化 研究 的报道 J 。 试验研 究结果 。 由于生物 质与煤 在物 理特性 和气 化 性 能方 面 有

生物质气化技术的研究现状

生物质气化技术的研究现状

生物质气化技术的研究现状生物质气化技术是一种利用生物质原料,通过热解或部分氧化反应,将生物质转化为可燃气体的技术。

这种技术具有环保、可再生等优点,因此在能源领域备受关注。

本文将对生物质气化技术的研究现状进行介绍,并探讨其在能源领域的应用前景。

目前,生物质气化技术的研究已经取得了一定的进展。

在气化原理方面,学者们对生物质气化的反应机理进行了深入研究,揭示了生物质气化过程中的热解、部分氧化和还原反应等基本原理。

在反应设备方面,已经开发出了多种不同类型的生物质气化装置,包括固定床气化炉、流化床气化炉、旋转窑气化炉等。

这些设备在实验室和工业中得到了广泛应用,为生物质气化技术的研究和开发提供了技术支持。

与此生物质气化技术在能源领域的应用也逐渐得到了重视。

生物质气化可以生产出一种称为生物质气的可燃气体,其中主要成分为一氧化碳、氢气和甲烷等,可以作为燃料直接供给燃气锅炉、内燃机等能源设备使用。

生物质气化还可以通过一系列气体净化和转化工艺,生产出合成天然气(SNG)、合成液体燃料(GTL)等产品,用于替代传统石油天然气产品。

生物质气化技术仍然面临一些挑战和问题。

生物质气化过程中产生的气体含有一定量的杂质和灰分,需要进行气体净化和除灰处理,以满足燃气的质量要求。

生物质气化装置的设计和运行参数对气化产物的组成和产量有着重要影响,需要进一步优化和改进。

生物质气化技术的经济性和可持续性也需要进一步研究和评估。

为了进一步推动生物质气化技术的发展,未来的研究方向可以从以下几个方面展开。

需要进一步深入了解生物质气化的反应机理和气化产物的特性,为气化过程的优化设计提供科学依据。

可以通过改进气化反应设备和工艺参数,提高气化产物的质量和产量,降低气化过程的能耗和成本。

还可以结合生物质气化技术与其他能源利用技术,如焚烧、气体化和发酵等,形成多能互补的能源利用系统,提高生物质资源的综合利用效率。

生物质气化技术是一种具有广阔应用前景的能源转化技术,通过不断的研究和改进,相信生物质气化技术将能够更好地为我国的能源结构调整和节能减排工作做出贡献。

煤和生物质共气化协同效应的初步研究

煤和生物质共气化协同效应的初步研究

维普资讯
维普资讯
第 2 卷 第 4期 4
20 0 8年 8 月
化 学 反 应 工 程 与 工 艺
Ch mia a t n En i e rn n c n l g e c lRe c i g n e i g a d Te h o o y o
Vo 4 l2 ,No 4
装 置上 , 比较 了煤 单 独 气 化 和 煤 与 三种 生 物 质 共 气 化 的 气 化 结 果 ,发 现 气 化 过程 中 ,碳 转 化 率 的顺 序 与 物 料 的气 化 反 应 性 一 致 ,协 同 效 应 不 明显 。
关 键 词 : 流 化 床 ;共 气 化 ;协 同效 应 ;煤 ;生 物 质
照文 献[ 制焦方 法 在 9 0℃热解 7mi ,制 得煤 焦 ( C) 7 ] 0 n C 、稻 草焦 ( S ) R C 、高梁秆 混 合 焦 。神 木 煤 、稻 草 和 高 粱 秆 经 过 脱 灰 处 理 后 制 焦 ,分 别 得 到脱 灰 煤 焦 PC 生
( C 、脱 灰稻草 焦 ( R C 和脱 灰 高粱 秆 焦 ( S C) AF C) AF s ) AF S 。把 焦 样研 磨 至 0 2mm 以下 ,作 为 热 . 重 实验原 料 ,混合 焦 中生物 质焦 的质 量百分 比可 通过 煤 和生物 质 的工 业分 析结果 计 算 。煤 的脱 灰是 用
A ug 2 08 . 0
文 章编 号 :1 0 — 7 3 ( 0 8 4 3 2 0 0 1 6 1 2 0 )O —0 1 - 6
煤 和 生物 质 共气 化 协 同效 应 的初 步 研 究
李 克 忠 。 张 荣 毕 继 诚
000 ; 30 1 ( . 中 国 科 学 院 山 西煤 炭化 学研 究 所 煤 转 化 国 家 重 点 实 验 室 ,山 西 太 原 1 2 .中 国科 学 院研 究 生 院 ,北 京 10 4 ) 0 0 9

生物质流化床气化技术应用研究现状

生物质流化床气化技术应用研究现状

生物质流化床气化技术应用研究现状随着能源危机的不断加剧和环保意识的增强,生物质成为可再生能源的重要来源之一。

而生物质流化床气化技术作为一种高效利用生物质的能源转化技术,在国内外得到了广泛的应用和研究。

本文就生物质流化床气化技术的应用研究现状进行探讨。

一、生物质流化床气化技术概述生物质流化床气化技术是利用流化床反应器对生物质进行气化反应,使其转化为气体燃料的一种技术。

在流化床内,生物质颗粒被高速气流悬浮并与气体直接接触,因此可以在较低的反应温度下实现生物质的完全气化。

同时,流化床内部的湍流和固体与气体之间的热和质量传递可以进一步提高反应效率。

生物质流化床气化技术具有以下优点:1、资源丰富、可持续。

生物质是可再生资源,来源广泛,包括木材、农作物秸秆、林木剩余物、木薯渣等等。

2、环保效益好。

与传统能源相比,生物质气化产生的二氧化碳排放量低,可以减少对环境的污染。

3、经济效益明显。

生物质气化技术可以实现生物质的高效利用,产生的气体燃料可以替代传统的能源,对于推动节能减排、环境友好的经济模式具有积极的意义。

二、生物质流化床气化技术的应用研究现状1、研究进展在国内外,生物质流化床气化技术得到了广泛应用和研究。

研究人员通过实验室试验和大规模试验,对生物质气化反应的反应温度、反应压力、流化床粒径、生物质种类等参数展开了研究。

在反应温度方面,过高或过低的温度都会导致反应效率的降低。

研究表明,适宜的反应温度一般在800℃-900℃之间。

在生物质种类方面,各种不同的生物质具有不同的物理和化学性质,因此生物质流化床气化反应的效率受到生物质种类的影响。

研究表明,木材和秸秆等较为常见的生物质可以被有效气化。

2、应用场景生物质流化床气化技术在电力、燃气、化工等多个行业中得到了应用。

其中,电力是生物质流化床气化技术的主要应用领域。

在电力领域,生物质流化床气化技术已经得到了广泛的应用。

利用生物质气化产生的气体燃料发电可以替代传统的化石燃料发电,具有环保节能的优势。

气流床气化技术研究现状

气流床气化技术研究现状

气流床气化技术研究现状刘庆旺煤炭是我国的基础能源和重要原料,在国民经济和社会发展中具有重要的战略地位,将长期是我国的主要能源。

煤气化技术是煤炭清洁转化的核心技术之一,是发展煤基化学品(氨、甲醇、二甲醚等)、煤基液体燃料、先进的lGCC发电、多联产系统、制氢、燃料电池等过程工业的基础,是这些行业的共性技术、关键技术和龙头技术。

估计,我国“十一五”末期年气化用煤约1亿t。

以煤间接液化为例,规模为500万t/a的生产装置,气化用煤在2200-2500万t/a。

国内在建的甲醇装置、合成氨装置、煤制油装置和处于筹建中的煤制烯烃装置、煤制油装置、甲醇装置等,已展现了对煤气化技术的强劲需求。

在流派众多的煤气化技术中,气流床气化技术因煤种适应范围比较广、气化温度、压力高、易于大型化,成为煤气化技术发展的主流方向。

国际上有代表性的气流床气化技术主要有GE (Texaco)气化技术、Global E-Gas气化技术,以干粉煤为原料的Shell气化技术,Prenflo气化技术及GSP气化技术。

气流床气化法是20世纪50年代初发展起来的新一代煤气化技术,最初代表炉型为K-T炉。

其后随着Texaco, Shell等一批新型工艺的开发,气流床气化技术因其出色的生产能力和气化效率,在世界范围内得到了迅速推广和广泛的应用,尤其是在燃气联合循环中。

目前绝大多数1GCC电站所选择的均为气流床气化炉,主要炉型有Texaco, Shell, E-Gas(原Destec)以及Prenflo等。

气流床气化法使用极细的粉煤为原料,在气化炉内细颗粒粉煤分散悬浮于高速气流中,并随之并行流动,这种状态即称气流床。

气流床气化法属于高温气化技术,原料煤具有很大的比表面积,又处于加压条件下,因此气化反应速度极快,气化强度和单炉气化能力比前两类气化技术都高。

目前己经商业化的气化炉,每天可气化约2000-2600t煤。

在气流床的高温下,粉煤的干馏产物全部分解,粗煤气中不含焦油、酚及烃类液体等,有利于简化后续净化系统,对环境污染少。

煤和生物质共热解研究现状

煤和生物质共热解研究现状

煤和生物质共热解研究现状近几年,以煤炭和生物质为燃料的共热解(Co-pyrolysis)技术受到了越来越多的关注,它是一种通过煤炭和生物质共同热解来获得高品质石油和可再生能源的技术。

共热解技术可以实现煤炭和生物质之间的转化,从而极大地提高热解反应效率,减少能源消耗和污染环境。

自20世纪90年代以来,在全球范围内,许多研究者都在研究煤炭和生物质共热解的技术。

许多研究发现,将煤炭与生物质结合在一起可以产生更多的液体燃料,增加收益,并降低燃烧产生的污染物。

此外,研究者们还发现,生物质中的木素元素可以替换煤炭中的木素元素,使煤炭热解时产生的黑烟减少,降低烟气污染。

然而,尽管此类技术优势众多,但许多技术问题仍未得到解决,比如生物质和煤炭之间的气化不均衡性问题、热解反应中木素元素的替换和补充问题以及高温反应中烟气中有毒物质的抑制问题等。

为了解决这些技术难题,发达国家不断投入大量的资金和人力物力,在宏观层面对共热解技术进行研究开发,以及在微观尺度上对共热解反应机理进行深入研究。

同时,研究者们也就如何改善共热解技术的可控性和稳定性展开研究。

借助计算机模拟和实验技术,研究者们发现可以通过修改热解反应的温度、压力和物质比例等参数来改善共热解反应,并调节不同特定条件下热解时的反应性能、产物组成和热力学性质。

此外,在加工技术方面,研究者们设计了多种共热解装置来现复杂的反应,例如自动控制、循环流化床反应器、多元复合反应器、微细粉末研磨和超声波催化等。

其中,多元复合反应器技术最为成熟,它既可以用于实验室小规模研究,也可以应用于工业生产。

最后,由于共热解技术涉及到热物理和热化学反应,在综合运用控制理论和过程优化等技术的基础上,研究者们利用计算机确定了各种参数的最优值,有效地提高了共热解装置的效率。

综上所述,煤炭和生物质共热解技术是一门极具挑战性的学科,涉及到化学、物理、热力学等多方面的知识。

尽管仍有诸多技术难题未解决,但发达国家仍在投入大量资源探索此技术,未来共热解技术将成为一种替代燃料,成为节能环保的新热门。

生物质流化床气化炉共气化技术的发展与应用

生物质流化床气化炉共气化技术的发展与应用
收稿日期: !**+ E #* E ##
中供气的关键设备、 供气管网的设施和户用燃气灶具 等较为完整的配套技术。目前这种气化装置在全国 已有百套在运行中, 该技术可工业运行, 但由于固定 床气化炉存在着煤气热值低、 燃气中焦油含量高的缺 点, 加之经济性很差, 不具备商业性推广和应用条件。 但从国民经济评价结果来看, 其具有较好的环境效益 和社会效益。随着煤炭石油价格的不断提高, 根据专 家预测, !*#* 年人工煤气价格将达 X 元 R @N 以上, 而 农作物秸秆越来越多地变成废弃物, 届时, 以秸秆为 原料的生物质燃气将是廉价的优质燃料。如果对生 物质燃气价格进行相应的调整, 国家再给予政策上的 优惠, 在一些关键技术上有所改进, 生物质制气应具 有广泛的商业化前景。另外, 中国人多地少, 随着经 济发展, 人口居住必然向城镇化发展, 根据既有利于 生活, 又有利于生产的原则, 未来中国农村应以每集 镇 # *** O !*** 户为宜, 这将为生物质气化集中供气 提供有利的环境条件。
# " 生物质流化床气化炉的应用
国内生物质气化炉基本上都是较落后的常压固 定床气化炉, 存在燃气热值低 (一般为 W O X 9QR @N ) ,
作者简介: 宋旭 ( #T"! E ) , 男, 河北丰润人, 江苏大学能源与动力工程学院在读硕士研究生, 从事热能工程
面的研究工作。
ቤተ መጻሕፍቲ ባይዱ !"
水利电力机械
#""$ 年 %# 月
( #’ 江苏大学 能源与动力工程学院, 江苏 镇江( !#!*#N ; !’ 丹麦技术大学 化工工程学院, 丹麦( 哥本哈根)
摘( 要: 生物质与煤混合共气化流化床气化炉及其工 艺, 是以 空气 E 水蒸 汽为气化 剂, 连续 制气生 产低热值 燃气的流 化床气化工艺, 燃 气热值 为 + O P 9QR @N 。由于 生物 质和 煤在物 理性 质和气 化特 性上有 许多 互 补 性, 将生物质与煤在流化床中共气化, 可以形成温度较高的稳定料层, 不 仅可以保证运行稳定, 且在蒸汽气化 剂的作用 下, 可加速焦油的热裂解, 使焦油含量减少, 燃 气热值提高 。根据此技术 开发了高 效气化 E 热电联 供系统工 艺路线。 关键词: 共气化; 生 物质 R 煤; 流化床; 热电联供 中图分类 号: .S+ : .S!!T’ + U +( ( ( 文献标识码: V( ( ( 文章编 号: #**+ E +WW+ (!**+ ) #! E **PT E *W

生物质与煤混合燃烧发电技术研究进展

生物质与煤混合燃烧发电技术研究进展

第4卷㊀第1期2023年8月新能源科技New Energy TechnologyVol.4,No.1August,2023㊀作者简介:闫亚龙(1977 ),男,陕西神木人,经济师,硕士;研究方向:可再生能源开发与利用㊂生物质与煤混合燃烧发电技术研究进展闫亚龙,刘欣玮(国能锦界能源有限责任公司,陕西神木719319)摘要:在碳达峰㊁碳中和的大背景下,生物质作为一种可再生清洁能源,具有巨大的减排潜力㊂文章简单总结了生物质的燃烧特性与处理方式,通过对生物质进行预处理可以提高其储运的可靠性,减少生物质混烧中出现的结渣腐蚀等问题㊂文章重点介绍了生物质混烧技术路线及发展现状,发现直接混合燃烧技术相较于间接混合燃烧和并联混合燃烧具有低成本㊁简单㊁高效的特点㊂关键词:生物质;预处理;直接混燃;间接混燃;并联混燃中图分类号:TQ534;TK6㊀㊀文献标志码:A0㊀引言㊀㊀全球变暖是人类面临的巨大威胁,如果全球气温上升2ħ,将导致一亿人死亡以及数百万种动植物物种灭绝[1]㊂为了减少CO 2的排放,向绿色和清洁可再生能源转型对于社会的可持续发展至关重要㊂在可再生能源中,风能㊁水能和太阳能等新能源具有随机性和间歇性的特点,这对电网的调峰能力提出了挑战[2]㊂而生物质能源具有储量丰富㊁来源全面㊁排放低的特点,是一种具有较高应用潜力的可再生资源㊂生物质的发电技术包括直燃发电㊁混燃发电和气化发电㊂与直燃发电和气化发电相比,混燃发电具有成本较低㊁建设周期短,受原料性质影响较小的优点㊂燃煤机组混燃生物质作为一种经济㊁高效㊁清洁的利用方式,在碳减排方面具有很大的潜力,仅需对现有燃煤机组进行适当改造,不仅可以降低CO 2的排放量,还可以提高锅炉侧燃料的灵活性㊂本文针对生物质的分类㊁燃烧特性㊁预处理方式㊁混合燃烧方式㊁发展现状及遇到的问题等进行了简单的总结㊂1㊀生物质分类及资源现状㊀㊀根据国际能源机构(IEA)的定义,生物质是指通过光合作用形成的各种有机体,包括所有的动植物和微生物以及这些生命体排泄的有机物质㊂生物质能来源于太阳能,是继煤炭㊁石油和天然气之后的第四大能源㊂生物质的种类繁多,包括农业废弃物㊁林业废弃物㊁畜禽粪便㊁生活垃圾㊁污水污泥㊁废弃油脂等㊂目前,我国生物质资源年产生量约为34.94亿t,但利用率不高㊂从图1中可以看出,在各类生物质中,禽畜粪便的资源量最高,其次是秸秆,但能源化利用率除生活垃圾外均不超过20%㊂图1㊀各类生物质2020年产量及利用率2㊀生物质和煤的燃烧特性㊀㊀燃料特性可由工业分析㊁元素分析㊁灰分分析和低位热值表示[3]㊂表1给出了几种典型的生物质及煤的燃烧特性,从表1中可以看出,生物质的挥发分普遍更高一点,当与煤混烧时,有助于提高燃料的反应活性和点火特性[4]㊂与煤相比,生物质的水分较多,灰分和固定碳较少㊂水分含量是影响燃料燃烧的另一个重要因素,当燃料水分过多时,会使得着火困难㊂从表2中可以看出,生物质的C 含量较低,而H㊁O 含量较多,导致其热值较低,这是因为与C =C 键断开时释放的能量相比,生物质中的C-H 键和C-O 键断开时释放的能量较小㊂此外,生物质中的O 含量较多,使其氧化的活化能较低,从而拥有更高的反应活性[5]㊂生物质中的S和N较少,使其燃烧后释放出来的污染物与燃煤相比较少,与煤混烧时,可以减少污染物的排放㊂燃料的烧结性越强,则越容易在锅炉中形成烧结性积灰,而燃料的烧结性主要与燃料中所含的碱性物质有关㊂从表3中可以看出,生物质的碱性物质较煤更多,这使其通常表现出更强的结渣和结垢的倾向㊂表1㊀某些生物质和煤的工业分析表2㊀某些生物质和煤的元素分析表3㊀某些生物质和煤的灰分分析3㊀生物质预处理3.1㊀浸出㊀㊀生物质中碱金属含量较高,容易导致结渣㊁腐蚀等问题,使得混烧生物质时降低电厂可靠性㊁增加维护成本和运营成本㊂硫和氯的存在会加速锅炉的腐蚀,同时增加污染物的排放㊂因此可以通过浸出来减少生物质燃料中这些成分的存在,以减轻燃烧过程中遇到的问题㊂3.2㊀烘焙㊀㊀生物质和煤在化学性质和物理性质上都存在差异,生物质的水分较高,能量密度较低,再加上混合特性差,使得生物质和煤的混烧存在问题㊂而烘焙可以通过热处理使得生物质拥有与煤较为接近的物理性质㊂(1)烘焙可以去除生物质中的水分,提高了生物质的热值并能够使其形成外观类似煤的产物;(2)烘焙可以使生物质具有良好的疏水特性,提高其抗生物降解的能力[7],大大优化了燃料的储存特性,使其能够长时间稳定储存;(3)烘焙可以破坏生物质的木质纤维素结构,改善了生物质的可磨性和流动性,提高燃烧效率,同时有利于煤和生物质的均匀混合㊂3.3㊀生物质成型燃料㊀㊀生物质作为燃料与传统化石燃料相比最大的问题是能量密度低,给生物质的收集㊁运输㊁储存㊁预处理和给送等带来困难,限制了生物质的大规模应用㊂而生物质成型可以很好地解决这一问题,生物质成型工艺包括干燥㊁研磨和压缩㊂经过生物质成型后可以大大提高燃料的能量密度㊂单位能量所需体积减小可以大大降低运输和存储的成本,且成型后的生物质含水量下降,具有较高的低位发热量㊂4 生物质混燃发电4.1㊀混合燃烧方式4.1.1㊀直接混合燃烧生物质与煤直接混合燃烧是最常用的技术,就是把预处理过的生物质和煤直接混合送入锅炉进行燃烧,与其他燃烧方式相比,直接混合的投资成本最低㊂直接混合燃烧根据耦合位置可以分为4种类型,如图2所示㊂(1)制粉处混合:生物质和煤混合后送入磨煤机,磨制完成后分配到燃烧器㊂(2)给料混合:生物质由单独的磨机粉碎,通过输送管道与煤粉混合后送入燃烧器㊂(3)燃烧器内混合:生物质燃料也是由单独的磨机粉碎,但与煤粉在燃烧器中混合㊂(4)炉内混合:生物质由单独的磨机粉碎后送入专门的燃烧器燃烧,生物质的磨制与燃烧是独立的㊂图2㊀直接混合燃烧4.1.2㊀间接混合燃烧间接混合燃烧是先将生物质气化,再将产生的生物质燃气输送到锅炉[8],把燃气作为一种再燃燃料,可以减少氮氧化物的排放[9]㊂气化产物主要包括CO㊁CO2㊁CH4㊁H2O㊁H2㊁N2和一些轻烃㊂气化产物的热值与燃料的含水量有关,水分较高时会降低气化产物中可燃气的比例㊂4.1.3㊀并联混合燃烧并联混合燃烧采用了完全分离的生物质燃烧系统,生物质和碳分别在独立的锅炉中燃烧,再将产生的蒸汽输送到发电机组耦合发电㊂并联混合燃烧设计了一个独立燃烧生物质的锅炉,优化了燃烧过程,使结渣和腐蚀等问题大大减轻,为大比例掺烧生物质提供了更多的可能性,降低了操作风险,可靠性更高,但资金投入也大大增加㊂4.2㊀混合燃烧技术㊀㊀大多数生物质混燃项目都是利用现有的燃煤电厂改造以适应生物质燃料与煤的混合燃烧㊂由图3可知,燃烧技术一般分为固定床㊁流化床和悬浮燃烧㊂不同燃烧技术的特点如表4所示㊂煤粉锅炉采用悬浮燃烧技术,对燃料的要求较高㊂因为颗粒尺寸小,燃料气化和固定碳燃烧同时发图3㊀燃烧技术分类生,因此,可以实现负载快速变化和高效控制㊂通过适当的分阶段配风可以实现低过量空气系数和低NO X排放量㊂同时,与流化床或炉排炉相比,煤粉锅炉受结渣㊁结垢和腐蚀的影响较小㊂流化床燃烧技术可分为鼓泡流化床和循环流化床㊂由于混合良好,流化床能灵活处理不同的混合燃料,实现了燃料多样化,增加了现有发电厂的燃料范围,但对燃料颗粒尺寸有一定要求㊂炉排炉属于固定床的一种,适用于含水量高㊁灰分含量高和燃料尺寸变化大的生物质㊂由于过量空气系数高,炉排炉的热效率较低,限制了该燃烧技术的广泛应用㊂目前,炉排炉较多地应用于间接混合燃烧和并联混合燃烧中㊂表4㊀炉排炉、流化床和煤粉锅炉燃烧特点5㊀生物质混合燃烧发展现状㊀㊀目前,商用的生物质混合燃烧技术以直接混合燃烧和间接混合燃烧为主㊂生物质混合燃烧发电在欧美国家应用较广,约2/3的大型生物质混烧电厂坐落于欧洲,尤其是北欧和西欧㊂在欧洲,英国大部分燃煤电厂均采用了生物质混合燃烧,总装机容量达到25366MW㊂英国燃煤电厂中采用了多种生物质原料,包括农业剩余物㊁能源作物和林业剩余物㊂英国部分燃煤电厂如表5所示,其中部分已停产㊂最典型的是英国最大的燃煤电厂Drax,该电厂装有6台660MW 燃煤机组㊂表5㊀英国生物质混烧电厂㊀㊀德国最常用的燃料是污水污泥,50%的混燃电厂都使用污水污泥,以3%混燃比混烧,可以不对电厂做出大的改造㊂相较于其他生物质资源,污水污泥全年可得且通常为负成本,同时,秸秆和废木屑也是主要的生物质燃料㊂表6列举了德国一些混燃污水污泥的电厂㊂从表6中可以看出,德国生物质混烧电厂以煤粉炉为主,少数使用流化床㊂表6㊀德国生物质混烧电厂㊀㊀在北美,美国和加拿大是生物质混烧发电的主要应用国家㊂对于美国和加拿大而言,大规模进行生物质混合燃烧的问题在于充足的生物质来源㊁生物质的运输和储存㊂截至2010年,美国560家燃煤电厂中有40家正在使用生物质混烧技术,并在持续增加中[10]㊂所有的生物质混烧电厂都采用直接混合燃烧的方式,大多数为煤粉锅炉㊂美国近50%的生物质混烧工厂采用的原料是木制品,如木屑和木材废料㊂表7列举了美国部分生物质混烧电厂㊂表7㊀美国生物质混烧电厂㊀㊀在亚洲,中国㊁日本和韩国等国家也开始采用生物质混燃技术㊂在这些地方,生物质混烧的主要原料是木质颗粒㊂2013年,日本有24台燃煤机组开始混烧生物质试验或已投入运行,到2017年,约有29个大型燃煤煤机组混烧生物质㊂国内的生物质混合燃烧发电技术起步较晚,也是以间接混燃和直接混燃为主㊂国内生物质混烧电厂,如表8所示㊂2005年,国内首个生物质混烧电厂华电十里泉发电厂建成,引进丹麦BWE公司的秸秆发电技术,生物质发电容量26.0MW[12]㊂2010年国电宝鸡第二发电有限责任公司在300MW燃煤机组上进行生物质预处理成型与煤小比例混燃的试验,但由于运行期间亏损严重,目前已停运[13]㊂2012年,国电长源荆门电厂采用生物质间接混烧技术将640MW煤电机组改造为燃煤耦合生物质发电项目,是间接混燃技术在我国大型燃煤电厂的首次成功应用[12]㊂大唐长山热电厂是目前国内投运的容量最大的生物质混燃发电机组,采用CFB微正压空气气化后送入660 MW超临界锅炉燃烧[14]㊂华电襄阳发电厂6号机组是国内首个以秸秆为主要原料的生物质间接混燃发电机组,于2018年投产㊂表8㊀国内生物质混烧电厂[11]6㊀生物质混合燃烧存在的问题及解决方法6.1㊀结渣、腐蚀和积灰㊀㊀生物质中灰分的形成过程与煤粉燃烧相似[15],在生物质颗粒燃烧和焦炭颗粒形成过程中,挥发性有机金属化合物首先析出,再进行脱挥发分,最后部分碱金属和碱土金属以及挥发性微量元素扩散出来㊂随着气体温度的降低,挥发性组分成核并冷凝形成亚微米颗粒㊂高浓度K和Na通过成核㊁冷凝和反应会导致各种严重的灰相关问题,如碱诱导结渣㊁硅酸盐熔体诱导结渣和团聚㊂KCl被认为是整个燃烧过程中最稳定的气相含碱金属物质,也是影响生物质结渣的主要物质[16]㊂在燃烧过程中,烟气中的Cl2㊁HCl㊁NaCl㊁KCl等物质在高温下会破坏金属的氧化层加速金属的氧化而导致直接腐蚀,或者形成熔融状碱盐对过热器造成腐蚀,而在低温下当受热面的壁温低于酸露点时,会凝结成酸液对金属发生腐蚀作用㊂可以采用优质合金或者抗腐蚀涂层来减少腐蚀㊂对于生物质混烧过程中的结渣㊁腐蚀和积灰等问题,存在多种对策,包括使用添加剂和浸出等方法㊂浸出直接从来源中去除K,使用添加剂旨在改变灰分成分,并进一步减少挥发性碱物质的存在㊂石灰㊁方解石㊁高岭土和长石等矿物被用作添加剂,有望改善生物质燃烧过程中与灰有关的问题㊂当与燃料混合或添加到燃烧系统中时,这些添加剂可以:(1)通过改变或稀释灰中的耐火元素来提高灰的熔化温度;(2)与低熔点化合物结合并将其转化为高熔点化合物;(3)通过物理吸附降低燃烧系统中有问题的灰种浓度[17]㊂浸出是一种有效的预处理手段,可以去除生物质中的无机物质,特别是碱金属㊁硫和氯减少结渣积灰等问题㊂浸出可分为水浸出㊁醋酸浸出和酸浸出㊂约100%的Cl和90%的碱金属可溶于水,因此,人们对水浸出的研究非常关注㊂6.2㊀污染物排放6.2.1㊀SO X排放混燃生物质可以降低SO X排放量主要是因为生物质中的S含量较低,如农林废弃物的平均含硫量仅为0.38%,低于煤的平均含硫量1%[20]㊂此外,生物质中碱金属含量较高,与烟气中SO2反应生成硫酸盐起到固硫作用,也会减少SO X的排放量㊂目前,电厂中应用最广泛的脱硫技术是石灰石/石膏湿法脱硫(FGD),但当生物质中的氯含量较高时,产生的HCl 可能会影响FGD的脱硫效率㊂6.2.2㊀NO X排放生物质混烧可以降低电厂中NO X的排放量㊂首先,生物质中N含量较低,使得燃料型NO X减少㊂其次,生物质的热值较煤炭低,混烧生物质时炉膛温度降低,可以减少热力型NO X的生成量㊂最后,生物质燃烧的中间产物是NH3,其向NO X的转化率较低[18]㊂通过燃料分级㊁烟气再循环和炉内空气分级等可以有效控制NO X的排放㊂在此基础上,使用选择性催化还原脱硝技术(SCR)可以进一步降低排放量,实现超低排放㊂但在使用SCR时,过低的烟温以及生物质灰中的无机挥发物可能会导致催化剂失活[19]㊂使用碱金属含量较低的生物质以及选择合适的共燃比可减少这一问题㊂6.2.3㊀烟尘排放烟尘排放主要来源于燃料中的灰分,生物质中的灰分含量较低,所以混烧生物质时通常会降低烟尘的排放,但生物质高挥发分和碱金属含量的特点使烟气中存在大量亚微米级悬浮颗粒㊂采用静电除尘器难以将其完全去除,需加装袋式除尘器,但要防止微细气溶胶堵塞布袋㊂同时,由于生物质热值较低,混烧后产生的烟气量较大,选择除尘技术时要考虑到这一点㊂7 结语㊀㊀在 双碳 压力下我国面临着能源转型,燃煤电厂混烧生物质发电技术可有效减少CO2排放量,是实现低碳发展最为经济有效的方法,在世界各地得到了广泛应用㊂(1)通过对生物质和煤燃烧特性的分析可发现,生物质的挥发分较高,C㊁N㊁S含量较少,燃煤电厂混烧生物质可以提高燃料的反应活性,不仅实现大幅度CO2减排,还减少了SO X㊁NO X和烟尘等污染物的排放㊂(2)通过浸出㊁烘焙㊁生物质成型燃料等与处理方式可以提高生物质燃料的能量密度,解决生物质燃料在储存㊁运输方面存在的问题㊂(3)通过对国内外生物质混烧发展现状的总结可以发现,直接混合燃烧仅需对目前的火电厂进行改造,投资成本较低,是目前的主流技术路线,且生物质混烧电厂向大容量机组发展㊂我国的生物质混烧技术与欧美国家存在差距,电厂发电机组容量较小,生物质混烧项目的建设和运营还需要国家政策补贴㊂(4)对于生物质混烧中出现的结渣㊁腐蚀和积灰等问题可以通过生物质预处理及使用添加剂来解决㊂[参考文献][1]RICHARDSON Y,BLIN J,JULBE A.A short overview on purification and conditioning of syngas produced by biomass gasification:catalytic strategies,process intensification and new concepts[J].Progress in Energy and Combustion Science,2012(6):765-781. [2]XUHUI Z,XINGSEN Y,GANG X I N.Experimental study on deep peaking operation of coal-fired thermal power unit[J].Clean Coal Technology,2011(4):144 -150.[3]SAMI M,ANNAMALAI K,WOOLDRIDGE M.Co-firing of coal and biomass fuel blends[J].Progress in Energy and Combustion Science,2001(2):171-214.[4]GANI A,MORISHITA K,NISHIKAWA K,et al. Characteristics of co-combustion of low-rank coal with biomass[J].Energy&Fuels,2005(4):1652-1659.[5]AL-MANSOUR F,ZUWALA J.An evaluation of biomass co-firing in Europe[J].Biomass and Bioenergy, 2010(5):620-629.[6]DEMIRBAS A.Sustainable cofiring of biomass with coal[J].Energy Conversion and Management,2003(9): 1465-1479.[7]TRIFONOVA R,BABINI V,POSTMA J,et al. Colonization of torrefied grass fibers by plant-beneficial microorganisms[J].Applied Soil Ecology,2009(1):98 -106.[8]PANG S.Advances in thermochemical conversion of woody biomass to energy,fuels and chemicals[J]. Biotechnology Advances,2019(4):589-597. [9]PIOTR H,JANUSZ L,KATARZYNA M.Biomass gasification and Polish coal-fired boilers for process of reburning in small boilers[J].Journal of Central South University,2013(6):1623-1630.[10]MULLINS K A,VENKATESH A,NAGENGAST A L,et al.Regional allocation of biomass to US energy demands under a portfolio of policy scenarios[J]. Environmental Science&Technology,2014(5):2561 -2568.[11]井新经,陈运,张海龙,等.生物质耦合发电技术及发电量计算方法[J].热力发电,2019(12):31-37.[12]杨希刚,王双童.大容量燃煤机组生物质能利用技术探析[J].神华科技,2018(6):87-90.[13]王学斌,谭厚章,陈二强,等.300MW燃煤机组混燃秸秆成型燃料的试验研究[J].中国电机工程学报, 2010(14):1-6.[14]马务,盛昌栋.基于循环流化床气化的间接耦合生物质发电技术应用现状[J].热力发电,2019(4):1 -7.[15]JIA Y,LIGHTY J A S.Ash particulate formation from pulverized coal under oxy-fuel combustion conditions[J].Environmental Science&Technology, 2012(9):5214-5221.[16]GARBA M U,INGHAM D B,MA L,et al. Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers[J].Energy& Fuels,2012(11):6501-6508.[17]REBBLING A,SUNDBERG P,FAGERSTRO㊆M J, et al.Demonstrating fuel design to reduce particulate emissions and control slagging in industrial-scale grate combustion of woody biomass[J].Energy&Fuels,2020 (2):2574-2583.[18]TILLMAN D A.Biomass cofiring:the technology,the experience,the combustion consequences[J].Biomass and Bioenergy,2000(6):365-384.[19]STREGE J R,ZYGARLICKE C J,FOLKEDAHL B C,et al.SCR deactivation in a full-scale cofired utility boiler[J].Fuel,2008(7):1341-1347.[20]于春燕,孟军.基于AHP和模糊评判的生物质秸秆发电的效益评价[J].中国农学通报,2010(4):323 -327.(编辑㊀姚鑫)Research progress of biomass and coal co-combustionpower generation technologyYan Yalong,Liu Xinwei(Guoneng Jinjie Energy Co.,Ltd.,Shenmu719319,China)Abstract:Under the background of carbon peak and carbon neutralization,biomass,as a renewable clean energy,has great potential for emission reduction.In this paper,the combustion characteristics and treatment methods of biomass are briefly summarized.Pretreatment of biomass can improve the reliability of its storage and transportation,and reduce the slagging and corrosion problems in biomass co-combustion.The technical route and development status of biomass co-combustion are mainly introduced.It is found that direct co-combustion technology has the characteristics of low cost,simplicity and high efficiency compared with indirect co-combustion and parallel co-combustion.Key words:biomass;pretreatment;direct mixed combustion;indirect mixed combustion;parallel mixed combustion。

煤与生物质流化床共气化的CFD数值模拟研究综述

煤与生物质流化床共气化的CFD数值模拟研究综述

煤与生物质流化床共气化的CFD数值模拟研究综述摘要:气化技术作为固体燃料(如煤和生物质等)清洁利用的重要方式,越来越广泛地被应用于生产合成气的工程实践中。

针对煤与生物质在单独气化时存在转换效率低、气体产物热值低以及焦油含量高等问题,提出了共气化技术以改善气化工艺。

文中主要介绍了基于计算流体力学(CFD)的煤与生物质共气化仿真模拟的研究,论述了两种固体燃料在单独气化和共气化时的反应机理,并详细介绍了冷态和热态流化床共气化CFD模拟所用到的模型。

目前全球绝大多数能源均由传统化石燃料所提供。

随着能源需求量的不断增加,燃料资源总量也在日益减少,同时在煤等燃料的燃烧利用过程中会产生大量的NOx 、SO2以及颗粒物等污染物,会对环境造成严重的影响[1]。

所以,对资源进行更加清洁高效的利用是目前亟待研究和解决的问题。

在现有的能源利用技术中,气化则被视为传统能源清洁高效利用的重要方式之一[2],其中对煤与生物质的气化研究较为广泛,此外由于拥有较为适中的温度、物料粒径等条件,使得流化床气化成为活性较高的煤种与生物质等燃料气化的主要方式。

固体燃料流化床气化示意图及气化特点如图1所示。

在已发展较成熟的燃料单独气化技术的基础上,研究人员提出了煤与生物质的共气化技术[3]。

煤与生物质在共气化过程中产生了协同作用,弥补了两种燃料单独进行气化过程中的不足,打破了气化原料选择的限制,同时还可以提高气化时碳的反应速率,抑制焦油的生成并减少污染物的排放[4]。

所以共气化技术在将固体燃料转化为合成气的同时,提高了能源的利用率,并且减少了一部分化石能源的消耗。

由于生物质和煤的气化需要在900~1000℃的高温条件下进行,对实验设备有较高的要求。

此外,在对气化过程进行实验探究时,耗时较长,危险性也较高。

而通过计算流体力学(CFD)等数值模拟的方法则可以使得研究工作的成本较低,能节省更多的时间、人力和物力。

CFD在流化床中的应用主要有三个方面[5],分别是流化床结构设计与操作条件的优化;模拟流化床冷态气固两相流,研究其中颗粒流动的规律;模拟流化床中热态的化学耦合,建立热态化学反应模型。

生物质与煤流化床共气化特性的试验研究

生物质与煤流化床共气化特性的试验研究
床 气 化 是 一 种 常 用 的 气 化 方 式 之 一 。 目前 对 于 气 化 研 究 多 集 中在 生 物 质 或 煤 单 独 气 化 方 面 ( 括 1 试 验 系统 与方 法 包
添加惰性粒子 ) ,还 有 就 是 共 气 化 与 各 物质 单 独 气
化 的气 化 特 性 比较 ,对 温 度 和 混 和 物 质 量 比对 气 化 特 性 的影 响方 面 研 究 较 少 。 由于 生 物 质 热 值 比 1 1 试验 物料 .
收 稿 日期 :2 1 0 0 2— 2—2 。 8
作 者简介 :高正 阳 (9 2一 ,男 ,教授 ,从事煤 粉清 洁燃烧技术 和燃烧 过程数值 模拟 的研 究 ,通信作 者 :王天 龙 ,Ema 17 ) — i l
n s y 031 @ 1 6.c m 。 ck 1 2 o
第 4期
生 物 质 与煤 流 化 床 共气 化 特 性 的试 验 研 究
高正 阳,王天龙 ,朱 予东 ,鲁许鳌
( 华北 电力大学 能源动力与机械工程学院 ,河北 保定 0 10 ) 7 0 3
摘 要 : 为 了提 高 生物 质 的 气化 效 率 ,掺 杂 煤 作 为 惰 性 粒 子 ,在 流 化床 上 进 行 了不 同 温 度 和 生物 质 与 煤 不 同质 量 比 的 气化 试 验 ,得 出 了各 工况 下 气体 产 率 及 气化 特 性 ,分 析 了温 度 和 质 量 比 对 二 者 的 影 响 。结 果
较 低 ,单 独 气 化 时 易 生 成 较 多 的 焦 油 ,不 仅 降 低
试 验 中所 用 生 物 质 为 木 屑 ( 末 ) 锯 ,木 屑 的
了生 物 质 的气 化 效 率 ,而 且 对 气 化 过 程 的稳 定 运 粒 径 范 围 为 0 2~0 8 m . . m;煤 选 用 的 是 阳 泉 煤 , 行 造 成 不 利 影 响 ;而 且 生 物 质 物 性 差 异 大 、颗 粒 选 取 煤 的粒径 范 围 为 0~2 m m;两 种 燃 料 的工 业

浅析流化床生物质与煤共气化技术方案

浅析流化床生物质与煤共气化技术方案
B e jn, O S a - in ,K N e— n ,B ILn h n I —u MA h o xa g O G B if g E i— o g K a ( h n i u x n nry, c n ea d T c n l y G o p C m a yL d , in S a x 7 0 7 C ia S a x a i g E eg S i c n eh o g ru o p n t. X a h n i 1 0 5 H a e o hn )
地 限制 了生 物 质 能 的 有 效 利 用 。 由于 生 物 质 的
我 国生 物质 能 源 具 有 巨大 的潜 力 。据 统 计 , 全 国近年秸杆年产 量约 6 t薪柴 年产量 ( 亿 , 包括木 材砍
伐 的废 弃物 ) 约为 2亿 t还有大量 的人畜粪便及 工业 ,
排放 的有机废 料 、 渣 , 年 生物 质资 源 总量 折合 标 废 每 煤 约为 2~ 亿 t 4 ¨ 。长期 以来 , 国生物质能 源的开 我 发 和利 用 以传统 的燃烧技术 为主 , 目前正 在逐渐 发展 生物 质能源 的气 化 、 液化 、 固化成 型等技术 。其 中 , 生 物质气化 是生物 质能源清 洁利 用 的一种 主要形式 , 具
关 键 词 :生 物 质 ; ; 融 聚 ; 62 T 4 .
文 献 标 识 码 : A
文 章 编 号 :04— 9 1 2 1 ) 1 0 2 0 10 80 (0 2 0 — 0 9— 4
Br e y A n l z n c e e f r Bi m a s a d alCo- a i c ton Te hn l g f Fl i z d Be if ay ig S h m o o l s n Co g sf a i c o o y o u die d i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档