抛物线的简单几何性质2

合集下载

抛物线的简单几何性质(2)

抛物线的简单几何性质(2)
(2)当k∈
时,它们没有交点.
时,它们有两个交点.
(3)当k∈
时,它们有一个交点.
思考 1:(课本第 71 页例 6) 2 已知抛物线的方程为 y 4 x ,直线 l 过定 点 P (2,1) ,斜率为 k , k 为何值时,直线 l 与抛物 线 y 2 4 x :⑴只有一个公共点;⑵有两个公共点; ⑶没有公共点?
0 2
162k 2 k 1.
1 3 由 0, 即 2k k 1 0, 解得 k 1, 或k . 2 1 于是,当k 1, 或 k 时, 方程 ①没有实数解, 从而 2 方程组 没有解.这时, 直线 l 与抛物线没有公共点 .
0 2
思考 2: 2 若抛物线 y x 存在关于直线 l : y 1 k ( x 1) 对称的两点,求实数 k 的取值范围. 答案: 2 k 0
分 析: 假设 存在 关于 直线 l : y 1 k ( x 1) 对 称 的 两 点 A、B,看 k 应满足什么条 件. 显然 k 0 不合题意,∴ k 0 1 ∴直线 AB 的方程为 y x b k 继续尝试估计主要也是设而不求,联立方程组,韦达定理找条件.
2
1 这时, 直线l 与抛物线只有一个公共 ,1 . 点 4
2 当k 0 时, 方程①的判别式为
1 1 由 0, 即 2k k 1 0, 解得 k 1, 或k . 2 1 于是,当k 1, 或k 时 , 方程 ①只有一个解, 从 2 而方程组只有一个解.这时, 直线 l 与抛物线只 有一个公共点 . 1 0 2 2 由 0, 即 2k k 1 0, 解得 1 k . 2 1 于是,当 1 k 且k 0时, 方程 ①只有两个解, 2 从而方程组只有两个解.这时, 直线 l 与抛物线 有两个公共点 .

高中数学 2.3.2 抛物线的简单几何性质(2)(含解析)新人教A版高二选修1-1数学试题

高中数学 2.3.2 抛物线的简单几何性质(2)(含解析)新人教A版高二选修1-1数学试题

课时作业20 抛物线的简单几何性质(2)知识点一直线与抛物线的交点问题1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有( ) A.1条 B.2条 C.3条 D.4条答案 B解析 由题意知,点(2,4)在抛物线y 2=8x 上,所以过点(2,4)与抛物线y 2=8x 只有一个公共点的直线有两条,一条是抛物线的切线,另一条与抛物线的对称轴平行.故选B.2.已知直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,直线l 与抛物线C 有: (1)一个公共点? (2)两个公共点? (3)没有公共点?解 将直线l 和抛物线C 的方程联立得⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程(*)只有一个解,为x =14,此时y =1.∴直线l 与抛物线C 只有一个公共点⎝ ⎛⎭⎪⎫14,1,此时直线l 平行于x 轴. 当k ≠0时,方程(*)为一元二次方程,Δ=(2k -4)2-4k 2,①当Δ>0,即k <1且k ≠0时,直线l 与抛物线C 有两个公共点,此时直线l 与抛物线C 相交;②当Δ=0,即k =1时,直线l 与抛物线C 有一个公共点,此时直线l 与抛物线C 相切; ③当Δ<0,即k >1时,直线l 与抛物线C 没有公共点,此时直线l 与抛物线C 相离. 综上所述,(1)当k =1或k =0时,直线l 与抛物线C 有一个公共点; (2)当k <1且k ≠0时,直线l 与抛物线C 有两个公共点; (3)当k >1时,直线l 与抛物线C 没有公共点. 知识点二中点弦问题3.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A ,B 两点,若AB 中点为(2,2),则直线l 的方程为__________.答案 y =x解析 由题意知,抛物线C 的方程为y 2=4x ,设A (x 1,y 1),B (x 2,y 2),把A ,B 代入抛物线方程得⎩⎪⎨⎪⎧ y 21=4x 1,y 22=4x 2,①②①-②得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).又y 1+y 2=4, ∴y 1-y 2x 1-x 2=4y 1+y 2=1. ∴直线l 的方程为y -2=x -2,即y =x . 知识点三直线与抛物线位置关系的综合应用4.过抛物线y 2=2px 的焦点F 的直线与抛物线交于A ,B 两点,若A ,B 在准线上的射影为A 1,B 1,则∠A 1FB 1等于( )A.45°B.90°C.60°D.120°答案 B解析 如图,由抛物线定义知 |AA 1|=|AF |,|BB 1|=|BF |, 所以∠AA 1F =∠AFA 1. 又∠AA 1F =∠A 1FO , 所以∠AFA 1=∠A 1FO . 同理∠BFB 1=∠B 1FO .于是∠AFA 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1.故∠A 1FB 1=90°.故选B. 5.已知点P 在直线x +y +5=0上,点Q 在抛物线y 2=2x 上,求|PQ |的最小值. 解 设与直线x +y +5=0平行且与抛物线y 2=2x 相切的直线方程是x +y +m =0,则由⎩⎪⎨⎪⎧x +y +m =0,y 2=2x ,消去x 得y 2+2y +2m =0,令Δ=4-8m =0,得m =12,因此|PQ |的最小值等于直线x +y +5=0与x +y +12=0间的距离,即等于⎪⎪⎪⎪⎪⎪5-122=924.一、选择题1.直线y =kx -2交抛物线y 2=8x 于A ,B 两点,若AB 中点的横坐标为2,则k =( ) A.2或-2B.1或-1C.2D.3答案 C解析 由⎩⎪⎨⎪⎧y 2=8x ,y =kx -2,得k 2x 2-4(k +2)x +4=0.又由Δ=42(k +2)2-16k 2>0,得k>-1.则由4k +2k 2=4,得k =2.故选C. 2.已知抛物线y 2=8x ,过点P (3,2)引抛物线的一弦,使它恰在点P 处被平分,则这条弦所在的直线l 的方程为( )A.2x -y -4=0B.2x +y -4=0C.2x -y +4=0D.2x +y +4=0答案 A解析 设l 交抛物线于A (x 1,y 1),B (x 2,y 2)两点,则y 21=8x 1,y 22=8x 2,两式相减,得(y 1+y 2)·(y 1-y 2)=8(x 1-x 2).又P (3,2)是AB 的中点,∴y 1+y 2=4.又直线l 的斜率存在,∴直线l 的斜率k =y 1-y 2x 1-x 2=2,∴直线l 的方程为2x -y -4=0,故选A. 3.过抛物线y 2=2px (p >0)的焦点作一条直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,则y 1y 2x 1x 2的值为( )A.4B.-4C.p 2D.-p 2答案 B解析 解法一:设过焦点F ⎝ ⎛⎭⎪⎫p 2,0的直线方程为x =my +p 2.联立⎩⎪⎨⎪⎧x =my +p 2,y 2=2px ,得y2-2pmy -p 2=0.由根与系数的关系,得y 1y 2=-p 2.又x 1=y 212p ,x 2=y 222p ,所以x 1x 2=y 21y 224p 2=p 24.于是y 1y 2x 1x 2=-p 2p 24=-4.故选B. 解法二:采用特例法,当直线与x 轴垂直时,易得A ⎝ ⎛⎭⎪⎫p 2,p ,B ⎝ ⎛⎭⎪⎫p 2,-p ,y 1y 2x 1x 2=-4.故选B.4.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值X 围是( )A.⎣⎢⎡⎦⎥⎤-12,12B.[-2,2]C.[-1,1]D.[-4,4]答案 C解析 设直线方程为y =k (x +2),与抛物线方程联立,得⎩⎪⎨⎪⎧y 2=8x ,y =k x +2,消去x 得到关于y 的方程ky 2-8y +16k =0.当k =0时,直线与抛物线有一个交点; 当k ≠0时,令Δ=64-64k 2≥0, 解得-1≤k <0或0<k ≤1. 故-1≤k ≤1.故选C.5.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB →=0,则k =( )A.12B.22C. 2D.2答案 D解析 本题主要考查直线与抛物线的位置关系,平面向量的坐标运算等知识.由题意可知抛物线的焦点坐标为(2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0,设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1x 2=4,所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16,因为MA →·MB →=0,所以(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0(*),将上面各个量代入(*),化简得k 2-4k +4=0,所以k =2,故选D.二、填空题6.已知直线x -y +1=0与抛物线y =ax 2有两个公共点,则a 的取值X 围是________. 答案 a >-14且a ≠0解析 由⎩⎪⎨⎪⎧x -y +1=0,y =ax 2,得ax 2-x -1=0.由题意得⎩⎪⎨⎪⎧a ≠0,Δ=-12-4×a ×-1>0,解得a >-14且a ≠0.7.抛物线y =x 2上到直线2x -y -4=0的距离最短的点的坐标是__________. 答案 (1,1)解析 把直线2x -y -4=0平移至与抛物线y =x 2相切时,切点即为所求.设此时直线方程为2x -y +b =0,联立y =x 2,得x 2-2x -b =0,由题意得Δ=4+4b =0,b =-1.即x 2-2x +1=0,解x =1,y =1.8.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为抛物线C 上一点,若|PF |=42,则△POF 的面积为________.答案 2 3解析 由y 2=42x 知:焦点F (2,0),准线x =- 2.设P 点坐标为(x 0,y 0), 则x 0+2=42,∴x 0=32, ∴y 20=42×32=24, ∴|y 0|=26,∴S △POF =12×2×26=2 3.三、解答题9.已知y =x +m 与抛物线y 2=8x 交于A 、B 两点. (1)若|AB |=10,某某数m 的值; (2)若OA ⊥OB ,某某数m 的值.解 由⎩⎪⎨⎪⎧y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0.Δ>0解得m <2,设A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1y 2=m (x 1+x 2)+x 1x 2+m 2=8m . (1)因为|AB |=1+k2x 1+x 22-4x 1x 2=2·64-32m =10,所以m =716.(2)因为OA ⊥OB ,所以x 1x 2+y 1y 2=m 2+8m =0,解得m =-8,m =0(舍去).10.已知△AOB 的一个顶点为抛物线y 2=2x 的顶点,点A ,B 都在抛物线上,且∠AOB =90°,证明:直线AB 必过一定点.证明 设OA 所在直线的方程为y =kx ,则直线OB 的方程为y =-1kx ,由题意知k ≠0.由⎩⎪⎨⎪⎧y =kx ,y 2=2x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2k 2,y =2k ,即点A 的坐标为⎝ ⎛⎭⎪⎫2k2,2k ,同样由⎩⎪⎨⎪⎧y =-1k x ,y 2=2x ,解得点B 的坐标为(2k 2,-2k ).故AB 所在直线的方程为y +2k =2k+2k2k2-2k2(x -2k 2),化简并整理,得⎝ ⎛⎭⎪⎫1k-k y =x -2.不论实数k 取任何不等于0的实数, 当x =2时,恒有y =0. 故直线过定点P (2,0).。

高二数学抛物线的简单几何性质2

高二数学抛物线的简单几何性质2

| AB | 2 p
方程
图 形 范围
y2 = 2px
y2 = -2px (p>0) y l
x
x2 = 2py (p>0) y
F x
x2 = -2py (p>0) y
x l
(p>0) y
l O F
l x
F
O
O
O
F
x≥0 y∈R
x≤0 y∈R
x∈R y≥0
x∈R y≤0
关于y轴对称
对称性 关于x轴对称 关于x轴对称 关于y轴对称
抛物线的简单几何性质(2)
一、抛物线的几何性质:
性质
方程
设抛物线方程为: y 2 2 px, ( p 0)
l
y
d
M
图形
K
O
F
x
范围 对称性
顶点坐标
x 0, y R 关于 x轴对称 坐标原点(0,0)
e 1
p | MF | x0 , 2 M ( x0 , y0 )
离心率 焦半径 通径
从点A、B、P分别向抛物线的准线作 垂线,垂足分别为A1、B1、P 1,依据 抛物线的定义,|AF|=|AA1|,|BF|=|BB1| 所以|AB|=|AF|+|BF|=|AA1|+|BB1|, 又PP1是梯形AA1BB1的中位线, 所以|AA1|+|BB1|=2|PP|. 1 因此,我们容易得到
p1
2P 的 | AB | 2 sin
y
A
F1 O F2
y
l
x
F1 O
l
A
F2
d1 d2
B
B
x
y
y
F1
.

抛物线的简单几何性质(2)

抛物线的简单几何性质(2)

抛物线的简单几何性质(2)
教学目的:
1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;
2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化
教学重点:抛物线的几何性质及其运用
教学难点:抛物线几何性质的运用
授课类型:新授课
教学过程:
一、复习引入:
1.抛物线定义:
2.抛物线的标准方程:
二、讲解新课:
2、通径:
三、讲解范例:
例1 已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形.
例2 汽车前灯的反光曲面与轴截面的交线是抛物线,灯口直径197mm ,反光曲面的顶点到灯口的距离为69mm ,由抛物线的性质可知,当灯泡按装载抛物线的焦点处,经反光曲面反射后的光线是平行光线,为了获得平行光线,应怎样安装灯泡(精确到1 mm )
例3 过抛物线px y 22
=的焦点F 任作一条直线m ,交这抛物线于A 、B 两点, 求证:以AB 为直径的圆和这抛物线的准线相切.
四、课堂练习:课本47页 练习 1,2,3
五、小结 :抛物线、焦点、顶点、对称轴、准线、中心等。

2.4.2抛物线的简单几何性质(2) - 学生版

2.4.2抛物线的简单几何性质(2) - 学生版

课题:§2.4.2 抛物线的简单几何性质应用(二)1.进一步掌握应用抛物线的几何性质解决有关问题;2.掌握直线与抛物线的位置关系,能综合应用有关知识解决抛物线的综合问题。

※复习:类比椭圆、双曲线和抛物线的几何性质,填表。

思考:当焦点在y轴时,又怎样处理?题型三:定值问题例1:过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。

变式练习:22,,过抛物线的顶点作两条互相垂直的弦求证:直线y x O A O B AB与轴的交点为定点。

x题型四:直线与抛物线的位置问题1. 直线与抛物线相切:直线与抛物线有且只有一个公共点,但不平行于抛物线的对称轴。

即把x =my +n 代入y 2=2px (p >0)消去x 得:y 2-2pmy -2pn =0①,当方程①的判别式△=0⇔直线与抛物线相切;2. 直线与抛物线相交:(1)直线与抛物线只有一个交点:直线与抛物线的对称轴平行; (2)直线与抛物线有两个不同的交点⇔方程①的判别式△>0; 3. 直线与抛物线相离⇔方程①的判别式△<0。

例2:已知抛物线的方程24y x =,直线l 过定点()2,1P -,斜率为k 。

k 为何值时,直线l 与抛物线24y x =:只有一个公共点;有两个公共点;没有公共点?探究:1.画出上述几种位置关系,从图中你发现直线与抛物线只有一个公共点时是什么情况?2.方程组解的个数与公共点的个数是什么关系?变式练习:求过点(0,1)M 且和抛物线C:24y x =仅有一个公共点的直线的方程。

1.(2010年高考陕西卷理科8)已知抛物线()022>=p px y 的准线与圆07622=--+x y x 相切,则p 的值为 ( )()21A ()1B ()2C ()4D2. 已知F 为抛物线22y x =的焦点,定点Q (2,1)点P 在抛物线上,要使||PQ PF +的值最小,点P 的坐标为( )A. (0,0)B. 112⎛⎫⎪⎝⎭, C.D. (2,2)3. (2012高考安徽理9)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则A O B ∆的面积为( )()A 2()B ()C 2()D4.已知抛物线22(0)y px p =>,过点()20p ,作直线交抛物线于11()A x y ,、22()B x y ,两点,给出下列结论:①O A O B ⊥;②AOB ∆的面积的最小值为24p ;③2124x x p =-,其中正确的结论是__________________.5.( 2010年高考全国卷I 理科21)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;。

第2课时抛物线的简单几何性质

第2课时抛物线的简单几何性质

第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。

4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。

3.3.2抛物线的简单几何性质(二)课件高二上学期数学人教A版选择性

3.3.2抛物线的简单几何性质(二)课件高二上学期数学人教A版选择性
2

p
p
2
则F , 0 , 设直线AB的方程为x my , 将其代入y 2 px , 得
(2)当AB垂直于对称轴时,焦点弦最短;
(3)A,B 两点的横坐标之积,纵坐标之积为定值,即
1
(4)
||
+
1
||
=
2
x1x2= ,y1y2=-p2;
4
2
;

(5)以AB为直径的圆必与准线相切,以AF为直径的圆必与y轴相切.
2.做一做:(1)过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,
2
2
因为焦点F的坐标是 , 0 , 当y0 p 时,
2
2 py0
p
直线AF的方程为y 2
x

2
y0 p
2
y
A
联立①④ , 消去x ,
可得y0 y 2 ( y02 p 2 ) y y0 p 2 0,
即( y y0 )( y0 y p ) 0.
程,联立方程组求解.
(2)①设出直线方程,直线方程与抛物线方程联立,根据焦点弦长公式求解.
②根据①求出点 A,B 的坐标,设出点 C 的坐标,由 = +λ,可用 λ 表
示点 C 的坐标,根据点 C 在抛物线上求出 λ 的值.
解:①直线 AB 的方程是 y=2 2
从而有 4x -5px+p =0,所以
(1)当a+1=0,即a=-1时,方程①是关于x的一元一次方程,解得x=-1,
= -1,
这时原方程组有唯一解
= -1.
(2)当a+1≠0,即a≠-1时,方程①是关于x的一元二次方程.

抛物线的简单几何性质时

抛物线的简单几何性质时

则 y1 y2 p2 .
M
这一结论非常奇妙,变中有不变,动中有不动.
K
几何解释,就是

N
MK NK KF 2
思考: “一条直线和抛物线 y2 2 px( p 0) 相交,
两个交点的纵坐标为 y1 、y2 ,且 y1 y2 p2 .则 这条直线过焦点.”成立吗?
例3.(抛物线的焦点弦问题)
有关y轴对称
有关y轴对称
顶点
焦半径
•焦 点
(0,0)
p 2
x0
p x1 x2
(0,0)
p 2
x0
p (x1 x2 )
(0,0)
p 2
y0
p y1 y2
(0,0)
p 2
y0
p ( y1 y2 )
一、直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一种交点,
两个交点)
与双曲线旳
y
另解:设直线4x 3y m 0与抛物线相切
y2 4x
64x 3y
m
0
y2 16
3y
m
0
由 0得 : m 36
例2 过抛物线焦点 F 的直线 交抛物线于A, B两点,通过点A
ly A
和 抛 物线顶点的直线交抛物
o F
x
线的准 线 于点 D , 求 证 : 直线 D B
DB平行于抛物线的对称轴.
即 (x 2)2 ( y 3)2 | y 5 | 化简得:(x 2)2 4( y 4)
题型二:抛物线旳最值问题
练习: 已知抛物线y=x2,动弦AB旳长为2,求AB中点纵坐标旳最小值
解法1: 设lAB : y kx b
y kx b

抛物线的简单几何性质(第2课时)课件-高二上学期数学人教A版(2019)选择性必修第一册

抛物线的简单几何性质(第2课时)课件-高二上学期数学人教A版(2019)选择性必修第一册

|MF|=|MN|= (3 + 1)2 + (2 3 − 2 3)2
=4.
∴△MNF是边长为4的等边三角形.
∴点M到直线NF的距离为2 3.
2
=4.
1−cos60°
点M到直线NF的距离为4×
3
=2
2
3.
典例精析
题型二:与抛物线有关的定点、定值问题
例3 已知动圆经过定点D(1,0),且与直线x=-1相切,设动圆圆心E的轨迹为曲线C.
(−2)2
设A(x1,y1),则x1= 2

=
2 −4+4
.
2
典例精析
题型二:与抛物线有关的定点、定值问题
例3 已知动圆经过定点D(1,0),且与直线x=-1相切,设动圆圆心E的轨迹为曲线C.
(1)求曲线C的方程.
(2)设过点P(1,2)的直线l1,l2分别与曲线C交于A,B两点,直线l1,l2的斜率存在,且倾斜角互补.
A.4p
B.5p
C.6p
D.8p
解 由焦点弦长公式知|PQ|=x1+x2+p=4p.
跟踪练习
3.设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为( A )
A.抛物线
B.双曲线
C.椭圆
D.圆
解 设圆C的半径为r,则圆心C到直线y=0的距离为r,
由两圆外切可得,圆心C到点(0,3)的距离为r+1,
或(x-11)2+(y+6)2=144.
典例精析
题型一:抛物线的焦点弦
例2 过抛物线C:y2=4x的焦点F,且斜率为 3的直线交C于点M(M在x轴的上方),
l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为(

高二数学抛物线的简单几何性质2(新编201910)

高二数学抛物线的简单几何性质2(新编201910)

另外,将直线方程与抛物线方程联立方程组, l y
我们还可以推得以下结论:
(1)若直线的倾斜角为,则| AB | 2P .
A1
A
sin2
(2) A、B两点间的横坐标之积,纵坐标之积均为 p1
二、抛物线的焦点弦:
如图所示,弦AB过抛物线y2 2 px( p 0)的焦点F, 设A(x1, y1)、B(x2, y2 ),弦AB的中点为P(x0,y0 ).
从点A、B、P分别向抛物线的准线作
ly
垂线,垂足分别为A1、B1、P1,依据
A1
A
抛物线的定义,|AF|=|AA1|,|BF|=|BB1|
顶点
焦半径
焦点弦 的长度
(0,0)
p 2

x0
p x1 x2
(0,0)
p 2

x0
p (x1 x2 )
(0,0)
p 2

y0
p y1 y2
(0,0)
p 2

y0
p ( y1 y2 )
;单机游戏大全 /danjiyouxi/ 单机游戏大全
| AB | 2 p
方程 图
y2 = 2px
(p>0) y
l
y2 = -2px (p>0)
yl
x2 = 2py (p>0)
y
F
x2 = -2py (p>0)
y
l
形 范围
OF x F O x
O
x l
O F
x
x≥0 y∈R x≤0 y∈R x∈R y≥0 x∈R y≤0
对称性 关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称
所以|AB|=|AF|+|BF|=|AA1|+|BB1|,

《抛物线的简单几何性质第二课时》名师课件2

《抛物线的简单几何性质第二课时》名师课件2

(0, P ) y P
2
2
复习引入
问题:根据上表中抛物线的标准方程 的不同形式与图形,焦点坐标,准线 方程对应关系如何判断抛物线的焦点 位置,开口方向? 1:一次项的变量如为x,则x轴为抛物 线的对称轴,焦点就在对称轴x轴上! 一次项的变量如为y,则y轴为抛物线 的对称轴,焦点就在对称轴y轴上!
例题讲解
(2)由p=4,4x2-5px+p2=0化简得x2-5x+4=0,
综上:λ=0或λ=2.(12分)
方法归纳
(1)直线与抛物线交点的个数,等价于直线方程、抛物 线方程联立得到的方程组解的个数.注意直线斜率不 存在和得到的方程二次项系数为0的情况.
(2)解决直线和抛物线的综合题方法很多,如斜率法、 方程法、向量法、参数法等,解决这类问题的关键是 代换和转化.
巩固练习
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A. (1)求实数b的值; (2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
抛物线的简单几何性质 ---第二课时
复习引入
图形
y
oF x
y F ox
y
F ox y o
x F
标准方程 焦点坐标 准线方程
y2=2px (p>0)

P 2
, 0)x
P 2
y2= -2px (p>0)
( P ,0) x P
2
2
x2=2py (p>0)
x2= -2py (p>0)
(0,P 2
)y
P 2
2:一次变量的系数正负决定了开口方向
复习引入
焦点弦长公式
抛物线 y2=2px (p>0)过焦点的弦与 抛物线交于点 A(x1, y1)、B(x2, y2),

抛物线的简单几何性质(第2课时) 高中数学获奖教案

抛物线的简单几何性质(第2课时) 高中数学获奖教案

3.3.2抛物线的简单几何性质(第二课时)(人教A 版普通高中教科书数学选修第一册第三章)一、教学目标1.掌握直线与抛物线的三种位置关系和焦点弦的简单几何性质,会用弦长公式求直线与抛物线的相交线.2.通过对直线与抛物线的位置关系的探究,以及焦点弦的有关重要结论的证明,掌握坐标法求解解析几何问题的一般思路,体会数形结合在解析几何应用中的重要性,培养数学运算、逻辑推理的数学素养. 二、教学重难点 教学重点:1. 直线与抛物线的位置关系.2.与焦点弦有关的重要结论3.坐标法的应用 教学难点:几何图形与代数运算的联系的建立 三、教学过程1.探究直线与抛物线的位置关系【复习回顾】直线与椭圆的位置关系有哪些?有多少个公共点?如何判断?例 已知直线和椭圆. 为何值时,直线与椭圆:有两个公共点?有且只有一个公共点?没有公共点?【预设答案】位置关系 公共点个数 方程解的个数 判别式 相交 2个 2个不等 相切 1个 2个相等 相离0个0个问题1:直线与抛物线的位置关系有哪些?有多少个公共点?如何判断? 【预设答案】:450l x y m -+=22:1259x yC +=m l C ∆0∆>0∆=0∆<公共点个数 判别式 1个 或 2个 0个例1 已知抛物线的方程为,直线过定点,斜率为,为何值时,直线与抛物线:只有一个公共点;有两个公共点;没有公共点? 【预设答案】解:由题意,设直线的方程为,由方程组 消去,得(1)当时,直线的方程为,将代入,得, 此时直线与抛物线只有一个公共点(2)当时, 方程①的根的判别式由,得或,此时方程①有两个相等的实数根,直线与抛物线有且只有一个公共点.由,得,此时方程①有两个不相等的实数根,直线与抛物线有两个公共点.由,得,此时方程①没有实数根,直线与抛物线没有公共点. 【设计意图】复习回顾直线与椭圆的位置关系,用同样的研究方法来研究直线与抛物线的位置关系.2.证明抛物线的焦点弦的有关重要结论问题2:直线过抛物线的焦点时,直线与抛物线的位置关系如何?有多少个公共点?∆0k =0∆=0∆>0∆<24y x =l ()2,1P -k k l 24y x =l ()12y k x -=+()2124y k x y x⎧-=+⎪⎨=⎪⎩x ()2-44210ky y k ++=①0k =l 1y =1y =24y x =14x =l 1,14⎛⎫⎪⎝⎭0k ≠()21621k k ∆=-+-0∆=-1k =12k =l0∆>112k -<<l 0∆<112k k <->或l【预设答案】直线与抛物线相交, 有两种情况,当直线与抛物线对称轴重合时,有一个公共点;当直线与抛物线不重合时,两个公共点,第二种情况中,过焦点的直线被抛物线所截的弦长就是焦点弦.【设计意图】由一般到特殊,由研究三种位置关系到研究其中一种,为接下来研究直线与抛物线相交时所成的焦点弦的有关重要结论打下基础.【复习回顾】上节课例2,求焦点弦的弦长,用了哪些方法?例2 斜率为1的直线经过抛物线的焦点,且与抛物线相交于,两点,求线段AB 的长.【预设答案】法一:直接求两点坐标,利用两点间的距离公式求弦长法二:设而不求,利用弦长公式和根与系数的关系(韦达定理)求弦长 法三:活用定义,利用根与系数的关系(韦达定理)求弦长【设计意图】梳理求焦点弦长度的几种解法,引导学生体会坐标法解决问题的基本思想方法:先用几何眼光观察,再用代数运算解决.例3 直线经过抛物线的焦点,且与抛物线相交于,两点.(1)用,表示线段的长,并证明:长度最小为(通径).(2)求证:.(3)求证:. (4)求证:以为直径的圆与准线相切. (5)求证:以焦半径为直径的圆与轴相切.【预设答案】l 24y x =F A B l 22(0)y px p =>F 11(,)A x y 22(,)B x y 1x 2x AB AB 2p 221212,4p x x y y p ==-112FA FB p+=AB AF y此时,代入得, ,(不妨设),故(称为通径) ②当直线斜率存在时,设直线方程为, 由方程组得, 所以 所以, 所以长度最小为.(2)由(1)知,当直线斜率不存在时,,显然成立;当直线斜率存在时,由方程组得,所以,,所以 (3)由(1)知,当直线斜率不存在时,, ,结论显然成立. 当直线斜率存在时,122px x ==22(0)y px p =>1y p =2y p =-12y y >2AB p =l l 2=-()py k x 222⎧=-⎪⎨⎪=⎩(p y k x y px22222204-++=()k p k x p k x 1222p x x p k+=+122222pAB x x p p p k =++=+>AB 2p l (,)2p A p (,)2p B p -221212,4p x x y y p ==-l 222⎧=-⎪⎨⎪=⎩(p y k x y px 22222204-++=()k pk x p k x 1222p x x p k +=+2124p x x =22212121212((()2224p p p p y y k x k x k x x x x p ⎡⎤=-⋅-=-++=-⎢⎥⎣⎦l (,)2p A p (,)2pB p -l由方程组得,所以,,(4)如图,设的中点为, 过,,分别作准线的垂线, 垂足分别为,,,则, 结论得证.(5) 如图,设的中点为, 过 ,分别作轴的垂线, 垂足分别为,,则, 结论得证.【设计意图】由例2到例3,由特殊到一般. 一方面,利用代数方法研究焦点弦的重要结论,使学生在解题过程中充分认识坐标法的程序性、普适性特点;另一方面,引导学生在解析几何的解题中,先用几何眼光观察,再用代数运算解决,充分利用图形的几何特征简化运算,注重数形结合,相辅相成.【总结】与抛物线焦点弦有关的重要结论直线经过抛物线的焦点,且与抛物线相交于,两点,则222⎧=-⎪⎨⎪=⎩(p y k x y px 22222204-++=()k p k x p k x 1222p x x p k +=+2124p x x =121111222+=+=++p p FA FB px x ABM A B M 'A 'B 'M '''222AA BB AF BF ABMM ++===AF N A N y E 'N 2'222pAF OF AE FOAF NN -++===l 22(0)y px p =>F 11(,)A x y 22(,)B x y(1),长度最小为(通径)(2)(3).(4)以为直径的圆与准线相切.(5)以焦半径为直径的圆与轴相切.【设计意图】由学生自己证明并总结出与抛物线焦点弦的有关重要性质,加深对抛物线几何性质的理解.3.直线与抛物线的相交弦问题3:当直线不过抛物线焦点时,结论是否成立?【预设答案】不成立,证明如下:例4斜率为1的直线经过抛物线的定点,且与抛物线相交于,两点,求线段AB的长.【预设答案】解:由方程组,得所以,它的长度与紧密关联.【设计意图】区分抛物线的焦点弦和一般相交弦,求解方法也有差异,一般弦长无法利用定义简化计算过程,只能用两点间的距离或弦长公式.四、课外作业1.过抛物线焦点的直线交抛物线于,两点,通过点和抛物线顶点的直线交抛12AB x x p=++AB2p221212,4px x y y p==-112FA FB p+=ABAF y12AB x x p=++121222p pFA FB x x x x p AB+=+++=++>l24y x=(,0)P m A B24y x my x=-⎧⎨=⎩22(24)0x m x m-++=1224x x m+=+212x x m=2AB x=-==mF A B A更多高中资料见:新高考资料全科总群732599440;高考数学高中数学探究群562298495物线的准线于点,求证:直线平行与抛物线的对称轴.2. 抛物线的焦点为,点为该抛物线上的动点,若点,求的最小值.3. 抛物线的焦点为,过的直线与抛物线交于,两点,求证:是一个定值. 【答案】4. 已知过定点的直线交抛物线于,两点,求△面积的最小值. 【答案】D DB 24y x =F (),P x y ()1,0A -PF PA24y x =F F l A B OA OB ⋅3-()2,0P l 24y x =A B AOB。

高中数学选择性必修第一册 抛物线的简单几何性质(第2课时)

高中数学选择性必修第一册 抛物线的简单几何性质(第2课时)

1.涉及抛物线的弦长,弦的中点,弦所在的直线的斜率问题,注意韦达定 理的应用.过焦点的弦的问题,注意抛物线的定义的应用.
2.直线和抛物线的相交问题,一般常用“设而不求”的解题思想.
课后巩固
1.直线 2x-y-4=0 与抛物线 y2=6x 交于 A,B 两点,则线段 AB 的长度为
(B )
A.8
故所求动点 P 的轨迹方程为 y2=4x(x≥0)或 y=0(x<0).
(2)若动圆 M 与圆 C:(x-2)2+y2=1 外切,又与直线 x+1=0 相切,求动圆 圆心的轨迹方程.
【解析】 设动圆圆心为 M(x,y),半径为 R,由已知可得定圆圆心为 C(2, 0),半径 r=1.
因为两圆外切,所以|MC|=R+1. 又动圆 M 与已知直的距离 d=R. 所以|MC|=d+1. 即动点 M 到定点 C(2,0)的距离等于它到定直线 x+2=0 的距离. 由抛物线的定义可知,点 M 的轨迹是以 C 为焦点,x=-2 为准线的抛物线, 且p2=2,p=4, 故动圆圆心 M 的轨迹方程为 y2=8x.
285 B. 2
C.
305 2
D.
335 2
2.已知 AB 是过抛物线 y=2x2 的焦点的弦,若|AB|=4,则 AB 的中点的纵坐
标是( D )
A.1
B.2
5
15
C.8
D. 8
3.(2018·北京)已知直线 l 过点(1,0)且垂直于 x 轴,若 l 被抛物线 y2=4ax 截得的线段长为 4,则抛物线的焦点坐标为__(_1_,_0_)__.
当二次项系数 A≠0 时,Δ=B2-4AC.
若 Δ<0,则直线与抛物线没有公共点; 若 Δ=0,则直线与抛物线有且只有一个公共点; 若 Δ>0,则直线与抛物线有两个不同的公共点.

3.3.2 抛物线的简单几何性质(第2课时 焦点弦)高二数学课件(人教A版2019选择性必修第一册)

3.3.2 抛物线的简单几何性质(第2课时 焦点弦)高二数学课件(人教A版2019选择性必修第一册)
线的准线 l 作垂线,垂足分别为 A1,M1,B1,则根据抛物线的定
义,有|AF|=|AA1|,|BF|=|BB1|,故|AB|=|AF|+|BF|=|AA1|+|BB1|,
又 MM1 是梯形 AA1B1B 的中位线,
所以|AB|=|AA1|+|BB1|=2|MM1|.
抛物线的简单几何性质
故抛物线的焦点弦有以下结论:
2p
p
y0
2
y1 y2 p
p
y0
2
( y1 y2 ) p
02抛物线的简单的几何性质
P
A
R
T
O
N
E
抛物线的简单几何性质
焦点弦问题
如图,AB 是抛物线 y2=2px(p>0)过焦点 F 的一条弦,称为焦
点弦.设 A(x1,y1),
B(x2,y2),弦 AB 的中点为 M(x0,y0),过 A ,M,B 分别向抛物
故 x1+x2-12+2p=8-p-12+2p=0,即 p=4.
从而抛物线方程为 y2=8x.
抛物线的简单几何性质
5.若过抛物线 y2=2px(p>0)的焦点作一条直线交抛物线于 A(x1,y1),B(x2,y2),
y1y2

的值为(
x1x2
)
A.4
B.-4
C.p2
D.-p2
特例法.当直线垂直于 x 轴时,
y2 = 2px
y
图形
范围
对称性
l
O F
x
x≥0, y∈R
焦点弦
通径
F O
x2 = -2py
y
y
y l
F
O
x
l
l

抛物线的几何性质 (2)

抛物线的几何性质 (2)

抛物线的几何性质抛物线是数学中一种重要的曲线形式。

它具有许多有趣的几何性质,是数学研究和应用领域中的常见对象。

本文将介绍抛物线的基本定义、性质和应用。

1. 抛物线的定义抛物线是由一个定点(焦点)和一个定直线(准线)确定的曲线。

在数学上,我们可以通过以下方式定义抛物线:•定义焦点为F,准线为直线L。

•抛物线是到焦点F的距离等于到准线L的距离的所有点的轨迹。

2. 抛物线的基本性质抛物线具有以下几何性质:对称性抛物线具有关于准线的对称性和焦点的对称性。

即,对于抛物线上的任意一点P,将其关于准线L作垂线交准线于M,焦点F在准线上的垂线下的点O,那么点M和点O关于准线L对称。

焦点与准线的关系对于抛物线上的任意一点P,其到焦点F的距离等于到准线L的距离。

此外,焦点F与准线L的距离称为抛物线的焦距。

顶点抛物线的顶点是抛物线的最高(或最低)点,位于准线与对称轴的交点,记为V。

顶点V是抛物线的对称中心,所以对于任意一点P,连结顶点V和点P的直线都与准线L垂直。

焦直线抛物线的焦点F到抛物线上任意一点P的连线与准线L垂直,这条垂线称为焦直线。

焦准直线焦点F和准线L的连线称为焦准直线,它垂直于抛物线的轴线。

曲线的标准方程抛物线的标准方程为:y = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。

3. 抛物线的应用抛物线的几何性质在现实世界中有广泛的应用。

以下是一些常见的应用场景:物体运动轨迹当物体受到一个竖直向下的恒力作用时,它的运动轨迹往往是一条抛物线。

例如,抛出的物体,如炮弹、子弹等,它们的运动轨迹可以用一条抛物线来描述。

天然天体许多天然天体的形状和运动也可以用抛物线来描述。

例如,行星的运动、小行星的轨道等都可以近似为抛物线。

镜面反射在光学中,抛物面反射镜被广泛应用于望远镜、车灯、卫星天线等设备中。

抛物面反射镜具有将光线聚焦到一个点的特点,故而能起到放大和聚焦的作用。

抛物线拱门抛物线也经常用于建筑中的拱门设计。

抛物线的简单几何性质

抛物线的简单几何性质

6
| CD | 2 | x0 | 6 3. 故此车不能通过隧道.
x
D
B(3,-3)
13
探照灯、汽车前灯的反光曲面,手电筒的反光镜面、 太阳灶的镜面都是抛物镜面。
抛物镜面:抛物线绕其对称轴旋转而成的曲面。 灯泡放在抛物线的焦点位置上,通过镜面反射就变 成了平行光束,这就是探照灯、汽车前灯、手电筒的 设计原理。
y
P(x,y)
o F ( p ,0) x
2
5
3、顶点
定义:抛物线和它的对称轴的交点称为抛物线
的顶点。
由y2 = 2px (p>0)当 y=0时,x=0, 因此抛 物线的顶点就是坐 标原点(0,0)。
y
P(x,y)
o F ( p ,0) x
2
注:这与椭圆有四个顶点,双曲线有
两个顶点不同。
6
4、 离心率
x 0, yR
关于x 轴 对称,无 对称中心
(0,0)
e=1
y2 2 px x 0, ( p 0) y R
关于x 轴 对称,无 对称中心
(0,0)
e=1
x2 2 py ( p 0)
y 0, xR
关于y 轴 对称,无 对称中心
(0,0)
e=1
x2 2 py y 0,
关于y 轴 对称,无
抛物线上的点与焦 点的距离和它到准线的 距离之比,叫做抛物线
的离心率。
y
P(x,y)
o F ( p ,0) x
2
由定义知, 抛物线y2 =
2px (p>0)的离心率为e=1.
抛物线的离心率为一定值,那么什么在影响抛物线形状?
7
图形 标准方程 范围 对称性 顶点 离心率

高二数学抛物线的简单几何性质2省名师优质课赛课获奖课件市赛课一等奖课件

高二数学抛物线的简单几何性质2省名师优质课赛课获奖课件市赛课一等奖课件

| AB | 2 p
方程 图
形 范围
y2 = 2px
(p>0) y
l
y2 = -2px (p>0)
yl
x2 = 2py (p>0)
y
F
x2 = -2py (p>0)
y
l
OF x F O x
O
x l
O F
x
x≥0 y∈R x≤0 y∈R x∈R y≥0 x∈R y≤0
对称性 有关x轴对称 有关x轴对称 有关y轴对称 有关y轴对称
顶点
焦半径
焦点弦旳 长度
(0,0)
p 2
x0
p x1 x2
(0,0)
p 2
x0
p (x1 x2 )
(0,0)
p 2
y0
p y1 y2
(0,0)
p 2
y0
p ( y1 y2 )
二、抛物线旳焦点弦:
如图所示,弦AB过抛物线y2 2 px( p 0)的焦点F, 设A(x1, y1)、B(x2, y2 ),弦AB的中点为P(x0,y0 ).
中点旳轨迹方程.
!诸人要从自己の夫君那里花银子买首饰,而且她の夫君居然还是家财万贯の雍亲王爷,这要是让外人晓得咯,还不被人笑掉咯大牙?爷不是最讲脸面の人 吗?怎么这壹次居然不论不顾起来咯!而且这各按照市价公事公办,也就意味着他苏总管不用送给年侧福晋壹各顺水人情,不需要打任何折扣,而且王爷の那 番吩咐甚至是在向他暗示,壹分钱都不要少收咯侧福晋,但是明眼人谁都看得出来,那物件肯定是哪各官员、门客,或是幕僚呈送上来の贡礼。王爷壹分钱没 花,还从侧福晋那里收咯银子回来,这不是无本万利吗?爷可真会做买卖!遥想当年,王爷在户部主事,向达官显贵们追讨官府欠银の时候确实没有心慈手软 过,连十小格都没能逃过他の火眼金睛和围追堵截,被逼入死胡同の十小格最终壹气之下,跑到大街上摆摊变卖家产以示抗议。那场沸沸扬扬の讨债最终闹到 皇上那里,还是由皇上替十小格说咯好话,王爷才算是收手不予追究。目前倒好,王爷居然发展到直接经营空手套白狼の营生上来咯,挣の还是自己府里の诸 人の银子,这,这可真是旷世奇谈!但是,王爷倒也确实是对得起“铁面无私”这几各字の评语,亲弟兄、明算帐,夫妻俩、账算明。不论将来会被众人怎样 讥笑,王爷已经吩咐咯の事情,苏培盛只有不折不扣地执行。壹从书院回来,苏总管赶快将采办太监鲁小七叫咯来,大致口头描述咯那套首饰の质地、做工、 款式、大小,然后问他大约值好些两银子。鲁小七听完之后,万般为难、磨磨叽叽地开口说道:“总管,小の没看到那物件,真不好胡乱开价。”第壹卷 第 414章 五千鲁小七可是比猴子都精の壹各机灵鬼,当然咯,傻笨之人也当不咯采办の差事。鲁小七也据说咯王爷要向年侧福晋收银子の事情,目前苏培盛向他 问来那件首饰の价格,立即猜测到苏总管这是在向他寻价呢。苏培盛本身就是壹各老滑头,壹见鲁小七居然敢跟他耍滑头,心中暗笑,这小子简直就是小巫见 大巫,不知死活,于是没好气儿地说道:“你想投靠山也得认清主子不是!那院主子是给咯你金山银山,还是许咯你飞黄腾达?不就是娘家有点儿势力嘛,那 还不壹样都是爷の奴才!你可真是越活越缩抽咯,分不清哪各主子才是你の主子!”苏培盛可真是猜错咯!鲁小七跟水清没有壹点儿交情,他怎么可能会去偏 帮水清,他只是不想惹火上身,要离这趟浑水远远の。可是,他想躲也没有用,苏培盛怎么可能放过他!被逼到死胡同里の鲁小七,无可奈何之下只好战战兢 兢地开口道:“小の确实没有见过,这是实话,苏总管您也是晓得の。但是,假设按照您刚刚大致说の那各样子,小の估摸着,至少也得五千两银子 吧。”“五千两?”苏培盛倒吸咯壹口冷气!继而开始嘬起咯牙花子。虽然他看着那套首饰の时候也是不小地吃咯壹惊,也认可那确实是各稀罕物件,但是壹 听到这各价格,还真是大大地出乎咯他の意料:怪不得爷会向年侧福晋讨要银子呢,确实是价值不菲,但是,话又说回来咯,爷怎么会跟诸人计较银子?而且 数目这么大の银子,爷对诸人,不,是爷对年侧福晋可真是没有壹点情面可讲呢。鲁小七壹见苏总管直皱眉头,就晓得这事儿要坏。他刚刚就是紧张,不论他 说啥啊价钱,苏培盛都会联想到他有办差吃差价の巨大嫌疑。以往苏总管不怎么查账,只要账面上大致说得过去也就睁壹眼闭壹眼不太计较。可是当他听苏培 盛描述咯那件首饰の样式之后,也是极为震惊,那件首饰少说也要五千两,可是这各价格,任谁都不敢相信。因为不相信,造成苏培盛自然而然地凭空猜测他 在采办の过程中使咯暗收回扣、低进高出之类の手段。果不其然,鲁小七の紧张非常有道理,目前苏总管壹副震惊和难以置信の神情,将他搞得苦不堪言。这 壹次他真の是据实相告,可是他平时办差の时候确实没少干低进高出、终饱私囊の勾当。假设因为今日の事情牵扯出来以往の损公肥私,他可真是小命不久矣。 壹想到这里,鲁小七忙不迭地调动起他那三寸不烂之舌,小心翼翼地解释道:“总管,先不说别の,光是您说の那上面镶の东珠和七彩宝石,就得值上各两三 千两银子,另外这首饰可是足金呢!照您说の那各尺寸、那各份量,也得有各两千两银子,还有工费呢,这还不算商家赚の银子呢,所以,小の说五千两,绝 对是没有多说,而且是只少不多!”第壹卷 第415章 天价苏培盛可没有闲功夫听这鲁小七の喋喋不休,挥挥手就打发走咯小太监。只剩他壹各人の时候,苏 培盛可是彻底地为难咯!五千两,真不是壹各小数目!记得侧福晋刚嫁进府里来の第壹各月就被罚咯月银,然后因为交不上来罚银,拖咯几各月,用每月の例 钱补交上来。连区区三、五百两の银子交得都那么困难,目前这令人瞋目惊舌の五千两还不要咯她の命?要说爷呢,这回可是真够狠の!壹出手可就是五千 两!原本爷也不是这么の壹各人呢,对诸人不但慷慨大方,而且怜香惜玉,怎么对年侧福晋就能这么不留情面,居然下得去狠手?噢,对咯,估计爷对侧福晋 坏咯他和年仆役の好事,心存不满,特意选咯这么各最珍贵の东西做贺礼,好好借这各机会变相地惩办壹番侧福晋,以解心头之气和夺妻之恨。可是这夺妻之 恨应该算到二十三爷の头上,跟侧福晋有啥啊关系!再怎么惩办侧福晋,就是罚她壹各五十万两,也换不回来那婉然仆役。倒是侧福晋,这回估计是要被爷罚 得倾家

高二数学抛物线的简单几何性质2

高二数学抛物线的简单几何性质2
抛物线的简单几何性质(一)
复习
标准方程 图形
y 2 2 px( p 0)
K
y
d
F x o﹒
M
焦点和准线
p p 焦点 F ( , 0) 和准线 l : x 2 2
你认为这个标准方程对应的抛物线 还有什么几何性质呢?
类比探索
结合抛物线y2=2px(p>0)的标准方程和图形,探索 其的几何性质: Y (1)范围 x≥0,y∈R
x
设A( x1, y1 ), B( x2 , y2 ), A, B到 准线l的距离分别为 d A , dB .
由抛物线的定义可知 AF d A x1 1, BF d B x2 1,
B’
所以 AB AF BF x1 x2 2 8
变式: 过抛物线y2=2px的焦点F任作一条直线m, 交这抛物线于A、B两点,求证:以AB为直径的圆 和这抛物线的准线相切.
4.抛物线的离心率是确定的,为1;
-3 -4 -5
5.抛物线标准方程中的p对抛物线开口的影响.
ቤተ መጻሕፍቲ ባይዱ
P越大,开口越开阔
图 形
y
l O F
方程
焦点 准线 范围 顶点 对称轴
x≥0 y∈R x≤0 x轴
e
y2 = 2px p p F ( , 0 ) x x (p>0) 2 2
l
y
F O
y2 = -2px p p F ( ,0) x 2 x(p>0) 2 x2 = 2py p p F (0, ) y 2 2 x (p>0) x2
y
分析:运用 抛物线的定 义和平面几 何知识来证 比较简捷.
C H D E F A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2P 的 | AB | 2 sin
y
A
F1 O F2
y
l
x
F1 O
l
A
F2
d1
B
B
x
d2
y
y
F1
.
A
O
B
.
F2
x
F1
.
A
O
B
.
F2
x
作业:
1、在抛物线y2=64x上求一点,使它到直线L:4x+3y+46=0的 距离最短,并求此距离.
2、已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值. 3、已知抛物线y2=2x,过Q(2,1)作直线于抛物线交于A、B,求AB中
p1
B1 l
y
A
A1 p F B
x
抛物线的焦点弦的如下性质:
(1) | AB | x1 x2 p 2 x0 p (2)以AB为直径的圆必与准线相切
另外,将直线方程与抛物线方程联立方程组, l 我们还可以推得以下结论:
2P (1)若直线的倾斜角为,则 | AB | . 2 sin
如图所示,弦AB过抛物线y 2 2 px( p 0)的焦点F, 设A( x1 , y1 )、B( x2 , y2 ),弦AB的中点为P(x0 ,y0 ).
从点A、B、P分别向抛物线的准线作 垂线,垂足分别为A1、B1、P,依据 1 抛物线的定义,|AF|=|AA1|,|BF|=|BB1| 所以|AB|=|AF|+|BF|=|AA1|+|BB1|, 又PP是梯形AA1BB1的中位线, 1 所以|AA1|+|BB1|=2|PP|. 1 因此,我们容易得到
抛物线的简单几何性质(2)
2012年12月3日星期一
一、抛物线的几何性质:
性质
方程
设抛物线方程为: 2 2 px, ( p 0) y
y
l
d
M
图形
K
O
F
x
范围 对称性
顶点坐标
x 0, y R 关于x轴对称 坐标原点(0,0)
e 1
p | MF | x0 , 2 M ( x0 , y0 )
对称性 关于x轴对称 关于x轴对称 关于y轴对称
顶点
焦半径
(0,0)
p x0 2
(0,0)
p x0 2
(0,0)
p y0 2
(0,0)
p y0 2
p ( y1 y2 )
焦点弦 的长度
p x1 x2
p ( x1 x2 )
p y1 y2
二、抛物线的焦点弦:
点的轨迹方程.
(2) A、B两点间的横坐标之积,纵坐标之积均为 定值,即x1x2 p , y1 y2 p 2 . 4
2
y
A
A1 p1
B1

F
p
(3)设 | AF | m,| BF | n, 则
1 1 2 . m n p
B
x
(4)所有的焦点弦中,通径是最短的.
通径就是过焦且垂直于x轴的线段长为2p即为 最小值
离心率 焦半径 通径
| AB | 2 p
方程
图 形 范围
y2 = 2px
y2 = -2px (p>0) y l
x
x2 = 2py (p>0) y
F x
x2 = -2py (p>0) y
x l
(p>0) y
l O F
l x
F
O
O
O
F
x≥0 y∈R
x≤0 y∈R
x∈R y≥0
x∈R y≤0
关于y轴对称
相关文档
最新文档