二项式定理基础题

合集下载

二项式定理习题(带答案)

二项式定理习题(带答案)

二项式定理的应用(一)通项公式的应用1、6)12(xx +的展开式中第三项的二项式系数为________;第三项的系数为_______; 常数项为_______;含4x 的项为______。

2、已知在n xx )21(-的展开式中,第五项为常数项 (1)求n ;(2)求展开式中的所有有理项。

3、42)1)(21(x x -+的展开式中2x 的系数为______。

4.(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项为()5.(x -2)5(2+y )4的展开式中x 3y 2的系数为________.(二)二项式系数的最值 6.8)221(x +的展开式中二项式系数最大的是第____项;9)221(x +的展开式中二项式系数最大的是第____项(三)展开式中各项系数和问题7.已知7722107)21(x a x a x a a x ++++=- ,求1234713570246017a a a a a a a a a a a a a a a a ++++++++++++++(1)(2)(3)(4)8.已知(+)n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于(四)其它系数问题9.在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是________.10.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.11.x 10=a 0+a 1(x -1)+a 2·(x -1)2+…+a 10(x -1)10,则a 8的值为( )12.(x +1)5=a 5(x -1)5+…+a 1(x -1)+a 0,则a 1的值为( )13.(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )14.将⎝⎛⎭⎫1-1x 2n (n ∈N *)的展开式中x -4的系数记为a n ,则1a 2+1a 3+…+1a 2010=________.15.. (x -a )8=a 0+a 1x +a 2x 2+…+a 8x 8,且a 5=56,则a 0+a 1+a 2+…+a 8=________.。

高中数学二项式定理基础练习题

高中数学二项式定理基础练习题

高中数学二项式定理基础练习题1.在展开式(x-3)^10中,x^6的系数为9C10.2.若(x-1)^n展开式的第4项为含x^3的项,则n等于8.3.在展开式(x^2-2x)^9中,x^9的系数是-252.4.在展开式(1/3x - 1)^12中,常数项为-2205/2.5.若(x^3 + 1/x)^n的展开式中的常数项为84,则n=6.6.已知在展开式(1/x^2 - 1/2x)^n中,第9项为常数项,则n的值为8.展开式中x^5的系数为-1260.7.(1-x)^13的展开式中系数最小的项是第7项。

8.在展开式(1-x^3)(1+x)^10中,x^5的系数为-297.9.若(x+3y)^n展开式的系数和等于(7a+b)^10展开式中的二项式系数之和,则n的值为15.10.在展开式(1/3x - 1)^4中,常数项为1/81.11.在二项式展开式(a-b)^10中,系数最小项是C^10_5.12.设(1+x)+(1+x)^2+(1+x)^3+…+(1+x)^n=a+a1x+a2x^2+…+anx^n,当a+a1+a2+…+an=254时,求n的值为6.13.在二项式展开式(1-2x)^6中,所有项的系数之和为0.14.(1-x)^10的展开式中,中间项是第6项,为C^10_5 *x^5.其余各项的系数和为0,因为展开式中x的次数总和为10,而每个二项式都有一个正次幂和一个负次幂,相加后系数和为0.展开式中系数最大的项是第1项,为1.15.已知(1-2x+3x^2)^7=a+a1x+a2x^2+…+a13x^13+a14x^14,则a1+a2+…+a14=0,因为展开式中x的次数总和为14,而每个二项式都有一个正次幂和一个负次幂,相加后系数和为0.a1+a3+a5+…+a13=C^7_1 * (-2)^1 + C^7_3 * (-2)^3 +C^7_5 * (-2)^5 + C^7_7 * (-2)^7 = -1120.a1+a2+…+a14=C^7_0 * 1 + C^7_1 * (-2) + C^7_2 * 3 + …+ C^7_14 * (-2)^7 = -2187.。

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

二项式定理专题训练

二项式定理专题训练

二项式定理1. 知识精讲:(1)二项式定理:()n n nrrn r nn nnnnb C b aC b aC a C b a +++++=+-- 110(*∈N n )其通项是=+1r T rr n r n b a C - (r=0,1,2,……,n ),知4求1,如:555156b a C T T n n -+== 亦可写成:=+1r T rnr n aba C )(()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=--- (*∈N n ) 特别地:()n n n r n r n n n n nx C x C x C x C x +++++=+- 101(*∈N n )其中,rn C ——二项式系数。

而系数是字母前的常数。

例1.n nn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。

n43⋅ C 。

134-n D.314-n 解:设nnn n n n n C C C C S 1321393-++++= ,于是: n n n n n n n C C C C S 3333333221++++= =13333332210-+++++nn n n n n n C C C C C故选D例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.(1)求(1+x +x 2+x 3)(1-x )7的展开式中x 4的系数; (2)求(x +x4-4)4的展开式中的常数项;(3)求(1+x )3+(1+x )4+…+(1+x )50的展开式中x 3的系数.解:(1)原式=xx --114(1-x )7=(1-x 4)(1-x )6,展开式中x 4的系数为(-1)4C 46- 1=14.(2)(x +x 4-4)4=442)44(x x x +-=48)2(x x -,展开式中的常数项为C 4482·(-1)4=1120. (3)方法一:原式=1)1(]1)1[()1(483-+-++x x x =x x x 351)1()1(+-+.展开式中x 3的系数为C 451.方法二:原展开式中x 3的系数为C 33+C 34+C 35+…+C 350=C 44+C 34+…+C 350=C 45+C 35+…+C 350=…=C 451.评述:把所给式子转化为二项展开式形式是解决此类问题的关键.(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 ,,,,22110kn n k n n n n n n n n n n C C C C C C C C ---====②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

二项式定理训练题(含答案)

二项式定理训练题(含答案)

⼆项式定理训练题(含答案)⼆项式定理训练题⼀、单选题(共4题;共8分)1.若⼆项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 202.已知⼆项式的展开式中第2项与第3项的⼆项式系数之⽐是2︰5,则的系数为()A. 14B.C. 240D.3.若,则的值为()A. B. C. D.4.在(x2﹣x﹣2)5的展开式中,x3的系数为()A. ﹣40B. 160C. 120D. 200⼆、填空题(共13题;共15分)5.⼆项式的展开式中常数项为________.6.展开式中常数项为________.7.的展开式中,x3的系数为________.8.已知的展开式中各项系数和为2,则其展开式中常数项是________.9.的⼆项展开式中,含项的系数为________.10.若,则的展开式的第4项的系数为________.(⽤数字作答)11.⼆项式的展开式的各项系数之和为________,的系数为________.12.已知的展开式中的系数为108,则实数________.13.的展开式中,的系数是20,则________.14.展开式中的系数是15,则展开式的常数项为________,展开式中有理项的⼆项式系数和为________.15.在的展开式中,的系数是________.16.的展开式中的系数为________.17.在的展开式中,的系数为15,则实数________.三、解答题(共3题;共25分)18.已知展开式中各项系数和⽐它的⼆项式系数和⼤992,其中.(Ⅰ)求的值;(Ⅱ)求其展开式中的有理项.19.设.(1)求;(2)求及关于的表达式.20.已知⼆项式的⼆项展开式中所有奇数项的⼆项式系数之和为128.(1)求的展开式中的常数项;(2)在(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x) 的展开式中,求项的系数.(结果⽤数字作答)答案解析部分⼀、单选题1.【答案】C【解析】【解答】由令得,解得,⼆项式展开式的通项公式为,令,解得,故展开式中含x项的系数为.故答案为:C.【分析】令,结合展开式中各项的系数和为234列⽅程,求得n的值,再利⽤⼆项式展开式的通项公式,即可求得含x项的系数.2.【答案】C【解析】【解答】⼆项展开式的第项的通项公式为由展开式中第2项与第3项的⼆项式系数之⽐是2︰5,可得:.解得:.所以令,解得:,所以的系数为故答案为:C【分析】由⼆项展开式的通项公式为及展开式中第2项与第3项的⼆项式系数之⽐是2︰5可得:,令展开式通项中x的指数为3,即可求得,问题得解.3.【答案】C【解析】【解答】展开式的通项为:,故,,根据对称性知:.故答案为:C.【分析】计算,根据⼆项式系数的对称性即可得到答案.4.【答案】C【解析】【解答】∵(x2﹣x﹣2)5=(x+1)5(x﹣2)5,∴x3的系数为.故答案为:C.【分析】先把(x2﹣x﹣2)5变形为(x+1)5(x﹣2)5,再利⽤⼆项式定理中的通项公式求出结果.⼆、填空题5.【答案】60【解析】【解答】⼆项式的展开式的通项公式为,令,解得,所以该⼆项式展开式中常数项为,故答案为:60。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

二项式定理经典习题(29题)

二项式定理经典习题(29题)

一.选择题(共19小题)1.(ax+y)5的展开式中x2y3项的系数等于80,则实数a=()A.2B.±2C.D.±2.的展开式中x3的系数为()A.5B.﹣5C.15D.﹣153.已知二项式(x+)n的展开式的二项式系数之和为64,则展开式中含x3项的系数是()A.1B.C.D.34.(x﹣1)5展开式中x4项系数为()A.5B.﹣5C.10D.﹣105.的展开式中常数项为()A.﹣240B.﹣160C.240D.1606.(1+x)5展开式中x2的系数为()A.﹣10B.﹣20C.20D.107.的展开式中含x5项的系数是()A.﹣112B.112C.﹣28D.288.的展开式中x3的系数为()A.﹣160B.﹣64C.64D.1609.二项式的展开式中的常数项是()A.﹣15B.15C.20D.﹣2010.若的展开式中常数项为240,则正整数n的值为()A.6B.7C.8D.911.(x﹣1)10的展开式的第6项的系数是()A.B.C.D.12.展开式中的常数项是()A.﹣160B.﹣140C.160D.14013.(x﹣2y﹣1)5的展开式中含x2y2的项的系数为()A.﹣120B.60C.﹣60D.3014.若的展开式中第4项是常数项,则n的值为()A.14B.16C.18D.2015.设n为正整数,(2x2+)n的展开式中存在常数项,则n的最小值为()A.2B.3C.4D.516.在(2x+1)4的展开式中,x2的系数为()A.6B.12C.24D.3617.在的展开式中,的系数为()A.﹣30B.﹣20C.﹣10D.3018.的展开式中,x2的系数等于()A.﹣45B.﹣10C.10D.4519.(x+2y)(x﹣y)5的展开式中x2y4的系数为()A.﹣15B.5C.﹣20D.25二.填空题(共10小题)20.已知(a+x)(1+x)6的展开式中x2的系数为21,则a=.21.展开式中所有奇数项的二项式系数和为32,则展开式中的常数项为.(用数字作答)22.(x﹣2y+1)5展开式中含x2y项的系数为.23.的展开式中项的系数为.24.的展开式中,常数项为(用数字作答).25.(x﹣1)(x+2)8的展开式中x8的系数为(用数字作答).26.在的展开式中,xy7的系数为.27.(x2﹣y)()6的展开式中,其中不含x的项为.28.在的展开式中,常数项等于.(用数字作答)29.(x2+y+3)6中x4y的系数为(用数字作答).。

二项式定理练习题-含解析

二项式定理练习题-含解析

二项式定理练习题一、单选题
A.252B.426
二、多选题
5.“杨辉三角”是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉在1261年所著的《详解九章算法》一书中就有出现,比欧洲早393年发现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.则下列命题中正确的是()
A .由“在相邻两行中,除1以外的每个数都等于它肩上的两个数字之和”猜想
11C C C r r r n n n
-+=+B .由“第n 行所有数之和为2n ”猜想:012C C C C 2
n n n n n n +++⋅⋅⋅+=C .第20行中,第10个数最大
D .第15行中,第7个数与第8个数的比为7:9。

二项式定理题目

二项式定理题目

二项式定理题目1. 二项式定理的基本内容- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!)叫做二项式系数。

- 例如(x+2)^3,根据二项式定理n = 3,则(x +2)^3=C_3^0x^32^0+C_3^1x^22^1+C_3^2x^12^2+C_3^3x^02^3。

- 计算二项式系数C_3^0=(3!)/(0!(3 - 0)!)=1,C_3^1=(3!)/(1!(3 - 1)!)=3,C_3^2=(3!)/(2!(3 - 2)!)=3,C_3^3=(3!)/(3!(3 - 3)!)=1。

- 所以(x + 2)^3=x^3+6x^2+12x + 8。

2. 求二项展开式中的特定项- 例:求(2x-(1)/(x))^6展开式中的常数项。

- 首先根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,这里a = 2x,b=-(1)/(x),n = 6。

- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。

- 要求常数项,则令x的指数6 - 2r = 0,解得r = 3。

- 把r = 3代入通项公式中的系数部分C_6^32^6 - 3(-1)^3。

- 计算C_6^3=(6!)/(3!(6 - 3)!)=20,2^6 - 3=8,(-1)^3=-1。

- 所以常数项为C_6^32^6 - 3(-1)^3=20×8×(-1)= - 160。

3. 二项式系数的性质- 性质一:对称性,与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。

- 例如在(a + b)^5中,C_5^1=C_5^4,C_5^2=C_5^3。

二项式定理(基础+复习+习题+练习)

二项式定理(基础+复习+习题+练习)

课题:二项式定理考纲要求:1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习1.二项式定理及其特例:()101()()n n n r n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈,()21(1)1n r rn n n x C x C x x +=+++++2.二项展开式的通项公式:rr n r nr b a C T -+=1210(n r ,,, =3.常数项、有理项和系数最大的项:求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和.5.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)6.()1对称性.与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2nr =是图象的对称轴. ()2增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n rnn n n n n C C C C C =++++++7.在使用通项公式1r n r rr nT C a b -+=时,要注意: ()1通项公式是表示第1r +项,而不是第r 项.()2展开式中第1r +项的二项式系数r n C 与第1r +项的系数不同.()3通项公式中含有1,,,,r a b n r T +五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n 是正整数,r 是非负整数且r ≤n . ()4证明组合恒等式常用赋值法.()5要正确理解二项式定理,准确地写出二项式的展开式.()6要注意区分项的系数与项的二项式系数. ()7二项式展开式系数可用通项公式及组合知识.()8用二项式定理进行近似运算,关键是恰当地舍取不影响精度的项,一般地:当α很小时,有()()211112nn n n ααα±≈±+-. 典例分析:考点一 二项展开式定理及通项公式的应用问题1.()1(2013江西)5232x x ⎛⎫- ⎪⎝⎭展开式中常数项为.A 80.B 80-.C 40 .D 40-()2求()102x +展开式中系数最大的项()3求()100323+x 展开所得x 的多项式中,系数为有理数的项数考点二 “生成法”的应用问题2.()1求()62123x x +-展开式中5x 的系数(要求用两种方法解答).()2(2012安徽)2521(2)(1)x x+-的展开式的常数项是.A 3- .B 2- .C 2 .D 3考点三 “赋值法”的应用问题3.()1已知()44332210432x a x a x a x a a x ++++=+,则()()2202413a a a a a ++-+=()2(07安徽文)已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于 .()3(06浙江)若多项式21091001910(1)(1)(1)x x a a x a x a x +=+++⋅⋅⋅++++,则9a =.A 9 .B 10 .C 9- .D 10-()4(05天津)设*n N ∈,则12321666n n n n n n C C C C -+++⋅⋅⋅+=()5(2012浙江)若将函数5()f x x =表示为()()2012()11f x a a x a x =+++++… ()551a x ++, 其中12,,a a ,…,5a 为实数,则3a =考点四 二项式展开式在其它方面的应用问题3.()1求51.997的近似值(精确到0.001)、()2已知*n N ∈,求证:231222++++…512n -+能被31整除.问题4.求证:()1322n n n ->+⋅(n N +∈且2n >).课后作业:1.()7232x y z --展开式中含432x y z 项的系数是2.()62x y z +-展开式中z y x 23的系数是3.若()200912x -=2012a a x a x +++…20092009a x +()x R ∈,则31223222a a a +++ (2009)20092a + 的值为 .A 2 .B 0 .C 1-.D 2-4.今天是星期日,不算今天,再过902天后的第一天是星期几?5.1465n n +⨯+(*n N ∈)被20除后的余数是6.设5432()5101051f x x x x x x =-+-++ ()x R ∈,则()f x 的反函数1()f x -.A 1+ .B 1+ .C 1- .D 1-7.设()()()()92201212122x x a a x a x ++=+++++()11112a x ⋅⋅⋅++,则012a a a ++11a +⋅⋅⋅+的值为 .A 2-.B 1- .C 1 .D 28.若1122113333(1)3(1)512,n n n n n n nn C C C -----+-⋅⋅⋅+-⋅+-=则n = .A 7 .B 8 .C 9 .D 109.(07届西工大附中模拟文)设n 为满足0122450n nn n n C C C nC +++⋅⋅⋅+<的最大自然数, 则n =_____走向高考:10.(05湖北) 5)212(++xx 的展开式中整理后的常数项为11.(05全国Ⅱ)()10x 的展开式中64x y 项的系数是.A 840.B 840- .C 210 .D 210-12.(07江西)已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 .A 4 .B 5.C 6.D 713.(07陕西文)()512x +的展开式中2x 项的系数..是 (用数字作答)14.(2012湖北)设a Z ∈,且013a ≤<,若201251a +能被13整除,则a = .A 0 .B 1 .C 11 .D 1215.(2013新课标全国) 已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a .A 4-.B 3- .C 2- .D 1-16. (2013陕西)设函数61,0()0x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪≥⎩ , 则当0x > 时,()f f x ⎡⎤⎣⎦表达式的展开式中常数项为 .A 20- .B 2 .C 15- .D 1517.(2011安徽)设()x a a x a x a x 2122101221-1=+++,则1011a a +=。

二项式定理(题型及答案)

二项式定理(题型及答案)

⼆项式定理(题型及答案)1、(1) 已知92-x x a 的展开式中3x 的系数为49,常数a 的值为___________. (2)设k=1,2,3,4,5,则的展开式中的系数不可能是()A. 10B. 40C. 50D. 80(3)若展开式中含项的系数与含项的系数之⽐为-5,则n 等于()A. 4B. 6C. 8D. 102、求值: (1) =-++?-?+-nn n n n C C C 3)1(333133221(2) S=(x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1= (3)=3、试求下列⼆项展开式中指定项的系数:(1)(a+b+c)10的展开式中,含a 5b 3c 2的系数为_________(2)求的常数项(3) 的展开式中项的系数(4) 的展开式中项的系数(5) 的展开式中项的系数(6) 的展开式中x 项的系数(7) 的展开式中项的系数(8)5)12)((xx x a x -+的展开式中各项系数的和为2,则该展开式中常数项为。

,其中b 0+b 1+b 2+……+b n =62, 则n=_________(Ⅱ)如果的展开式中各项系数之和为128,则展开式中的系数是()A. 7B. –7C. 21D. –21(Ⅲ)已知(1)求a 0, (2)求a 1+a 2+a 3+a 4+a 5(3)求(a 0+a 2+a 4)2-(a 1+a 3+a 5)2(4)求a 1+a 3+a 5 (5)|a 0|+|a 1|+……+|a 5|5、已知⼆项式展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。

~6、已知nx x )3(232 的展开式各项系数和⽐它的⼆项式系数和⼤992. (1)展开式中⼆项式系数最⼤的项 (2)求展开式中系数最⼤的项.]*7、已知的展开式中奇数项的⼆项式系数之和等于512,试求:(1)⼆项式系数最⼤的项;(2)系数的绝对值最⼤的项;(3)系数最⼤的项。

二项式定理相关练习题

二项式定理相关练习题

二项式定理相关练习题一、基础题1. 已知 $(x + y)^5$ 的展开式中,$x^2y^3$ 的系数是多少?2. 求 $(a 2b)^4$ 的展开式中,$a^3b$ 的系数。

3. 已知 $(x \frac{1}{x})^6$ 的展开式,求其中 $x^3$ 的系数。

4. 计算 $(3x 4y + 5z)^2$ 的展开式中,$x^2$ 的系数。

5. 已知 $(2x + 3y 4z)^5$ 的展开式,求其中 $y^3z^2$ 的系数。

二、提高题1. 在 $(x + \frac{1}{x})^8$ 的展开式中,求常数项和$x^4$ 的系数。

2. 已知 $(a + b + c)^3$ 的展开式,求其中 $a^2b^2$ 的系数。

3. 计算 $(x^2 + \frac{1}{x})^5$ 的展开式中,$x^3$ 的系数。

4. 在 $(2x 3y + 4z)^4$ 的展开式中,求 $x^2y^2$ 的系数。

5. 已知 $(3a 4b + 5c)^6$ 的展开式,求其中 $a^3b^3c^3$ 的系数。

三、应用题1. 设 $(x + \frac{1}{x})^n$ 的展开式中,常数项为 40,求$n$ 的值。

2. 已知 $(a + b)^n$ 的展开式中,$a^3b^2$ 的系数为 60,求$n$ 的值。

3. 在 $(2x 5y)^7$ 的展开式中,求 $x^5y^2$ 的系数,并判断该系数是奇数还是偶数。

4. 计算 $(x^2 \frac{1}{x})^6$ 的展开式中,$x^4$ 的系数,并说明该系数的正负性。

5. 已知 $(3a + 4b)^n$ 的展开式中,$a^2b^3$ 的系数为 144,求 $n$ 的值。

四、综合题1. 若 $(x \frac{1}{2x})^8$ 的展开式中,$x^4$ 的系数为$70$,求 $x^6$ 的系数。

2. 在 $(a + b)^{10}$ 的展开式中,找出系数最大的项。

06二项式定理1(经典题型+答案)

06二项式定理1(经典题型+答案)

二项式定理(一)1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()na b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项增到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

题型一:利用通项公式求n x 的系数例2:求29()x -展开式中9x 的系数?例4:求二项式6(2)x -的展开式中的常数项?例5:若2()n x x+的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx--==,令2120n -=,得6n =. 1.在的展开式中,x 4的系数为( )A .﹣120B .120C .﹣15D .152.(2015•陕西)二项式(x+1)n (n ∈N +)的展开式中x 2的系数为15,则n=( ) A .7 B .6 C .5 D .43.(2015•湖南)已知(﹣)5的展开式中含x 的项的系数为30,则a=( )A .B .﹣C .6D .﹣64.若的展开式中第四项为常数项,则n=( )A . 4 B .5 C .6 D .75.在nx x ⎪⎪⎭⎫⎝⎛-3122的展开式中含常数项,则自然数n 的最小值是 ( ) A.2 B.3 C.4 D.56.若(9x ﹣)n (n ∈N *)的展开式中第2项的二项式系数为9,则其展开式中的常数项为( )A .﹣84B .﹣252C .252D .847.二项式的展开式中的常数项是( )A .﹣45 B .﹣10 C .45D .658.(1+x )4+(1+x )5+…+(1+x )9展开式中,x 3项的系数为( )A .120 B .119 C .210 D .209 9.在(+)12的展开式中,x 项的系数为( )A .CB .CC .CD .C10.(1﹣)5的展开式中x 2的系数是( )A .﹣5B .5C .﹣10D .10常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈二项式定理的性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二次项定理10大典型例题

二次项定理10大典型例题

( 1 )知识点的梳理1.二项式定理:(a b)n C n0a n C n1a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式1 项 C n r a n r b r叫做二项式展开式的通项。

用④通项:展开式中的第 rT r 1 C n r a n r b r表示。

3 .注意关键点:①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a,b,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a的指数从n逐项减到0,是降幕排列。

b的指数从0逐项减到n,是升幂排列。

各项的次数和等于 n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是c0,c;,c2, C, ,C;.项的系数是a与b的系数(包括二项式系数)。

4.常用的结论:令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L C n n x n (n N )令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L ( 1)n C n n x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C n k③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令 a 1,b 1,则 C c n Cn C 3 L ( 1)n c :(1 1)n 0, 从而得到:C 0 C ; Cn Cn rC n C 3L c ;r 1- 2n 2n 1 2④ 奇数项的系数和与偶数项的系数和:(a x)n c ;a n 0 x C ;a n 1 x C ;a n ;; x L n 0 n C n a x a ° 1 a 〔x ;1 n a x L a x (x a)n 昨 0 n x C ;ax n 1 C ;a ; n ; x L C :n 0 n a x a n xL ; 1 a ;x a 〔x 令x 1,则 a o a 1 a ; a s L a n (a 1)n①令x 1,则 a o a 1 a ; a s L a n (a 1)n②① ②得,a o a ; a 4L a n (a 1)n (a ;1)r1-(奇数项的系数和) ① ②得,a 1 a s a 5 L a n (a 1)n (a ;1)n (偶数项的系数和 ) ⑤ 二项式系数的最大项:如果二项式的幕指数 n 是偶数时,则中间一项的二项式②二项式系数和 b 1 ,则二项式 系数的和为变形式C : C ; Lc n2n,c nC n : 2n1n 系数C2取得最大值。

(完整版)二项式定理练习题

(完整版)二项式定理练习题

二项式定理练习题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于( )A .4B .9C .10D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10B .11C .12D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3D .7 5. (1。

05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1。

24C .1。

33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是( )A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nx x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为( )A .6π或3πB .6π或65πC .3π或32πD .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.92)21(xx -展开式中9x 的系数是 。

二项式定理 习题 简单

二项式定理 习题 简单

二项式定理 习题一、选择题(共14小题;共70分)1. 在二项式 (3x 2−1x)n的展开式中,所有二项式系数的和是 32,则展开式中各项系数的和为( ) A. −32 B. 0 C. 32 D. 1 2. (1+2x )6 的展开式中含 x 2 项的系数为 ( ) A. 15 B. 30 C. 60 D. 120 3. 二项式 (x −2)9 的展开式中各项的系数之和是 ( ) A. 512 B. −1 C. 1 D. −10 4. (x +2)7 的二项展开式中含 x 5 项的系数是 ( ) A. 21B. 35C. 84D. 2805. (x −y )n 的二项展开式中,第 m 项的系数是 ( )A. C n mB. C n m+1C. C n m−1D. (−1)m−1C n m−16. 在二项式 (x 2−1x)n的展开式中,所有二项式系数的和是 32,则展开式中各项系数的和为 ( )A. 32B. −32C. 0D. 1 7. 已知 (1−3x )9=a 0+a 1x +a 2x 2+⋯+a 9x 9,则 ∣a 0∣+∣a 1∣+⋯+∣a 9∣ 等于 ( ) A. 29B. 49C. 39D. 18. (2−√x)8展开式中不含 x 4 项的系数的和为 ( )A. −1B. 0C. 1D. 29. 设 (√2+x)10=a 0+a 1x +a 2x 2+⋯+a 10x 10,则 (a 0+a 2+a 4+⋯+a 10)2−(a 1+a 3+⋯+a 9)2 的值是 ( ) A. 1B. −1C. 0D. (√2−1)1010. x (2−1x )4的展开式中的常数项为 ( )A. −64B. −32C. 32D. 64 11. C 61+C 62+C 63+C 64+C 65 的值为 ( )A. 61B. 62C. 63D. 6412. 在 (2x 2√x)6的展开式中,含 x 7 的项的系数是 ( )A. 60B. 160C. 180D. 240 13. (x −2y )6 的展开式中,x 4y 2 的系数为 ( ) A. 15B. −15C. 60D. −6014. (x −1)11 展开式中 x 的奇次项系数之和是 ( )A. −2048B. −1023C. −1024D. 1024二、填空题(共4小题;共20分) 15. 在 (1+1x 2)6 的展开式中,常数项为 .(用数字作答)16. 观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43;⋯⋯依此规律,当 n ∈N + 时,则 C 2n−10+C 2n−11+C 2n−12+⋯+C 2n−1n−1= .17. 设 A ,B 分别是 (1+ax )n (a 为常数)的展开式中的奇数项系数之和、偶数项系数之和,化简A 2−B 2= .18. 若 x 4(x +3)8=a 0+a 1(x +2)+a 2(x +2)2+⋅+a 12(x +2)12,则 log 2(a 1+a 3+⋯+a 11)= .三、解答题(共2小题;共26分)19. 在二项式 (ax m +bx n )12(a >0,b >0,m ≠0,n ≠0)中有 2m +n =0,如果它的展开式里最大系数项恰是常数项; (1)求它是第几项; (2)求 ab 的范围.20. 在 (2x −3y )10 的展开式中,求:(1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与 x 的偶次项系数和.第一部分 1. C【解析】二项式 (3x 2−1x)n的展开式中,所有二项式系数的和是 32,即 2n =32,解得 n =5.令 x =1,可得展开式中各项系数的和为 (3×12−11)5=32. 2. C 【解析】二项展开式通项为 T r+1=C 6r (2x )r ,故含 x 2 的系数为 4×C 62=60.3. B4. C 【解析】因为 (x +2)7 的二项展开式的通项为 T r+1=C 7r x 7−r 2r ,由 7−r =5⇒r =2,所以含 x 5 项的系数为 C 7222=21×4=84.5. D【解析】(x −y )n 展开式中第 m 项的系数为 C n m−1(−1)m−1.6. C 【解析】在二项式 (x 2−1x )n中,令 x =1,得 (12−11)n=0,故展开式中各项系数的和为 0.7. B8. B【解析】令 x =1,得所有项的系数和为 1,再减去 x 4 项系数 C 8820(−1)8=1,即为所求.9. A 10. B11. B 【解析】原式 =26−2=62. 12. D 【解析】在 (2x 2√x)6的展开式中,通项公式为 T r+1=C 6r ⋅(2x 2)6−r ⋅√x)r=C 6r⋅26−r ⋅(−1)r ⋅x 12−5r2,令 12−5r2=7,解得 r =2, 所以含 x 7 项的系数是 C 62⋅24⋅(−1)2=240.13. C 【解析】(x −2y )6 展开式的通项公式为 T r+1=C 6r ⋅x 6−r ⋅(−2y )r , 令 r =2,得 T 3=C 62⋅x 4⋅(−2y )2=60x 4y 2,所以 x 4y 2 的系数为 60.14. D 【解析】(x −1)11=a 0x 11+a 1x 10+a 2x 9+⋯+a 11, 令 x =−1,则 −a 0+a 1−a 2+⋯+a 11=−211, 令 x =1,则 a 0+a 1+a 2+⋯+a 11=0, 所以 a 0+a 2+a 4+⋯+a 10=210=1024. 第二部分 15. 15 16. 4n−117. (1−a 2)n【解析】取 x =1 得各项系数之和 A +B =(1+a )n ;取 x =−1 得各奇数项系数和与偶数项系数和的差 A −B =(1−a )n . 所以 A 2−B 2=(1−a 2)n . 18. 7【解析】令 x =−1,所以 28=a 0+a 1+a 2+⋯+a 11+a 12. 令 x =−3,所以 0=a 0−a 1+a 2−⋯−a 11+a 12, 所以 28=2(a 1+a 3+⋯+a 11), 所以 a 1+a 3+⋯+a 11=27,所以 log 2(a 1+a 3+⋯+a 11)=log 227=7. 第三部分19. (1) 设 T r+1=C 12r (ax m )12−r (bx n )r =C 12r a 12−r b r x m (12−r )+nr为常数项,则有 m (12−r )+nr =0,即 m (12−r )−2mr =0, 所以 r =4,是第 5 项.(2) 因为第 5 项又是系数最大的项,所以有 {C 124a 8b 4≥C 123a 9b 3, ⋯⋯①C 124a 8b 4≥C 125a 7b 5, ⋯⋯②由 ① 得12×11×10×94×3×2a 8b 4≥12×11×103×2a 9b 3,又因为 a >0,b >0, 所以 ab ≤94. 同理由 ② 得 ab≥85. 综上 85≤ab ≤94.20. (1) 设 (2x −3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+⋯+a 10y 10,(∗)各项系数的和为 a 0+a 1+⋯+a 10,奇数项系数和为 a 0+a 2+⋯+a 10,偶数项系数和为 a 1+a 3+a 5+⋯+a 9,x 的奇次项系数和为 a 1+a 3+a 5+⋯+a 9,x 的偶次项系数和为 a 0+a 2+a 4+⋯+a 10.由于(∗)是恒等式,故可用“赋值法”求出相关的系数和.二项式系数的和为 C 100+C 101+⋯+C 1010=210.(2) 令 x =y =1,各项系数和为 (2−3)10=(−1)10=1.(3) 奇数项的二项式系数和为 C 100+C 102+⋯+C 1010=29. 偶数项的二项式系数和为 C 101+C 103+⋯+C 109=29.(4) 令 x =y =1,得到 a 0+a 1+a 2+⋯+a 10=1, ⋯⋯① 令 x =1,y =−1(或 x =−1,y =1), 得 a 0−a 1+a 2−a 3+⋯+a 10=510, ⋯⋯② ①+② 得 2(a 0+a 2+⋯+a 10)=1+510, 所以奇数项系数和为1+5102;①−② 得 2(a 1+a 3+⋯+a 9)=1−510, 所以偶数项系数和为1−5102.(5) x 的奇次项系数和为 a 1+a 3+a 5+⋯+a 9=1−5102;x的偶次项系数和为a0+a2+a4+⋯+a10=1+510.2。

二项式定理基础题精选全文

二项式定理基础题精选全文

精选全文完整版(可编辑修改)
二项式定理典型习题
【例4】已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:
(1)a 1+a 2+…+a 7;
(2)a 1+a 3+a 5+a 7;
(3)a 0+a 2+a 4+a 6;
(4)|a 0|+|a 1|+|a 2|+…+|a 7|.
()()()n n x 216123【例】已知在的展开式中,第项为常数项.求;求含的项的系数;
求展开式中所有的有理项.
n 若展开式中前三项系数成等
差数列.求:182【例】求
展开式中的常数项.)
21().()()()n n x
x n x x 22331992212【例】已知的展开式的二项式系数和比-的展开式的二项式系数和大求-的展开式中:二项式系数最大的项;
系数的绝对值最大的项.
1227272727()(*)()n n S ⋯∈⋯251511222N 312C C C 9-【例】求证:++++能被整除;求=+++除以的余数.
在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

金无足赤,人无完人,在教学工作中难免有缺陷,例如,课堂语言平缓,语言不够生动,理论知识不够,教学经验不足,组织教学能力还有待提高。

在今后的工
作中,我将更严格要求自己,努力工作,发扬优点,改正缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)所有项的系数和;
(2)所有偶次项的系数和及所有奇次项的系数和。
A.1 B.16
C.-15
D.15
9、 Cn0 + 2Cn1 + 4Cn2 +L 2n Cnn 729 ,则 Cn1 Cn2 Cn3 L Cnn (

A. 63 B. 64 C. 31 D. 32
三、解答:
10、求值: 2C90 C91 2C92 C93 2C94 C95 2C96 C97 2C98 C99 .
7
的展开式的第 4 项的二项式系数_______,第 4 项的系数________
4、多项式 x 1 2n 展开式的中间项_________的展开式中,x 的系数________________
6、多项式 f (x) Cn1 (x 1) Cn2 (x 1)2 Cn3 (x 1)3 L Cnn (x 1)n ( n 6 )的展开式
一、填空:
二项式定理及通项应用
1、 多项式 2a 3b6 的展开式的第 3 项_________;
多项式
3b 2a
6
的展开式的第 3 项__________.
2、多项式 x 1 4 x 15 展开式中 x4 的系数为
,各项系数之和为

3、多项式
x3 2x
11、已知 ( x 1 )n 的展开式中,前三项系数的绝对值依次成等差数列, 24 x
(1) 证明展开式中没有常数项;(2)求展开式中所有的有理项奎奎 奎奎奎 奎奎
一、填空:
二项式系数性质
1、 C0n 3C1n 32 C2n L 3n Cnn
.
2、(2x-1)5 展开式中各项系数绝对值之和是
11、设 1 x5 3 2x9 a0 x 1 14 a1 x 1 13 L a13 x 1 a14
求:① a0 a1 L a14 ② a1 a3 L a13 .
12、求
的展开式中,系数绝对值最大的项以及系数最大的项
13、设 f (x) (x2 x 1)9 (2x 1)6 ,试求 f (x) 的展开式中:

3、 ( x 1 )n 的展开式中只有第六项的二项式系数最大,则第四项为 x
4、(1+x)6·(1-ax)2 的展开式中 x3 的系数为 20,则非零实数 a=_____________
5、求 2 x10 的展开式中系数最大的项为

6、若 (1 2x)7 a0 a1x a2 x 2 L a7 x 7 ,则 a0 a1 L a7
中, x6 的系数为
二、选择:
7、若二项式
(3x2

1 2x3
)n

n

N

)的展开式中含有常数项,则
n
的最小值为(

( A) 4
(B) 5
(C) 6
(D) 8
8、某企业欲实现在今后 10 年内年产值翻一番的目标,那么该企业年产值的年平均增长率
最低应


( A) 低于 5%
(B) 在 5%~6%之间
,
a0 a2 a4 a6
, a1 a3 a5 a7
, a0 a1 L a7
.
二、选择:
7、 (1 2)7 展开式中有理项的项数是( )
A.4
B.5 C.6 D.7
8、设(2x-3)4= a 0 a1x a 2 x 2 a 3x 3 a 4 x 4 ,则 a0+a1+a2+a3 的值为( )
(C) 在 6%~8%之间
(D) 在 8%以上
三、解答:
9、 x xlg x 5 展开式中的第 3 项为106 ,求 x
10、已知
(a2
1)n
展开式中的各项系数的和等于

16 5
x2

1 5 x 的展开式的常数项,而
(a2 1)n 展开式的系数的最大的项等于 54 ,求 a 的值 (a R) 。
相关文档
最新文档