沪科版2016—2017学年七年级数学上册期末测试题(含答案)

合集下载

【沪科版】七年级数学上期末试题(附答案)

【沪科版】七年级数学上期末试题(附答案)

一、选择题1.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 2.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 3.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 4.两个锐角的和是( ) A .锐角B .直角C .钝角D .锐角或直角或钝角 5.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .6.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 7.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D .8.如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或1339.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 10.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n +B .mn m n +C .2mn m n +D .m nn m + 11.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= 12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃二、填空题13.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.14.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.15.解方程213412208x x x -+-= -1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.16.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 17.单项式2335x yz -的系数是___________,次数是___________. 18.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.19.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.20.一个数的25是165-,则这个数是______. 三、解答题21.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?22.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.23.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下: 设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下:设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 24.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 25.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.26.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由OM 是∠AOD 的平分线,求得∠AOM =21°,利用∠BOC =34°,根据平角的定义求出答案.【详解】∵OM 是∠AOD 的平分线,∴∠AOM =21°.又∵∠BOC =34°,∴∠MOC =180°-21°-34°=125°.故选:A .【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.2.C解析:C根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.3.C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.4.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.5.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.解:A、设最小的数是x.x+x+7+x+7+1=19∴x=4,故本选项错误;3B、设最小的数是x.x+x+6+x+7=19,∴x=2,故本选项正确.C、设最小的数是x.x+x+1+x+7=19,∴x=11,故本选项错误.3D、设最小的数是x.x+x+1+x+8=19,∴x=10,故本选项错误.3故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.6.A解析:A【分析】设小长方形的长为x,根据大的长方形对边相等得到小长方形的宽为2x,再根据长方形的周长列等量关系得到2(2x+2x+x)=150,再解方程求出x,然后计算小长方形的面积.【详解】解:设小长方形的长为x,则宽为2x,根据题意得2(2x+2x+x)=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.7.D解析:D【分析】根据每一行、每一列以及两条对角线中所填的数字之和均相等,可求出方格中间、右下以及右上的数,再由每一行、每一列所填的数字之和相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】16+11+12−11−15=13,16+11+12−16−13=10,16+11+12−10−15=14.根据题意得:16+11+12=16+x+14,解得:x=9.故选:D.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找出等量关系.8.A解析:A【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.9.B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.10.C解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1. 11.C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化. 12.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.二、填空题13.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故 解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.14.n(n +1)【分析】通过观察可以发现每一个图形中正方形的个数等于图形序号乘以比序号大一的数根据此规律解答即可【详解】第(1)个图有2个相同的小正方形2=1×2第(2)个图有6个相同的小正方形6=2×解析:n(n +1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n个图应有n(n+1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.15.10x-6(2x-1)=15(3x+4)-120等式的性质2【分析】找出方程两边分母的最小公倍数根据等式的性质2即可得答案【详解】∵12208的最小公倍数是120∴去分母时方程两边应都乘120得10解析:10x-6(2x-1)=15(3x+4)-120 等式的性质2【分析】找出方程两边分母的最小公倍数,根据等式的性质2即可得答案.【详解】∵12、20、8的最小公倍数是120,∴去分母时,方程两边应都乘120,得10x-6(2x-1)=15(3x+4)-120,这一变形的依据是:等式的性质2故答案为:120,10x-6(2x-1)=15(3x+4)-120,等式的性质2【点睛】本题考查解一元一次方程及等式的性质,等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等;熟练掌握相关知识是解题关键.16.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,故答案为x=1.【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.17.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 18.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.19.32【分析】观察分析题图中数的排列规律可知:第n 行第一列是且第n 行第一列到第n 列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n 解析:32【分析】观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行第五个数是26436432-=-=.故答案为:32.本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.20.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法 【详解】 (165-)÷25=−8. 故答案为−8.【点睛】 此题考查有理数的除法,解题关键在于这个数看成单位“1”三、解答题21.(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.22.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.23.(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】(1)①59;②25699;③518999. (2)从①②③中任选一个转化即可. ①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以58256 2.5829999=+=. ③设0.518x =,则1000518.518518x =⋯,所以1000518x x -=,解方程,得518999x =,所以5180.518999=. 【点睛】 本题考查了一元一次方程的其他实际应用问题,掌握题目中的转化方法、解一元一次方程的方法是解题的关键.24.《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,试题设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,根据题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.25.(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,求出A、B的值,再计算4A﹣(3A﹣2B)的值即可;(2)把(1)结果变形,根据结果与a的值无关求出b的值即可.【详解】(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+12ab+23)=2a2+3ab﹣2a﹣1﹣2a2+ab+4 3=4ab﹣2a+13;(2)因为4ab﹣2a+1 3=(4b﹣2)a+13,又因为4ab﹣2a+13的值与a的取值无关,所以4b﹣2=0,所以b=12.【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.26.(1)-6;(2)1 32【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.。

上海版2016学年初一年级第一学期期末考试数学试卷(附答案)(精品文档)_共7页

上海版2016学年初一年级第一学期期末考试数学试卷(附答案)(精品文档)_共7页

4.已知 M 是单项式,且 M 3 a9b12 ,则 M =______________________。
5.计算: (a 2b)(2b a) =_________________________。 6.分解因式: x2 1 =________________________________。
5 个,则第 n 幅图中共有
个。
图(1)
图(2)

图(3)
A
13.如图右,三个大小一样的正方形,正方形 CDFE 绕点 C 旋转后 D 能与正方形 CMNB 重合,那么旋转角为______________度。
F

图B(n) N
C
M
E
1
14、将长方形纸片 ABCD 按如下步骤操作:(1)以过点 A 的直线为折痕折叠纸片,使点
70 80 x x5
三、简答题 :(每小题 5 分,共 30 分)
19.计算: (5a 3b c)(5a 3b c) .
(D)设乙班在 x 天植树 70 棵,则
20.分解因式:

2
(x2 4x)2 5(x2 4x) 24 .
解:
21.计算: 2 2 3 . x x x2 x 1
题号 一



五 总分
得分
一、
填空
题:(每小题 2 分,共 28 分)
1.“ a 的立方与 b 的平方的差”用代数式表示为:_____________________________。
2.将多项式
4x3 2xy2 3x2 y y3
按字母 y 降幂排列:
_______________________。3.已知 xmn gxmn x6 ,则 m =__________________。

沪科版七年级上册数学期末考试试卷有答案

沪科版七年级上册数学期末考试试卷有答案

沪科版七年级上册数学期末考试试题一、单选题1.在0,1,12-,1-四个数中,最小的数是( ) A .0 B .1 C .12- D .1- 2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( )A .文B .明C .奥D .运3.下列说法中正确的个数为( )(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A .1个B .2个C .3个D .4个4.已知x ﹣2y =3,则代数式6﹣2x+4y 的值为( )A .0B .﹣1C .﹣3D .35.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( ).A .不盈不亏B .盈利10元C .亏损10元D .盈利50元6.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .142°C .152°D .158°7.已知,,A B C 三点在同一条直线上,,M N 分别为线段,AB BC 的中点,且80,60AB BC ==,则MN 的长为( )A .10B .70C .10或70D .30或708.已知一个由50个偶数排成的数阵,用如图所示的框去框住四个数,并求出这四个数的和.在下列给出的备选答案中,有可能是这四个数的和是( )A .80B .148C .180D .3329.若x 、y 满足方程组37{35x y x y +=+=,则x ﹣y 的值等于( ) A .﹣1 B .1 C .2 D .310.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下列所列方程正确的是( )A .5(2)314x x -+=B .5(2)314x x ++=C .53(2)14x x ++=D .53(2)14x x +-= 二、填空题11.我市某天的最高气温是4∠,最低气温是1-℃,则这天的日温差是________∠. 12.若13a x y -与4312x y 是同类项,则a 的值是___________. 13.数据108000用科学记数法可表示为________.14.若有理数a 、b 满足()23120a b ++-=,则b a =__________.15.已知2x =是关于x 的方程230x m -+=的解,则m 的值为________.16.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为__________元.17.已知:122=,224=,328=,42的个位数是6,52的个位数是2,…,则20222的个位数字是________.三、解答题18.(1)计算:()2291322-+-÷⨯(2)计算:()()3116248⎛⎫÷---⨯- ⎪⎝⎭; (3)先化简,再求值:()()22222332x xy yx y ----,其中2x =-,12y =.19.解方程:(1)()531y y -=-; (2)2431132x x +--=. 20.6个完全相同的正方体组成如图所示的几何体,画出该几何体的主视图、左视图和俯视图.21.某校对七年级学生进行“综合素质”评价,评价的结果分为A 、B 、C 、D 四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)B 等级人数所占百分比是 ;C 等级所在扇形的圆心角是 度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A 等级或B 等级的学生共有 名.22.甲、乙两家商场同时出售同样的暖瓶和水杯,根据图中信息,回答下列问题:(1)求一个暖瓶与一个水杯售价分别是多少元.(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送二个水杯,单独买水杯不优惠.若必须买5个暖瓶,且购买水杯个数大于10个,则当买多少个水杯时到两家商场一样合算.23.如图∠,已知线段AB=14cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB的中点,则DE=______cm;若AC=6cm,则DE=_______cm;(2)随着C点位置的改变,DE的长是否会改变?如果改变,请说明原因;如果不变,请求出DE的长;(3)知识迁移:如图∠,已知∠AOB=130°,过角的内部任意一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.24.某商店买入100个整理箱,进价为每个40元,卖出时每个整理箱的标价为60元.当按标价卖出一部分整理箱后,剩余的部分以标价的九折出售.所有整理箱卖完时,该商店获得的利润一共是1880元,求以九折出售的整理箱有多少个?25.解下列方程(组):(1)114 0.20.5x x+--=;(2)43()2()4x y x y x y x y +-⎧=⎪⎨⎪+--=-⎩.26.某年级组织部分学生参加语文、数学、英语课外活动兴趣小组,下面两幅统计图反映了学生自愿报名(每人限报一科)的情况,请你根据图中信息回答下列问题:(1)该年级报名参加英语课外活动兴趣小组的人数占全年级人数的百分数是______,请补全条形统计图;(2)根据实际情况,需从英语课外活动小组抽调部分同学到数学课外活动小组,使数学课外活动小组的人数是英语课外活动小组人数的3倍,则应从中抽调多少名学生?参考答案1.D【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【详解】∠−1<12-<0<1, ∠最小的数是−1,故选:D .【点睛】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.A【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点可知,“明”与“奥”处在相对的面上,“文”与“迎”处在相对的面上,“讲”与“运”处在相对的面上,故选:A .【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.3.B【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【详解】解:(1)过两点有且只有一条直线,此选项正确,符合题意;(2)连接两点的线段的长度叫两点间的距离,此选项错误,不符合题意;(3)两点之间所有连线中,线段最短,此选项正确,符合题意;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误,不符合题意; 故正确的有2个.故选B .【点睛】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.4.A【分析】先把6﹣2x+4y 变形为6﹣2(x ﹣2y ),然后把x ﹣2y=3整体代入计算即可.【详解】解:∠x ﹣2y=3,∠6﹣2x+4y=6﹣2(x ﹣2y )=6﹣2×3=6﹣6=0故选A .【点睛】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.5.B【分析】设盈利的计算器的进价为x ,则(160%)80x +=,亏损的计算器的进价为y ,则(120%)80y -=,用售价减去进价即可.【详解】设第一个计算器的进价为x 元,第二个计算器的进价为y 元,则(160%)80x +=,(120%)80y -=,解得50x =,100y =.因为8025010010⨯--=(元),所以盈利了10元.故选:B .【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.6.C【分析】从图形中可看出∠AOC 和∠DOB 相加,再减去∠DOC 即为所求.【详解】解:∠∠AOC =∠DOB =90°,∠DOC =28°,∠∠AOB =∠AOC+∠DOB ﹣∠DOC =90°+90°﹣28°=152°.故选:C .【点睛】此题主要考查学生对角的计算的理解和掌握,找到公共角∠DOC 是解题的关键.7.C【分析】根据题意画出图形,再根据图形求解即可.【详解】(1)当C 在线段AB 延长线上时,如图1,∠M 、N 分别为AB 、BC 的中点,∠BM =12AB =40,BN =12BC =30; ∠MN =70.(2)当C 在AB 上时,如图2,同理可知BM =40,BN =30,∠MN =10;所以MN =70或10,故选:C .【点睛】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.8.D【分析】设框住四个数中,第一行的第1数为x ,则第2个为2x +,第二行的第1数为12x +,则第2个为14x +,这四个数为和为21214428x x x x x ++++++=+,然后令42880x +=、148、180、332,计算出对应的x 的值,然后利用x 为偶数,x 为数阵中每行的第1或第2个数对各选项进行判断.【详解】解:设框住四个数中,第一行的第1数为x ,则第2个为2x +,第二行的第1数为12x +,则第2个为14x +,这四个数为和为21214428x x x x x ++++++=+,若42880x +=,解得13x =,x 应为偶数,不合题意;若428148x +=,解得30x =,而30为第三行最后一个数,不合题意;若428180x +=,解得38x =,而38为第四行的第4个数,不合题意;若428332x +=,解得76x =,则四数为76,78,88,90.符合题意;故选:D .【点睛】本题考查了规律型、数字变化类,解题的关键是探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.9.A【详解】解:3735x y x y +=⎧⎨+=⎩①②, ∠﹣∠得:2x ﹣2y=﹣2,则x ﹣y=﹣1,故选A.10.A【详解】水性笔的单价为x 元,那么练习本的单价为(x -2)元.∠5(x -2)+3x=14故选A .考点:由实际问题抽象出一元一次方程.11.5【分析】根据最高气温减去最低气温列出算式,即可做出判断.【详解】解:根据题意得:4−(−1)=5.故答案为:5【点睛】此题考查了有理数的减法,根据题意列出算式熟练掌握运算法则是解本题的关键. 12.5【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a 的值.【详解】解:∠13a x y -与4312x y 是同类项, ∠a -1=4,∠a=5,故答案为:5.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.51.0810⨯【详解】解:108000=1.08×105. 故答案为:1.08×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.19【分析】某个数的绝对值与另一数的平方的和等于0,那么只有这两个数为0.【详解】解:∠3a+1=0,b -2=0,那么a=-13,b=2. ∠a b =19. 【点睛】本题考查的知识点是:某个数的绝对值与另一数的平方的和等于0,那么绝对值里面的代数式的值为0,平方数的底数为0.15.7【分析】由x=2为方程的解,将x=2代入方程即可求出m 的值.【详解】解:根据题意将x=2代入方程得:2230m ⨯-+=,解答案为:7.【点睛】此题考查了一元一次方程的解,解题的关键是掌握方程的解即为能使方程左右两边相等的未知数的值.16.125【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】解:设每件服装的成本价为x 元.由题意得:()140%80%15x x +⋅-=,解得:125x =.故答案为:125.【点睛】本题考查了一元一次方程的应用,解题的关键是读懂题意,根据题目给出的条件,找到等量关系列出方程.17.4【分析】通过观察发现个位数字每4个循环一次,则22022的个位数字与22相同.【详解】解:∠21=2,22=4,23=8,24的个位数是6,25的个位数是2,…,∠个位数字每4个循环一次,∠2022÷4=505…2,∠22022的个位数字与22相同,∠22022的个位数字是4,故答案为:4.【点睛】本题考查数字的变化规律,通过观察发现个位数字的循环规律是解题的关键.18.(1)3;(2)-52;(3)22x xy --,2-. 【分析】(1)根据有理数的混合运算可知,先算乘方,再算乘除,最后算加法;(2)根据有理数的混合运算可知,先算乘方,再算乘除,最后算减法;(3)先根据去括号法则去括号,再合并同类项,最后把x 和y 的值代入即可.【详解】解:(1)()2291322-+-÷⨯ =-1+9×29×2 =-1+4=3;(2)()()3116248⎛⎫÷---⨯- ⎪⎝⎭=16÷(-8)-12=-2-12=-52; (3)()()22222332x xy y x y ----=2x 2-2xy -6y 2-3x 2+6y 2=-x 2-2xy ,∠x=-2,y=12,∠原式=-(-2)2-2×(-2)×12 =-4+2=-2.【点睛】此题考查了有理数的混合运算,整式的加减-化简求值,涉及的知识有:乘方的意义,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.19.(1)2y =(2)1x =【分析】(1)方程去括号,移项,合并同类项,系数化为1即可;(2)方程去分母,去括号,移项,合并同类项,系数化为1即可.(1)解:y -5=3(1-y ),去括号,得y -5=3-3y ,移项,得y+3y=5+3,合并同类项,得4y=8,系数化为1,得y=2;(2) 解:2431132x x +--=, 去分母,得2(2x+4)-3(3x -1)=6,去括号,得4x+8-9x+3=6,移项,得4x -9x=6-8-3,合并同类项,得-5x=-5,系数化为1,得x=1.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.20.见解析【分析】根据主视图是从正面观看得出的图形,左视图是从左边看得出的图形,俯视图是从上边看得出的图形,从而将看到的图形画出来即可.【详解】解:所画图形如下所示:【点睛】此题考查了简单组合体的三视图,解答本题的关键是掌握三视图的查找办法,属于基础题,难度一般.21.(1)25%;72;(2)见解析;(3)700.【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360°乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中A、B等级人数和所占比例即可.【详解】解:(1)∠被调查的人数为4÷10%=40(人),∠B等级人数为40﹣(18+8+4)=10(人),则B(良好)等级人数所占百分比是1040×100%=25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:25%;72;(2)补全条形统计图如下:;(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000×181040=700(人).故答案为:700.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.22.(1)一个暖瓶32元,一个水杯2元;(2)买20个水杯时到两家商场一样合算.【分析】(1)设一个暖瓶x元,则一个水杯(34﹣x)元,根据图形可得出关于x的一元一次方程,解之即可得出结论;(2)设当买m个水杯时到两家商场一样合算,可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设一个暖瓶x元,则一个水杯(34﹣x)元,由题意得2x+3(34﹣x)=70,解得:x=32,则水杯的价格为:34﹣32=2(元).答:一个暖瓶32元,一个水杯2元;(2)设当买m个水杯时到两家商场一样合算,由题意得(32×5+2m)×90%=32×5+2(m﹣10),解得:m=20.答:买20个水杯时到两家商场一样合算.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程解法的运用,解答时根据条件建立方程是关键.23.(1)7,7;(2)DE的长不会改变,DE的长为7cm;(3)证明见解析.【分析】(1)利用线段中点定义求解即可;(2)利用线段中点定义说明随着C点位置的改变,DE的长不变的原因即可;(3)根据角平分线的定义说明∠DOE的度数与射线OC的位置无关.【详解】解:(1)∠AB=14cm,点C为AB的中点,∠AC=BC=12AB=7cm,∠点D、E分别是AC和BC的中点,∠DC=12AC=3.5cm,CE=12BC=3.5cm,∠DE=DC+CE=3.5+3.5=7,∠AC=6cm,∠BC=AB﹣AC=14﹣6=8cm,∠DC=12AC=3cm,CE=12BC=4cm,∠DE=DC+CE=3+4=7cm,故答案为:7,7;(2)DE的长不会改变.理由如下:∠点D是线段AC的中点,∠DC=12AC.∠点E是线段BC的中点,∠CE=12BC.∠DE=DC+CE=12AC+12BC=12AB=12×14=7cm.∠DE的长为7cm.DE的长不会改变(3)∠OD平分∠AOC,∠∠DOC=12AOC.∠OE平分∠BOC,∠∠EOC=12∠BOC.∠∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=12∠AOB.∠∠AOB =130°,∠∠DOE =12∠AOB =12∠130°=65°. ∠∠DOE 的度数与射线OC 的位置无关.【点睛】本题考查线段的中点、角平分线、线段的和与差、角的运算,熟练掌握线段中点和角平分线应用是解答的关键.24.以九折出售的整理箱有20个.【分析】可设以九折出售的整理箱有x 个,根据该商店获得的利润一共是1880元这个等量关系列方程求解.【详解】解:设以九折出售的整理箱有x 个.则按标价出售的整理箱有(100﹣x )个.依题意得 60(100﹣x )+60×0.9x=100×40+1880.去括号,得 6000﹣60x+54x=5880.移项,合并,得﹣6x=﹣120.系数化为1,得 x=20.答:以九折出售的整理箱有20个.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 25.(1)1x =-;(2)71x y =⎧⎨=⎩. 【分析】(1)方程整理后,去分母,去括号,移项合并同类项,把x 系数化为1,即可求出解;(2)方程组整理后,利用代入消元法求出解即可.【详解】解:(1)方程整理得:55224x x +-+=,移项合并同类项得:33x =-,解得:1x =-;(2)方程组整理得:734x y x y =⎧⎨-+=-⎩①②, 把∠代入∠得:734y y -+=-,解得:1y =,把1y =代入∠得:7x =,则方程组的解为71x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,以及解一元一次方程,熟练掌握各自的解法是解本题的关键.26.(1)30%,补全的条形图如图,见解析;(2)从英语组抽调5名学生.【分析】(1)根据数学组的人数和所占的百分比求出总人数,用英语组的人数除以总人数求出英语课外活动兴趣小组的人数占全年级人数的百分数;用总人数减去其他组的人数,求出语文组的人数,从而补全统计图;(2)设设需从英语组抽调x 名同学到数学组,根据数学组的人数是英语组人数的3倍列方程求解即可.【详解】:(1)∠参加数学的学生有25人,占总体的50%,∠总人数为:25÷50%=50(人),∠参加英语课外活动兴趣小组的人数占全年级人数的百分数是15100%30%50⨯=, 故答案为: 30%,参加语文课外活动兴趣小组的人数有:50-15-25=10(人),补全统计图如下:(2)设需从英语组抽调x 名同学到数学组,根据题意得:3(15-x)=25+x ,解得:x=5.答:应从中抽调5名学生.。

沪科版2016学年七年级上学期期末质量检测数学试题

沪科版2016学年七年级上学期期末质量检测数学试题

沪科版2016学年七年级上学期期末质量检测数学试题2016.1.14一、选择题(每小题3分,共30分)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.22.据某域名统计机公布的数据显示,截止2014年2月17日,我国“.NET”域名注册量约为745000个,居全球第三位,将745000用科学记数法表示应为()A.745×103B.74.5×104C.7.45×105D.0.745×1063.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.若单项式x a+1y3与y b x2是同类项,则a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=25.若是方程ay﹣x=3的解,则a的取值是()A.5B.﹣5 C.2D.16.已知方程组,则x+y的值为()A.﹣1 B.0 C. 2 D. 37.为了了解某校1000名2014-2015学年七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1000名学生的体重是总体B.1000名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本8.下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个 D.4个9.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD 的度数是()A.60°B.120°C.60°或90° D.60°或120°10.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;②60m+10=62m+8;③;④中,其中正确的有()A.①③B.②④C.①④D.②③二、填空题(每小题3分,共24分)11.如果4m﹣5的值与3m﹣9的值互为相反数,那么m等于.12.小红和小花在玩一种计算的游戏,计算的规则是=ad﹣bc.现在轮到小红计算的值,请你帮忙算一算结果是.13.若∠α=72°31′,则∠α的余角大小为.14.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有个.15.有理数a在数轴上对应的点如图所示,则a,﹣a,﹣1由小到大用小于号连接为.16.用四舍五入法得到的近似数8.8×103,精确到位.17.观察下列等式:1、42﹣12=3×5;2、52﹣22=3×7;3、62﹣32=3×9;4、72﹣42=3×11;…则第n(n是正整数)个等式为.18.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图:从2009~2013年,这两家公司中销售量增长较快的是公司.三、计算或先化简再求值题19.﹣12+3×(﹣2)2+(﹣6)÷(﹣)2.20.化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.四、解方程或方程组(本题共1小题,每小题12分,满分12分)21.(1)x﹣=1﹣(2).五、看图计算并回答22.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)图中是否有互余的角?若有请写出所有互余的角.六、数据统计23.某校为了了解本校2014-2015学年八年级学生课外阅读的喜好,随机抽取该校2014-2015学年八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是人.七、应用题24.某商场用36000元购进甲、乙两种计算器,销售完后共获利6000元,其中甲种计算器每个进价120元,售价138元,乙种计算器每个进价100元,售价120元.(1)该商场购进甲、乙两种计算器各多少个?(2)若该商场第二次以原进价购进甲、乙两种计算器,购进乙种计算器的个数不变,而购进甲种计算器的个数是第一次的2倍,甲种计算器按原售价出售,而乙种计算器打折销售.若两种计算器销售完毕,要使第二次经营活动获利润8160元,乙种计算器售价应打几折?八、数学思想方法应用25.(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.安徽省亳州市蒙城县2014-2015学年七年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.2考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.点评:本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.2.据某域名统计机公布的数据显示,截止2014年2月17日,我国“.NET”域名注册量约为745000个,居全球第三位,将745000用科学记数法表示应为()A.745×103B.74.5×104C.7.45×105D.0.745×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将745000用科学记数法表示为:7.45×105.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.若单项式x a+1y3与y b x2是同类项,则a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:同类项.分析:根据同类项是字母相同且相同字母的指数也相同,可得答案.解答:解:由单项式x a+1y3与y b x2是同类项,得a+1=2,b=3,解得a=1,b=3,故选:A.点评:本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2015届中考的常考点.5.若是方程ay﹣x=3的解,则a的取值是()A.5B.﹣5 C.2D.1考点:二元一次方程的解.专题:计算题.分析:将x与y的值代入方程计算即可求出a的值.解答:解:将x=2,y=1代入方程得:a﹣2=3,解得:a=5,故选A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.已知方程组,则x+y的值为()A.﹣1 B.0 C. 2 D. 3考点:解二元一次方程组.专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.解答:解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.为了了解某校1000名2014-2015学年七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1000名学生的体重是总体B.1000名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:A、1000名学生的体重是总体,故A正确;B、1000名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.点评:考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个 D.4个考点:余角和补角;直线、射线、线段;两点间的距离;度分秒的换算;角平分线的定义.分析:根据射线的定义,同角的补角相等,角平分线的定义,两点之间的距离的定义,度分秒的换算以及余角的定义对各小题分析判断即可得解.解答:解:①射线AB与射线BA不表示同一条射线,因为它们的端点不同,故本小题错误;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确;③应为一条射线把一个角分成两个角相等的角,这条射线叫这个角的平分线,故本小题错误;④应为连结两点的线段的长度叫做两点之间的距离,故本小题错误;⑤40°50′≈40.83°,故本小题错误;⑥互余且相等的两个角都是45°,正确.综上所述,说法正确的有②⑥共2个.故选B.点评:本题考查了余角与补角的定义,射线的定义,角平分线的定义以及度分秒的换算,是基础题,熟记相关概念与性质是解题的关键.9.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD 的度数是()A.60°B.120°C.60°或90° D.60°或120°考点:垂线.专题:计算题;压轴题;分类讨论.分析:此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.解答:解:①当OC、OD在AB的一旁时,∵OC⊥OD,∠COD=90°,∠AOC=30°,∴∠BOD=180°﹣∠COD﹣∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=180°﹣∠AOD=120°.故选D.点评:此题主要考查了直角、平角的定义,注意分两种情况分析.10.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;②60m+10=62m+8;③;④中,其中正确的有()A.①③B.②④C.①④D.②③考点:由实际问题抽象出一元一次方程.分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解答:解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:=,故选:A.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.二、填空题(每小题3分,共24分)11.如果4m﹣5的值与3m﹣9的值互为相反数,那么m等于2.考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到m的值.解答:解:根据题意得:4m﹣5+3m﹣9=0,移项合并得:7m=14,解得:m=2.故答案为:2点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.小红和小花在玩一种计算的游戏,计算的规则是=ad﹣bc.现在轮到小红计算的值,请你帮忙算一算结果是﹣2.考点:代数式求值.专题:计算题.分析:根据题中的新定义化简所求式子,计算即可得到结果.解答:解:=1×4﹣2×3=4﹣6=﹣2.故答案为:﹣2.点评:此题考查了代数式求值,弄清题中的新定义是解本题的关键.13.若∠α=72°31′,则∠α的余角大小为17°29′.考点:余角和补角;度分秒的换算.分析:根据余角的定义可得∠α的余角等于90°﹣72°31′=17°29′.解答:解:∠α的余角等于90°﹣72°31′=17°29′.故答案为:17°29′.点评:本题比较容易,考查余角的定义:若两个角的和为90°,则这两个角互余.14.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有两个.考点:整式.分析:根据单项式与多项式统称为整式,可得答案.解答:解:①m是整式;②x+5=7是方程,不是整式;③2x+3y是整式;④m>3是不等式;⑤是分式,不是整式,故答案为:两.点评:本题考查了整式,单项式与多项式统称为整式,注意等式、不等式都不是整式,是分式,不是整式.15.有理数a在数轴上对应的点如图所示,则a,﹣a,﹣1由小到大用小于号连接为a<﹣1<﹣a.考点:有理数大小比较;数轴.分析:先根据a在数轴上的位置判断出其符号,再比较出其大小即可.解答:解:∵由图可知,a<0,|a|>1,∴﹣a>1,∴a<﹣1<﹣a.故答案为:a<﹣1<﹣a.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.16.用四舍五入法得到的近似数8.8×103,精确到百位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:8.8×103精确到百位.故答案为百.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.17.观察下列等式:1、42﹣12=3×5;2、52﹣22=3×7;3、62﹣32=3×9;4、72﹣42=3×11;…则第n(n是正整数)个等式为(n+3)2﹣n2=3(2n+3).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:观察分析可得:1式可化为(1+3)2﹣12=3×(2×1+3);2式可化为(2+3)2﹣22=3×(2×2+3);…故则第n个等式为(n+3)2﹣n2=3(2n+3).解答:解:第n个等式为(n+3)2﹣n2=3(2n+3).点评:本题是一道找规律的题目,这类题型在2015届中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图:从2009~2013年,这两家公司中销售量增长较快的是甲公司.考点:折线统计图.分析:结合折线统计图,求出甲、乙各自的增长量即可求出答案.解答:解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400﹣100=300辆;则甲公司销售量增长的较快.故答案为:甲.点评:本题主要考查了折线图,从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.三、计算或先化简再求值题19.﹣12+3×(﹣2)2+(﹣6)÷(﹣)2.考点:有理数的混合运算.分析:先算乘方,再算乘除,最后算加法,由此顺序计算即可.解答:解:原式=﹣1+3×4+(﹣6)×9=﹣1+12﹣54=﹣43.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.20.化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.解答:解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.点评:此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.四、解方程或方程组(本题共1小题,每小题12分,满分12分)21.(1)x﹣=1﹣(2).考点:解二元一次方程组;解一元一次方程.分析:(1)根据去分母、去括号、移项、合并同类项、系数化为1,可得方程的解;(2)根据加减消元法,可得方程组的解.解答:解:(1)去分母,得6x﹣2(x+2)=6﹣3(x﹣1),去括号,得6x﹣2x﹣4=6﹣3x+3,移项,得6x﹣2x+3x=6+3+4,合并同类项,得8x=13系数化为1,得x=;(2),①×2+②,得11x=22,解得x=2,把x=2代入①,得3×2﹣y=7,解得y=﹣1,原方程组的解是.点评:本题考查了解二元一次方程组,(1)去分母时都乘以分母的最小公倍数,分子要加括号;(2)加减消元是解方程组的关键.五、看图计算并回答22.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)图中是否有互余的角?若有请写出所有互余的角.考点:余角和补角;角平分线的定义.分析:(1)根据∠DOE=(∠BOC+∠COA)即可求解;(2)互余就是两角的和是90°,根据定义即可作出判断.解答:解:(1)∠DOE=(∠BOC+∠COA)=[62°+(180°﹣62°)】=90°;(2)∠DOA与∠COE互余,∠DOA与∠BOE互余,∠DOC与∠COE互余,∠DOC与∠BOE互余.点评:本题考查了角度的计算,正确根据角平分线的定义理解∠DOE=(∠BOC+∠COA)是关键.六、数据统计23.某校为了了解本校2014-2015学年八年级学生课外阅读的喜好,随机抽取该校2014-2015学年八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于36度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180人.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)根据条形图可知阅读小说的有80人,根据在扇形图中所占比例得出调查学生数;(2)根据条形图可知阅读其他的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据科普常识的学生所占比例,即可估计全校人数.解答:解:(1)80÷40%=200人,(2)20÷200×360°=36°,(3)200×30%=60(人),如图所示:(4)600×30%=180人,故答案为:(1)200,(2)36,(4)180.点评:此题主要考查了条形图与扇形图的综合应用,根据图形得出正确信息,两图形有机结合是解决问题的关键.七、应用题24.某商场用36000元购进甲、乙两种计算器,销售完后共获利6000元,其中甲种计算器每个进价120元,售价138元,乙种计算器每个进价100元,售价120元.(1)该商场购进甲、乙两种计算器各多少个?(2)若该商场第二次以原进价购进甲、乙两种计算器,购进乙种计算器的个数不变,而购进甲种计算器的个数是第一次的2倍,甲种计算器按原售价出售,而乙种计算器打折销售.若两种计算器销售完毕,要使第二次经营活动获利润8160元,乙种计算器售价应打几折?考点:二元一次方程组的应用.分析:(1)设商场购进甲种计算器x个,乙种计算器y个,根据某商场用36000元购进甲、乙两种计算器,销售完后共获利6000元,列出方程组解决问题;(2)设乙种计算器售价应打z折,由第二次经营活动获利润8160元,列出方程解决问题.解答:解:(1)设商场购进甲种计算器x个,乙种计算器y个,根据题意得:,解得.答:该商场购进甲种计算器200个,乙种计算器120个.()(2)设乙种计算器每个售价打z折,根据题意,得120(﹣100)+2×200×(138﹣120)=8160,解得:z=9.答:乙种计算器售价打9折.点评:此题考查二元一次方程组与一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.八、数学思想方法应用25.(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.考点:角的计算;两点间的距离.分析:(1)先根据点M、N分别是AC、BC的中点求出MC及CN的长,再根据MN=MC+CN即可得出结论;(2)由(1)的计算方法得出规律即可;(3)类比于线段的中点,以“角的平分线”在角的内部写出题目解答即可;(4)分两种情况探讨答案:在线段AB上;在线段AB的延长线上.解答:解:(1)MN=MC+NC=MN=AC+BC=(AC+BC)=×(12+8)=10;(2)MN=MC+NC═AC+BC=(AC+BC)=a;规律:线段上任意一点把线段分成二部分的中点之间的距离等于原线段长度的一半;(3)已知:如图所示,射线OC在∠AOB的内部,∠AOC=α,∠BOC=β,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数;结果:∠DOE=(α+β),(4)分二种情况:如果在线段AB上,MN=MC+NC=MN=AC+BC=(AC+BC)=×(12+8)=10;如果在线段AB的延长线上,MN=MC﹣NC=AC﹣BC=(AC﹣BC)=×(12﹣8)=2.点评:本题考查了线段中点定义和两点间的距离的应用,主要考查学生的计算能力,同时渗透类比思想.。

沪科版七年级上册数学期末考试试卷及答案

沪科版七年级上册数学期末考试试卷及答案

沪科版七年级上册数学期末考试试题一、单选题1.已知02x y =⎧⎨=⎩和41x y =⎧⎨=⎩是方程8mx ny +=的解,则m 、n 的值分别为( )A .1, -4B .-1 ,4C .-1, -4D .1, 4 2.两个有理数的和为正数,那么这两个数一定( ) A .都是正数 B .至少有一个正数 C .有一个是0 D .绝对值不相等 3.下列各组整式中,是同类项的有( )A .323m n 与32n m -B .2xy 与3yzC .33与3aD .2yx 与-xy 4.在所给的:①15°;①65°;①75°;①115°;①135°的角中,可以用一副三角板画出来的是( )A .①①①B .①①①C .①①①D .①①①5.如图,数轴的单位长度为1,如果点A 表示的数是2-,那么点B 表示的数是( )A .1-B .0C .1D .2 6.下列说法正确的是( )①正整数和负整数统称整数.①平方等于9的数是3.①51.6110⨯是精确到千位.①a+1一定比a 大.①(﹣2)4与﹣24相等.A .2个B .3个C .4个D .5个7.某种商品每件进价为a 元,按进价增加50%出售,现“双十二”打折促销按售价的八折出售每件还能盈利( )A .0.12a 元B .0.2a 元C .1.2a 元D .1.5a 元 8.一列数1a ,2a ,3a …满足条件:12a =,111n n a a -=-(2n ≥,且n 为整数),则2022a 等于( )A .-1B .12C .1D .29.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为67.则x 的值可能是( )A .3B .7C .12D .2310.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为acm 、宽为bcm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4acmB .4bcmC .2(a +b )cmD .4(a -b )cm 二、填空题11.将14.75亿用科学记数法表示为______. 12.已知2310x x +-=,则2262021x x ++=______.13.某同学把()56⨯-错抄为56⨯-,若正确答案为m ,抄错后的结果为n ,则m n -=______.14.如果向东行走10m ,记作+10m ,那么向西行走15m ,应记作____________. 15.当x 1=时,代数式2ax 2bx 1++的值为3,则2a 4b 3+-=______.16.如果α∠和β∠互补,且αβ∠>∠,则下列式子中:①90β︒-∠;①90α∠-︒; ①1()2αβ∠+∠;①1()2αβ∠-∠,可以表示β∠的余角的有____________(填序号即可). 17.如图,点O 在直线AB 上,从点O 引出射线OC ,其中射线OD 平分①AOC ,射线OE 平分①BOC ,下列结论:①①DOE =90°;①①COE 与①AOE 互补;①若OC 平分①BOD ,则①AOE=150°;①①BOE 的余角可表示为()12AOE BOE ∠-∠.其中正确的是______.(只填序号)三、解答题 18.计算:()201281130.531223-+-+-⎛⎫-- ⎪⎝-⎭+.19.先化简,再求值:()222212632122ab a b ab a b ab ab ⎛⎫⎡⎤++---- ⎪⎣⎦⎝⎭,其中a 为最大的负整数,b 为最小的正整数.20.解方程:2221234x x x +-+=+21.解方程组:1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩.22.定义新运算“@”与“⊕”:@2a ba b +=,2a b a b -⊕=. (1)计算()()()3@212---⊕-的值; (2)化简()()3@23b a a b -+⊕-.23.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B .它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(2)若AM=BN,43MN BM,求m和n值.24.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?25.如图,直线AB,CD相交于O点,OM平分①AOB,(1)若①1=①2,求①NOD的度数;(2)若①BOC=4①1,求①AOC与①MOD的度数.26.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?27.某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案1.D2.B3.D4.C5.D6.A7.B8.B9.B10.B11.91.47510⨯ 12.2023 13.24- 14.15-m 15.1 16.①①① 17.①①①① 18.113-19.222ab +,0 20.14x =-21.51x y ==⎧⎨⎩22.(1) 1 (2) 31b -【分析】(1)根据新定义列出式子,再进行整式的加减运算即可; (2)根据新定义列出式子,再进行化简运算即可; (1)()()()3@212---⊕-322122--+=- 1122=+ 1=;(2)()()3@23b a a b -+⊕-()23322a b b a ---=+ 3322b a a b -++-=622b -=31b =-23.(1)见解析(2)48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或53m n =-⎧⎨=⎩ 【分析】(1)分三种情况:①当M 是A ,N 的中点时;①当A 是M 、N 的中点时;①当N 是M 、A 的中点时分别进行求解;(2)根据AM =BN ,可得31m n +=-,再根据43MN BM =,可得413n m m -=-,二者组成方程组即可求解. (1)解:①当M 是A ,N 的中点时,32n m -= ①n =2m +3①当A 是M 、N 的中点时,32m n+-= ①n =-6-m①当N 是M 、A 的中点时,32mn -+=. (2)解:①AM =BN , ①31m n +=-,①43MN BM =,①413n m m -=- ①313344m n n m m +=-⎧⎨-=-⎩或313344m n n m m +=-+⎧⎨-=-⎩或313344m n n m m --=-⎧⎨-=-+⎩或313344m n n m m --=-+⎧⎨-=-+⎩,解得48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或0.21.8m n =-⎧⎨=-⎩或53m n =-⎧⎨=⎩ ①n m > ,①48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或53m n =-⎧⎨=⎩.24.(1) 20;(2)36天【分析】(1)总的工作量是“1”,甲的工作效率是160,乙的工作效率是140,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x 天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答. 【详解】(1)设剩余由乙工程队来完成,还需要用时x 天,依题意得: 3060+40x=1 解得:x=20.即剩余由乙工程队来完成,还需要用时20天. 故答案为20;(2)设共需x 天完成该工程任务,根据题意得: 60x +2040x -=1 解得:x=36.答:共需36天完成该工程任务.25.(1)90°;(2)①AOC =60°;①MOD =150°.【分析】(1)根据角平分线的性质可得①1+①AOC =90°,再利用等量代换可得①2+①AOC =90°,利用邻补角互补可得答案;(2)根据条件可得90°+①1=4①1,进而可得求出①1=30°,从而可得①AOC 的度数,再利用邻补角互补可得①MOD 的度数.【详解】(1)①OM 平分①AOB ,①①1+①AOC =90°. ①①1=①2,①①2+①AOC =90°,①①NOD =180°﹣90°=90°;(2)①①BOC =4①1,①90°+①1=4①1,①①1=30°,①①AOC =90°﹣30°=60°,①MOD =180°﹣30°=150°.【点睛】本题考查了角平分线和邻补角,关键是掌握邻补角互补.26.(1)年降水量为200万m 3,每人年平均用水量为50m 3;(2)该镇居民人均每年需节约16 m 3水才能实现目标.【分析】(1)设年降水量为x 万m 3,每人年平均用水量为ym 3,根据题意等量关系可得出方程组,解出即可.(2)设该镇居民人均每年用水量为z m 3水才能实现目标,由等量关系得出方程,解出即可. 【详解】解:(1)设年降水量为x 万m 3,每人年平均用水量为ym 3, 由题意得,1200020x 1620y{1200015x 2015y+=⋅+=⋅,解得:x 200{y 50==. 答:年降水量为200万m 3,每人年平均用水量为50m 3.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34.50﹣34=16m3.答:该镇居民人均每年需节约16 m3水才能实现目标.27.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数;(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数;(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.(4)总人数乘以样本中A、B人数占总人数的比例即可.【详解】解:(1)本次调查的学生有30÷20%=150人(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×60150=144°故答案为144°(4)600×(4530150)=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.。

沪科版七年级上册数学期末试卷及答案

沪科版七年级上册数学期末试卷及答案

沪科版七年级上册数学期末考试试题一、单选题1.2的相反数是( )A .2B .﹣2C .12D .±2 2.已知有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a +b <0B .a ﹣b <0C .ab >0D .a b >0 3.下列说法不正确的是( )A .多项式m 3n −3mn +1是四次三项式B .a 的倒数与b 的倒数的差,用代数式表示为1a −1bC .12ax 与8bx 是同类项D .a −b 与b −a 互为相反数4.单项式−3x 2y 5的系数和次数分别是( ) A .-3,2 B .-3,3 C .−35,2 D .−35,3 5.根据下列条形统计图,下面回答正确的是( )A .步行人数为50人B .步行与骑自行车的人数和比坐公共汽车的人要少C .坐公共汽车的人占总数的50%D .步行人最少只有90人6.下列换算中,错误的是( )A .47.284716'48''=B .83.58350'=C .165'24''16.09=D .0.25900''=7.如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了( )A .5折B .5.5折C .7折D .7.5折8.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定 9.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩10.如图,用火柴棒摆出一列正方形图案,其中图①有4根火柴棒,图②有12根火柴棒,图③有24根火柴棒,…,则图⑦火柴棒的根数是( )A .84B .96C .112D .116二、填空题11.2018年10月16日,安徽省第十四届运动会开幕式在蚌埠市体育中心隆重举行,蚌埠市体育中心总投资约12亿元,12亿元用科学记数法表示为__________.12.若2a ﹣b=2,则6+4b ﹣8a=_____.13.如图,OM 是∠AOB 的平分线,OP 是∠MOB 内的一条射线,已知∠AOP 比∠BOP 大30∘,则∠MOP 的度数为__________.14.如图1,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为_____.(用含a ,b 的代数式表示)15.如果α∠和β∠互补,且αβ∠<∠,下列表达式:①90α-∠;②90β∠-;③1()2βα∠+∠;④1()2βα∠-∠中,能表示α∠的余角的式子是__________.(请把所有正确的序号填在横线上)三、解答题16.(1)计算:235|36|()(8)(2)46-⨯-+-÷-(2)化简:22222(3)2(2)a b ab a b ab a b -+---17.(1)解方程:2134134x x ---= (2)解方程组:34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩18.“囧”( jiong)是中文地区网络社群间一种流行的表情符号,像一个人脸郁闷的神情,被赋予“郁闷、悲伤、无奈”之意.如图所示,一张边长为10的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为,x y ,剪去的两个小直角三角形的两直角边长也分别为,x y .(1)用含有,x y 的代数式表示图中“囧”的面积;(2)若2|4|(3)0x y -+-=时,求此时“囧”的面积.19.为了解市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A .非常了解”、“B .了解”、“C .基本了解”、“D .不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为 人,图2中, n = ;(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,求“C.基本了解”所在扇形的圆心角度数;(4)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?20.一个车队共有20辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均相等,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求行驶时车与车的间隔为多少米?(2)若乙在街道一侧的人行道上与车队同向而行,速度为v米/秒,当第一辆车的车头到最后一辆车的车尾经过他身边共用了40秒,求v的值.21.(探索新知)如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)(深入研究)如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.(2)问t为何值时,点M是线段AB的“二倍点”;(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.参考答案1.B【解析】【分析】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答即可. 【详解】解:2的相反数是:﹣2.故选:B.【点睛】本题考查相反数的定义,只有符号不同的两个数叫做互为相反数. 2.B【解析】【分析】根据有理数a、b在数轴上的位置,结合有理数的加、减、乘、除运算法则解答即可. 【详解】A. ∵a<0,b>0,a b,∴a+b>0,故不正确;B. ∵a<0,b>0,∴a﹣b<0,故正确;C. ∵a<0,b>0,∴ab<0,故不正确;D. ∵a<0,b>0,∴ab<0,故不正确;故选B.【点睛】本题考查了数轴,有理数的加、减、乘、除运算法则,熟练掌握有理数的运算法则是解答本题的关键.3.C【解析】【分析】直接利用单项式的次数与系数和多项式的次数、相反数的定义、同类项的定义以及列代数式分别分析得出答案.【详解】A. 多项式m3n−3mn+1是四次三项式,此选项说法正确;B. a的倒数与b的倒数的差,用代数式表示为1a −1b,此选项说法正确;C. 12ax与8bx中所含字母不相同,不是同类项,故此选项错误;D. a−b与b−a互为相反数,此说法正确.故选C.【点睛】此题主要考查了单项式和多项式、相反数、同类项,列代数式,正确掌握相关定义是解题关键.4.D【解析】【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】单项式−3x2y5的系数是−35,次数是3.故选D.【点睛】本题考查了单项式,关键是掌握单项式的相关定义.5.C【解析】【分析】根据直方图的信息即可判断.【详解】由直方图可知:步行人数为60人;故A错误;步行与骑自行车的人数和比坐公共汽车的人相等,故B错误;坐公共汽车的人为150人,占总数的50%,正确;步行人最少,有60人,故D错误故选C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知直方图的信息获取. 6.B【解析】【分析】直接利用度分秒转换法则分别计算得出答案.【详解】A. 47.28°=47°16′48″,正确,不合题意;B. 83.5°=83°30′,故此选项错误,符合题意;C、16°5′24″=16°5.4′=16.09°,正确,不合题意;D、0.25°=15′=900″,正确,不合题意;故选B.此题主要考查了度分秒的换算,正确掌握运算法则是解题关键.7.D【解析】【分析】几折就是商品原价的百分之几十,根据题意设原价为未知数,列等式求解即可. 【详解】设商品的原价为a元,共打x折由题意得:a+12a=2a·10x解得:x=7.5故选D.【点睛】理解打折的意义是解答本题的关键,要学会分析题意列方程式.8.B【解析】【分析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.9.A【分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10.C【解析】【分析】先利用前面三个图形中火柴的根数得到规律,即图形n 值火柴的根数为n×(2n+2),然后计算n=7时的值即可.【详解】图形①中火柴的根数为4=1×4=1×(2×1+2),图形②中火柴的根数为12=2×6=2×(2×2+2),图形③中火柴的根数为24=3×8=3×(2×3+2),所以图形⑦中火柴的根数为7×(2×7+2)=112.故选C .【点睛】本题考查了规律型-图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.91.210⨯元【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将12亿元=1200000000元用科学记数法表示为:1.2×109元.故答案为:1.2×109元.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.-2【解析】【详解】∵22a b -=,∴()6486426422b a a b +-=--=-⨯=-.故答案为-2.13.15°【解析】【分析】首先根据OM 是∠AOB 的平分线,可知∠AOM=∠BOM ,进而得∠AOP-∠POM=∠BOP+∠POM ,又知∠AOP 比∠BOP 大30°,即可求出∠POM 的大小.【详解】∵OM 是∠AOB 的平分线,∴∠AOM=∠BOM ,∴∠AOP-∠POM=∠BOP+∠POM ,∴∠AOP-∠BOP=2∠POM ,∵∠AOP 比∠BOP 大30°,∴2∠POM=30°.∴∠MOP=15°.故答案为:15°.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系,此题难度不大.14.5a ﹣9b【解析】【分析】剪下的上面一个小矩形的长为a ﹣b ,下面一个小矩形的长为a ﹣2b ,宽都是()132a b -,所以这两个小矩形拼成的新矩形的长为a ﹣b+a ﹣2b ,宽为()132a b -,然后计算这个新矩形的周长.【详解】新矩形的周长为 ()()()12[23]592a b a b a b a b .-+-+-=- 故答案为5a ﹣9b .【点睛】 本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a 和b 表示出剪下的两个小矩形的长与宽. 15.①②④【解析】【分析】根据余角和补角定义得出∠β=180°-∠α,∠α的余角是90°-α,分别代入,进行化简,再判断即可.【详解】∵∠α和∠β互补,∴∠β=180°-∠α,∠α的余角是90°-α,∠β-90°=180°-∠α-90°=90°-∠α,12(∠β+∠α)=12×(180°-∠α+∠α)=90°12(∠β-∠α)=12×(180°-∠α-∠α)=90°-∠α, 正确的是①②④,故答案为①②④.【点睛】本题考查了余角和补角的定义,能知道∠α的余角=90°-∠α和∠α的补角=180°-∠α是解此题的关键.16.(1)5-;(2)2ab -【解析】【分析】(1)根据有理数的混合运算法则进行计算即可;(2)去括号后合并同类项即可得解.【详解】(1)()()235368246⎛⎫-⨯-+-÷- ⎪⎝⎭=()35368446⎛⎫⨯-+-÷⎪⎝⎭ =353636246⨯-⨯- =27-30-2=-5;(2)22222342a b ab a b ab a b -+--+=(222222)(34a b a b a b ab ab --++-)=2ab -.【点睛】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.17.(1)4x =-;(2)692x y ⎧⎪⎨⎪⎩==. 【解析】【分析】(1)按照去分母,去括号,移项,合并同类型,系数化为1的步骤计算即可; (2)方程组整理后,利用加减消元法求出解即可.【详解】(1)去分母得:4(2x-1)-3(3x-4)=12,去括号得:8x-4-9x+12=12,移项得:8x-9x=12-12+4,合并同类项得:-x=4,化x 的系数为1得:x=-4;(2)方程组整理得:3436329x y x y +⎧⎨-⎩=①=②, ①-②得:6y=27,即y=92, ②×2+①得:9x=54,即x=6, 则方程组的解为692x y ⎧⎪⎨⎪⎩==. 【点睛】考查解一元一次方程及二元一次方程组,;握解一元一次方程的解题步骤是解决本题的关键;注意去分母时,单独的一个数也要乘各分母的最小公倍数.18.(1)1002xy -;(2)76【解析】【分析】(1)根据图形和题意可以用代数式表示出图中“囧”的面积;(2)根据|x-4|+(y-3)2=0,可以求得x 、y 的值,然后代入(1)中的代数式即可解答本题【详解】(1)由图可得,图中“囧”的面积是:10×10-2xy ×2-xy=100-xy-xy=100-2xy , 即图中“囧”的面积是100-2xy ;(2)∵|x-4|+(y-3)2=0∴x-4=0,y-3=0,解得,x=4,y=3,∴100-2xy=100-2×4×3=100-24=76,即|x-4|+(y-3)2=0时,此时“囧”的面积是76.【点睛】本题考查列代数式、非负数的性质,解答本题的关键是明确题意,写出相应的代数式,求出相应的代数式的值.19.(1)1000,35;(2)画图见解析;(3)72∘;(4)85万人.【解析】【分析】(1)根据C 类的人数和所占的百分比求出调查的总人数,再根据A 类的人数求出A 类所占的百分比,从而求出n 的值;(2)根据求出的总人数和B 类所占的百分比即可求出B 类的人数,从而补全统计图; (3)用360°乘以“C .基本了解”所占的百分比即可;(4)用2018年该市约有的市民乘以“D 不太了解”所占的百分比即可得出答案.【详解】(1)这次调查的市民人数为:20÷20%=1000(人);∵m%=2801000×100%=28%,n%=1-20%-17%-28%=35%,∴n=35;故答案为:1000,35;(2)B 等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360°×20%=72°;故答案为:72;(4)根据题意得:500×17%=85(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有85万人.【点睛】本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.v=.20.(1)车与车的间隔距离为5.4米;(2)5【解析】【分析】(1)首先统一单位,由题意得等量关系:20辆小轿车的总长+20辆车之间的车距=20秒×车的行驶速度,根据等量关系列出方程,再解即可;(2)计算出车队的总长度,再利用总路程为200m得出等式求出答案.【详解】(1)设车与车的间隔距离为x米,x+⨯=⨯,1920 4.872010x=.解得 5.4答:行驶时车与车的间隔为5.4米.(2)车队总长度:20×4.87+5.4×19=200(米),()由题意可知:,-⨯=v1040200解得5v .答:v的值为5..【点睛】此题主要考查了一元一次方程的应用,利用路程、速度、时间之间的关系得出方程是解题关键.21.(1)是;(2)t为103或5或203时;(3)t为7.5或8或607时【解析】【分析】(1)可直接根据“二倍点”的定义进行判断即可;(2)用含t的代数式分别表示出线段AM、BM、AB,然后根据“二倍点”的意义,分类讨论即可得结果;(3)用含t的代数式分别表示出线段AN、NM、AM,然后根据“二倍点”的意义,分类讨论即可.【详解】(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长,所以一条线段的中点是这条线段的“二倍点”,故答案为:是;(2)当AM=2BM时,20﹣2t=2×2t,解得:t=103;当AB=2AM时,20=2×(20﹣2t),解得:t=5;当BM=2AM时,2t=2×(20﹣2t),解得:t=203;答:t为103或5或203时,点M是线段AB的“二倍点”;(3)当AN=2MN时,t=2[t﹣(20﹣2t)],解得:t=8;当AM=2NM时,20﹣2t=2[t﹣(20﹣2t)],解得:t=7.5;当MN=2AM时,t﹣(20﹣2t)=2(20﹣2t),解得:t=607;答:t为7.5或8或607时,点M是线段AN的“二倍点”.【点睛】本题考查了一元一次方程的应用、线段的和差等知识点,题目需根据“二倍点”的定义分类讨论,理解“二倍点”是解决本题的关键.。

沪科版七年级上册数学期末考试试卷带答案

沪科版七年级上册数学期末考试试卷带答案

沪科版七年级上册数学期末考试试题一、单选题1.与8--相等的是()A .2B .8C .2-D .8-2.在数轴上将点A 向右移动10个单位,得到它的相反数,则点A 表示的数为()A .10B .10-C .5-D .53.若关于x 的方程35x m +=与25x m -=有相同的解,则x 的值是()A .3B .4C .4-D .3-4.如图,A 、C 、D 三点在一条直线上,观察图形,下列说法正确的个数是()(1)直线BA 和直线AB 是同一条直线;(2)射线AC 和射线AD 是同一条射线;(3)AB BD AD +>;(4)∠ACD 是一条直线.A .1个B .2个C .3个D .4个5.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是()A .﹣3B .0C .6D .96.一件商品先按成本提高50%标价,再以8折(标价的80%)出售,结果仍获利200元,则这件商品的成本是()A .800元B .1000元C .1600元D .2000元7.一个三位数,它的百位数字是a ,十位数字和个位数字组成的两位数是b ,用代数式表示这个三位数是()A .a b +B .10a b +C .100a b +D .ab8.如图所示的是一个正方体的展开图,把展开图折叠成小正方体,和“民”字一面相对面的字是()A .强B .明C .文D .主9.下列等式变形正确的是()A .若2x =12,则x =1B .若4x ﹣2=2﹣3x ,则4x+3x =2﹣2C .若5(x-1)﹣3=2(x+2),则5x-1﹣2x+2=3D .若311223x x +--=1,则3(3x+1)﹣2(1﹣2x )=610.如图是一个正四面体,现沿它的棱AB 、AC 、AD 剪开展成平面图形,则所得的展开图是()A .B .C .D .11.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是()A .95元B .90元C .85元D .80元12.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入形状、大小完全相同的四个小长方形后得图①、图②,已知大长方形长为a ,大长方形未被覆盖的部分均用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是(用含a 的代数式表示()A .a -B .aC .12a -D .12a二、填空题13.将267368.8万精确到千万位并用科学记数法表示为___________.14.整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌便整整齐齐摆在了一条线上,这其中蕴含的数学道理是_____.15.单项式312ax y 的次数是___________.16.已知方程532x y +=,将其写成用含x 的代数式表示y 的形式为___________.17.已知2=a ,24b =,那么-a b 的值是___________.18.若∠α=48°36′,∠α的补角是∠β的2倍,则∠β=________.三、解答题19.计算()2215243612⎛⎫⎡⎤--⨯--÷- ⎪⎣⎦⎝⎭20.先化简,再求值:()()2232431a ab ab a ---++,其中32a =,2b =-.21.2233236x x x -+-=-.22.解方程组:1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩.23.如图,已知A 、B 、C 、D 、E 五点共线,线段AB 长为20,C 是AB 的中点,E 是DB 的中点,D 是CB 上一点,且7CE =.(1)求CD 的长;(2)若以C 为原点,向右为正方向建立数轴,请根据以上数据,直接写出数轴上A 、B 、D 、E 各点表示的数.24.一车队共有18辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,假定行驶时相邻两车的间隔均相等,小明同学站在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为5.01米.求:行驶时相邻两车之间的间隔为多少米?25.某商场新进一种服装,每套服装售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?26.体育课上,七(1)班男生进行一分钟跳绳测试,以能完成180次为基准,超过的次数用正数表示,不足的次数用负数表示,下表是该班25名男生该次测试成绩统计记录成绩20-13-6-035911人数12465322(1)此次测试中,跳绳次数最多的同学比次数最少的多跳多少次?(2)在这次测试中,25名男生共完成了多少次跳绳?(3)若规定一分钟跳绳次数未达到170次为不达标,达到170~179次为基本达标,达到180次及以上为达标,请统计各层次人数,并选择适当的统计图表示你统计的结果.27.如图,100ACB ∠=︒,直线DE 过C 点,∠ACE 比∠ACD 大22°,90BCF ∠=︒.(1)请根据题意补画出射线CF ;(2)根据所画图形,求∠DCF 的度数.参考答案1.D【分析】计算求解即可.【详解】解:88--=-,故选:D .【点睛】本题考查了绝对值.解题的关键在于熟练掌握绝对值的运算.2.C【分析】设点A 表示的数为a ,则由题意知100a a ++=,计算求解即可.【详解】解:设点A 表示的数为a则由题意知100a a ++=解得5a =-故选C .【点睛】本题考查了数轴上的数的表示,相反数的定义.解题的关键在于明确互为相反数的两个数和为零.3.D【分析】根据两个方程有相同的解,可联立方程组,然后解二元一次方程组即可.【详解】解:联立方程组得3525x m x m +=⎧⎨-=⎩①②,①3-⨯②式得5615m m +=-解得:4m =-,则x=-3故选:D .【点睛】本题考查了方程的解与解二元一次方程组.解题的关键在于熟练掌握方程的解并正确的解方程组.4.C【分析】结合图形,根据直线、射线、两点之间,线段最短和平角的定义逐一进行判断即可.【详解】(1)直线BA 和直线AB 是同一条直线,直线没有端点,此说法正确;(2)射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确;(3)AB+BD >AD ,两点之间,线段最短,所以此说法正确;(4)因∠ACD是一个平角,故错误.所以共有3个正确.故选:C.【点睛】本题考查了直线、射线、线段的概念,属于基础题型,熟练掌握概念是解题关键.5.A【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.6.B【分析】先求得标价,等量关系为:标价×80%=成本+利润,把相关数值代入求解即可.【详解】设这种商品的成本价是x元,x×(1+50%)×80%=x+200,解得x=1000故答案选:B.【点睛】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.7.C【分析】直接利用百位数字乘100,表示出这个三位数即可.【详解】解: 一个三位数,百位数字是a,十位数字和个位数字组成的两位数是b,这个三位数是:100a b+.故选:C.【点睛】本题主要考查了列代数式,正确表示出百位数是解答关键.8.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,和“民”字一面相对面的字是“明”,故B正确.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.D【分析】根据等式的基本性质对各选项进行逐一判断即可.【详解】解:A 中若122x =,则14x =,故本选项错误;B 中若4223x x -=-,则432+2+=x x ,故本选项错误;C 中若()()51322x x --=+,则55243x x ---=,故本选项错误;D 中若3112123x x +--=,则()()3312126x x +--=,故本选项正确;故选:D .【点睛】本题考查了等式的性质.解题的关键在于熟练运用等式的性质对已知的等式进行变形.10.B【分析】亲自动手具体操作,或根据三棱锥的图形特点作答.【详解】沿它的棱AB 、AC 、AD 剪开展开后会以BC 、CD 、BD 向外展开形成如图B 样的图形,故选:B .【点睛】本题考查了几何体的展开图的知识,动手具体操作的同时,注意培养空间想象能力.11.B【详解】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .【点睛】本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.12.C【分析】设小长方形的长为m ,宽为n ,则由①图可知,2n m a +=,2m n =,可得14n a =,12m a =,由②图可知,大长方形的宽为3n ,表示出两个图中阴影部分的周长,计算求解即可.【详解】解:设小长方形的长为m ,宽为n由①图可知,2n m a +=,2m n=∴14n a =,12m a =由②图可知,大长方形的宽为3n∴①图阴影部分周长为()52232222a n n a n a +-=+=②图阴影部分周长为()()22322283a m n n a n n a-+⨯+=-+=∴图①阴影部分周长与图②阴影部分周长的差是51322a a a -=-故选C .【点睛】本题考查了二元一次方程组的几何应用.解题的关键在于表示出小长方形与大长方形的长、宽的数量关系.13.2.67×109【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将267368.8万精确到千万位并用科学记数法表示为:2.67×109.故答案为:2.67×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.两点确定一条直线【分析】根据直线的确定方法,易得答案.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的知识点是直线的性质:两点确定一条直线,解题的关键是熟练的掌握直线的性质:两点确定一条直线.15.5【分析】根据单项式的次数的定义解答.【详解】单项式312ax y 的次数是:1+3+1=5.故答案是:5.【点睛】本题考查了单项式.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.16.5233y x =-+【分析】把方程532x y +=看作关于y 的一元一次方程,然后解一次方程即可.【详解】解:532x y +=移项得:325y x=-系数化为1得:5233y x =-+.故答案为:5233y x =-+.【点睛】本题主要考查方程的基本变形.解题的关键在于熟练运用等式的性质.17.4-或0或4【分析】先根据绝对值和乘方的定义,结合已知条件分别求出a ,b 的值,再代入计算-a b 的值.【详解】解:∵224a b ==,∴22a b =±=±,∴当22a b ==,时,220a b -=-=;当22a b ==-,时.()224a b -=--=;当22a b =-=,时,224a b -=--=-;当22a b =-=-,时,()220a b -=---=故答案为:4-或0或4.【点睛】本题考查了绝对值和乘方的定义,代数式求值.解题的关键在于熟练掌握运算法则.18.65°42′【分析】先根据补角的定义求出∠α的补角,再除以2即可.【详解】解:由补角的定义可知,∠α的补角为:180°-∠α=180°-48°36′=131°24′,∵∠α的补角是∠β的2倍,∴∠β=12∠α=65°42′,故答案为:65°42′.【点睛】此题主要考查了补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.19.-6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:﹣22﹣16×[4﹣(﹣3)2]÷(﹣512)=﹣4﹣16×(4﹣9)×(﹣125)=﹣4﹣16×(﹣5)×(﹣125)=﹣4﹣2=﹣6.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.-2ab-1,5【分析】首先去括号进而合并同类项,再将已知代入求出答案【详解】解:原式=3a 2−6ab +4ab−3a 2−1=−2ab−1,当32a =,b =−2时,原式=−2×32×(−2)−1=6−1=5.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.3x =-【分析】按照解方程的步骤与方法解方程即可.【详解】解:2233236x x x -+-=-,去分母得,3(2)182(23)x x x --=-+去括号得,6318223x x x --=--,移项得,33618x -=--+,合并同类项得,39x -=,系数化为1,3x =-.【点睛】本题考查了一元一次方程的解法,解题关键是熟练运用一元一次方程的解法进行计算.22.51x y ==⎧⎨⎩【分析】整理方程组为一般式,再利用代入消元法求解可得.【详解】()x 1232122y x y +⎧=⎪⎨⎪+-=⎩①②由①得x+1=6y ③将③代入②得:2×6y ﹣y=22解得:y=2把y=2代入③得:x+1=12解得:x=11∴112x y =⎧⎨=⎩.23.(1)4(2)数轴上A 、B 、D 、E 各点表示的数分别为:10,10,4,7-【分析】(1)由线段的中点可表示21CB AC AB ==,12EB DE DB ==,根据线段的数量关系可表示EB CB CE =-,进而对CD CE DE =-计算求解即可;(2)根据以C 为原点,向右为正方向建立数轴,可知C 点表示的数为0,然后根据各线段的长度表示数轴上点即可.(1)解:∵C 是AB 的中点,E 是DB 的中点∴1102CB AC AB ===,12EB DE DB ==∵1073EB CB CE =-=-=∴734CD CE DE =-=-=∴CD 的长为4.(2)解:以C 为原点,向右为正方向建立数轴,则C 点表示的数为0∵10AC =,10CB =,4CD =,7CE =∴01010-=-,01010+=,044+=,077+=∴数轴上A 、B 、D 、E 各点表示的数分别为:10-,10,4,7.24.6.46【分析】设行驶时相邻两车之间的间隔为x 米,根据等量关系式:18辆小轿车之间的间隔+18辆小轿车车身总长=20秒×车的行驶速度,列出方程,再解方程即可.【详解】解:设行驶时相邻两车之间的间隔为x 米,36千米/小时=10米/秒,根据题意得:1718 5.011020x +⨯=⨯,解得: 6.46x =.答:行驶时相邻两车之间的间隔为6.46米.25.原来裤子的单价为200元,原来上衣的单价为800元【详解】试题分析:设裤子原来的单价是x 元,上衣原来的单价是y 元,根据等量关系:(1)裤子+上衣=1000,(2)裤子降价10%后的价钱+上衣涨价5%后的价钱=1000(1+2%),列出方程组即可解得.试题解析:设裤子原来的单价是x 元,上衣原来的单价是y 元,依题意得方程组:1000{(110%)(15%)1000(12%)x y x y +=-++=+,解得:200{800x y ==,答:这套服装原来裤子的单价为200元,原来上衣的单价为800元.点睛:本题主要考查二元一次方程组的应用,分析题意从中找到两个等量关系“(1)裤子+上衣=1000,(2)裤子降价10%后的价钱+上衣涨价5%后的价钱=1000(1+2%)”是解题的关键.26.(1)31(2)4500次(3)见解析【分析】(1)求出这组数据的极差即可;(2)25×180+1×(−20)+2×(−13)+4×(−6)+5×3+3×5+2×9+2×11=4500(次);(3)求出不达标的人数,基本达标的人数,达标的人数,画出条形图即可.(1)解:11−(−20)=31,答:跳绳次数最多的同学比次数最少的多跳31次;(2)25×180+1×(−20)+2×(−13)+4×(−6)+5×3+3×5+2×9+2×11=4500(次),答:25名男生共完成了多少次跳绳4500次.(3)不达标的人数有:3人,基本达标的人数有:4人,达标的人数有:18人,条形图计算如图所示:27.(1)画图见解析;(2)69︒或110︒【分析】(1)根据题意画出射线CF 的两种情况图形;(2)设ACD x ∠=︒,列出方程求出ACD ∠的度数,进而求出BCD ∠的度数,最后根据图形即可求解.(1)解:根据题意画图如下:(2)解:设ACD x ∠=︒,则22ACE x ∠=+()22180x x ++=,解得79x =,1006921∴∠=∠-∠=︒-︒=︒,BCD ACB ACD∴∠=︒-︒=︒或9021111902169DCF∠=︒+︒=︒.DCF。

沪科版初中数学七年级上册期末测试题及答案

沪科版初中数学七年级上册期末测试题及答案

沪科版初中数学七年级上册期末测试题及答案沪科版七年级上学期期末检测题(后附答案)一、精心选一选(每题3分,共30分)1、计算(+2)+(-3)的结果为【】A、+1.B、-1.C、+5.D、-52、如果把高于警戒水位0.1米,记作+0.1米,则低于警戒水位0.2米,记作【】A、+0.2米B、-0.2米C、0.3米D、-0.3米3、数轴上,到表示数3的点距离5个单位长度的点所表示的数是【】A、8.B、2.C、-2.D、8或-24、下列四组数:①1和-1;②-1和-1;③-2/3和1;④-3/2和-1.互为倒数的是【】A、①②。

B、①③。

C、②③。

D、②④5、n个球队进行单循环比赛(参加比赛的任何一只球队都与其他所有的球队各赛一场),总的比赛场数应为【】A、2n。

B、nC、n(n-1)D、6、多项式xy+xy-3是【】A、三次三项式B、四次三项式C、三次二项式D、四次二项式7、方程3x=4-x的解是【】A、x=1B、x=2C、x=3D、x=48、一天,XXX和XXX两位同学一起到饭店吃早餐,XXX买了4个包子、1个麻元,共付2.7元;XXX买了1个包子、3个麻元,共付2.6元.设包子每个x元、麻元每个y 元,则适合x、y的方程组是【】A、{4x+y=2.7.4x-y=2.7.4x+y=2.7(x+y)}B、{3xy=2.6.x-3y=2.6.x+3y=2.6.x+3y=2.6(x+y)}C、{4x+y=2.7.4x-y=2.7.4x+y=2.7(y-x)}D、{3xy=2.6.x-3y=2.6.x+3y=2.6.x+3y=2.6(y-x)}9、下图中,不可能围成正方体的是【】A。

B。

C。

D10、下列统计活动中,比较适合用抽样调查的是【】A、班级同学的体育达标情况B、近五年学校七年级招生的人数C、学生对数学教师的满意程度D、班级同学早自到校情况二、耐心填一填(每题3分,共30分)11、-5=;(-5)2=.12、将+2,-4,-3/2,-0.5,-1,按从小到大的顺序排列为.13、2009年4月,5.12地震重灾区映秀镇灾后恢复重建基本完成,总投入约20亿元人民币,此数据可以用科学计数法表示为元.14、将多项式y-(1/2)x+xy按x的降幂排列为.15、已知一个圆的半径为r,它的周长是2πr,面积是πr2,它的直径是2r.三、综合应用(每题10分,共40分)16、(10分)如图,矩形ABCD的周长为18cm,面积为16cm2,点E、F分别在边AB、CD上,且AE=DF.连接线段EF,使其交对角线AC于点G.求线段EG的长.17、(10分)某市有甲、乙两家医院,为了解两家医院的医疗水平,市卫生局对某种疾病的治愈率进行了调查.抽取了100名患者,其中在甲医院治疗的有60人,治愈了42人;在乙医院治疗的有40人,治愈了28人.1)甲医院的治愈率是多少?2)乙医院的治愈率是多少?3)甲、乙两家医院的治愈率哪家更高?18、(10分)如图,已知四边形ABCD是正方形,点E、F分别在边AD、BC上,且AE=BF,连接线段EF,交对角线AC于点G.若AG=3cm,求线段EF的长.19、(10分)如图,在△ABC中,点D、E分别在边AB、BC上,且XXX=5cm,AC=12cm,BD=3cm,求CE的长.答案:一、1.D 2.B 3.C 4.B 5.C 6.C 7.A 8.B 9.B 10.C二、11.-1;25 12.-4,-3/2,-1,-0.5,+2 13.2×101014.xy+y-(1/2)x 15.略三、16.3cm 17.(1)70% (2)70% (3)相同 18.2.5cm19.9cm15、单项式的系数是a,次数是n。

沪科版七年级上册数学期末考试试卷带答案

沪科版七年级上册数学期末考试试卷带答案

沪科版七年级上册数学期末考试试题一、单选题1.已知方程组224x y kx y +=⎧⎨+=⎩的解满足2x y +=,则k 的值为( )A .2-B .4-C .2D .4 2.3的相反数为( )A .﹣3B .﹣13C .13D .33.根据等式的性质,下列变形正确的是( )A .由-13x =23y ,得x =2y B .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-5 4.若3a x y 与b x y 是同类项,则a b +的值为( ) A .2 B .3 C .4 D .5 5.如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .12∠BAC=∠BAM B .∠BAM=∠CAM C .∠BAM=2∠CAM D .2∠CAM=∠BAC6.若4a =,2=b ,且a b +的绝对值与它的相反数相等,则a b +的值是( ) A .2- B .6- C .2-或6- D .2或67.若1∠与2∠互为余角,1∠与3∠互为补角,则下列结论:∠3290∠-∠=︒;∠3227021∠+∠=︒-∠;∠3122∠-∠=∠;∠312∠<∠+∠.其中正确的有( )A .4个B .3个C .2个D .1个 8.某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.9.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则202120222018a b c++的值为()A.2017 B.2018 C.2019 D.010.将大小相同的小圆按如图所示的规律摆放:第∠个图形有5个小圆,第∠个图形有10个小圆,第∠个图形有17个小圆,…依此规律,第∠个图形的小圆个数是()A.65 B.60 C.55 D.5011.如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为()A.3 B.4 C.6 D.812.七年级(1)班同学在研学旅行时乘坐观光车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,请问此次旅行共有多少人,多少辆车?设共有x人,可列方程()A.9232x x-+=B.()3229x x+=-C.9232x x+-=D.()3229x x-=+二、填空题13.若x是非负数,则x______0(填“>,≥,<,≤,=”中的一个).14.如图是某班全班40名学生一次数学测验分数段统计图,根据统计图所提供的信息计算优良率(分数80分以上包括80分的为优良)为______(填入百分数).15.为了解神舟飞船的设备零件的质量情况,选择抽样调查的方式是否合理______(填是或否).16.数轴上A ,B 两点分别为﹣10和90,两只蚂蚁分别从A ,B 两点出发,分别以每秒钟3个单位长和每秒钟2个单位长的速度匀速相向而行,经过________秒,两只蚂蚁相距20个单位长.17.如图,一个长方形的长为a ,宽为b ,将它剪去一个正方形∠,然后从剩余的长方形中再剪去一个正方形∠,最后剩下长方形∠.请用含a 、b 的代数式表示: (1)正方形∠的边长为______________. (2)长方形∠的面积为______________.18.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列以及各条对角线上的三个数字之和均相等,则图中a 的值为______.19.有一数值转换器,原理如图所示,若开始输入x 的值是3,则第1次输出的结果是8,第2次输出的结果是4,第3次输出的结果是2,依次继续下去…,第2020次输出的结果是_______________________.三、解答题 20.(1)()22022911332125⎛⎫⎛⎫-+-÷-+--⨯- ⎪ ⎪⎝⎭⎝⎭;(2)先化简,再求值:222233232m mn m mn mn mn ⎡⎤⎛⎫-+-++ ⎪⎢⎥⎝⎭⎣⎦,其中4m =-,1n =. 21.已知:如图,点C 是线段AB 的中点,2cm CD =,8cm BD =,求AD 的长.22.如图,将两块直角三角尺的顶点叠放在一起. (1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数; (3)猜想∠ACB 与∠DCE 的关系,并说明理由.23.已知:如图∠,60AOB ∠=︒,40COD ∠=︒,OB 与OC 重合,OP 平分AOC ∠,OQ 平分BOD ∠.(1)POQ ∠=______(2)将COD ∠绕着点O 逆时针方向旋转,使()0180BOC ∠αα=≤<︒,当80α=︒时,如图∠,求POQ ∠的度数.24.某中学七年级一班学生去商场购买了A 品牌足球1个、B 品牌足球2个,共花费210元,七年级二班同学在同一商场购买了A 品牌足球3个、B 品牌足球1个,共花费230元. (1)求A ,B 两种品牌足球的价格各为多少元?(2)为响应“足球进校园”的号召,学校使用专项经费1500元全部用来购买A ,B 两种品牌的足球供学生使用(要求两种足球都必须购买,专项经费必须用完),那么学校有多少种不同的购买方案?请分别求出每种方案购买A ,B 两种品牌足球的个数. 25.已知线段15cm AB =,点C 在线段AB 上,且:3:2AC CB =.(1)求线段AC ,CB 的长;(2)点P 是线段AB 上的动点且不与点A ,B ,C 重合,线段AP 的中点为M ,设cm AP m ∠请用含有m 的代数式表示线段PC ,MC 的长;∠若三个点M ,P ,C 中恰有一点是其它两点所连线段的中点,则称M ,P ,C 三点为“共谐点”,请直接写出使得M ,P ,C 三点为“共谐点”的m 的值.26.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市宣传环保部门为了提高实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A 为可回收物,B 为厨余垃圾,C 为有害垃圾,D 为其它垃圾)根据统计图提供的信息,解答下列问题:(1)在这次抽样调查中,一共有 吨的生活垃圾; (2)请将条形统计图补充完整;(3)扇形统计图中,B 所对应的百分比是 ,D 所对应的圆心角度数是 ; (4)假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾多少吨?27.《孙子算经》是一本十分著名的中国古代数学典籍.其中有这样一道题.原文如下:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.间:木长几何?大意为:用一根绳子去量根长木,绳子还剩余4.5 尺,将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?请用方程(组)解答上述问题.参考答案1.C2.A3.B4.C5.C6.C7.B8.A9.D10.D11.B12.A13.≥14.75%15.否16.16或2417.-a b22--ab a b32【分析】(1)正方形∠的边长为=大长方形的长−正方形∠的边长.(2)长方形∠的面积=大长方形的面积−正方形∠的面积-正方形∠的面积.【详解】解:(1)如图所示,正方形∠的边长为a−b.(2)如图所示,长方形∠的面积=大长方形的面积−正方形∠的面积-正方形∠的面积=ab−2b-(a−b)(a−b)=3ab−a2−2b2.故答案是:a−b;3ab−a2−2b2.【点睛】本题考查了列代数式,解题的关键是掌握图中三个矩形的边长间的数量关系.18.-2【分析】先计算出行的和,得各行各列以及对角线上的三个数字之和均为-6,则-6+a+2=-6,即可得.【详解】解:∠-1+0+(-5)=-6,∠-6+a+2=-6, 解得:a=-2, 故答案为:-2.【点睛】本题考查了有理数的加减,解题的关键是理解题意和掌握有理数的加减. 19.1【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果. 【详解】解:由题意可得, 当x=3时,第1次输出的结果是8, 第2次输出的结果是4, 第3次输出的结果是2, 第4次输出的结果是1, 第5次输出的结果是6, 第6次输出的结果是3, 第7次输出的结果是8, 第8次输出的结果是4, 第9次输出的结果是2, 第10次输出的结果是1, …,从第7次输出的结果开始,每次输出的结果分别是8,4,2,1,6,3,…,每6个数一个循环. 所以2020÷6=336…4,所以2020次输出的结果是1. 故答案为:1.20.(1)1; (2)22mn mn +,−12【分析】(1)先算乘方和绝对值,再算乘除,最后计算加法;(2)先去小括号,合并同类项后再去大括号,最后合并同类项即得化简的式子,再把m 与n 的值代入即可求得原式的值. 【详解】(1)()22022911332125⎛⎫⎛⎫-+-÷-+--⨯- ⎪ ⎪⎝⎭⎝⎭2419595⎛⎫=-+⨯-+⨯ ⎪⎝⎭1(2)4=-+-+1=(2)222233232m mn m mn mn mn ⎡⎤⎛⎫-+-++⎪⎢⎥⎝⎭⎣⎦22223(32)3m mn m mn mn mn =-+-++22223(3)3m mn m mn mn =-+-+2222333m mn m mn mn =--++22mn mn =+当4m =-,1n =时,原式22(4)1(4)112=⨯-⨯+-⨯=-21.12cm【分析】由已知可得AC=CB=10cm ,则由AD=AC+CD 可求得结果. 【详解】∠点C 是线段AB 的中点,2cm CD =,8cm BD = ∠AC=CB=CD+BD=2+8=10(cm) ∠AD=AC+CD=10+2=12(cm)【点睛】本题考查了线段中点的含义,线段的和运算,掌握这两个知识点是关键. 22.(1)145°;(2)40°;(3)∠ACB 与∠DCE 互补,理由见解析. 【详解】解:(1)∠∠ACD=∠ECB=90°, ∠∠ACB=180°-35°=145°. (2)∠∠ACD=∠ECB=90°, ∠∠DCE=180°-140°=40°.(3)∠∠ACE+∠ECD+∠DCB+∠ECD=180. ∠∠ACE+∠ECD+∠DCB=∠ACB ,∠∠ACB+∠DCE=180°,即∠ACB 与∠DCE 互补. 23.(1)50° (2)50°【分析】(1)由角平分线的性质及角的和差关系即可求得结果;(2)由角平分线的性质可得∠AOP 及∠BOQ 的度数,从而由角的和差关系可求得结果.(1)解:∠OP 平分AOC ∠,OQ 平分BOD ∠, ∠11603022BOP AOB ∠=∠==︒⨯︒,11402022BOQ COD ∠=∠=⨯︒=︒, ∠302050POQ BOP BOQ ∠=∠+∠=︒+︒=︒, 故答案为:50°; (2)解:∠∠AOB+∠BOC+∠COD=60°+80°+40°=180°, ∠AOC=∠AOB+∠BOC=60°+80°=140°, ∠180********BOD AOB ∠=︒-∠=︒-︒=︒, ∠OP 平分AOC ∠,OQ 平分BOD ∠,∠111407022AOP AOC ∠=∠=⨯︒=︒,111206022BOQ BOD ∠=∠=⨯︒=︒,∠60607050POQ AOB BOQ AOP ∠=∠+∠-∠=︒+︒-︒=︒.24.(1)A 种品牌足球的价格50元,B 种品牌足球的价格80元;(2)学校有3种购买足球的方案,方案一:购买A 品牌足球22个、B 品牌足球5个;方案二:购买A 品牌足球14个、B 品牌足球10个;方案三:购买A 品牌足球6个、B 品牌足球15个.【分析】(1)设A 种品牌的足球价格为x 元,B 种品牌的足球价格为y 元,根据等量关系“购买A 品牌足球1个、B 品牌足球2个,共花费210元;购买A 品牌足球3个、B 品牌足球1个,共花费230元”,列出二元一次方程组并求解即可;(2)设购买A 品牌足球m 个,购买B 品牌足球n 个,根据总价=单价×数量,列出m 、n 的二元一次方程,求出正整数解即可.【详解】解:(1)设A 种品牌足球的价格为x 元,B 种品牌足球的价格为y 元, 依题意得:22103230x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:A 种品牌足球的价格50元,B 种品牌足球的价格80元; (2)设购买A 品牌足球m 个,购买B 品牌足球n 个, 根据题意得:50m +80n =1500, 即5m +8n =150, ∠m 、n 均为正整数,∠225m n =⎧⎨=⎩或1410m n =⎧⎨=⎩或615m n =⎧⎨=⎩,则学校有3种购买足球的方案,方案一:购买A 品牌足球22个、B 品牌足球5个; 方案二:购买A 品牌足球14个、B 品牌足球10个; 方案三:购买A 品牌足球6个、B 品牌足球15个.【点睛】本题主要考查了二元一次方程、二元一次方程组的应用,审清题意、找准等量关系,列出二元一次方程和二元一次方程组成为解答本题的关键. 25.(1)AC=9cm ,CB=6cm(2)∠(9)cm PC m =-或(9)cm m -,19cm 2MC m ⎛⎫=- ⎪⎝⎭;∠6或12【分析】(1)由:3:2AC CB =可得35AC AB =,25CB AB =,从而可求得AC 、CB 的长;(2)∠分点P 在线段AC 上和点P 在线段CB 上两种情况分别计算即可; ∠分点P 在线段AC 上和点P 在线段CB 上两种情况列方程,可求得m 的值. (1)∠15cm AB =,点C 在线段AB 上,且:3:2AC CB = ∠33159(cm)55AC AB ==⨯=,22156(cm)55CB AB ==⨯= (2)∠M 为线段AP 的中点 ∠11cm 22AM MP AP m === ∠当点P 在线段AC 上时(9)cm PC AC AP m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭当点P 在线段CB 上时(9)cm PC AP AC m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭∠当点P 在线段AC 上时,则MP=PC ∠192m m =- 解得:m=6当点P 在线段CB 上时,则MC=PC∠199 2m m-=-解得:m=12综上所述,m=6或12【点睛】本题考查了求线段长度,线段中点的意义及线段的和差,掌握线段中点的意义、线段的和差是解题的关键.注意(2)小题要分类讨论.26.(1)50;(2)详见解析;(3)30%,36°;(4)500吨【分析】(1)从两个统计图中可得到“A可回收垃圾”的有27吨,占垃圾数量的54%,可求出调查的垃圾数量;(2)求出“B餐厨垃圾的吨数,即可补全条形统计图;(3)B餐厨垃圾的15吨占垃圾数量50吨的百分比即可,D有害垃圾占550,因此圆心角占360°的550即可;(4)样本估计总体,样本中喜欢“D有害垃圾”的占550,因此估计5000吨的550是“有害垃圾”的吨数.【详解】(1)27÷54%=50吨,故答案为:50,(2)50﹣27﹣3﹣5=15吨,补全条形统计图如图所示:(3)15÷50=30%,360°×550=36°,故答案为:30%,36°,(4)5000×550=500吨,答:该城市每月产生的5000吨生活垃圾中有害垃圾500吨.【点睛】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题,样本估计总体是统计中常用的方法.27.6.5尺【分析】设木头长x尺,则绳子长(x+4.5)尺,根据“将绳子对折再量木条,木头剩余1尺”,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设木头长x尺,则绳子长(x+4.5)尺,根据题意得:x−12(x+4.5)=1,解得x=6.5.答:木头长6.5尺.。

2016-2017年上海市七年级上学期期末考试数学试卷

2016-2017年上海市七年级上学期期末考试数学试卷

2016学年第一学期七年级数学期终考试试卷2017.1(考试时间90分钟,满分100分)一、填空题(本大题共14题,每题2分,满分28分)1.单项式542ba -的系数是_____________.2.计算:=--22)(y x _____________________. 3.分解因式:=--22145y xy x _____________. 4.计算:=÷n na a392_____________.(其中n 为整数) 5.计算:=÷-+2432)21()456x x x x (_____________.6.当=x _________时,分式3212-+-x x x 值为零.7.计算:=-⋅-223)(39)(2y x a bc c y x a _____________. 8.计算:=---22442x x x _____________.9.把32)(2b a x -化成不含分母的式子:____________________. 10.如果方程23222-=-+-x xx k x 会产生增根,那么=k _____________. 11.分解因式:=--29n ny y _____________.(其中n ≥2且n 为整数.)12.如图,将周长为8厘米的三角形ABC 沿射线BC 方向平移1厘米后得到三角形DEF ,那 么四边形ABFD 的周长等于________厘米.第12题图 第13题图13.如图,已知正方形OPQR 的顶点O 是正方形ABCD 的对角线AC 与BD 的交点,正方形 OPQR 绕点O 逆时针旋转一定角度后,三角形OPR 能与三角形OBC 重合.已知︒=∠55BOR , 那么旋转角等于________°.14.已知512=+a a ,那么=++1242a a a ________.二、选择题(本大题共4题,每题3分,满分12分) 15.如果分式yx xy-中的x 、y 的值同时扩大到原来的3倍,那么所得新分式的值( ). (A )保持不变; (B )是原分式值的3倍; (C )是原分式值的6倍; (D )是原分式值的9倍. 16.将5-102.47⨯用科学记数法表示,结果正确的是( ).(A )000472.0; (B )-41072.4⨯; (C )-61072.4⨯; (D )-310472⨯.. 17.下列图形中对称轴的条数最少的是( ).(A )正五边形; (B )等边三角形; (C )正方形; (D )长宽不等的长方形. 18.一件商品的成本为a 元,售价b 元,实际因促销活动打九折后出售(仍可盈利),那么该商品的盈利率是( ). (A )%10090⨯-a a b )(; (B )%1009.0⨯-aa b ; (C )%1009.0⨯-b a b ; (D )%100⨯-aab .三、简答题(本大题共6题,每题6分,满分36分)19.计算:()()a a 2121--+-. 20.分解因式:3212123a a a +-.解: 解:21.分解因式:xy x y x 215652--+. 22.计算:24)44822(2+-÷+++-+-a a a a a a a . 解: 解:23.解方程:. 24、计算.32020162-3220161)()()(+--π-+---. 解: 解:四、解答题(本大题共3题,第25题7分,第26题7分,第27题10分,满分24分)25.作图题(保留作图痕迹,不必写出画法)(1)将点A向右平移3个单位可到达点B,再向上平移2个单位可到达点C,标出点B、点C,并联结AB、BC和AC.(2)在方格图中分别画出三角形A1B1C1和三角形A2B2C2,使三角形A1B1C1和三角形ABC关于直线MN成轴对称;三角形A2B2C2和三角形ABC关于点O成中心对称.(3)三角形A1B1C1和三角形A2B2C2有没有对称关系?如果有,成怎样的对称关系?解:26.甲、乙两名同学各在电脑上输入1500个汉字,乙的输入速度是甲的3倍,因此比甲少用20分钟完成任务,那么它们两个平均每分钟各输入多少个汉字?解:27.如图,将直角三角形ABC (︒=∠90BAC )经过平移、旋转、翻折三种运动中的一种或多于一种运动后,得到三角形DCE ,其中点D 、点C 、点E 分别是点A 、点B 、点C 的对应点,且A 、C 、D 三点在同一直线上.联结BE ,得到四边形ABED .已知︒=∠37ABC ,︒=∠53ACB . (1)直角三角形ABC (︒=∠90BAC )如何经过一种或几种运动后得到三角形DCE ?请写出具体的运动过程 .(可能有多种方法,只要写出一种方法即可) (2)三角形BCE 是个怎样的三角形?请简单说明理由 . (3)已知AB =8,四边形ABED 的面积为98,求CE 的长.A第27题图2016学年第一学期七年级数学学科期终试卷参考答案及评分标准一、填空题(本大题共14题,每题2分,满分28分)1.45;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14..二、选择题(本大题共4题,每题3分,满分12分)15.B;16.B;17.D;18.B.三、简答题(本大题共6题,每题6分,满分36分)19、计算:.解:原式=.4分=.2分20、分解因式:.解:原式=3分=.3分21、分解因式:.解:原式=2分=2分=.2分22、计算:解:原式= 1分= 1分= 1分= 1分= 1分=.1分23、解方程:解:……………………………………………………………………1分x(x-2)+x(x+3)=2(x+3)(x-2)……………………………………………………1分x2-2x+x2+3x=2(x2+x-6)……………………………………………………1分2x2+x=2x2+2x-12……………………………………………………1分x=2x-12x=12………………………………………………………………1分经检验,x=12是原方程的解。

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .2128x y =⎧⎨=⎩ B .98x y =⎧⎨=⎩ C .714x y =⎧⎨=⎩ D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示( )A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损 3.数据274.8万用科学记数法表示为( )A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯ 4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-6.下列计算结果正确的是( )A .22321x x -=B .235325x x x +=C .22330x y yx -= D .44x y xy += 7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为( )A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB ,点Q 为PB 中点,则线段AQ 的长为( ) A .6 B .8 C .10 D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为( )A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为( )A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______. 13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____ .14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+; (2)()411582733-+-+÷-⨯19.解方程(组): (1)121134x x ++=- (2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA※OB 于点O ,※AOD :※BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分※BOE ,求※COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠. (1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a -b .15.15042'16.x -2=0(答案不唯一)17.65618.(1)20 (2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2) 解:()411582733-+-+÷-⨯ 11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭ ()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可; (2)用加减消元法解方程组即可.(1) 解:121134x x ++=- 去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2) 解:27320x y x y -=⎧⎨+=⎩①② 2⨯+①②得714x =解得2x =把2x =代入※得47y -=解得3y =-※原方程组的解为23x y =⎧⎨=-⎩ 【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键. 20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+ ()2211122a a a =-+, 2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解※BOD 的度数,即可求得※BOE 的度数,再利用角平分线的定义可求得※BOC 的度数,进而可求解※COD 的度数.【详解】解:※OA※OB ,※※AOB =90°,※※AOD :※BOD =7:2,※※BOD =29※AOB =20°,※※BOE =180°﹣※BOD =160°.※OC 平分※BOE ,※※BOC =12※BOE =80°, ※※COD =※BOC+※BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出※BOD 的度数是解题的关键. 22.52x y =⎧⎨=⎩;23. 【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入※,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①② ※-※得x−3y =−1※联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩, 代入※,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案. 23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可; (3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,※文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,※购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解: ※ 当x =10时,6x +16=6×10+16=76(元),※ 文文在甲超市购买10kg 苹果需付费76元;※ 10×10×0.8=80(元),※文文在乙超市购买10kg 苹果需付费80元;※文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,※该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502x yx y+=⎧⎨=-⎩,解得:2426xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出※NOB 和※MOB,相加即可求得※MON, (2)由角平分线分别表示出※MOD 和※NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为※MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可, (3)同(2)由角平分线分别表示出※MOD 和※NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为※MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可, 【详解】(1)※OM 平分AOD ∠,ON 平分COB ∠. ※※NOB=12※COB=22.5°, ※MOB=12※AOD=30°, ※MON ∠=※NOB+※MOB=22.5°+30°=52.5°,(2)※OM 平分AOD ∠,ON 平分COB ∠. ※※MOD=12※AOD,※NOB 12※COB , ※1122MON AOD COB BOD ∠=∠+∠+∠, ()122AOD COB BOD =∠+∠+∠, ()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,, (3)※OM 平分AOD ∠,ON 平分COB ∠. ※※MOD=12※AOD,※NOB=12※COB , ※1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠, ()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。

沪科版七年级上册数学期末测试卷及含答案

沪科版七年级上册数学期末测试卷及含答案

沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、近似数0.402的有效数字的个数和精确度分别是( )A.3个;精确到千位B.3个;精确到百分位C.3个;精确到千分位 D.2个;精确到千分位2、下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个B.3个C.4个D.5个3、在x2y,- ,-8x+4y,ab四个代数式中,单项式有()A.1个B.2个C.3个D.4个4、下列方程中,解为x=2的方程是()A.x﹣3=﹣1B.C.D.5、下列式子中,代数式书写规范的是()A.a•3B.2ab 2cC.D.a×b÷c6、下列运算中,计算结果正确的是()A.a 2•a 3=a 6B.(a 2)3=a 5C.a 3+a 3=2a 3D.(a 2b)2=a 2b 27、已知与是同类项,那么()A. B. C. D.8、一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×10 5B.31.8×10 5C.318×10 4D.3.18×10 49、某县一天中午的温度是15℃,夜间九点下降了17℃,则这天夜间九点的温度是()A.﹣2℃B.8℃C.12℃D.18℃10、如果关于x,y的方程组的解是二元一次方程3x+2y=14的一个解,那么m的值( )A.1B.-1C.2D.-211、合格为了让学生更好地树立“安全第一,预防为主”的思想,河图中心学校开展了“2015秋季校园安全知识竞赛”活动,若该知识竞赛的成绩分为A (优秀),B(良好),C(合格),D(不合格)四个等级,王老师从中抽取若干名学生的成绩进行统计,并将统计结果绘制成如图所示的扇形统计图,若成绩为良好的学生比不合格的多5名,则成绩优秀的学生比合格的()A.多5名B.少5名C.多10名D.少10名12、下列运算正确的是()A. B. C. D.13、下列关于有理数的加法说法错误的是()A.同号两数相加,取相同的符号,并把绝对值相加B.异号两数相加,绝对值相等时和为0C.互为相反数的两数相加得0D.绝对值不等时,取绝对值较小的数的符号作为和的符号14、下列运算正确的是()A. B. C. D.15、已知二元一次方程组的解是,则括号上的方程可能是()A.y﹣4x=﹣5B.2x﹣3y=﹣13C.y=2x+5D.x=y﹣1二、填空题(共10题,共计30分)16、若﹣x m+3y与2x4y n﹣3是同类项,则(m+n)2019=________.17、图l是某小区新设置的一款健身器材——双人漫步机,图2是其侧面示意图.在ABC中,AB=AC,∠DAB:∠BAC=9:4,∠B+∠BAC=110°,则∠DAC度数为________.18、﹣2006的倒数是________,的立方根是________,﹣2的绝对值是________19、如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,则这个“”图案的周长可表示为________.20、如果收入10万元记作万元,那么支出4万元记作________.21、分别输入﹣1,﹣2,按图所示的程序运算,则输出的结果依次是________、________.22、新定义运算:对任何有理数a,b, 都有, 例如,那么________.23、如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=________.24、用“⊗”定义新运算:对于任意实数a、b,都有a⊗b=b2+1,例如:7⊗4=42+1=17,那么2015⊗3=________;当m为实数时,m⊗(m⊗2)=________.25、一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A 厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.三、解答题(共5题,共计25分)26、已知x=2+ ,求代数式的值.27、已知m,n互为相反数,且,p,q互为倒数,数轴上表示数的点距原点的距离恰为个单位长度。

沪科版七年级上册数学期末测试卷及含答案

沪科版七年级上册数学期末测试卷及含答案

沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列合并同类项中,正确的是()A.3x+2y=6xyB.2a 2+3a 3=5a 3C.3mn﹣3nm=0D.7x﹣5x=22、下列说法中,正确的是()A.若a≠b,则a 2≠b 2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b3、在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,……,这样依次得到点A1, A2, A3,…,An.若点A1的坐标为(3,1),则点A2020的坐标为()A.(-3,1)B.(0,-2)C.(3,1)D.(0,4)4、从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的标准差就越大C.样本容量越小,样本平均标准差就越大D.样本容量越大,对总体的估计就越准确5、下列各式是一元一次方程的是()A. B. C. D.6、下列计算正确的是()A. B. C. D.7、下列运算正确的是()A.a 3﹣a 2=aB.(a 2)3=a 5C.a 4•a=a 5D.3x+5y=8xy8、与﹣1的和等于零的数是()A.﹣1B.0C.1D.9、-17的相反数是()A.17B.-17C.D.-10、已知线段AB,以下作图不可能的是()A.在AB上取一点C,使AC=BCB.在AB的延长线上取一点C,使BC=AB C.在BA的延长线上取一点C,使BC=AB D.在BA的延长线上取一点C,使BC=2AB11、的相反数是()A. B.-6 C.6 D.12、在图中,互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…,则第⑥个图形中平行四边形的个数为()个.A.41B.110C.19D.10913、如果与是同类项,那么的值是()A.4B.3C.2D.114、下列方程中,是一元一次方程的是()A. B. C. D.15、定义“*”的运算规则为:a*b=ab+2a,若(3* x)+(x* 3)=14, 则x=( )A.-1B.1C.-2D.2二、填空题(共10题,共计30分)16、规定:,,若m是最小的质数,n是大于100的最小的合数,则________,________;17、若一种零件的直径尺寸为mm.则该种零件的最大直径为________mm,最小直径________mm.18、|x﹣3|+|y+5|=0则x+y=________.19、如图,在第1个中,,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个,…按此做法继续下去,第2021个三角形的底角度数是________.20、将有理数0,,2.7,﹣4,0.14用“<”号连接起来应为________.21、定义:为不为1的有理数,我们把称为的差倒数.如:2的差倒数是,-1的差倒数是.已知, 是的差倒数, 是的差倒数, 是的差倒数,…,以此类推,则________.22、二次函数y=x2的图象如图,点A0位于坐标原点,点A1, A2, A3…An在y轴的正半轴上,点B1, B2, B3…Bn在二次函数位于第一象限的图象上,点C 1, C2, C3…∁n在二次函数位于第二象限的图象上,四边形AB1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAn∁n都是正方形,则正方形An﹣1BnAn∁n的周长为________.23、一组按规律排列的式子:,,,-,,…,其中第7个式子是________,第n个式子是________(用含的n式子表示,n为正整数).24、若x b y4与﹣5x3y4a是同类项,则a﹣b=________.25、已知和的图象交于点,那么关于的二元一次方程组的解是________.三、解答题(共5题,共计25分)26、先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b﹣1),其中a= ,b=1.27、解方程:(1)4x﹣3(5﹣x)=6;(2).28、已知时钟在5点到6点之间,分析时钟的时针与分针成直角时的时间可能是几点几分?29、数、、在数轴上的位置如图所示,化简:.30、在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a、b、c的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、B6、D7、C8、C10、C11、D12、A13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

2016-2017学年沪科版蚌埠市七年级上期末数学试题含答案

2016-2017学年沪科版蚌埠市七年级上期末数学试题含答案

蚌埠市2016-2017学年度第一学期期末教学质量监测七年级数学(沪科版)考试时间:90分钟满分:120分一、精心选一选:(本大题共10小题,每小题3分,共30分,在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的,请将正确答案的字母代号填在题后的括号内)1.-2的绝对值是【】A.一2 B.2 c.±2 D.122. 8362万用科学记数法表示为【】A. 8. 362×l07B. 83. 62×l05C. 0. 8362×l07D. 8. 362×l05 3.若单项式3x3y2n与单项式6x3y m-2n的和是9x3y2n,则m与n的关系是【】A.m=n B.m =4n, C.m=3n, D.不能确定p对应的点是【】4.如图,数轴上点P对应的数为p,则数轴上与数一2A.点4 B.点B C.点C D.点D5.数a增加9. 6%后再增加10%的结果是【】A. a(1+9.6%+10%)B. a(1+9.6% xl0%)C. a(1+9.6%)(1+10%)D. a(1+9.6%)2(1+10%)6. 已知∠A =55°34',则∠A的余角等于【】A. 44 °26'B. 44 °56'C. 34 °56'D. 34 °26'7. 37058精确到百位的近似数是【】A. 3. 71×l04B.3. 70×l05C.3. 70×l04D. 3708.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,则不同的截取结果的种数为【】 A.1 B.2 C.3 D.49.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形统计图表示上述分布情况,已知来自甲地区的有180人,则下列说法不正确的是【】A.扇形甲的中心角为72°B.学生的总人数是900人C.丙地区人数比乙地区人数多180人D.甲地区人数比丙地区人数少180人10.观察图中正方形四个顶点所标的数字规律,可知,数2017应标在【】A.第504个正方形的左下角 B.第504个正方形的右下角C.第505个正方形的右上角 D.第505个正方形的右下角二、耐心填一填:(本大题共8小题,每小题3分,共24分,请将答案直接填在题中的横线上).11.单项式225x y 的系数是 . 12.当m=____时,多项式3x 2 +2xy+ y 2一mx 2中不含x 2项.13.已知x=l 是关于x 的方程a (x+2)=a+x 的解,则a 的值是____14.定义a ≠b=a b —1,则(0*2)*2017=____.15.如果代数式 -2a 2 +3b -8的值为1,那么代数式4a 2—6b-8的值等于16.已知|m| =4,|n| =6,且|m+n|=m+n ,则m-n 的值是____.17.已知线段AB=60,点C 为线段AB 的中点,点D 为射线CB 上的一点,E 点为线段BD 的中点,且线段EB =5,则线段CD=____.18.冬冬原计划骑车以每小时12千米的速度从家到博物馆,刚好在规定时间到达,但他因临时有事耽误了20分钟才出发,只好以每小时15千米的速度前进,结果在规定时间前4分钟到达,则冬冬家相距博物馆____千米.三、用心想一想:(本大题是解答题,共6题,计66分)19.(本题共两题,共12分)(1) -14-2÷17×[2-(-3)2](2)先化简再求值:-2(3a 2-ab +2)- (5ab -4a 2) +4,其中a=2,6=-1.20.解方程(组)(本题共两小题,共10分)(1) 2121126x x -+-= (2) 3411042x y x y +=⎧⎪⎨+=⎪⎩ 21.(本题满分10分)已知关于x ,y 的方程组2332142x y x y x my nx y +=-=⎧⎧⎨⎨-=-=⎩⎩与的解相同,求mn 的值. 22.(本小题满分10分)某超市举行店庆活动,对A 、B 两种商品实行打折出售,打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元,而店庆期间,购买50件A 商品和50件B 商品仅需960元,这比不打折少花多少钱?23.(本小题满分12分)某校调查部分学生是否知道母亲生日,绘制了如下扇形统计图和条形统计图,请根据图中信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有5400名学生,请你估计这所学校有多少名学生知道母亲的生日?24.(本小题满分12分)如图所示,O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC.(1)如图1,若∠AOC= 30°,求∠DOE 的度数;(2)在图1中,若∠AOC =α,直接写出∠DOE 的度数____(用含α的代数式表示);(3)若∠DOC 位置如图2所示,①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,满足∠AOC -4∠AOF =2∠BOE+∠AOF,试确定∠AOF 与∠DOE的度数之间的关系,说明理由.2020-2-8。

沪科版七年级上册数学期末考试试题含答案

沪科版七年级上册数学期末考试试题含答案

沪科版七年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列各数:3-,π,3.14,22,()01-中,有理数有( )A .1个B .2个C .3个D .4个 2.当5x y -=时,5x y -+等于( )A .0B .1C .2D .33.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )千克.A .8510⨯B .9510⨯C .10510⨯D .850010⨯4.若单项式22m x y 与33n x y -是同类项,则n m 的值为( )A .9B .8C .6D .55.若2818A ∠=︒',2815B ''∠=︒,28.25C ∠=︒,则有( )A .ABC >>∠∠∠B .B AC ∠>∠>∠ C .A C B ∠>∠>∠D .C A B ∠>∠>∠6.已知点A 、B 、C 都是直线l 上的点,且6cm AB =,3cm BC =,那么点A 与点C 之间的距离是( )A .9cmB .3cm 或4cmC .3cmD .3cm 或9cm7.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩则方程组()()()()213213315230.9x y x y ⎧--+=⎪⎨-++=⎪⎩的解是( ) A .8.31.2x y =⎧⎨=⎩ B .9.30.8x y =⎧⎨=-⎩ C .7.33.2x y =⎧⎨=⎩ D .9.30.8x y =⎧⎨=⎩ 8.如图,点B 、C 、D 在同一条直线上,则下列说法正确的是( )A .射线BD 和射线DB 是同一条射线 B .直线BC 和直线CD 是同一条直线C .图中只有4条线段D .图中有4条直线9.下面是反映世界人口情况的数据:1957年、1974年、1987年、1999年的世界人口数依次为30亿、40亿、50亿、60亿,2011年世界人口将达70亿,预计2050年世界人口将达90亿.上面的数据不能制成( )A .统计表B .条形统计C .折线统计D .扇形统计图 10.如图,直线m 外有一定点O ,点A 是直线m 上的一个动点,当点A 从右向左运动时,α∠和β∠的关系是( )A .α∠越来越小B .β∠越来越大C .180αβ∠+∠=︒D .α∠和β∠均保持不变二、填空题11.12021-的相反数是______,倒数是______. 12.在修建高速公路遇到大山的阻挡时,为了尽量缩短公路里程,往往需要开凿隧道,其所遵循的数学原理是___________________.13.如图,一副三角板(直角顶点重合)摆放在桌面上,若135AOD ∠=︒,则BOC ∠=______.14.在扇形统计图中,其中一个扇形的圆心角是36︒,则这个扇形所表示的部分占总体的百分数是______.15.希腊数学家将数:1,3,6,10,15,21,28,…,叫做三角形数,它有一定的规律性,第17个三角形数与第15个三角形数的差为______.三、解答题16.计算()()3011232⎛⎫----÷- ⎪⎝⎭. 17.解方程(组)(1)解方程:2132134x x x ++-=-; (2)解方程组:()()12323211x y x y x y -⎧=⎪⎨⎪+--=⎩.18.先化简,再求值:()2222232x y xy x y xy +--,其中12x =,2y =-.19.我国民间流传着许多趣味算题,它们多以顺口溜的形式表达,其中《孙子算经》中记载了这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?20.如图,AOB ∠为直角,AOC ∠为锐角,且OM 平分BOC ∠,ON 平分AOC ∠,(1)如果60AOC ∠=︒,求MON ∠的度数.(2)如果AOC ∠为任意一个锐角,你能求出MON ∠的度数吗?若能,请求出来,若不能,说明为什么?21.图①、图②反映是东方百货商场今年1-5月份的商品销售额统计情况观察图①和图②,解答下面问题:(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370万元,请你根据这一信息补全图①,并写出两条由上两图获得的信息;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图②后认为,5月份服装部的销售额比4月份减少了你同意他的看法吗?为什么?22.已知:如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角时,3∠AOC=∠BOD,求∠COD的度数;(2)若∠COD保持在(1)中的大小不变,它绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)若∠COD从(1)中的位置开始,边OC、边OD分别绕着点O以每秒20°、每秒10°的速度顺时针旋转(当其中一边与OB重合时都停止旋转),OM、ON分别平分∠BOC、∠BOD.求:①运动多少秒后,∠COD=10°;②运动多少秒后,∠COM=∠BON.参考答案1.D【分析】根据有理数的概念:整数和分数统称为有理数,即可求解.【详解】-=3,22=4,()01-=1,解:3-,3.14,22,()01-,共4个,∴有理数有3故选D.【点睛】本题考查了有理数的定义.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.2.A【分析】将5-x+y化简为5-(x-y),再将x-y的值代入即可求得代数式的值.【详解】解:∵x-y=5,∴5-x+y=5-(x-y)=5-5=0.故选:A.【点睛】本题主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于x,y的代数式的值,然后把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.3.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将500亿用科学记数法表示为:5×1010.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.A【分析】先根据同类项的定义(所含字母相同,相同字母的指数相同)求出m ,n 的值,再代入代数式计算即可.【详解】解:∵22m x y 与33n x y 是同类项,∴m =3,n =2,∴m n =32=9.故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.C【分析】根据度分秒之间的换算,先把∠C 的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠A =28°18′,∠B =28°15″,∴∠A >∠B ,∵∠C =28.25°=28°15′,∴∠A >∠C >∠B .故选:C .【点睛】此题考查了角的大小比较,先把∠C 的度数化成度、分、秒的形式,再进行比较是本题的关键.6.D【分析】根据点C 的不同位置分两种情况求解即可.【详解】解:当点C 在A 和B 之间时,点A 与点C 之间的距离是AB -BC =3cm ;当点C 在AB 延长线上时,点A 与点C 之间的距离是AB +BC =9cm .故选:D .【点睛】本题考查了两点间的距离,解决本题的关键是分两种情况说明.7.B【分析】先把方程组进行变形,再根据已知得出18.32 1.2x y -=⎧⎨+=⎩,求出方程组的解即可. 【详解】解:∵23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩, ∴在方程组()()()()213213315230.9x y x y ⎧--+=⎪⎨-++=⎪⎩中, 18.32 1.2x a y b -==⎧⎨+==⎩, 解得:9.30.8x y =⎧⎨=-⎩, 即()()()()213213315230.9x y x y ⎧--+=⎪⎨-++=⎪⎩的解为:9.30.8x y =⎧⎨=-⎩, 故选:B .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能根据题意得出方程组18.32 1.2x y -=⎧⎨+=⎩是解此题的关键.8.B【分析】根据直线,线段,射线的定义分别判断即可.【详解】解:A、射线BD和射线DB不是同一条射线,故错误;B、直线BC和直线CD是同一条直线,故正确;C、图中有6条线段,故错误;D、图中有2条直线,故错误;故选:B.【点睛】此题主要考查了直线、射线、线段,关键是掌握三线的表示方法.9.D【分析】扇形统计图能清楚地反映出各部分数同总数之间的关系与比例;折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况.条形统计图是用条形的长短来代表数量的大小,便于比较;统计图可以表示事物多个方面的情况.【详解】解:扇形统计图表示各部分数同总数之间的关系与比例,因此题目中表示人口的变化,不能用扇形统计图.故选:D.【点睛】本题考查了统计图的选择,根据各种统计图的特点,来选择统计图是解题的关键.10.C【分析】由图形及互补的定义可知两角互补,即可得到答案.【详解】解:由题意可知,∠α+∠β=180°,而当点A从右向左运动时,α∠越来越大,∠β越来越小,故A,B,D错误,故选:C.【点睛】本题主要考查互补的定义,掌握互补的定义是解题的关键.11.12021-2021【分析】直接利用相反数以及倒数的定义分析得出答案.【详解】解:12021的相反数是12021,倒数是-2021,故答案为:12021,-2021.【点睛】此题主要考查了倒数与相反数,正确掌握相关定义是解题关键.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.12.两点之间,线段最短;(或两点之间的所有连线中,线段最短)【分析】根据两点之间,线段最短的性质进行解答即可.【详解】在修建高速公路遇到大山的阻挡时,为了尽量缩短公路里程,往往需要开凿隧道,其所遵循的数学原理是两点之间,线段最短,故答案为两点之间,线段最短.【点睛】本题考查了线段的性质,熟练掌握和灵活应用线段的性质是解题的关键.13.45°【分析】从图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【详解】解:∵∠AOB=∠COD=90°,∠AOD=135°,∴∠BOC=∠AOB+∠COD-∠AOD=90°+90°-135°=45°.故答案为:45°.【点睛】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.14.10%【分析】要求此扇形表示的部分占总体的百分比,只要求出36°占360°的百分比即可.【详解】解:由题意可得,此扇形表示的部分占总体的百分比为:36360︒︒×100%=10%,故答案为:10%.【点睛】本题考查扇形统计图,解题的关键是明确扇形统计图中扇形圆心角与此扇形表示的部分占总体的百分比之间的关系.15.33【分析】观察分析得到规律,可得第15个三角形数和第17个三角形数,相减即可.【详解】解:第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…所以第15个三角形数为1+2+3+4+…+15,第17个三角形数为1+2+3+4+…+15+16+17,所以第17个三角形数与第15个三角形数的差等于16+17=33,故答案为:33.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.16.-7【分析】先算零指数幂,绝对值和乘方,再计算括号内的,再算除法,最后算减法.【详解】解:()()3011232⎛⎫----÷- ⎪⎝⎭ =()11238⎛⎫--÷- ⎪⎝⎭=()()118--⨯-=18-=-7【点睛】本题考查了有理数的混合运算,零指数幂,其顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17.(1)25x =;(2)376x y =⎧⎨=⎩【分析】(1)先去分母、去括号、移项,然后合并后把x 的系数化为1即可;(2)先变形,利用加减消元法求解可得;【详解】解:(1)2132134x x x ++-=-, 去分母得()()1242133212x x x -+=+-,去括号得12849612x x x --=+-,移项得12894612x x x --=+-,合并得52x -=-,系数化为1得25x =;(2)方程组变形得:61811x y x y -=⎧⎨-+=⎩①②, ①+②得212y =,解得6y =,代入①中,解得:37x =,所以原方程组的解为376x y =⎧⎨=⎩. 【点睛】本题考查了一元一次方程与二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.18.227x y xy -+,1142【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:()2222232x y xy x y xy +--=2222236x y xy x y xy +-+=227x y xy -+ 将12x =,2y =-代入, 原式=()()221127222⎛⎫-⨯-+⨯⨯- ⎪⎝⎭=1142. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.19.有3个老头,4个梨.【分析】题意中涉及两个未知数:几个老头几个梨.两组条件:一人一个多一梨,一人两个少二梨,可设两个未知数,列二元一次方程组解题.【详解】解:设有x 个老头,y 个梨,根据题意得:1 22y xx y-=⎧⎨-=⎩,解得:34xy=⎧⎨=⎩.答:有3个老头,4个梨.【点睛】本题考查了二元一次方程组在实际问题中运用,需要设两个未知数,再寻找建立方程组的两个等量关系.20.(1)45°;(2)45°【分析】(1)根据已知的度数求∠BOC的度数,再根据角平分线的定义,求∠MOC和∠NOC的度数,利用角的和差可得∠MON的度数.(2)结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:(1)因为OM平分∠BOC,ON平分∠AOC,所以∠MOC=12∠BOC,∠NOC=12∠AOC,所以∠MON=∠MOC-∠NOC=12(∠BOC-∠AOC)=12(90°+60°-60°)=45°.(2)同理,∠MON=∠MOC-∠NOC=12(∠BOC-∠AOC)=12(∠BOA+∠AOC-∠AOC)=12∠BOA=45°【点睛】本题主要考查了角平分线的定义以及角的计算,此类问题注意结合图形,运用角的和差和角平分线的定义求解.21.(1)见解析;(2)10.5万元;(3)不同意,理由见解析【分析】(1)利用总销售额减去其它各组的销售额即可求得四月份的销售额,从而补全直方图;(2)利用5月份的销售量乘以服装部销售额所占的百分比即可求解;(3)求出4月份服装部的销售额,然后进行比较即可.【详解】解:(1)由题意可得4月份的销售总额为:-+++=(万元),370(90856070)65补全条形统计图如解图所示:由题两图可得到的信息:(Ⅰ)由题图①可得5月份商场的销售总额为70万元,(Ⅱ)由题图②可知5月份服装部销售额占商场销售总额的百分比为15%.⨯=(万元),(2)根据题意可得:7015%10.5答:商场服装部5月份的销售额为10.5万元.(3)不同意.⨯=(万元),理由:根据题意可得,4月份商场服装部的销售额为:6516%10.4由(2)得5月份商场服装部的销售额为10.5万元,<,∵10.410.5∴5月份服装部的销售额比4月份增加了.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.22.(1)60°;(2)不会变化,∠EOF=120°;(3)①5或7;② 6【分析】(1)先求出角∠BOD,再根据3∠AOC=∠BOD,即可求出∠COD;(2)根据角平分线的意义和平角的意义可以求出∠COE+∠DOF,再代入∠EOF=∠COE+∠DOF+∠COD即可;(3)①由题意列出方程可求解;②用t的代数式表示∠BOC,∠BOD,再根据角平分线的意义,列出方程即可.【详解】(1)∵∠AOD是直角,∴∠AOD=90°=∠BOD,且3∠AOC=∠BOD,∴∠AOC=30°,∴∠COD=∠AOD﹣∠AOC=60°;(2)不会变化,理由如下:∵OE、OF分别平分∠AOC、∠BOD,∴∠COE=12∠AOC,∠DOF=12∠BOD,∵∠AOC+∠BOD=180°﹣∠COD,∴∠COE+∠DOF=12(180°﹣∠COD)=90°﹣12∠COD,∴∠EOF=∠COE+∠DOF+∠COD=90°﹣12∠COD+∠COD=120°(3)①设运动时间为t秒,∵∠COD=10°,∴20t+10°=10t+60°,或20t=10t+60°+10°,∴t=5或7,∴当运动5秒或7秒后,∠COD=10°;②当其中一边与OB重合时都停止旋转,则0<t≤7.5,如图:设运动时间为t秒,则∠BOC=150°﹣20t,∠BOD=90°﹣10t所以∠COM=12∠BOC=12(150°﹣20t)∠BON=12∠BOD=12(90°﹣10t)∴12(150°﹣20t)=12(90°﹣10t)解得t=6,所以6秒时∠COM=∠BON.【点睛】本题考查了角平分线的意义,角的和差倍分的关系,和一元一次方程的应用,第三题关键画出图形,找出角和t的关系.。

沪科版七年级上册数学期末考试试卷含答案

沪科版七年级上册数学期末考试试卷含答案

沪科版七年级上册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab 3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k 的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE ⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k 的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是 4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。

【沪科版】七年级数学上期末试题附答案

【沪科版】七年级数学上期末试题附答案

一、选择题1.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .12.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°3.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 4.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 5.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-=6.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= 7.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋 8.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- 9.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-10.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +11.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >012.下列结论错误的是( )A .若a ,b 异号,则a ·b <0,a b <0B .若a ,b 同号,则a ·b >0,a b >0 C .a b -=a b -=-a b D .a b--=-a b 二、填空题13.如图,能用O ,A ,B ,C 中的两个字母表示的不同射线有____条.14.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.15.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.16.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________. 17.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.18.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.19.计算(﹣1)÷6×(﹣16)=_____. 20.若m ﹣1的相反数是3,那么﹣m =__.三、解答题21.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 22.如图,已知A 、B 、C 、D 四点,根据下列要求画图:(1)画直线AB 、射线AD ;(2)画∠CDB ;(3)找一点P ,使点P 既在AC 上又在BD 上.23.公园门票价格规定如下表:50人.若两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少元?(2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱? 24.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?25.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.26. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AB =10cm ,BC =4cm .于是得到AC =AB +BC =14cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD =AD ﹣AM ,于是得到结论.【详解】解:∵AB =10cm ,BC =4cm ,∴AC =AB +BC =14cm ,∵D 是AC 的中点,∴AD =12AC =7cm ; ∵M 是AB 的中点, ∴AM =12AB =5cm , ∴DM =AD ﹣AM =2cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.2.A解析:A【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC ,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD 是∠BAC 的角平分线,∴∠BAD=12∠BAC=30°, ∴∠ADE=∠B+∠BAD=70°,又∵OE ⊥BC ,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A .【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.3.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 4.D解析:D【分析】由点C 在直线AB 上,分别讨论点C 在线段AB 上和在线段AB 的延长线上两种情况,根据线段的和差关系求出AC 的长即可.【详解】∵点C 在直线AB 上,AB=8,BC=2,∴当点C 在线段AB 上时,AC=AB-BC=8-2=6cm ,当点C 在线段AB 的延长线上时,AC=AB+BC=8+2=10cm ,∴AC 的长度是6cm 或10cm.故选D.【点睛】本题考查线段的和与差,注意点C 在直线AB 上,要分几种情况讨论是解题关键. 5.B解析:B【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得, 18(28-x )=2×12x ,故选:B .【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.6.A解析:A【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A .【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.7.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得到方程:2(x -1)-1-1=x +1,解得:x =5, 答:驴子原来所托货物的袋数是5, 故选A .【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.B解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.9.C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.10.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.11.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.12.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.二、填空题13.7【分析】找射线可以先找到一个端点然后以这个端点发散本题可以分别以ABCO为端点找到不同的射线【详解】以点O为端点并且能用两个字母表示的射线是OAOBOC以点A为端点并且能用两个字母表示的射线是AC解析:7【分析】找射线可以先找到一个端点,然后以这个端点发散。

(全优)沪科版七年级上册数学期末测试卷及含答案

(全优)沪科版七年级上册数学期末测试卷及含答案

沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×10 5B.0.105×10 ﹣4C.1.05×10 ﹣5D.105×10 ﹣72、已知x=3-k,y=k+2,则y与x的关系是()A.x+y=5B.x+y=1C.x-y=1D.y=x-13、某企业去年7月份产值为a万元,8月份比 7月份减少10%,9月份比8月份增加了15%,则9月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(a-10%+15%)万元4、下列计算中,正确的是()A. B. C. D.5、计算3.14-(-π)的结果为( ) .A.6.28B.2πC.3.14-πD.3.14+π6、一元一次方程3x-1=5的解为()A.1B.2C.3D.47、为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况。

随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名8、下面图形中,不能折成无盖的正方体盒子的是()A. B. C. D.9、如图是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42人,则参加球类活动的学生人数有()A.145人B.147人C.149人D.151人10、某城市分为南、北两区,如图为105年到107年该城市两区的人口数量长条图.根据图判断该城市的总人口数量从105年到107年的变化情形为下列何者?()A.逐年增加B.逐年灭少C.先增加,再减少D.先减少,再增加11、已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2×(﹣),下列判断正确的是()A.a>b>cB.b>c>aC.c>b>aD.a>c>b12、用科学记数法表示5700000,正确的是()A.5.7×10 6B.5.7×10 5C.570×10 4D.0.57×10 713、已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.-3B.3C.-7D.714、28cm接近于( )A.数学课本的厚度B.姚明的身高C.学校国旗旗杆的高度D.十层楼的高度15、若a﹣b=1,则2﹣2a+2b的值是()A.0B.﹣1C.﹣2D.4二、填空题(共10题,共计30分)16、绝对值不小于10而小于13的所有整数是________.17、的倒数是________,的绝对值是________.18、的相反数是________.19、已知|3x-6|+(2y-4)2=0,则2x-y的值是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016—2017学年七年级数学(沪科版)上册期末质量检测试题 一. 选择题(本大题共10小题,每小题4分,满分40分) 1.如图所示,a,b,c 表示有理数,则a,b,c 的大小顺序是 ( )
A.a <b <c Ba <c <b C. b <a <c D.c <b <a 2.多项式3
22
2
m n
--是( )
A.二次二项式
B.三次二项式
C.四次二项式
D.五次二项式 3.与方程
12x x -=的解相同的方程是( )
A. x-2=1+2x
B. x=2x+1
C.x=2x-1
D.
1
2
x x +=
4.用代入法解方程组124
y x
x y =-⎧⎨
-=⎩ 时,代人正确的是( )
A.x-2-x=4
B.x-2-2x=4
C. x-2+2x=4
D.x-1+x=4 5。

.20000保留三个有效数字的近似数可表示为( )
A.200
B. 200×5
10 C. 2×4
10 D. 2.00×4
10 6.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ) A.CD=AC-BD B.CD=
12BC C.CD=1
2
AB -BD D.CD=AD-BC
7.在8︰30时,时钟上的时针和分针之间的夹角为( ) A.85° B.75° C. 80° D.70° 8.化简
[]235(27)a b a a b ----的结果是( )
A. -7a-10b
B.5a+4b
C.-a-4b
D.9a-10b
9.小明在做解方程题目时,不小心将方程题目中的一个常数污染了看不清楚,被污染的方程是:
11
222
y y -
=-℘ ,小明想了一想,便翻看书后答案,此方程的解是53y =- ,很快补了这个常数,迅速地
完成了作业,同学们,你能补出这个常数吗?它应是( ) A. 1 B.2 C.3 D.4
二.填空题(本大题共4小题,每小题5分,满分20分)
10.已知
4a + 和2
(3)b -互为相反数,那么3a b +等于 。

11、9:00—10:00之间时针与分针夹角为100度的时刻为9时 分。

12.∠
α=35°,则∠α的余角的补角为 。

13.小明家搬进新居后添置了新的电冰箱、电热水器等家用电器,为了了解用电情况,他在六月份连续几天的同一时刻观察电表的度数,电表显示的度数如下表。

估计这个家庭六月份的总用电量为 度。

日期
2日 3日 4日 5日 6日
度数(度)
101
103
106
110
113
14.某同学爬楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,该同学上楼速度是 a 米/分,下楼速度是b 米/分。

则他的平均速度是 米/分。

三.(本大题共2小题,每小题8分,满分16分) 15.计算:21293()12323÷+-⨯+。

16.解方程:12136
x x x -+-=-。

四.(本大题共2小题,每小题8分,满分16分) 17.
1y =是方程 1
2()23
m y y -
-= 的解。

(1)求 m 的值;
(2)在(1)的条件下,求关于x 的方程m(x+4)=2(mx+3) 的解。

A
C D B
a
b
c
18.某位同学做一道题:已知两个多项式A 、B ,求 A-B 的值。

他误将 A-B 看成A+B ,求得结果为2
335x x -+ ,
已知21B x x =--。

(1)求多项式A ; (2)求 A-B 的正确答案。

五.(本大题共2小题,每小题10分,满分20分) 19.已知方程组734
521
x y x y m +=⎧⎨
-=-⎩ 的解能使等式4x-3y=7成立。

(1)求原方程组的解;(2)求代数式2
21m
m -+
的值。

六.(本题满分12分)
20.线段PQ 上有P ,Q 两点,MN =32㎝, MP=18㎝,PQ =6㎝。

(1)求NQ 的长;(2)已知O 是线段PQ 的中点,求MO 的长。

21.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的人数分布条形图的一部分(长方形的高表示该组人数),视力为4.55~4.85的人数是5.15~5.45的3倍,这两组人数的和等于被调查人数的一半。

根据图中提供的信息回答下列问题。

(1)视力为4.55~4.85的有多少名学生?
(2)补全这个图,并说出这个问题中的样本指什么?
(3)如果视力在4.55~4.85均属正常,那么全市大约有多少名初中生的视力正常?
七.(本题满分12分)
22.(1)如图,已知∠AOB 是直角,∠BOC =30°,OM 平分∠AOC,ON 平分∠BOC ,求 ∠MON 的度数; (2)在(1)中∠AOB=
α,其它条件不变,求∠MON 的度数;
(3)你能从(1)、(2)中发现什么规律?
八.(本题满分14分)
23.某商场计划拨款9万元从乙厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元。

(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元。

在同时购进两种不同型号电视机的方案中,为使销售获利最多,你会选择哪种进货方案?
(3)若商场准备用9万元同时购进三种不同型号的电视机50台,并且获利8900元,请你设计进货方案。

A
M
B
N C
20
40
60 80 10
0 人数 3.9
5
4.2 4.55
5.15 4.85 视力
5.45
七年级数学第一学期期末质量检测试题参考答案
一.选择题
题号 1 2 3 4 5 6 7 8 9 10 答案 C A B C D B B B D C 二.填空题
11.5 12.125° 13.90 14。

2ab a b +
三.15。

.10 16。

2
7 x=-
四.17.(1)1;(2)2
18.(1)
2
226
x x
-+;(2)27
x x
-+
五.19.(1)
1
1
x
y
=


=-

;(2)49。

20.(1)8或20;(2)21或15。

六.21.(1)90;(2)补图,被调查的240名学生视力;(3)11250人。

七.22.(1)45°;(2)
1
2
MONα
∠=;(3)不论∠AOB等于多少度,∠MON的度数都等于它的一半。

八.23.(1)有两种方案:方案一:购买甲种和乙种各25台;方案二:购买甲种35台,丙种15台。

(2)选方案二。

(3)甲种进31台,乙种进10台,丙种进9台。

相关文档
最新文档