第三章 微处理器
03-第3-4-章-YJ-第1部分-到加减乘除指令介绍

第三章80486微处理器指令系统㈠教学目标介绍80486的寻址方式及指令系统。
㈡学习要求通过本章的学习,要求熟悉各种寻址方式的使用场合以及常用指令的使用方法。
㈢讲授内容指令指令是规定计算机进行某种操作的命令二进制代码形式的指令中应包含三方面的信息:执行什么操作操作数的位置结果存放的位置指令的一般格式[标号:]操作助记符[操作数],[操作数];[注释]3.180486微处理器的寻址方式寻找操作数所在地址的方法即为寻址方式(Addressing Mode)。
80X86的寻址方式可分为两类:1.操作数的寻址方式2.转移地址的寻址方式一、操作数寻址方式由于操作数作为指令的操作对象,可以存储在存储器中(称为存储器操作数)、存储在寄存器中(称为寄存器操作数)或直接包含在指令中(称为立即数),因此,与之对应有多种寻址方式。
80X86可粗略地划分为3类10种寻址方式,其中,访问存储器操作数有8种寻址方式。
(1)一、立即寻址操作数作为立即数直接存在指令中。
例:MOV AX, 1234HMOV BL, 0A7HMOV ECX, 12345678H以第一条指令为例的立即数寻址方式的执立即寻址示意图行过程如图。
机器码在内存单元中是由上至下按从低到高的地址顺序排列,即存放数据的特征是低前高后。
汇编语言规定立即数的表示方式:P54(2)二、寄存器寻址操作数存放在CPU某个8位、16位或32位寄存器中。
例:MOV EAX, EDXADD CL, 2该寻址方式指令码短,且无需从存储器取操作数,故执行速度快。
注意:指令中的DS不能省略。
为什么?(4)(三.2)寄存器间接寻址操作数所在存储单元的EA由规定的寄存器给出。
MOV SI,1000HMOV AX,[SI]16位寻址时,EA可以由SI,DI,BP或BX提供。
(其中BX、BP为基址寄存器,SI、DI为变址寄存器)若以SI,DI,BX间接寻址,则默认操作数在DS段中。
若以BP间接寻址,则默认操作数在SS段中。
第3章2—8086微处理器总线周期及引脚

16
第3章 80x86微处理器
第3章:I/O写总线周期
T1 CLK T2 T3 T4
T1状态——输出16位I/O地址A15 ~ A0 IO/M* IO/M*输出高电平,表示I/O操作; S6 ~ S 3 0000 A19/S6 ~ A16/S3 ALE输出正脉冲,表示复用总线输出地址 A15 ~ A8 A15 ~ A8 T2状态——输出控制信号WR*和数据D7 ~ D0 A7 ~ A0 输出数据 ADT3和Tw状态——检测数据传送是否能够完成 7 ~ AD0 T4状态——完成数据传送
6
第3章 80x86微处理器
⑵ 总线写操作时序 总线写操作就是指CPU向存储器或I/O端口 写入数据。图3.4是8086在最小模式下的总线写 操作时序图。 总线写操作时序与总线读操作时序基本相 同,但也存在以下不同之处:
7
第3章 80x86微处理器
T1 CLK M/IO ① 高为读内存 低为读IO ② ⑥ 状态输出 地址 ④ ⑧ BHE输出 ② ⑦ 地址输出 数据输出 ③ ⑨ ⑤ T2 T3 TW T4
⑵ 总线周期
8086CPU与外部交换信息总是通过总线进行的 。CPU的每一个这种信息输入、输出过程所需要 的时间称为总线周期(BusCycle),一般一个总线 周期由四个时钟周期组成。
⑶ 时钟周期
时钟脉冲的重复周期称为时钟周期 (Clock Cycle)。时钟周期是CPU的时间基准,由计 算 机的主频决定。如8086的主频为5MHz,1个时钟 周期就是200ns。
15
第3章 80x86微处理器
第3章:存储器写总线周期
T1 CLK IO/M* T2 T3 T4
T1状态——输出20位存储器地址A19 ~ A0 S6 ~ S 3 A19 ~ A16 A19/S6 ~ A16/S3 IO/M*输出低电平,表示存储器操作; ALE输出正脉冲,表示复用总线输出地址 A15 ~ A8 A15 ~ A8 T2状态——输出控制信号WR*和数据D7 ~ D0 A 7 ~ A0 输出数据 AD7 ~ AD0 T3和Tw状态——检测数据传送是否能够完成 T4状态——完成数据传送 ALE
《计算机硬件技术基础(第三版)》第3章 32位微处理器

(1)总线接口部件 总线接口部件与片内Cache外部总线接口实行的是逻辑接口连接。当访问 Cache出现没命中、或需更改系统存储器内容、或需向Cache写入某些信 息时,就要通过总线接口从外部存储器系统中取出一批数据。 (2)预取缓冲部件 预取缓冲部件 取指令是指从高速缓冲存储器Cache内或从内存储器中取出指令代码, 以备译码之用的操作。 (3)指令译码部件 指令译码部件 译码操作, 一是检查一条指令的格式, 二是确定它是哪种类型操作的指令,并给出这条指令所需的操作数。 (4)控制部件 控制部件 Pentium微处理器控制部件的作用是,负责解释来自指令译码部件的 指令字和控制ROM的微代码。控制部件的输出控制着整数流水线部件和 浮点部件。 (5)执行部件 执行部件 是微处理器用于执行指令所规定的具体操作的CPU的核心硬件部分。 这些非常具体的操作是指诸如数值运算、逻辑操作以及分支转移处理等。
为了支持在Pentium内采用的分支转移预测新技术,芯片内装备有两个 预取缓冲存储器,一个是以线性方式来预取代码,另一个则是根据分支转 移目标缓冲器(BTB)预取代码。这样就可以保证在执行之前将所需用的 指令从存储器预取出来。 由于Pentium采用了这项技术,可以在无延迟的情况下正确地预测各 种转移。另外,V流水线中的条件转移指令可以与一条比较类指令成对执 行,当然也可以与U流水线中的置标志指令配合执行。但Pentium作到了 与现有软件是完全兼容,所以不必修改现有软件。
计算机硬件技术基础
3.1 .
CISC和RISC 和
1 复杂指令系统计算机 复杂指令系统计算机—CISC 每一种微处理器的CPU都有属于它自己的指令系统。 CPU正是通过执行一系列的特定的指令来实现应用程序 的某种功能。像Intel x86系列,为了增加新的功能, 就必须增加新的指令;另一方面,为了保持向上兼容, 又必须保留原有的指令。每条指令又有若干个不同的操 作字段,用来说明要操作的数据类型,以及存放的位置。 这就意味着一个较大的指令系统和复杂的寻址技术。以 这样的微处理器为平台的计算机系统就是“复杂指令系 统计算机”(CISC)。 CISC也有许多优点,如指令经编译后生成的指令程 序较小执行起来较快,节省硬件资源。像存取指令的次 数少,占用较少的存储器等。
微型计算机原理及应用第四版答案

微型计算机原理及应用第四版答案【篇一:《微型计算机原理及应用》课后习题答案】=txt>第一章1.1 解释题(1) 微处理器【解答】由大规模集成电路芯片构成的中央处理器(cpu),叫做微处理器。
(2) 微型计算机【解答】以微处理器为基础,配以内存储器、输入输出接口电路、总线以及相应的辅助电路而构成的计算机裸机,叫做微型计算机。
(3) 微型计算机系统【解答】微型计算机系统由硬件系统和软件系统组成。
即由微型计算机、配以相应的外部设备(如打印机、显示器、键盘、磁盘机等),再配以足够的软件而构成的系统。
(4) 单板机【解答】将微处理器、ram、rom以及i/o接口电路,再配上相应的外设(如小键盘、led显示器等)和固化在rom中的监控程序等,安装在一块印刷电路板上构成的微型计算机系统称为单板机。
(5) 运算器【解答】运算器是直接完成各种算术运算、逻辑运算的部件,主要由alu(arithmetic and logic unit,算术逻辑部件)、通用寄存器、标志寄存器等组成。
(6) 地址总线【解答】地址总线是cpu对内存或外设进行寻址时,传送内存及外设端口地址的一组信号线。
地址总线的条数多少决定了cpu的寻址能力。
(7) 数据总线【解答】数据总线是cpu与内存或外设进行信息交换时,所用的一组数据信号线。
它决定了cpu一次并行传送二进制信息的位数,反映出cpu的“字长”这个重要性能指标。
(8) 控制总线【解答】控制总线是在cpu与外部部件之间传送控制信息(如读/写命令、中断请求命令等)的一组信号线。
1-2 单片机应包括哪些基本部件?其主要应用于哪些领域?【解答】一般单片机芯片中包括微处理器、ram、rom、i/o接口电路、定时器/计数器,有的还包括a/d、d/a转换器等。
其主要应用于智能化仪器仪表及工业控制领域。
1-3 按图1-11和图1-12,写出取第二条指令操作码和执行第二条指令的过程。
【解答】1) ip的值(002h)送入地址寄存器ar;2) ip的内容自动加1,变为003h;3) ar将地址码通过地址总线送到存储器的地址译码器,经译码后选中002h单元;4) 微处理器给出读命令;5) 所选中的002h单元内容04h送上数据总线db;6) 数据总线db上的数据04h送到数据寄存器dr;7) 因是取指操作,取出的是指令操作码04h,即由dr送入指令寄存器ir;8) ir中的操作码经指令译码器id译码后,通过pla发出执行该指令的有关控制命令。
微机原理 第三章 微处理器

青岛理工大学琴岛学院
表3.1 通用寄存器的特定用法
寄存器 操作 寄存器 操作 在移位指令中作 移位次数计数器
AX
字乘,字除,字I/O
CL
AL
字节乘,字节除,字节I/O, 查表转换,十进制运算
字节乘,字节除
DX
字乘,字除指令 中作辅助累加器
堆栈操作,做堆 栈指针
AH
SP
BX
查表转换,做基址寄存器
SI
青岛理工大学琴岛学院
2)逻辑地址与物理地址
逻辑地址(LA)和物理地址(PA):
物理地址:就是存储器的实际地址,它是指CPU和存储器 进行数据交换时所使用的地址(20位)。
逻辑地址:是在程序中使用的地址,它由段基址和偏移地
址两部分组成(16位)。
物理地址=段基址(左移4位)+偏移量
形成20位段 起始地址 16位
青岛理工大学琴岛学院
2 . 8086/8088CPU的寄存器结构
8086/8088CPU中可供编程使用的有14个16位寄存器, 按其用途可分为3类:通用寄存器、段寄存器、指针和标 志寄存器,如所示。
AH BH CH DH SP BP SI DI FLAGS IP CS DS SS ES AL BL CL DL 累加器 基址寄存器 计数寄存器 数据寄存器 数据寄存器 通用寄存器 地址指针和 变址寄存器
2
3 4 5
6
存取一般变量(除3、4、5项外)
DS
有效地址EA
根据寻址方式计算出来的偏移量又叫操作数的有效地址EA
青岛理工大学琴岛学院
4. CPU对堆栈的设置与操作
堆栈的功能:用于暂存数据和现场保护 (特别是在过程调用或中断处理时暂存断 点信息) 堆栈的解释:实际上是由特定存储单元 构成的一个存储区,只是在这个存储区中 信息的出入严格按照“先进后出”或“后 进先出”的规则进行。
《微处理器系统结构与嵌入式系统设计》课程教案

《微处理器系统结构与嵌入式系统设计》课程教案第一章:微处理器概述1.1 微处理器的定义与发展历程1.2 微处理器的组成与工作原理1.3 微处理器的性能指标1.4 嵌入式系统与微处理器的关系第二章:微处理器指令系统2.1 指令系统的基本概念2.2 常见的指令类型及其功能2.3 指令的寻址方式2.4 指令执行过程第三章:微处理器存储系统3.1 存储器的分类与特点3.2 内存管理单元(MMU)3.3 存储器层次结构与缓存技术3.4 存储系统的性能优化第四章:微处理器输入/输出系统4.1 I/O 接口的基本概念与分类4.2 常见的I/O 接口技术4.3 直接内存访问(DMA)4.4 interrupt 与事件处理第五章:嵌入式系统设计概述5.1 嵌入式系统的设计流程5.2 嵌入式处理器选型与评估5.3 嵌入式系统硬件设计5.4 嵌入式系统软件设计第六章:嵌入式处理器架构与特性6.1 嵌入式处理器的基本架构6.2 嵌入式处理器的分类与特性6.3 嵌入式处理器的发展趋势6.4 嵌入式处理器选型considerations 第七章:数字逻辑设计基础7.1 数字逻辑电路的基本概念7.2 逻辑门与逻辑函数7.3 组合逻辑电路与触发器7.4 微处理器内部的数字逻辑设计第八章:微处理器系统设计与验证8.1 微处理器系统设计流程8.2 硬件描述语言(HDL)与数字逻辑设计8.3 微处理器系统仿真与验证8.4 设计实例与分析第九章:嵌入式系统软件开发9.1 嵌入式软件的基本概念9.2 嵌入式操作系统与中间件9.3 嵌入式软件开发工具与环境9.4 嵌入式软件编程实践第十章:嵌入式系统应用案例分析10.1 嵌入式系统在工业控制中的应用10.2 嵌入式系统在消费电子中的应用10.3 嵌入式系统在医疗设备中的应用10.4 嵌入式系统在其他领域的应用案例分析第十一章:嵌入式系统与物联网11.1 物联网基本概念与架构11.2 嵌入式系统在物联网中的应用11.3 物联网设备的硬件与软件设计11.4 物联网安全与隐私保护第十二章:实时操作系统(RTOS)12.1 实时操作系统的基本概念12.2 RTOS的核心组件与特性12.3 常见的实时操作系统及其比较12.4 实时操作系统在嵌入式系统中的应用第十三章:嵌入式系统功耗管理13.1 嵌入式系统功耗概述13.2 低功耗设计技术13.3 动态电压与频率调整(DVFS)13.4 嵌入式系统的电源管理方案第十四章:嵌入式系统可靠性设计14.1 嵌入式系统可靠性概述14.2 故障模型与故障分析14.3 冗余设计技术与容错策略14.4 嵌入式系统可靠性评估与测试第十五章:现代嵌入式系统设计实践15.1 现代嵌入式系统设计挑战15.2 多核处理器与并行处理15.3 系统级芯片(SoC)设计与集成15.4 嵌入式系统设计的未来趋势重点和难点解析第一章:微处理器概述重点:微处理器的定义、发展历程、组成、工作原理、性能指标。
微机原理第3章-指令系统

▲按给出偏移地址方式的不同,分为以下5种: 寄存器间接寻址 寄存器相对寻址 基址加变址寄存器 相对基址加变址寄存器 MOV AL, [ BX ] MOV AL, [ BX + 10H ] MOV AL, [ BX + SI ] MOV AL, [ BX + SI + 10H ]
(1)寄存器间接寻址
寄存器寻址方式的操作数是寄存器的值,指令中直接 使用寄存器名,包括8位或16位通用寄存器和段寄存器。可 使用的16位寄存器:AX、BX、CX、DX、SI、DI、SP、 BP;其中:AX、BX、CX、DX可分成两8位使用。
例: MOV AX,CX
;(AX)
(CX)
INC CX
;(CX)
(CX)+1
3.直接寻址(Direct Addressing)
0002
AH
AL
默认段寄存器的关系: ① 使用BX、SI、DI,默认段寄存器为DS
(BX)
PA = ( DS )×10H + (SI) (DI)
② 使用BP,默认段寄存器为SS PA = ( SS )×10H + ( BP )
使用BX、SI、DI的寄存器寻址,默认段寄存器为DS
寄存器组 AH AL BH BL CH CL DH DL SI DI BP SP AX BX CX DX DS ES SS CS IP 地 址 加 法 器
运 算 器
控制总线CB
码
器
PSW标志 寄存器
执行部件控制电路
CPU
总线
内存
例: MOV AX , [ BX + SI ]
若 ( DS ) = 4000H
( BX ) = 2000H ( SI ) = 100H 则内存操作数的物理地址为:
微型计算机原理与应用三

3.3 8086的寄存器结构
8086CPU内部具有14个16位寄存器,用于 提供运算、控制指令执行和对指令及操作数寻 址,也就是以前提到的工作寄存器组,基本分 为通用寄存器组、控制寄存器组和段寄存器组。
• 通用寄存器组
8个16位通用寄存器组分为两组:数据寄 存器及地址指针和变址寄存器。
1. 数据寄存器
数据寄存器包括AX、BX、CX和DX。在指 令执行过程中既可用来寄存操作数,也可用于 寄存操作的结果。它们中的每一个又可将高8 位和低8位分成独立的两个8位寄存器来使用。 16位寄存器可以用来存放数据,又可以用来存 放地址。而8位寄存器(AH、AL、BH、BL、CH 、CL、DH和DL)只能用于存放数据。
A L U
标志寄存器
执行 控制
电路
指令对列
1
2
3
4
8086为 6 字节
执行单元(EU)
总线接口单元
(BIU)
• 总线接口单元(BIU)
BIU包括4个段寄存器、指令指针IP(PC)、 指令队列寄存器(IR)、完成与EU通讯的内部寄 存器、地址加法器和总线控制逻辑。它的任务 是执行总线周期,完成CPU与存储器和I/O设备 之间信息的传送。具体地讲,就是取指令时, 从存储器指定地址取出指令送入指令队列排队; 执行指令时,根据EU命令对指定存储单元或I/O 端口存取数据。
决定I/O地址空间的容量。例如在8086CPU系统 中,地址总线的条数为20条,则存储器的最大 容量为220,即1MB字节;它的地址总线的低16 位用来对I/O端口编址,则I/O地址空间的容量为 216,即64K个I/O端口地址。
• 存储器和I/O端口的组织
地址 存储器中的字节 0 1
接 口 CPU 数 据 线 控 制 线 地 址 线 高位决定模块 I/O接口 I/O端口 I/O设备 01
微机原理第三章:8086微处理器结构

4.8086 和8088 二者的指令系统完全兼容
(1)有24 种寻址方式,具有乘、除法指令等。 (2)取指令和执行指令的操作并行运行,运行速度大大提高。
(3)具有最小模式和最大模式,应用领域宽广,适应性强。
(4)可方便地和数据处理器8087、I/O 处理器8089 或其它处理器 组成多处理机系统,提高数据处理能力和输人输出能力。
代码段寄存器 CS 标 志 寄 存 器
数据段寄存器 DS
堆栈段寄存器 SS
附加段寄存器 ES
由于8086/8088 CPU 可直接寻址的存储器空间是1M字节,直接寻址需要 20位地址码,而所有的内部寄存器都是16位的,用这些寄存器只能寻址 64K字节,为此需要采取分段技术来解决这个问题。
表3.1
通用寄存器的隐含使用
程序调试过程中。
3.1.2 8086/8088 的寄存器结构
四、指令指针寄存器 IP ★ 16 位的指令指针寄存器 IP 用来存放将要执行的下一条 指令在代码段中的偏移地址。 ★ 在程序运行过程中,BIU 可修改 IP 中的内容,使它始终 指向将要执行的下一条指令。 ★ 程序不能直接访问 IP,但可通过某些指令修改 IP 内容。 ★ 如遇到转移类指令,则将转移目标地址送人IP中,以实 现程序的转移。
★ 规则字的读/写操作可以一次完成。由于两个存储体上的地址
线 A19~A1 是连在一起的,只要使 A0=0,BHE=0,就可 以实现一次在两个存储体中对一个字的读/写操作。 ★ 读写的是从奇地址开始的字(高字节在偶体中,低字节在奇体 中),这种字的存放规则称为“非规则字”或“非对准字”。 ★ 非规则字的读/写,需要两次访问存储器才能完成。 第一次访问存储器读/写奇地址中的字节;
三、标志寄存器 FR
微机原理与接口技术 课后答案龚尚福

微机原理与接口技术课后答案龚尚福第一章:计算机基础知识1.什么是计算机?计算机有哪些基本组成部分?–计算机是一种可以按照预定程序自动进行数值和非数值计算的设备。
–计算机的基本组成部分包括中央处理器(CPU)、存储器、输入设备、输出设备和控制器。
2.什么是微型计算机?微型计算机的特点有哪些?–微型计算机是指体积小、价格低廉的小型计算机系统。
–微型计算机的特点包括:体积小、成本低、功耗低、易于携带、可扩展性好等。
3.什么是冯·诺依曼体系结构?它包括哪些基本特点?–冯·诺依曼体系结构是一种计算机的基本设计思想,它将存储器和处理器分开,通过总线进行数据和指令的传输。
–冯·诺依曼体系结构的基本特点包括:存储程序、以二进制表示信息、存储器与处理器分离、由指令控制程序执行的顺序。
第二章:数字电路基础知识1.什么是逻辑门?常用的逻辑门有哪些?–逻辑门是一种用于实现逻辑运算的电路元件,根据输入信号的不同组合产生相应的输出信号。
–常用的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
2.什么是布尔逻辑运算?常见的布尔逻辑运算有哪些?–布尔逻辑运算是指利用布尔代数进行逻辑运算的方法。
–常见的布尔逻辑运算有与运算(AND)、或运算(OR)、非运算(NOT)等。
3.什么是半加器和全加器?它们的作用是什么?–半加器是一种用于实现二进制数相加的电路,它可以将两个输入信号相加并产生相应的进位和和。
–全加器是一种用于实现三个二进制数相加的电路,它可以将三个输入信号相加并产生相应的进位和和。
第三章:微处理器基础知识1.什么是微处理器?它的功能有哪些?–微处理器是一种集成电路,它由控制单元、算术逻辑单元、寄存器和时钟等功能模块组成,用于执行计算机程序。
–微处理器的功能包括指令译码、执行算术和逻辑运算、读写存储器、控制外部设备等。
2.什么是指令?指令由哪些部分组成?常见的指令有哪些?–指令是微处理器执行操作的基本单位,它们以二进制的形式存储在存储器中。
大学计算机基础第三章-微型计算机硬件组成

外部设备
大学计算机基础
大学计算机基础
3.2 微型计算机硬件系统
3.2.1 CPU 3.2.2 主板 3.2.3 存储器 3.2.4 总线与接口 3.2.5 输入/输出设备
大学计算机基础
3.2.1 CPU
1. CPU分类 CPU组成:运算器、控制器和寄存器组,通过内部数 据总线传送信息。 CPU有通用CPU和嵌入式CPU。其区别主要在于应 用模式的不同。
- ④ 外存储器容量 指硬盘容量
- ⑤ 配置的外部设备
大学计算机基础
3. 微型计算机的发展方向
–① 高速化 处理器主频 –② 超小型化 典型的标志是笔记本电脑和PDA
的流行。 –③ 多媒体化 全新的多、虚拟现实技术 和发展多媒体通信等。 –④ 网络化 网络计算机、具有联网功能的 PDA以及各种类型的个人计算机等正在飞速发展。 –⑤ 隐形化 今后将摆脱显示屏、键盘加主机 的传统形象,电视计算机、影音计算机等将大量 出现。
• 通用CPU追求高性能,功能比较强,能运行复杂的 操作系统和大型应用软件;
• 嵌入式CPU则强调处理特定应用问题的高性能,主 要用于运行面向特定领域的专用程序,配备轻量级操 作系统,在功能和性能上有很大的变化范围。
大学计算机基础
2.衡量CPU性能的主要技术指标
1. CPU字长 CPU内部各寄存器之间一次能够传送的数据位。即同一时间能一次处理的 二进制数的位数。下一步的主流CPU是64位。
大学计算机基础
微机主板结构图 CPU插槽
内存插槽
芯片组 电池 总线插槽
鼠标插口 键盘插口
大学计算机基础
图3-2.2 微机主板图
并行接口
USB接口
串行接口
1. CPU插槽
微型计算机原理与应用第3章微机系统中的微处理器

n位,
则可有2n个地址(0~2n-1)。对于单地址空间的微处理器, 若
地址总线的数目为n字节。
第3章 微机系统中的微处理器
第3章 微机系统中的微处理器
对于存储器和I/O地址空间独立的微处理器来说,地址总线 的条数决定了存储器地址空间的容量,而地址总线中用于I/O 端口编址的条数决定I/O地址空间的容量。通常 8 位微处理器 (如 8080 CPU和Z80 CPU)的地址总线为 16条,这就意味着存 储器最大容量为216(65536)字节,地址总线的低 8 位用来对 I/+O端口编址,所以I/O地址空间容量为28(256)字节。16 位微 处理器,如 8086 CPU地址总线 20 条,存储器的最大容量为:
第3章 微机系统中的微处理器
工作寄存器:暂存用于寻址和计算过程的信息。工作寄存 器分为两组:数据寄存器组和地址寄存器组。但有的寄存器兼 有双重用途。数据寄存器用来暂存操作数和中间运算结果。由 于通过外部总线的传送操作是限制计算速度的主要因素,存取 寄存器要比访问存储器快得多,所以如要对一组数据执行几种 操作时,最好将数据存入数据寄存器,进行必要的计算,然后 将结果送回存储器。一般情况下,CPU所含的数据寄存器越多, 计算速度越快。地址寄存器组用于操作数的寻址。寻址方式通 常有:指令所处理的数据是指令的一部分,操作数的地址是指 令的一部分,操作数在寄存器中,操作数的地址在寄存器中, 或者操作数的地址可以是指令的一部分与一个或两个寄存器内 容之和。 这些寻址方式中,有几种寻址方式都是把操作数的地 址的全部或部分存放在地址寄存器中,这就增加了寻址方式的 灵活性,也为处理数组元素提供了方便。这些问题将在本章 3.6 节和第 4 章进一步说明。
某些微处理器用单地址空间。 某些微处理器用单地址空 间(即对存储单元和I/O端口统一编址)来对存储器单元和I/O端 口进行存取,读写控制信号用来区分CPU是进行读(输入)操作 或写(输出)操作。这种方式下, 对存储单元和I/O端口的存取 指令是一样的。而大多数微处理器则是有两个独立的地址空 间, 即存储器地址空间和I/O地址空间。此时,某存储单元和 I/O端口可能对应于同一地址。在这种情况下,则必须利用地 址总线和控制总线中的某些控制线一起共同确定CPU访问存 储器地址空间和I/O地址空间中的哪个地址空间。例如用存储 器读写信号和I/O读写信号分别控制对同一地址的存储器单元 和I/O端口进行存取操作。显然,该方式下对存储器读写指令 和对I/O端口输入输出指令是不同的。
第3章(1)微机原理与接口技术(第三版)(王忠民)

第三章 80x86微处理器
第三章 80x86微处理器
2. 数据总线从8086的16位到80586的64位。数据 总线是计算机中组成各部件间进行数据传送时的公共 通道。其位数(宽度)表示CPU的字长,数据总线位数 越多,数据交换的速度越快。
微机原理与接口技术
——第三章 80x86微处理器
西安邮电大学 计算机学院
范琳
第三章 80x86微处理器
1
80x86 微处理器简介
2
8086 微处理器
3
8086 寄存器
4
8086 引脚功能
5
8086 存储器组织
第三章 80x86微处理器
3.1 80x86微处理器简介
80x86微处理器是美国Intel公司生产的系列微处 理器。从8086开始到目前已进入第五代微处理器: 8086(8088)、80286、80386、80486和80586 (Pentium、Pentium ⅡⅣ)。其主要发展特点是:
近的数据可能很快就会被使用。
所以,层次结构的存储器系统,可以将最近访问 过的内容放入Cache,将近期访问过内容所属的整 个块放入Cache。
第三章 80x86微处理器
80x86CPU在发展过程中,存储器的管理机制也 发生了较大变化。
8086/8088CPU:分段实方式 80286CPU:分段实方式、保护方式(可提供虚 拟存储管理和多任务管理机制)。 8038680586CPU:分段实方式、保护方式、虚 拟8086方式(可同时模拟多个8086处理器工作)。
第三章 8086微处理器(结构)

CLK S2-S0 A19-16 S3-S7 BHE AD15-0 ALE MRDC (IORC) DT/R DEN
最大方式写时序
地址 CS 数据 T1 T2 S2-S0 A19-16 A15-0 BHE 数据输出 T3 S2-S0 无效 S3-S7 D15-D0 T4
CLK S2-S0 A19-16 S3-S7 BHE AD15-0 ALE AMWC (AIOWC) MWIC(IOWC) DEN
INTEL 8086
8086引脚信号
8088引脚信号
INTEL 8088
8086最小方式系统结构
8284 CLK READY RESET
等待状态发生器
M/IO INTR INTA WR RD STB BHE
ALE BHE AD19-16 AD15-0
8082x3
地址总线 A19-0
数据总线 DEN DT/R MN/MX 8086 CPU 8286x2 OE RAM HOLD HLDA OE WR OE
IOB BHEຫໍສະໝຸດ 8286X2 OE RD MN/MX 8086 CPU T OE RAM
数据总线 (D15-0)
RD
ROM
I/O
WR RD
S2-S0代码组合和操作
S2 S1 S0 代码组合和对应操作 S1 S0 对 应 操 作 0 0 发中断响应信号 0 1 读 I/O 端口 1 0 写 I/O 端口 1 1 暂停 0 0 取指令 0 1 读内存 1 0 写内存 1 1 无源状态(CPU无作用) QS1 QS0 代码组合和对应操作 对应操作 无操作 从指令队列的第1个字节中取走代码 队列为空 除第1字节外,还取走了后续字节中的代码
低为IO读,
微处理器体系结构及功能模块

第一节 微生物农药
2.真菌杀虫剂
典型的代表是白僵菌杀虫剂。白僵菌是一种广谱寄生的真 菌,广泛地使昆虫致病,由该菌引起的病占昆虫真菌病的 21%左右,能侵染鳞翅目、鞘翅目、直翅目、膜翅目、同翅 目的众多昆虫及螨类。白僵菌接触虫体感染,适宜条件下其 分生孢子萌发长出芽管,并能分泌出几丁质酶溶解昆虫表皮 ,使菌丝侵入体内生长繁殖,并产生毒素(白僵菌素)和草 酸钙结晶,从而使昆虫细胞组织破坏和代谢机能紊乱,最后 虫体上生出白色的棉絮状菌丝和分生孢子梗及孢子堆,整个 虫体水分被菌吸收变成白色僵尸,白僵菌因此而得名。
第一节 微生物农药
1.细菌杀虫剂
苏云金芽孢杆菌杀虫剂,简称Bt杀虫剂,是当今使用最广 泛和产量最大的细菌杀虫剂。它是由昆虫病原细菌苏云金杆 菌的发酵产物加工而成,能防治直翅目、鞘翅目、双翅目、 膜翅目等上百种害虫,如稻纵卷叶螟、棉铃虫、茶毛虫、玉 米螟等。苏云金芽孢杆菌杀虫剂之所以成为目前产量最大、 应用最广、深受欢迎的农药,除其杀虫效果好外,更重要的 是对人、畜无伤害;对植物不产生药害,不影响农作物的色 、香、味;也不伤害害虫的天敌和有益的生物,能保持使用 环境的生态平衡;对土壤、水源、空气环境不造成污染,有 利于社会经济的持续发展。
3次指令,2次数据
1次指令,2次数据
若存储器速度为系统瓶颈,则应采用微码CPU
几个概念
1. 中央处理单元 控制器、运算器、寄存器
Central Processing Unit, CPU
2. 微处理器
单
片
Micro Processing Unit, MPU
芯 片
3. 微控制单元
Micro Control Unit, MCU
第一节 微生物农药
苏云金芽孢杆菌能在细胞内形成杀虫的伴胞晶体和水溶性 的外毒素(苏云金素)。伴胞晶体被敏感性昆虫的幼虫吞食 后,在其碱性的中肠溶解成原毒素,并进而在昆虫肠道被蛋 白酶水解激活,产生毒素核心片段(δ内毒素)。它与中肠 上皮细胞膜上的特异受体结合,能快速并不可逆地插入细胞 膜,形成孔洞,从而破坏细胞的膜结构与渗透吸收特性,使 中肠上皮细胞裂解崩溃,最终导致昆虫的死亡。
80486微处理器

7、总线接口部件——实现内部总线与外部总线的联系。 • 在内部时序信号控制下,将内部总线上的数据、控制信号 或者地址送到外部总线; • 接收外部数据总线上的数据、控制信号,并可根据接收到 的控制信号,产生总线周期输出相应的外部控制信号,又称 握手联络信号。 • 支持突发总线控制,对主存中进行连续多个数据单元的传 输加快数据的读写。 • 所谓突发总线控制是指在一个总线传送周期只进行一次寻 址,然后连续传送多个数据单元的方式。
2
3、1 80486 的内部结构
3、1、1 基本结构介绍 7大部分组成:
总线接口部分 指令预取部分 译码部分 运算部分 存储管理部分 高速缓冲存储器
3
执
行
③
部
件
②
浮 点 数 部 件
①
⑥
⑤
④
⑦
4
1、运算部分——核心部件
• 包括执行部件或称定点运算部件(算术逻辑单元 ALU、移位器和寄存器组)和浮点运算部件(浮点运 算单元PLU、浮点寄存器组)。 • 执行部件负责从译码器队列取出指令的微指令地址, 并解释执行该指令的微指令。
每个描述符指示存储器的位置、长度和访问权限等。当描述符 中的G位为1时,相应的段长度为220×212 (即4GB)字节
故一个任务最多可拥有的编程空间为:
2×213×220×212=246=64TB
33
3、保护方式下的物理地址形成
总线接口部分指令预取部分译码部分运算部分存储管理部分高速缓冲存储器包括执行部件或称定点运算部件算术逻辑单元alu移位器和寄存器组和浮点运算部件浮点运算单元plu浮点寄存器组
第三章 80486微处理器
80486是Intel 1989年4月推出的32位微处理 器。 在Intel32位微处理器的体系演化过程中, 具有承上启下的地位。
《微处理器系统结构与嵌入式系统设计》课程教案

《微处理器系统结构与嵌入式系统设计》课程教案第一章:微处理器概述1.1 微处理器的定义与发展历程1.2 微处理器的组成与工作原理1.3 微处理器的性能指标与分类1.4 嵌入式系统与微处理器的关系第二章:微处理器指令系统2.1 指令系统的基本概念2.2 常见指令分类与功能2.3 指令执行过程与地址计算2.4 汇编语言与指令编码第三章:微处理器存储系统3.1 存储器概述与分类3.2 随机存储器(RAM)与只读存储器(ROM)3.3 存储器层次结构与cache 缓存3.4 虚拟存储器与内存管理第四章:输入/输出系统4.1 I/O 系统概述与分类4.2 程序控制I/O 与中断驱动I/O4.3 DMA 传输与I/O 端口映射4.4 嵌入式系统中的I/O 接口设计第五章:嵌入式系统设计与实践5.1 嵌入式系统设计流程与方法5.2 嵌入式处理器选型与系统架构设计5.3 嵌入式系统软件设计与开发5.4 嵌入式系统硬件设计与实现第六章:嵌入式系统硬件平台设计6.1 嵌入式系统硬件设计基础6.2 处理器选型与评估6.3 硬件系统架构设计6.4 硬件电路设计与仿真第七章:嵌入式操作系统原理与应用7.1 嵌入式操作系统概述7.2 嵌入式操作系统核心组件7.3 嵌入式操作系统实例分析7.4 嵌入式操作系统应用与开发第八章:嵌入式系统软件开发8.1 嵌入式软件开发概述8.2 嵌入式软件开发工具与方法8.3 嵌入式软件编程实践8.4 嵌入式软件测试与优化第九章:嵌入式系统应用案例分析9.1 嵌入式系统在工业控制中的应用9.2 嵌入式系统在医疗设备中的应用9.3 嵌入式系统在智能家居中的应用9.4 嵌入式系统在物联网中的应用第十章:未来嵌入式系统发展趋势10.1 嵌入式系统技术发展趋势10.2 嵌入式系统在各领域的应用拓展10.3 我国嵌入式系统产业现状与展望10.4 嵌入式系统教育与人才培养重点和难点解析一、微处理器概述难点解析:微处理器的发展历程需要记忆各个重要的时间节点和对应的处理器;组成与工作原理涉及到硬件组成和指令执行过程的理解;性能指标与分类需要理解如何评估处理器的性能以及不同类型处理器的应用场景。
微型计算机原理 (第三章课后答案)

微型计算机原理第三章 80X86微处理器1.简述8086/8088CPU中BIU和EU的作用,并说明其并行工作过程. 答:(1) BIU的作用:计算20位的物理地址,并负责完成CPU与存储器或I/O端口之间的数据传送。
(2) EU的作用:执行指令,并为BIU提供所需的有效地址.(3) 并行工作过程:当EU从指令队列中取出指令执行时,BIU将从内存中取出指令补充到指令队列中。
这样就实现了取指和执行指令的并行工作。
2.8086/8088CPU内部有哪些寄存器?其主要作用是什么?答:8086/8088CPU内部共有14个寄存器,可分为4类:数据寄存器4个,地址寄存器4个,段寄存器4个和控制寄存器2个。
其主要作用是:(1) 数据寄存器:一般用来存放数据,但它们各自都有自己的特定用途.AX(Accumulator)称为累加器.用该寄存器存放运算结果可使指令简化,提高指令的执行速度。
此外,所有的I/O指令都使用该寄存器与外设端口交换信息。
BX(Base)称为基址寄存器。
用来存放操作数在内存中数据段内的偏移地址,CX(Counter)称为计数器。
在设计循环程序时使用该寄存器存放循环次数,可使程序指令简化,有利于提高程序的运行速度。
DX(Data)称为数据寄存器。
在寄存器间接寻址的I/O指令中存放I/O端口地址;在做双字长乘除法运算时,DX与AX一起存放一个双字长操作数,其中DX存放高16位数。
(2)地址寄存器:一般用来存放段内的偏移地址.SP(Stack Pointer)称为堆栈指针寄存器。
在使用堆栈操作指令(PUSH或POP)对堆栈进行操作时,每执行一次进栈或出栈操作,系统会自动将SP的内容减2或加2,以使其始终指向栈顶。
BP (Base Pointer)称为基址寄存器。
作为通用寄存器,它可以用来存放数据,但更经常更重要的用途是存放操作数在堆栈段内的偏移地址。
SI(Source Index)称为源变址寄存器.SI存放源串在数据段内的偏移地址。
chapter3习题解答

“微处理器系统原理与嵌入式系统设计”第三章习题解答3.1处理器有哪些功能?说明实现这些功能各需要哪些部件,并画出处理器的基本结构图。
处理器的基本功能包括数据的存储、数据的运算和控制等功能。
其有5个主要功能:①指令控制②操作控制③时间控制④数据加工⑤中断处理。
其中,数据加工由ALU、移位器和寄存器等数据通路部件完成,其他功能由控制器实现。
处理器的基本结构图如下:3.2处理器内部有哪些基本操作?这些基本操作各包含哪些微操作?处理器内部的基本操作有:取指、间接、执行和中断。
其中必须包含取指和执行。
取指包含微操作有:经过多路器把程序计数器的值选送到存储器,然后存储器回送所期望的指令并将其写入指令寄存器,与此同时程序计数器值加1,并将新值回写入程序计数器。
间接有4个CPU周期,包含微操作有:第1周期把指令寄存器中地址部分的形式地址转到地址寄存器中;第2周期完成从内存取出操作数地址,并放入地址寄存器;第3周期中累加器内容传送到缓冲寄存器,然后再存入所选定的存储单元。
执行包含微操作有:在寄存器中选定一个地址寄存器,并通过多路器将值送到存储器;来自于存储器的数据作为ALU的一个原操作数,另一个原操作数则来自于寄存器组中的数据寄存器,它们将一同被送往ALU的输入;ALU的结果被写入寄存器组。
中断包含微操作有:保护断点及现场,查找中断向量表以确定中断程序入口地址,修改程序指针,执行完毕后恢复现场及断点。
3.3什么是冯·诺伊曼计算机结构的主要技术瓶颈?如何克服?冯·诺伊曼计算机结构的主要技术瓶颈是数据传输和指令串行执行。
可以通过以下方案克服:采用哈佛体系结构、存储器分层结构、高速缓存和虚拟存储器、指令流水线、超标量等方法。
3.5指令系统的设计会影响计算机系统的哪些性能?指令系统是指一台计算机所能执行的全部指令的集合,其决定了一台计算机硬件主要性能和基本功能。
指令系统一般都包括以下几大类指令。
:1)数据传送类指令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章微处理器
重要概念
✓ALU
✓I/O接口、I/O端口
✓EU、BIU
✓对准字、未对准字
✓物理地址、逻辑地址
知识点
✓总线的分类
✓EU和BIU的功能
✓8086CPU的寄存器结构
✓标志寄存器的定义
✓物理地址的形成
✓8086的寻址方式
一、填空题
(1) Intel 8086 包含两个功能部件,分别是(总线接口部件)和(执行部件)。
(2) 80286将BIU(总线接口单元)分为(AU(地址单元))、(IU(指令单元))和(BU(总线单元))。
(3)总线标准的四个特性是(物理特性)、(功能特性)、(电器特性)和(时间特性)。
(4)计算机指令执行的基本过程一般是按照以下步骤(取指令)、(译码)、(取操作数)、(执行指令)和(存结果)。
(5)完成一个总线操作周期,一般要分成4个阶段:(总线请求和仲裁)、(寻址)、(数据传送)和(结束)。
(6)从现阶段的主流体系结构讲,指令集可分为(复杂指令集)和(精简指令集)两部分。
(7)80486芯片内较之80386新添了三个新的部件,它们分别是(浮点部件FPU)、(控制和保护部件)和(Cache部件)。
(8)Pentium芯片集成了310万个晶体管,有(64)条数据线,(36)条地址线。
(9)Pentium内部有两个超高速缓冲存储器(Cache),一个为(指令超高速缓冲存储器),另一个为(数据超高速缓冲存储器)。
(10)Pentium CPU有U、V两条指令流水线,故称之为(超标量流水线)。
2、选择题:
(1) 80386 的内部可以分为(B)个部件。
A 8
B 6
C 4
D 2
(2)80486 配备有(B)个16位的段寄存器。
A.5 B. 6 C.7 D. 8
(3)数据传输率=(总线频率×数据带宽)/8,假设有一个64位的CPU,其前端总线频率是400MHz,按照公式计算,它的数据传输率最大值是(B)。
A . 6.4GB/秒
B . 3.2GB/秒
C . 6.4MB/秒 D. 3.2MB/秒
(4)构成动态处理技术的是(D)。
A . 分支预测
B . 推测执行
C . 数据流量分析 D.以上三个都是
(5)CPU允许将多条指令不按程序规定的顺序分别发送给相应的电路单元进行处理的技术是(C)
A . 超流水线
B . 超标量
C . 乱序执行 D. 指令预取
3、简答题
(1)微处理器的基本功能部件有哪些?
答:总线接口部件负责与存储器、I/O端口传送数据;执行部件负责指令的执行。
(2)CPU中有那些寄存器?标志寄存器有那些标志位?各位的含义是什么?
答:微处理器的基本寄存器中包括8、16、32位的三种不同寄存器组,8位的寄存器有AH、AL、BH、BL、CH、CL、DH和DL等8个,16位寄存器有AX、BX、CX、DX、SP、BP、DI、SI、IP、FLAGS、CS、DS、ES、SS、FS和GS。
扩展的32位寄存器有EAX、EBX、ECX、EDX、ESP、EBP、EDI、ESI、EIP和EFLAGS。
标志寄存器的标志位和各位的含义见图2.4标志寄存器。
(3)解释下列术语:流水线、超流水线、超标量、乱序执行、分支预测和推测执行。
答:
流水线: 为了提高CPU的效率,在8086总线接口部件中包含一个6字节的指令队列缓冲器,在执行指令的同时,将下一条指令取出,并放入指令队列缓冲器中。
CPU执行完一条指令后,就可以从指令队列缓冲器中直接取下一条指令(这种方式也叫做流水线技术)
超流水线: 将流水线的若干流水级进一步细分为更多的阶段(流水小级),并通过一定的流水线调度和控制,使每个细分后的“流水小级”可以与其他指令的不同的“流水小级”并行执行,从而进一步提高微处理器的性能,这种技术称为“超流水线”
超标量:是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。
乱序执行: 是指CPU允许将多条指令不按程序规定的顺序分别发送给相应的电路单元进行处理的技术。
分支预测:通过几个分支对程序流向进行预测,采用多路分支预测算法后,处理器便可参与指令流向的跳转。
推测执行:通过提前判读并执行有可能需要的程序指令的方式提高执行速度,当处理器执行指令时(每次五条),采用的是“推测执行”的方法。
这样可使处理器的超级处理能力得到充分的发挥,从而提升软件性能。
(4)什么是时钟周期、总线周期及指令周期?
答:系统时钟一个周期信号所持续的时间称为时钟周期(T),大小等于频率的倒数,是CPU的基本时间计量单位。
CPU通过总线完成一次访问存储器或I/O接口操作所需要的时间,称为总线周期。
一个总线周期由多个时钟周期(T)组成。
指令周期(instruction cycle)指的是从取指令到该条指令执行完毕所需要的全部时间。
不同指令所需要的指令周期是不相同的。
一个指令周期由一个或几个总线周期构成。
(5)8086/8088系统中,存储器的物理地址是如何生成的?设DS=095FH,物理地址是11820H,当DS=252FH时,物理地址是多少?
答:8086/8088系统中,存储器的物理地址生成如下图所示:
当DS=252FH时,物理地址是2D520H。
(6)什么是同步传送、异步传送和半同步传送?
答:同步传送时采用精确稳定的系统时钟,作为各模块动作的基准时间。
模块间通过总线完成一次数据传送即一个总线周期,时间是固定的。
每次传送一旦开始,主、从设备都必须按严格的时间规定完成相应的动作。
同步传送要求总线上的各主、从设备操作速度要严格匹配,为了能用不同速度的设备组成系统,可以采用异步传送的办法来控制数据的传送。
异步传送需设置一对信号交换握手(Handshaking)线,即请求(Request)和响应(Acknowledge)信号线。
半同步传送是综合同步和异步传送的优点而设计出来的混合式传送。
(7)简述Cache的作用。
答:Cache的作用是存放CPU最近要使用的,在主存储器中保存着指令、操作数以及其他一些数据的副本。
若微处理器当前需用的信息正在Cache中,则称之为Cache命中。
在Cache命中情况下,操作不需要执行总线读周期,直接到Cache 读即可。
若微处理机所需用的信息此时不在Cache内,则称之为Cache不命中。
这时微处理机就会一次传送16个字节,经一次或多次传送将微处理机所需用的信息从主存储器读到Cache中去,这种操作就是Cache行的填充
(8)什么是实地址方式、保护虚地址方式、虚拟86模式和系统管理方式
答:
实地址方式是80x86系列CPU共有的存储器管理模式,8086/8088 CPU只能工作在此方式下,在其他类型的CPU中实地址方式用来兼容8086。
在实地址方式中地址总线信号中只有低20位有效,其寻址空间和寻址方法与8086完全相同,即8086的应用程序可不加修改地移植到该方式下运行,但速度会更快
保护方式充分体现了IA-32架构CPU的特色。
在这种工作方式下,地址总线信号全部有效,可寻址的物理内存大大地增加;通过存储管理和保护机构,可为每个任务提供更多的虚拟存储空间,从而有力地支持多用户、多任务的操作。
这种工作方式是一种在保护方式下运行的类似实地址方式的运行环境,是一种既有保护功能又能执行8086代码的工作方式,可同时模拟多个8086处理器。
(9)微处理器的主要性能指标有哪些?
答:微处理器的主要性能指标有主频、倍频和外频;前端总线(FSB)频率;CPU 的字长;工作电压;总线宽度;协处理器;超标量;高速缓存;
(10)Pentium CPU内部的主要部件有哪些?
答:
总线接口部件
Uλ流水线和V流水线
λ指令高速缓冲存储器Cache λ数据高速缓冲存储器Cache λ指令预取部件
λ指令译码器
λ浮点处理部件FPU
λ分支目标缓冲器BTB
λ微程序控制器中的控制ROM λ寄存器组。