无线信道建模与仿真

合集下载

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言随着科技的不断发展,无线通信系统在人们的生活和工作中发挥着越来越重要的作用。

而信道作为无线通信系统中的重要组成部分,其建模与仿真研究对于提高系统的性能和可靠性具有重要意义。

本文旨在探讨无线通信系统的信道建模与仿真研究,以期为相关领域的研究和应用提供参考。

二、无线通信系统信道建模无线通信系统的信道建模是信道仿真研究的基础。

根据无线信道的特性,我们可以将其分为多种类型,如多径信道、时变信道等。

其中,多径信道是最常见的一种,其特点是由于无线电波的反射、散射和折射等作用,导致信号在传输过程中产生多条路径。

在信道建模过程中,我们需要考虑多种因素,如信号的传播环境、多径效应、衰落等。

针对这些因素,我们可以采用不同的建模方法,如基于统计的建模方法和基于物理过程的建模方法等。

这些方法可以有效地模拟无线信道的特性,为后续的仿真研究提供可靠的模型基础。

三、信道仿真方法信道仿真方法主要包括离散时间仿真和连续时间仿真两种。

离散时间仿真适用于对信道进行快速评估和算法验证,而连续时间仿真则能更准确地模拟信道的实际传输过程。

在仿真过程中,我们需要根据具体的信道模型和仿真需求选择合适的仿真方法。

此外,为了更真实地模拟无线信道的特性,我们还可以采用基于实际测量数据的信道模型。

这些模型能够更准确地反映无线信道的实际传输情况,有助于提高仿真结果的准确性和可靠性。

四、仿真研究应用无线通信系统的信道建模与仿真研究在多个方面具有重要的应用价值。

首先,它可以用于评估不同无线通信系统的性能和可靠性,为系统设计和优化提供依据。

其次,它还可以用于研究新的无线通信技术和算法的性能表现,为相关研究提供参考。

此外,信道建模与仿真研究还可以用于预测无线通信系统的未来发展趋势和市场需求,为企业的战略规划和产品开发提供支持。

五、结论无线通信系统的信道建模与仿真研究是提高系统性能和可靠性的重要手段。

通过建立准确的信道模型和采用合适的仿真方法,我们可以更真实地模拟无线信道的传输过程,为相关领域的研究和应用提供可靠的依据。

无线网络的信道建模与仿真

无线网络的信道建模与仿真

无线网络的信道建模与仿真随着无线网络技术的不断发展,越来越多的人们开始依赖无线网络来进行各种活动,比如上网、在线游戏、移动支付等等。

然而,在无线网络中,信道建模是一个非常重要的问题,因为它会直接影响到无线网络的性能。

因此,在无线通信中,进行信道建模和仿真是非常必要的。

接下来,本文将对无线网络的信道建模和仿真进行简要介绍。

一、信道建模信道建模是通过建立数学模型来描述无线信道的传输特性。

由于无线信道存在很多不同的影响因素,如多径效应、衰减、噪声、多普勒效应等,因此建立一个完整的信道模型是非常复杂的任务。

在一般情况下,我们可以将无线信道分为两大类:确定性和随机性信道。

1、确定性信道模型确定性信道是指那些可以用简单的数学公式或几何模型来描述其传输特性的信道。

在这种情况下,我们可以通过一些传输参数来确定整个信道系统,因此确定性信道模型是非常理想的。

例如,在室内环境中,我们通常使用射线跟踪技术来建立信道模型。

这种技术会将射线从信号源发出,并依次经过墙壁、障碍物等,最后到达接收端。

通过计算射线的路径和传输时延,我们可以获得信号的传输特性,从而建立信道模型。

2、随机性信道模型随机性信道是指那些在传输过程中存在波动和变化的信道,这种信道很难用确定性模型来描述。

在这种情况下,我们需要使用随机过程来进行建模。

通过将无线信道视为随机事件的产生过程,并使用随机变量和随机分布来表征其状态,我们可以建立出一个具有随机性的信道模型。

在现实应用中,例如移动通信系统中,随机性信道模型通常用于模拟移动终端在不同地点、不同速度下的传输特性。

二、信道仿真信道仿真是指利用计算机模拟无线信号传输的过程。

通过在计算机中实现信道模型,并对系统进行仿真分析,我们可以评估无线通信系统的性能和可靠性。

对于无线网络的研究工作者来说,信道仿真是非常必要的工作,因为它可以帮助我们设计和优化无线通信系统的参数,并为我们提供实验数据以验证理论分析的有效性。

在信道仿真的过程中,我们需要选取适当的仿真工具和软件。

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言无线通信系统是现代信息社会的重要基础设施,它支持着日益增长的数据传输需求。

为了更好地理解无线通信系统的性能和优化其设计,对信道建模与仿真研究显得尤为重要。

本文将深入探讨无线通信系统的信道建模及仿真研究,以期为无线通信技术的发展提供一定的理论依据和实践指导。

二、无线通信系统信道建模1. 信道类型与特性无线通信系统的信道可以划分为多种类型,如视距信道、非视距信道、多径信道等。

这些信道具有不同的传播特性和影响通信质量的因素。

为了准确描述信道的传播特性,需要建立相应的信道模型。

2. 信道建模方法(1)统计性信道模型:基于实测数据的统计性信道模型,能够反映信道的统计特性,如多径效应、衰落等。

(2)确定性信道模型:根据电磁波传播理论,建立信道的物理模型,能够更准确地描述信道的传播特性。

三、无线通信系统仿真研究1. 仿真软件与工具为了进行无线通信系统的仿真研究,需要使用专业的仿真软件和工具。

这些软件和工具能够模拟无线通信系统的各种环境和条件,以便对信道模型进行验证和优化。

2. 仿真流程(1)根据信道模型设定仿真参数;(2)建立仿真环境,包括传播环境、干扰因素等;(3)进行仿真实验,记录数据;(4)分析仿真结果,优化信道模型。

四、信道建模与仿真的应用1. 信号处理与优化通过信道建模与仿真,可以更好地理解信号在信道中的传播过程,从而对信号进行处理和优化,提高通信质量。

2. 系统设计与优化信道建模与仿真能够帮助设计人员更好地理解无线通信系统的性能和限制,从而进行系统设计和优化。

同时,仿真结果还可以为实际系统的部署和运维提供参考。

五、研究展望随着无线通信技术的不断发展,信道建模与仿真研究将面临更多的挑战和机遇。

未来研究方向包括:1. 更加精确的信道模型:随着电磁波传播理论的不断完善,需要建立更加精确的信道模型,以更好地描述信道的传播特性。

2. 人工智能与机器学习在信道建模与仿真中的应用:利用人工智能和机器学习技术,可以提高信道建模与仿真的效率和准确性,为无线通信系统的设计和优化提供更有力的支持。

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言随着科技的进步与社会的快速发展,无线通信系统已广泛应用于我们日常生活的各个方面。

由于无线信道复杂多变,因此对其信道建模与仿真研究变得尤为重要。

本文将就无线通信系统的信道建模与仿真研究展开探讨,以进一步增强无线通信系统的性能与稳定性。

二、无线通信系统信道建模1. 信道类型与特性无线通信系统的信道主要分为视距信道和非视距信道。

视距信道主要指通信双方之间存在直接路径的信道,而非视距信道则指通信双方之间存在障碍物或反射、衍射等现象的信道。

信道的特性主要包括衰落、多径效应、噪声干扰等。

2. 信道建模方法针对无线信道的特性,常用的信道建模方法包括统计性建模和确定性建模。

统计性建模主要是通过收集实际信道数据,分析其统计特性,如路径损耗、多径时延等。

确定性建模则是根据实际环境,建立物理信道的数学模型,如射线追踪法、几何绕射法等。

三、无线通信系统仿真研究1. 仿真软件与平台为了更好地研究无线通信系统的信道特性,需要借助仿真软件与平台。

目前常用的仿真软件包括MATLAB、Simulinks等,这些软件具有强大的数学计算与图形化展示功能,可以方便地建立无线通信系统的仿真模型。

2. 仿真流程与步骤仿真流程主要包括确定仿真目标、建立仿真模型、设置仿真参数、运行仿真以及分析仿真结果等步骤。

在建立仿真模型时,需要根据实际信道特性选择合适的建模方法,并设置合理的仿真参数。

在运行仿真后,需要对仿真结果进行详细分析,以得出有价值的结论。

四、仿真结果与分析通过对无线通信系统的信道进行建模与仿真,我们可以得到一系列的仿真结果。

首先,通过统计性建模可以得到信道的衰落特性、多径效应等参数;其次,通过确定性建模可以得到物理信道的传播特性;最后,通过仿真平台可以直观地展示出无线通信系统的性能与稳定性。

对仿真结果进行分析,我们可以得出以下结论:1. 不同信道类型对无线通信系统的性能与稳定性具有显著影响,需要根据实际环境选择合适的信道类型;2. 统计性建模与确定性建模各有优缺点,需要根据具体需求选择合适的建模方法;3. 通过仿真研究可以更好地了解无线通信系统的性能与稳定性,为实际系统的设计与优化提供有力支持。

通信网络中的无线信道建模与仿真技术

通信网络中的无线信道建模与仿真技术

通信网络中的无线信道建模与仿真技术随着无线通信技术的不断发展,人们对于无线信道的建模与仿真技术也提出了更高的要求。

无线信道建模与仿真技术是指通过建立数学模型来模拟无线信道的传输特性,并通过仿真方法来验证和分析这些模型。

本文将介绍通信网络中的无线信道建模与仿真技术的相关理论与应用。

一、无线信道的特性无线信道是指无线通信中传输信号的媒介,其特性对无线通信系统的性能具有重要影响。

无线信道的主要特性包括衰落、多径效应、路径损耗、干扰和噪声等。

在进行无线信道建模和仿真时,需要准确描述这些特性,以便更好地了解无线信号的传输行为。

二、无线信道建模方法无线信道建模是通过建立适当的数学模型来描述和分析信号在无线信道中传输的过程。

常用的无线信道建模方法包括几何模型、统计模型和物理模型等。

1. 几何模型几何模型是通过对无线信道的传输路径进行几何描述来建模的方法。

其中常用的模型有几何扩散模型和射线跟踪模型。

几何扩散模型基于微观尺度上的路径传播理论,将信号的传输路径描述为扩散过程。

射线跟踪模型则通过追踪无线信号在环境中的传播路径来模拟信号的传输特性。

2. 统计模型统计模型是基于统计学原理对无线信道进行建模的方法。

其中最常用的模型是瑞利衰落模型和纯多径模型。

瑞利衰落模型适用于描述直射路径较弱或完全不存在的室内环境,而纯多径模型则适用于室外环境和复杂多径环境。

3. 物理模型物理模型是通过模拟无线信号传播的物理规律来建模的方法。

常用的物理模型有衍射模型和散射模型。

衍射模型适用于描述信号在障碍物周围的传播情况,而散射模型则适用于描述信号与物体表面发生散射的情况。

三、无线信道仿真技术无线信道建模是为了对信号的传输特性进行描述,而无线信道仿真技术则是为了通过实验和计算来验证和分析这些模型。

无线信道仿真技术可以分为离散事件仿真和连续时间仿真两类。

离散事件仿真是将无线信道的传输行为划分为离散的时间步进,通过事件触发机制来模拟和计算信道响应。

无线移动通信中的信道建模与仿真

无线移动通信中的信道建模与仿真

无线移动通信中的信道建模与仿真一、引言随着移动通信技术的不断发展,人们对信道建模和仿真的需求也越来越高。

信道建模和仿真是无线通信系统设计中必不可少的一环,是保证通信系统性能的重要因素。

这篇文章将介绍信道建模和仿真在无线移动通信中的应用,以及信道建模和仿真的一些基本概念和方法。

二、信道建模1. 信道模型的概念信道模型是指对无线通信信道进行描述和建模的数学模型。

在实际通信中,无线信号在传输过程中会受到多种因素的影响,如多径、衰落、干扰等,这些因素对无线信号的传输造成了很大的影响,因此,对无线信道进行建模是保证通信系统性能的关键。

2. 信道参数的描述信道参数通常包括信道增益、时延、多普勒频移、相位等。

其中,信道增益是指信号在传输过程中所受到的衰落程度,时延是指信号从发射端到接收端所需要的时间,多普勒频移是由于接收端和发射端之间的运动速度而引起的信号频率偏移,相位是指信号的相位差。

3. 信道建模方法信道建模方法主要包括理论分析、数值模拟和实测建模三种方法。

其中,理论分析主要是通过数学模型对无线信道的特性进行推导和描述。

数值模拟方法是通过计算机程序对无线信道进行模拟和仿真。

实测建模方法则是通过实际测量得到无线信道的特性参数。

三、信道仿真1. 仿真概念信道仿真是通过计算机程序对无线信道进行模拟和实验,以调查和预测无线通信系统的性能。

仿真是一个相对较为简单的方法,可以帮助设计人员快速验证设计方案的可行性和正确性。

2. 仿真方法信道仿真方法主要包括离散事件仿真和连续仿真两种方法。

其中,离散事件仿真是指通过模拟在时间上出现的离散事件进行仿真。

连续仿真则是通过模拟在时间上连续变化的信号进行仿真。

3. 仿真参数信道仿真参数通常包括信噪比、误码率、比特误差率等。

其中,信噪比是指信号功率和噪声功率之间的比值,误码率是指在传输过程中产生的误码比率,比特误差率是指在传输过程中每个比特产生误码的比率。

四、移动通信中的信道模型和仿真1. 多径衰落信道模型多径衰落信道是指无线信号在传输过程中由于多种因素的影响而经历多条路径从发射端到达接收端,导致信号发生衰落的过程。

通信系统的无线信道建模与仿真

通信系统的无线信道建模与仿真

通信系统的无线信道建模与仿真一、引言无线通信系统是当今社会中不可或缺的一部分。

无线信道作为无线通信系统的核心部分,对通信质量和系统性能有着重要影响。

因此,对无线信道进行准确的建模和仿真成为了无线通信系统设计和优化的重要前提。

二、无线信道建模1. 环境因素的考虑a. 地形地貌b. 天气状况c. 建筑物和障碍物的位置和高度2. 信号传播特性a. 多径效应i. 多径衰落ii. 多普勒效应b. 阴影衰落c. 干扰和噪声三、无线信道仿真1. 仿真方法a. 统计建模i. 离散时间模型ii. 连续时间模型b. 几何仿真i. 射线追踪方法ii. 波场方法2. 常用工具和软件a. MATLABb. NS-3c. OPNET四、无线信道建模与仿真步骤1. 收集环境数据a. 地图数据b. 天气数据c. 人流量数据2. 设定信道模型a. 路径损耗模型b. 衰落模型c. 噪声模型3. 选择仿真方法和工具a. 根据需求选择合适的统计建模或几何仿真方法b. 根据可用资源选择合适的仿真工具和软件4. 构建仿真场景和参数设定a. 设定无线通信系统的网络拓扑和节点分布b. 设置通信协议和参数c. 添加干扰源和噪声5. 运行仿真并分析结果a. 运行仿真,并收集相关数据b. 分析仿真结果,评估系统性能6. 优化与改进a. 根据仿真结果,合理优化系统设计和参数设置b. 通过仿真验证改进效果五、总结无线信道建模与仿真是无线通信系统设计与优化的关键步骤。

通过准确的信道建模和仿真,可以评估系统性能、定位问题并优化系统设计,提升系统在实际应用中的可靠性和效果。

因此,对无线信道建模与仿真的研究具有重要的理论和实践意义。

无线通信系统的信道建模与仿真研究

无线通信系统的信道建模与仿真研究

无线通信系统的信道建模与仿真研究随着无线通信技术的迅速发展,越来越多的人将手机视为了日常生活的必需品。

在这个万物互联的时代,无线通信系统应用广泛,从普通的电话通话到移动网络游戏,无线通信系统巳经渗透到了各行各业。

但是,由于无线信号传输过程中的多种干扰和衰落等因素,无线通信信道传输受到了很大的约束。

因此,这就要求我们需要对无线通信系统中的信道进行建模,以便于研究无线信号在传输过程中的表现和评估无线通信系统的性能。

一、信道建模在建立无线通信系统的信道模型时,我们需要考虑的因素较多,其中包括信号强度衰减、多径衰落、频率选择性衰减和信道噪声等。

(一)信号强度衰减信号强度衰减一般是指频率不变的正弦波在传输过程中,由于传输距离、传输介质、传输环境等因素的影响,信号功率的衰减情况。

在信号传输过程中,如果传输距离越远,传输介质阻尼越大、传输环境越复杂,则信号衰减量就越大。

针对信号强度的衰减问题,我们通常会采用衰减因子来描述信号的衰减情况。

例如,对于自由空间传输的信号,一般都会采用自由空间路径损耗模型进行衰减模型的建立。

自由空间衰减模型是指空气介质中或真空中传输的电磁波的信号强度随着传输距离的变化,所遵循的一种对数函数关系。

该模型的数学公式为: P_loss = P_t - 20log(d) - 20log(f) + 20log(4π/c)其中,P_loss表示信号功率的损耗量,P_t表示传输距离为1米时的传输功率,d表示传输距离,f表示传输信号的频率,c表示光速。

(二)多径衰落除了信号强度衰减之外,多径衰落也是无线通信系统中一个比较重要的问题。

所谓多径衰落,就是指同一个信号在传输过程中经过多条路径,从而使接收端收到的信号出现时间相位差异,从而导致信号在接收端叠加而产生的衰落现象。

在无线通信系统中,多径衰落一般是指地面反射、衍射和绕射等多种不同的信号传播路径所导致的衰落。

解决这个问题的方法之一,就是采用多径衰落模型。

无线通信网络场景中的信道建模和仿真

无线通信网络场景中的信道建模和仿真

无线通信网络场景中的信道建模和仿真随着信息时代的到来,无线通信网络已经成为我们生活中不可或缺的一部分。

从智能手机到无人驾驶汽车,几乎所有的智能设备都依赖于无线通信网络。

然而,无线通信网络经常会受到环境中各种干扰和传输信号的损失,这不仅会影响到网络的性能,也会影响到人们的生活。

因此,在无线通信网络中,信道建模和仿真是极其重要的。

一、无线通信网络场景中的信道建模信道建模是指用数学模型对无线通信信道进行描述。

其目的是为了更好地理解和描述在无线通信网络中的信号传输机制。

信道建模通常包括:路径损耗和多径衰落模型、阴影衰落模型、小尺度回波模型和大尺度回波模型等。

1.路径损耗和多径衰落模型路径损耗模型是指阳台区域中的信号强度随着距离增加而衰减的模型。

这是因为唯一的直射路径在传输过程中遇到了各种障碍和干扰。

然而,在这个区域内存在其他径路,这些径路会引起多径衰落。

所以我们需要同时考虑这两种现象。

路径损耗模型通常使用功率关系来描述信道中不同距离的信号强度。

而多径衰落模型则是一些更复杂的模型,用来描述信道中的多路径现象。

2.阴影衰落模型阴影衰落模型是指由于环境影响而导致的信号损失模型。

在某些情况下,例如高楼大厦和山区,都可能会对无线信号产生影响。

这种情况下,信号的传输路径与接收机之间不仅会存在多径损耗,还会有一些其他的影响。

这可能导致在接收机处接收到的信号强度出现更大的波动。

此时,我们需要具备一定的阴影衰落模型。

3.小尺度回波模型小尺度信道模型用于描述在无线通信网络中短距离的信号传输过程。

例如,当移动电话用户在城市中行走时,无线信号可能穿过各式各样的物体并被反射、散射。

小尺度回波模型可以更好地解释这些现象。

4.大尺度回波模型大尺度信道模型用于描述移动和换手等长距离通信情况下的信号传输过程。

这种信号传输受到经度、纬度、海拔、地理和大气条件等因素的影响。

例如在城市中行驶的汽车或高速移动的火车等,都需要使用大尺度回波模型进行信道建模。

面向5G通信系统的无线信道建模与仿真

面向5G通信系统的无线信道建模与仿真

面向5G通信系统的无线信道建模与仿真随着5G通信系统的快速发展,无线信道建模与仿真成为了研究的热点之一。

无线信道建模是指将现实中的无线信道抽象成数学模型,用于分析和仿真无线通信系统的性能。

本文将探讨面向5G通信系统的无线信道建模与仿真,并介绍一些常用的建模方法和仿真工具。

在5G通信系统中,无线信道通常被视为一种复杂、不稳定且多变的媒介。

对无线信道进行准确建模是设计和优化无线通信系统的关键任务。

常用的无线信道建模方法包括几何建模、统计建模和物理建模。

几何建模是一种基于几何形状和拓扑结构的信道建模方法。

它通过考虑无线信道中的反射、衍射和绕射等现象,推导出信道中的路径损耗和多径传播模型。

几何建模通常适用于室内环境和复杂的城市环境,对于大规模的天线阵列也有较好的适应性。

统计建模是一种通过对大量实测数据进行分析和处理得到的信道建模方法。

它利用统计概率分布和相关性分析等理论方法,对无线信道的衰减、多径间的时、频和空间相关性等进行建模。

统计建模在各种实际场景中都得到了广泛的应用,其优势在于能够反映实际场景中的多样性和变动性。

物理建模是一种基于信号传输物理过程的信道建模方法。

它通过对信号在介质中的传输、反射、散射和衰减等过程进行物理建模,从而获得信道的参数和特性。

物理建模通常需要对电磁波传播和材料特性等物理知识有一定的了解,但能够提供较为准确的信道模型。

面向5G通信系统的无线信道建模需要考虑新的特点和需求。

首先,5G通信系统中将引入大规模的天线阵列和波束赋形技术,因此需要能够描述多用户多输入多输出(MU-MIMO)信道特性的建模方法。

其次,5G通信系统将实现更高的频率和更大的带宽,因此需要能够描述高频率衰减和宽带传输特性的建模方法。

此外,由于5G通信系统中将广泛使用毫米波通信技术,因此还需要考虑大气传输和障碍物衰减等特殊影响的建模方法。

在进行无线信道建模与仿真时,研究人员可以利用一些常用的仿真工具和软件平台。

其中,比较著名的有MATLAB和ns-3等。

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言随着科技的进步,无线通信系统已经深入到我们日常生活的各个方面,其重要性和普及度愈发显著。

对于无线通信系统来说,信道建模与仿真研究是一项核心的技术研究领域。

该领域研究的主要目的是更好地理解和模拟无线信道的特性和行为,从而提高通信系统的性能和可靠性。

本文旨在详细探讨无线通信系统的信道建模与仿真研究的相关内容。

二、无线通信系统信道建模无线通信系统的信道建模主要涉及对无线信号传播环境的模拟和描述。

由于无线信号在传播过程中会受到多种因素的影响,如多径传播、衰落、干扰等,因此信道建模需要准确反映这些因素的影响。

1. 多径传播模型:多径传播是无线信号传播的一种常见现象,由于信号在传播过程中会经过多种路径到达接收端,因此会产生多径效应。

信道建模需要准确描述多径传播的特性,如时延、相位偏移等。

2. 衰落模型:衰落是无线信号在传播过程中由于各种因素(如障碍物、距离等)而产生的信号强度变化。

信道建模需要描述不同类型衰落的特性,如大尺度衰落和小尺度衰落。

3. 干扰模型:无线通信系统中,不同用户或系统之间的信号可能会相互干扰。

信道建模需要考虑这种干扰的影响,并建立相应的干扰模型。

三、无线通信系统仿真研究信道建模的结果可以用于无线通信系统的仿真研究。

仿真研究可以帮助我们更好地理解和分析无线通信系统的性能和特性。

1. 仿真环境搭建:仿真环境需要准确反映无线通信系统的实际运行环境,包括信道特性、用户行为、系统架构等。

2. 性能评估:通过仿真研究,我们可以对无线通信系统的性能进行评估,如数据传输速率、误码率、系统容量等。

这些评估结果可以帮助我们优化系统设计和参数配置。

3. 新型技术验证:仿真研究还可以用于验证新型无线通信技术的可行性和性能。

通过模拟不同场景和条件下的系统运行情况,我们可以评估新型技术的优势和局限性。

四、信道建模与仿真的挑战与展望尽管无线通信系统的信道建模与仿真研究已经取得了显著的成果,但仍面临一些挑战和问题。

无线通信系统的信道建模与仿真研究

无线通信系统的信道建模与仿真研究

无线通信系统的信道建模与仿真研究无线通信系统的信道建模与仿真研究1. 引言无线通信是当今社会中不可或缺的一项技术,它已广泛应用于移动通信、物联网、智能交通等领域。

而无线通信系统的性能很大程度上取决于信道的质量。

因此,对无线通信系统中信道的建模与仿真研究具有重要意义。

2. 信道的基本概念信道是指信号传输的媒介,无线通信系统的信道是指电磁波在空间中传播的路径。

信道质量的好坏会直接影响信号的传输效果,例如信号的传输速率、传输距离以及误码率等。

3. 信道建模的意义信道建模是指对无线通信中信道的特性进行建立数学模型的过程。

建模可以更好地理解和分析信道的工作机制,为系统设计和性能评估提供了基础。

同时,信道建模也是设计更高效的通信系统的重要手段。

4. 信道建模的方法和步骤信道建模的方法多种多样,常见的有几何建模、统计建模和物理建模等。

其中,几何建模是指将信道分成多个几何区域,通过建立几何随机过程描述这些区域的分布特性。

统计建模是指通过收集和分析实际的信道测量数据,从而得到信道的统计特性。

物理建模是指通过对信道传播过程的物理参数进行建模和仿真,例如对地理环境、传输媒介、天气条件等因素的考虑。

信道建模的步骤包括:确定研究对象、选择合适的建模方法、收集实验数据或理论模型、建立数学/仿真模型、进行模拟仿真并进行结果评估。

5. 信道建模的应用信道建模在无线通信系统中有着广泛的应用。

首先,对信道的建模可以用于性能评估,通过模拟不同条件下的信道传输来评估系统的性能。

其次,信道建模也可以用于系统设计优化,例如通过改变传输技术、调整系统参数等方式来提高系统的性能。

此外,信道建模还可以用于协议设计与验证、无线网络规划等方面。

6. 信道建模的挑战与未来发展信道建模面临着一些挑战,例如信道的非确定性、多路径效应、时间变化等。

为应对这些挑战,需要进一步研究和改进信道建模方法。

此外,未来随着科技的不断发展,无线通信系统将面对更多应用场景和新技术,信道建模也将面临新的需求和发展方向。

无线射频通信的信道建模与仿真

无线射频通信的信道建模与仿真

无线射频通信的信道建模与仿真无线射频通信的信道建模与仿真无线射频通信是现代通信领域的重要技术之一,它在移动通信、无线局域网、卫星通信等多个领域都有广泛应用。

而要对无线射频通信系统进行有效的设计和优化,信道建模和仿真是不可或缺的步骤。

信道建模是指对无线信道的特性进行抽象和描述,以便对系统进行仿真和分析。

无线信道的特性受到多种因素的影响,包括传输环境、天气条件、设备参数等。

因此,建立准确的信道模型对系统性能的评估至关重要。

在无线射频通信中,常用的信道建模方法包括统计建模和几何建模。

统计建模是基于实测数据进行建模,通过统计分析来描述无线信道的统计特性。

这种方法适用于信道特性变化较慢的情况,比如室内信道。

而几何建模则是基于几何模型和物理原理进行建模,通过对信道的传播路径、衰减和多径效应等进行建模。

这种方法适用于信道特性变化较快的情况,比如室外信道。

除了信道建模,信道仿真也是无线射频通信系统设计中重要的一环。

通过仿真,可以评估系统在不同信道条件下的性能表现,优化系统参数和算法。

常用的信道仿真方法包括基于统计建模的蒙特卡洛仿真和基于几何建模的射线追踪仿真。

蒙特卡洛仿真通过随机生成信道样本来评估系统性能,适用于复杂信道环境。

而射线追踪仿真则通过追踪射线传播路径来模拟信号的传播过程,适用于简单信道环境。

无线射频通信的信道建模和仿真技术在现代通信系统设计中发挥着重要作用。

它们可以帮助工程师了解系统在不同信道条件下的性能,优化系统方案,提高通信质量和可靠性。

未来,随着通信技术的不断发展,无线射频通信的信道建模和仿真技术也将不断创新和完善,为无线通信的进一步发展提供强有力的支持。

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言无线通信系统作为现代信息社会的重要基础设施,其性能的优劣直接关系到人们的日常生活和工作效率。

信道建模与仿真作为无线通信系统研究的重要环节,对于提升系统性能、优化设计和故障诊断具有重要意义。

本文旨在探讨无线通信系统的信道建模与仿真研究,分析现有模型与方法的优劣,提出新的建模与仿真思路,以期为无线通信系统的进一步发展提供理论支持。

二、无线通信系统信道建模1. 信道特性无线通信系统的信道是指电磁波传播的介质,其特性受到多种因素的影响,如传播环境、传播距离、多径效应等。

信道特性主要包括信号衰落、多径效应、干扰等。

在信道建模过程中,需要充分考虑这些因素对信号传输的影响。

2. 信道模型根据信道特性的不同,可选用不同的信道模型。

目前常用的信道模型包括瑞利信道模型、莱斯信道模型、对数距离路径损耗模型等。

这些模型在描述信道特性的同时,还需要考虑信号的传播环境、传输距离等因素。

在建立信道模型时,需根据实际需求选择合适的模型,并对其进行参数化。

三、无线通信系统仿真研究1. 仿真软件无线通信系统的仿真研究需要借助专业的仿真软件。

目前常用的仿真软件包括MATLAB、Simulinks等。

这些软件具有强大的数学计算和图形处理能力,可实现复杂的无线通信系统仿真。

2. 仿真流程仿真流程主要包括建立仿真场景、设置仿真参数、运行仿真实验、分析仿真结果等步骤。

在建立仿真场景时,需根据实际需求设置传播环境、传输距离、信道特性等参数。

在设置仿真参数时,需根据信道模型和系统需求进行合理设置。

运行仿真实验后,需对仿真结果进行分析和评估,以验证模型的准确性和系统的性能。

四、新的建模与仿真思路1. 基于深度学习的信道建模随着深度学习技术的发展,越来越多的研究者将其应用于无线通信系统的信道建模。

深度学习模型能够从大量数据中学习信道的特性,并建立准确的信道模型。

在新的建模思路中,可考虑将深度学习与传统的信道建模方法相结合,以提高模型的准确性和鲁棒性。

无线通信中的信道建模与仿真

无线通信中的信道建模与仿真

无线通信中的信道建模与仿真第一章前言近年来,随着无线通信技术的不断发展和应用,无线通信领域的信道建模和仿真也成为了热门研究方向之一。

信道建模和仿真是无线通信系统中非常重要的一环,它可以帮助我们更好地理解和优化无线通信系统中的信道特性,从而提高系统的性能。

本文旨在介绍无线通信中的信道建模和仿真的基本原理和方法,并结合实际应用案例进行分析和讨论。

第二章信道建模2.1 信道建模的基本原理信道建模是指对无线信道进行数学建模和仿真。

无线信道是指无线通信中传输信号的介质,一般包括空气、水、地面等。

信道建模的目的是描述信道的特性,以便进行信号传输和接收的优化,同时也是无线通信系统设计和性能评估的重要依据。

信道建模一般可以采用两种方法:经验建模和物理建模。

经验建模是基于实际信道测量数据建立的数学模型,可以用于预测不同条件下的信道特性。

物理建模则是根据信道传输模型以及物理影响因素建立的数学模型,能够更准确地描述无线信道的特性。

2.2 信道建模的方法和技术2.2.1 统计建模统计建模是一种常用的信道建模方法。

其基本思想是将信道建模看作是一个随机过程,通过对信道参数进行统计分析并建立相应的数学模型,以描述信道的统计特性。

常用的统计建模方法包括瑞利衰落模型、莱斯衰落模型、日志正态衰落模型等。

2.2.2 几何建模几何建模是一种根据无线信道中各种干扰因素的几何关系建立的信道模型。

该方法能够更准确地描述信道的传播特性,对于城市信道和室内信道等比较复杂的信道情况有很好的适用性。

2.2.3 模拟建模模拟建模是通过对信号传输模拟进行数学建模,以获取信道传输特性的方法。

该方法适用于模拟实验和仿真研究中,可以实现快速和准确的仿真结果。

第三章信道仿真3.1 信道仿真的基本原理信道仿真是指将建立的信道模型进行数学仿真,以模拟无线信道的传输特性。

信道仿真能够帮助设计和评估无线通信系统的性能,为系统优化提供实验基础和依据。

3.2 信道仿真的方法和技术3.2.1 数值仿真数值仿真是一种通过数字计算来获得信道传输特性的方法。

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言随着科技的进步,无线通信系统已经成为现代社会信息交流的基石。

在无线通信系统中,信道建模与仿真研究起着至关重要的作用。

它不仅有助于提升无线通信系统的性能,而且对于无线网络的优化和设计具有重大意义。

本文旨在深入探讨无线通信系统的信道建模与仿真研究,分析其原理、方法及实践应用。

二、无线通信系统信道建模1. 信道特性无线通信系统的信道特性主要包括多径传播、衰落、干扰等。

多径传播是由于电磁波在传播过程中遇到各种障碍物而发生反射、折射和散射等现象,导致信号在接收端产生多径效应。

衰落则是由信号在传输过程中受到各种因素的影响而产生的信号强度变化。

干扰则是指由于其他无线通信系统或电磁干扰源对当前通信系统产生的干扰。

2. 信道建模方法针对上述信道特性,无线通信系统的信道建模方法主要包括统计性建模和确定性建模。

统计性建模主要是通过收集实际信道的数据,分析其统计特性,建立信道的统计模型。

确定性建模则是基于电磁场理论,通过计算电磁波在传播过程中的传播特性和多径效应,建立信道的物理模型。

三、无线通信系统仿真研究仿真研究是无线通信系统信道建模的重要手段。

通过仿真,可以模拟实际信道环境,验证信道模型的准确性,并评估无线通信系统的性能。

常用的仿真方法包括基于统计的仿真和基于物理层的仿真。

1. 基于统计的仿真基于统计的仿真主要是通过使用统计模型来模拟信道环境。

这种方法可以快速地评估无线通信系统的性能,并分析各种因素对系统性能的影响。

然而,由于统计模型只能反映信道的统计特性,无法反映信道的物理特性,因此其准确性受到一定限制。

2. 基于物理层的仿真基于物理层的仿真则是通过建立无线通信系统的物理层模型来模拟实际信道环境。

这种方法可以更准确地反映信道的物理特性,如多径传播、衰落和干扰等。

然而,由于需要考虑电磁场理论和信号处理等方面的知识,其仿真过程相对复杂。

四、实践应用无线通信系统的信道建模与仿真研究在实践应用中具有广泛的应用场景。

无线电通信环境下的信道建模与仿真

无线电通信环境下的信道建模与仿真

无线电通信环境下的信道建模与仿真一、前言随着无线通信技术的不断发展,无线电通信环境下的信道建模与仿真问题愈发重要。

目前,无线电通信所面临的困难主要是信道的随机性和复杂性,而信道建模与仿真也就成为了解决困难的关键。

本文将会从信道建模与仿真的概念与意义入手,介绍信道建模与仿真的相关方法和技术,并分析其在无线电通信环境下的应用和发展前景。

二、信道建模的概念与意义1.信道建模的概念信道建模指的是通过对数据链路通信系统进行模型分析,预先获取信道的统计和特性参数,并以数学模型的方式描述信道传输过程,以便于对通信及信号传输过程进行分析和优化的一项技术。

2.信道建模的意义在无线电通信系统中,我们无法预测和避免信道的随机性和复杂性,但是通过对信道进行建模,我们可以预先了解信道的一些特性和参数,并对信道传输过程进行优化和改进,从而提高通信的质量和可靠性。

三、信道建模的相关方法和技术信道建模主要涉及到以下几个方面的方法和技术:1. 统计建模方法统计建模方法是信道建模的主要手段之一,其基本原理是在一定统计条件下,通过对数据进行大量的采集和分析,来提取信道的统计参数,并对信道进行建模。

常用的统计建模方法包括:自回归(AR)、自回归移动平均(ARMA)、自回归积分移动平均(ARIMA)、高斯分布模型等。

2. 物理几何建模方法物理几何建模方法是通过几何和物理学模型对信道进行建模,其基本原理是利用几何和物理学模型来描述无线信道,从而分析和预测无线信号在传输过程中发生的各种变化和失真。

常用的物理几何建模方法包括:模糊障碍物法、射线跟踪法、多路径模型等。

3. 时间序列建模方法时间序列建模方法主要是通过对信号进行时间序列分析,来构建不同的时间序列模型,然后通过比较不同的时间序列模型来选择最优的模型来建立信道模型。

时间序列建模方法的主要步骤包括:序列平稳性检验、模型识别和参数估计、模型检验和预测等。

4. 仿真技术信道建模的最终目的是为了进行通信系统的仿真分析和优化,因此常需要用到仿真技术。

无线信道建模与仿真

无线信道建模与仿真

摘要移动通信最近几年得到了突飞猛进的发展,人们对无线信道的研究也成了当前通信行业的主题,特别是对无线信道的建模与仿真也受到了许多学者的关注,在这个领域的研究也取得了很大成果。

无线信道模型分为自由空间模型、无线视距模型和经验模型,本文首先研究了无线信道模型的特点,建立了无线信道的的模型,对自由空间模型和经验模型Okumura-Hata 模型、COST-231 Hata模型以及COST231-WI模型进行了比较,并将其用Matlab软件仿真,对仿真结果进行了分析。

关键字:无线信道、Hata模型、COST231-WI模型AbstractMobile communication several years obtained the development recently which progresses by leaps and bounds, The people have also become the current correspondence profession subject to the wireless channel research. Specially has also received many scholars' attention to the wireless channel modeling and simulation, Has also yielded the very big result in this domain research. Wireless channel model is divided into free space model, the wireless line of sight and empirical model, this paper studied the characteristics of wireless channel model is established radio channel model, on the free space model and empirical model Okumura-Hata model, COST-231 Hata model and COST231-WI model were compared, using Matlab software to simulate, the simulation results are analyzed. Keywords: Wireless channel, Hata model, COST231-WI model目录第一章绪论 (4)1.1 无线通信的发展和建模仿真的发展状况 (4)1.1.1 无线通信的发展 (4)1.1.2 信道建模仿真技术的发展概况 (4)1.2 本文研究的容 (5)第二章无线信道的概念和无线信道的模型 (6)2.1 无线信道的概念 (6)2.1.1 无线信道的定义 (6)2.1.2 无线信道的特点 (6)2.2 无线信道的模型 (15)2.2.1 自由空间传播模型 (15)2.2.2 无线视距传播模型 (17)2.2.3 无线信道经验模型 (19)第三章无线信道建模仿真及结果分析 (30)3.1 Matlab软件介绍 (30)3.2 路径损耗模型仿真及结果分析 (30)3.2.1 自由空间模型仿真及结果分析 (30)3.3 经验模型仿真及结果分析 (32)3.3.1 Okumura-Hata模型仿真及结果分析 (32)3.3.3 COST-231 Hata模型仿真及结果分析 (34)3.3.5 COST231-WI模型仿真及结果分析 (36)结论 (39)参考文献 (41)附录 (42)中英文翻译 (42)Matlab程序 (49)致 (54)第一章 绪论1.1 无线通信的发展和建模仿真的发展状况1.1.1 无线通信的发展无线通信的开端可以追溯到公元1901年,当年的12月12日,意大利科学家列莫·马可尼实现了人类历史上首次无线电通信。

面向5G通信的无线信道建模与仿真

面向5G通信的无线信道建模与仿真

面向5G通信的无线信道建模与仿真随着5G时代的到来,快速、高效、可靠的无线通信成为网络建设的关键。

而这其中最基础的一环就是无线信道的建模与仿真。

无线信道建模与仿真能够评估无线信道的性能,并对无线通信系统进行优化设计。

本文将从无线信道的特性、建模方法、仿真技术等方面进行探讨。

一、无线信道的特性无线信道是指从一个地方到另一个地方,在空气中传递的无线电磁波。

其性质具有随机性、时变性、多径传播、衰落和噪声等特点。

1. 随机性无线信道依赖于传输距离和环境,因而其传播路径不确定,且受到人造和自然噪声的影响。

一个无线信道能够体现很多的随机变量,如接收信号功率、相位、时间延迟和多径等。

2. 时变性无线信道时刻都处在不停变化之中,信道的不稳定性影响到了信号的传输质量。

这种不稳定性主要是受到环境的影响,如障碍物、人造噪声、电磁干扰等都可能导致信道的时变。

3. 多径传播多径传播是指无线信号在传递时经历多次反射、折射、绕射等物理现象。

多径效应导致信道的复杂度增加,影响通信设备的收发性能。

4. 衰落衰落是指电磁波经过传播路径时,因信号的反射、折射、散射等多种机制造成的信号功率的损失。

这种损失会导致信道的质量下降。

5. 噪声噪声是指电磁环境中除了信号以外的随机电磁干扰信号。

噪声会对无线信道的性能造成影响,因此必须对噪声进行建模和仿真。

二、无线信道建模方法无线信道的建模是指将无线信道的不稳定性和复杂性抽象成为数学模型,以便于分析无线信道的特性和性能。

常见的无线信道建模方法有解析法、经验法和仿真法。

1. 解析法解析方法是基于物理原理,根据信号的物理特性和传播特性,数学上建立的物理模型。

它的优点是可以得到良好的物理解释和更为准确的结果。

代表方法有弗瑞斯公式、莱斯分布和射线跟踪法等。

2. 经验法经验方法主要是通过大量的统计数据,以最小二乘法等数学方法求解出无线信道参数的估计值。

该方法优点是建模速度快,缺点是对统计数据的质量要求较高。

无线信道建模与仿真

无线信道建模与仿真

无线信道建模与仿真关键词无线信道,信道建模,信道仿真目录第一章绪论 (1)1.1 移动通信系统的发展 (1)1.2 移动通信系统的基本概念 (4)1.3 无线信道研究意义 (6)第二章无线信道衰落与建模 (8)2.1 电磁波传播机制 (8)2.1.1 反射 (8)2.1.2 绕射 (8)2.1.3 散射 (9)2.2 电磁波衰落 (10)2.2.1 自由空间传播 (10)2.2.2阴影衰落 (11)2.3 小尺度衰落 (12)2.3.1 小尺度衰落的影响因素 (13)2.3.2 多径效应 (13)2.3.3 时延扩展和相干带宽 (14)2.3.4 多普勒扩展和相干时间 (15)2.4 无线信道建模 (16)2.4.1 基于统计测量的建模方法 (17)2.4.2 基于传播预测的建模方法 (17)第三章Suzuki信道模型 (19)3.1 高斯功率谱 (20)3.2 莱斯过程与瑞利过程 (23)3.3 对数正态过程 (25)3.4 信道仿真 (26)3.5 正弦波叠加法 (27)3.6 仿真参数计算 (33)第四章 Jakes信道仿真 (37)结论 (41)附录 (43)第一章绪论1.1 移动通信系统的发展中国主导定制的TD-LTE-Advanced正式成为4G(即第四代移动通信技术)国际标准之后,中国移动通信的4G进程得到了有力的推动。

4G技术能提供100Mbps~150Mbps的下行网络带宽,意味着下行速度最高可以达到18。

75Mbs。

这样的高速无疑是令人惊叹的。

于此同时,回顾移动通信系统的发展,我们能发现更令人惊叹的是它的发展速度。

1897年,马可尼(Marconi)在英格兰海峡里为世人展示了无线电为行驶着的船只保持连续不断的通信。

这种在运动中保持通信的能力,得到了世人的关注的同时,得到了举世瞩目的发展。

移动通信系统发展的最初,是单向通信系统,也就是无线寻呼系统。

通信仅仅是单向进行,这显然无法满足人们的通信需求以及渴望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用 Box-Muller 方法,生成高斯随机序列,统计序列概率,得到的图形如下(其中横 坐标代表 x 的取值,纵坐标是取值出现次数(也可以说是概率),统计次数是 10000 次):
图 2 Box-Muller 方法 x 概率密度函数
从上图中可以看出:x 服从高斯分布 N(0,1)。
下面对于上面的样本使用“偏度、峰度检验法”来检验样本来自正态总体(α = 0.1)。

无线信道建模与仿真
张洪敬
北京邮电大学信息与通信工程学院,北京 (100876)
E-mail:Zhanghj1985@
摘 要:本文主要介绍了两种无线信道模型,包括加性高斯白噪声信道和瑞利衰落信道。首 先给出了两种信道的理论模型以及建模方法。然后通过仿真,验证了理论模型的正确性。对 于白噪声信道,得到了其概率密度曲线,同时通过“偏度、峰度检验法”检验其是否服从正态 分布。对于瑞利衰落信道,通过验证其相关特性和统计特性来验证其正确性。 关键词:AWGN,瑞利,Clarke 模型,Jakes 模型 中图分类号:TN929.53
型中,初始相位φ 是为了保证随机过程广义平稳。θ 或 αn 是为了使多普勒频率随机化。ϕn
是保证同相分量和正交分量正交,并且具有相同的功率。 通过计算可以得到同相分量的自相关、正交分量的自相关、同相和正交的互相关、复信
号的自相关、复信号包络平方的自相关[5]。
RX c X c (τ )= J0 ( wdτ )
(10)
φn = 0, n = 1,2,..., N
(11)
把上面三个参量带入 CLARKE 模型中就可以得到 JAKES 模型。如下所示:



u(t) = uC (t) + j uS (t)
(12)
∑ −
uC (t) =
2M
N
an cos(wnt)
n=0
(13)
∑ −
uS (t) =
2M
N
bn cos(wnt)
现在来假设检验
H 0 :数据来自正态总体。
这里α = 0.1,n=10000σ 1 =
6(n − 2) = 0.024488 , (n + 1)(n + 3)
σ2 =
24n(n − 2)(n − 3) (n + 1)2 (n + 3)(n + 5)
= 0.048953 , µ2
= 3−
6 n +1
=
B2 = 1.0021, B3 = −0.007267 , B4 = 2.9033 .
样本偏度和样本峰度的观察值分别为:
g1 = −0.007244 , g2 = 2.8911
-4-

而 zα / 4 = z0.025 = 1.96 。拒绝域为| µ1 |=| g1 / σ 1 |≥ 1.96,| µ2 |=| g2 − µ2 | / σ 2 ≥ 1.96 。 现算得| µ1 |= 0.9352 < 1.96 ,故接受 H 0 ,认为样本服从正态分布。
考察包络以及相位的概率密度函数当 M → ∞ 时,包络服从瑞利分布,相位服从[−π ,π )
上的均匀分布。具体的 PDF(概率密度函数)如下:
f|X| (x)
=
x

exp(−
x2 2
),
x

0
(24)
f ΘX
(θ X
)
=
1 2π
,θ X
∈[−π ,π ).
(25)
下面是简要证明:因为同相分量和正交分量中的各个子载波统计独立并且服从同一分
(18)
RX s X s (τ )= J0 ( w
(20)
RX s Xc (τ )=0
(21)
RXX (τ )=2 J0 ( wdτ )
(22)
R
X
2
X
2
(τ )
=
4
+
2 4J0
( wd τ
)
+
4+2 J0 (2 wdτ M
)
=
4
+
2 4J0
( wd τ
),
(6)
N
∑ gC (t) = E0 cn cos(ωd t cosα n + φn )
(7)
n=1
N
∑ g S (t) = E0 cn sin(ωd t cosα n + φn )
(8)
n=1
Jakes 模型[4]:基于 CLARKE 的参考模型,令:
Cn =
1 N
(9)
αn
=
2πn , n N
= 1,2,..., N
1.引言
无线信道是移动通信的传输媒体,所有的信息都在这个信道中传输。信道性能的好坏直 接决定着通信质量,因此要想在比较有限的频谱资源上尽可能的高质量、大容量传输有用的 信息就要求必须十分清楚地了解信道的特性。然后再根据信道的特性采取一系列的抗干扰和 抗衰落措施,来保证传输质量和传输的容量方面的要求[1]。
3.1 AWGN信道仿真结果及检验
使用中心极限定理的方法,生成高斯随机序列,统计序列概率,得到的图形如下(其中
-3-

横坐标代表 x 的取值,纵坐标是取值出现次数(也可以说是概率),统计次数是 100000 次):
图 1 中心极限定理方法 x 概率密度函数
2.9994 .下面来计算样本
中心矩 B2 , B3 , B4 , B2 = 1.0075 , B3 = −0.026396 , B4 = 3.0998 .
样本偏度和样本峰度的观察值分别为:
g1 = −0.026103 , g2 = 3.0539 而 zα / 4 = z0.025 = 1.96 。拒绝域为| µ1 |=| g1 / σ 1 |≥ 1.96,| µ2 |=| g2 − µ2 | / σ 2 ≥ 1.96 。 现算得| µ1 |= 1.066 < 1.96 ,| µ1 |= 1.1135 < 1.96 故接受 H 0 ,认为样本服从正态分布。
当M


(23)
从改善的信道模型的统计特性和数学参考模型的统计特性的对比可以看出:二阶统计特
性完全一样,另外新模型的二阶统计特性与 M 无关,在正弦波数量很少的情况下就已经接
近理想情况,这与经典的 JAKES 模型不同。四阶统计特性有所不同, M=8 时,式(3-29)可
以很好的近似式(3-12),并且四阶统计特性在正弦波数量趋于无穷时接近理想情况。
(15)
-2-

∑ X C (t) =
2 M
M
sin(ϕn ) sin(ωd t sin α n
n=1
+φ)
(16)
∑ X S (t) =
2 M
M
cos(ϕn ) sin(ωd t sin α n
n=1
+φ)
(17)
其中ϕn (n=1,2,…M), θ , φ 这 M+2 个随机变量服从[−π ,π ) 上的均匀分布。在该模
为了更好的研究通信系统,一个与实际传输环境相符合的无线信道仿真模型是必需的。
2.信道模型
2.1 AWGN信道模型
AWGN 信道,即加性高斯白噪声信道,这种信道对于信号的影响在于在原信号的基础 上加上了噪声,引起了原信号的失真。AWGN 信道建模的关键是生成高斯随机序列,目前 产生高斯随机序列的方法有多种,这里主要介绍中心极限定理的方法和 Box-Muller 方法。
-6-

图 4 正交分量自相关理论值和仿真结果
横坐标是归一化时间,纵坐标是同相分量自相关值。从上图中可以看出:该模型正交分 量的自相关和理论值在横坐标小于 5 时非常接近,而在横坐标大于 5 时有一定的偏差。导致 这种偏差的原因是多方面的,其中,参数的取值是一个方面。还有就是统计次数的原因,统 计次数不够多,也导致了结果出现了一定的偏差。
中心极限定理产生高斯随机数:设 r1,r2,…,rn 为(0,1)上 n 个相互独立的均匀分布的随 机数,由于 E(ri)=1/2,D(ri)=1/12,根据中心极限定理可知[2],当 n 充分大时
∑ x =
12 n (
n i=1
ri

n) 2
(1)
x 的分布近似于高斯分布 N(0,1).通常取 n=12,此时有
图 3 同相分量自相关理论值和仿真结果
横坐标是归一化时间,纵坐标是同相分量自相关值。从上图中可以看出:该模型同相分 量的自相关和理论值在横坐标小于 5 时非常接近,而在横坐标大于 5 时有一定的偏差。导致 这种偏差的原因是多方面的,其中,参数的取值是一个方面。还有就是统计次数的原因,统 计次数不够多,也导致了结果出现了一定的偏差。
12
x = ∑ ri − 6
(2)
i =1
这样得到的 x 为服从高斯分步 N(0,1)的随机数。
Box-Muller 方法产生高斯随机数:取两个独立的均匀随机数η1,η2 ,令
ξ1 = − 2 lnη1 cos(2πη2 )
(3)
ξ2 = − 2 lnη1 sin(2πη2 )
(4)
则 ξ1 ,ξ2 为相互独立的标准正态分布的随机数。
-5-

3.2平坦瑞利衰落信道仿真结果
采用改进的 Jakes 模型,最大多普勒频移为 50Hz,采样频率为 3.84MHz,长度为 3840000,M=8.主要完成改进的 Jakes 模型的统计特性的仿真,进而证明改进的 Jakes 模型的 特性.
图 4-5~图 4-9 的横坐标是归一化时间 f d *τ ,纵坐标是对应的自相关或互相关值。
2.2 瑞利衰落信道的理论模型
Clarke 模型[3]:Clarke 提出了一种用于描述平坦小尺度衰落的统计模型,其移动台接收 信号场强的统计特性是基于散射的,这正好与市区环境中无直接通路的特点相吻合,因此广
相关文档
最新文档