材料力学第三章
材料力学第三章
33
G=
M el0 ϕI p
= M el0 ϕ ⋅ πd 4
=
150 × 0.1× 32 0.012π × 204 ×10−12
= 79.6 GPa
3-8 设有 1 圆截面传动轴,轴的转速 n = 300 r/min,传递功率 P = 80 kW,轴材料的 许用切应力[τ ] = 80 MPa,单位长度许用扭转角[θ ] = 1.0° / m ,切变模量 G = 80 GPa。试
τ max
= Tmax Wp
≤ [τ ]
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
(2)用简化公式
τ max
=
8FD πd 3
=
8 ×1.5 ×103 × 50 ×10−3 π × 83 ×10−9
= 373 MPa
< [τ ],安全。
讨论:由于 c = D d = 50 8 = 6.25 < 10 ,故应用解(1)中修正公式计算((1)(2)计算
值相差较大)。
3-7 一圆截面等直杆试样,直径 d = 20 mm,两端承受外力偶矩 M e = 150 N⋅ m 作用。 设由试验测得标距 l0 = 100 mm 内轴的相对扭转角ϕ = 0.012 rad,试确定切变模量 G 。
设计轴的直径。
解 T = 9549 × P = 9549 × 80 = 2546 N ⋅ m
n
300
材料力学:第三章扭转强度
解:
A
TA
Ip
1000 0.015 0.044 (1 0.54 )
63.66MPa32max来自T Wt1000
0.043 (1 0.54 )
84.88MPa
16
min
max
10 20
42.44 MPa
例:一直径为D1的实心轴,另一内外径之 比α=d2/D2=0.8的空心轴,若两轴横截面上 的扭矩相同,且最大剪应力相等。求两轴外直
NA=50 马力,从动轮B、C、D输出功率分 别为 NB=NC=15马力 ,ND=20马力,轴的 转速为n=300转/分。作轴的扭矩图。
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300
351 N m
mD
7024 NC n
/m
例:实心圆轴受扭,若将轴的直径减小一半
时,横截面的最大剪应力是原来的 8 倍?
圆轴的扭转角是原来的 16 倍?
max
T Wt
T
d3
16
Tl Tl
GIp
d4
G
32
例:图示铸铁圆轴受扭时,在_45_ 螺_旋_ 面上 发生断裂,其破坏是由 最大拉 应力引起的。 在图上画出破坏的截面。
例:内外径分别为20mm和40mm的空心圆截 面轴,受扭矩T=1kN·m作用,计算横截面上A 点的切应力及横截面上的最大和最小切应力。
7024 20 468 N m 300
N A 50 PS N B N C 15 PS N D 20 PS n = 300 rpm
mA 1170 N m mB mC 351 N m mD 468 N m
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学第3章扭转
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
材料力学第三章剪切和扭转
T
Ⅰ
T
d1
(a)
l
T (b)
D2
Ⅱ
T
l
36
3.3 等直圆杆扭转时的应力
解:
Wp1
πd13 16
Wp2
πD23 14
16
1,maxW Mpt11
T Wp1
16T πd13
2,ma xW M pt2 2W Tp2πD 2 311T 6 4
D 2 31 4 d 1 3
螺栓连接[图(a)]中,螺栓主要受剪切及挤压(局部压
缩)。
F
3
3.1 剪切
键连接[图(b)]中,键主要受剪切及挤压。
4
3.1 剪切
剪切变形的受力和变形特点: 作用在构件两侧面上的外力的合力大小相等、方向相 反,作用线相隔很近,并使各自推动的部分沿着与合 力作用线平行的受剪面发生错动。
受剪面上的内力称为剪力; 受剪面上的应力称为切应力;
3.3 等直圆杆扭转时的应力
传动轴的外力偶矩:
已知:
T2
T1
从动轮
n 主动轮
T3 从动轮
传动轴的转速 n ;某一轮上 所传递的功率
NK (kW)
作用在该轮上的外力偶矩T 。
一分钟内该轮所传递的功率等于其上外力偶矩所 作的功:
NK60 13 0(J)T2πn(Nm)
33
3.3 等直圆杆扭转时的应力
26
3.3 等直圆杆扭转时的应力
dj M t
d x GI pBiblioteka G djdx
GGMItp
Mt
Ip
等直圆杆扭转时横截面上切应力计算公式
Mt
O
材料力学课件第三章剪切
剪切现象
生活中的剪切现象
如剪刀剪纸、锯子锯木头等,都 是典型的剪切现连接处, 由于受到垂直于连接面的力而发 生相对错动。
剪切应力与应变
剪切应力
在剪切过程中,作用在物体上的剪切力与物体截面面积的比值称 为剪切应力。
剪切应变
04
剪切破坏与预防措施
剪切破坏类型
01
02
03
04
脆性剪切
材料在无明显屈服的情况下突 然发生剪切断裂,多发生在脆 性材料中。
韧性剪切
材料在发生屈服后逐渐发生剪 切断裂,多发生在韧性材料中 。
疲劳剪切
材料在循环应力作用下发生的 剪切断裂,多发生在高强度材 料中。
热剪切
由于温度变化引起的剪切断裂 ,多发生在高温环境下。
车辆工程中的剪切问题
航空航天器在高速飞行时,会受到气 动力的剪切效应,影响其稳定性。
车辆在行驶过程中,车体结构会受到 风力、路面等载荷的剪切作用,影响 车辆的安全性和舒适性。
船舶结构中的剪切变形
船舶在航行过程中,会受到波浪、水 流等载荷的剪切作用,影响其结构安 全。
THANK YOU
感谢聆听
患。
05
剪切在实际工程中的应用
建筑结构中的剪切问题
80%
桥梁结构的剪切变形
桥梁在受到车辆等载荷作用时, 会发生剪切变形,影响结构的稳 定性。
100%
高层建筑的剪切力传递
高层建筑中的剪切力对建筑物的 稳定性和安全性具有重要影响。
80%
地震作用下的剪切效应
地震时,建筑结构会受到地震波 的剪切作用,可能导致结构破坏 。
03
剪切与弯曲的关系
弯曲与剪切的相互作用
材料力学第三章-PPT
Me3
r / min
Me1 15915 N m
2
3
Me2 Me3 4774.5 N m
Me4 6366 N m
Me1 n Me4
1
4
6366 N·m
+
2)画扭矩图
4774.5 N·m
9549 N·m
【课堂练习】若将
Me2
Me4
从动轮3与4对调如
18
Me1 n Me3
图,试作扭矩图、
2
BC段内:
2,max
T2 Wp 2
π
14103 71.3MPa 100 103 3
3)校核强度
16
2,max >1,max且2,max<[ ] = 80MPa,满足强度条件、
36
§3-5 等直圆杆扭转时得变形·刚度条件
Ⅰ、 扭转时得变形
等直圆杆得扭转变形可用两个横截面得
相对扭转角(相对角位移) j 来度量。
GIP
j Tl 180 GIP
—单位为度 (º)
若圆轴在第i段标距li内Gi、IPi、Ti为常 数,则相对扭转角:
n
j
T i li
—单位为弧度(rad)
i1 Gi I Pi
n
j
T i li 180 —单位为度 (º)
i1 Gi I Pi
39
【例3-4】钢制实心圆轴中,M1=1 592 N·m,M2 = 955 N·m,M3 = 637 N·m,lAB = 300 mm,lAC = 500 mm,d = 70 mm ,切变模量G = 80 Gpa、试求横截面C 相对于
Me
Me
FS左=τ左dydz
FS右=τ右dydz
材料力学第三章总结
一、剪切:1、受力特征:杆件受到两个大小相等,方向相反、作用线垂直于杆的轴线并且相互平行且相距很近的力的作用。
2、变形特征::两力之间的截面将发生相对错动,甚至破坏。
3、剪切面:两力作用之间的面(发生错动的面)。
4、剪切的应力:由于螺栓、销钉等工程上常用的连接件与被连接件在连接处都属于“加力点附近局部应力”,应力分布很复杂,很难作出精确的理论分析。
因此,工程设计中,大都采取实用(假定)计算方法。
一、假定应力分布。
二、实验。
由假定应力分布得到破坏时的应力值。
然后由两个假定建立设计准则。
假定:剪切面上的切应力是均匀分布的。
名义剪力:AF s =τ,—A 剪切面面积。
5、剪切的强度条件:[]—ττ≤=A F s 名义许用切应力:在假定的前提下进行实物或模型实验,并考虑安全因数,确定许用应力。
6、可解决三类问题:(1)选择截面尺寸;(2)确定最大许可载荷;(3)强度校核。
7、.剪切的破坏计算:—b s AF ττ>=剪切强度极限。
8、剪切实用计算的关键:剪切面的判定及计算。
(单剪切、双剪切)二、挤压及挤压的实用计算1、挤压:连接件和被连接件在接触面上彼此承压的现象。
2.挤压引起的可能的破坏:在接触表面产生过大的塑性变形、压溃或连接件(如销钉)被压扁。
3.挤压的强度问题:①挤压力bs F :作用在接触面上的压力。
F F bs =;②挤压面bs A 挤压力的作用面。
③挤压应力bs σ挤压面上由挤压力引起的应力。
④挤压的实用计算:bs bs bs A F =σ;⑤挤压的强度条件:[]—bs bsbs bs A F σσ≤=名义许用挤压应力,由实验测定。
注意:在应用挤压强度条件进行强度计算时,要注意连接件与被连接件的材料是否相同,如不同,应对挤压强度较低的材料进行计算,相应的采用较低的许用挤压应力。
挤压实用计算的关键:挤压面的判定及计算。
4、挤压面面积的计算:(1)平面接触(如平键):挤压面面积等于实际的承压面积。
材料力学-第三章
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
材料力学-第三章-剪切实用计算(上交)
FQ A
材料力学
剪切实用计算
剪切强度条件:
FQ A
[ ]
名义许用剪应力
可解决三类问题: 1、选择截面尺寸; 2、确定最大许可载荷, 3、强度校核。
材料力学
在假定的前提下进行 实物或模型实验,确 定许用应力。
[例3.1 ] 图示装置常用来确定胶接处的抗剪强度,如已知 破坏时的荷载为10kN,试求胶接处的极限剪(切)应力。 F F
F / 2n [ j ] 1 A d 2 4
2F n 3 . 98 2 d [ j ]
FQ
(2)铆钉的挤压计算
jy
Fb F /n [ A jy t1 d
]
jy
]
F n t1 d [
材料力学
3 . 72
jy
剪切实用计算
因此取 n=4. I F/n F/n F/n F F/n
R
R0
t
1 t R0 10 为薄壁圆筒
材料力学
材料力学
(1)
C D A B C D
A B
横截面上存在剪应力
材料力学
纯剪切的概念
(2)其他变形现象:圆周线之间的距离保持不变,仍为圆形, 绕轴线产生相对转动。 横截面上不存在正应力,且横截面上的剪应力的 方向是沿着圆周的切线方向,并设沿壁厚方向是 均匀分布的。 T
h d F d
剪切面
h
解
FN 4 F A d 2 F Q F AQ dh
当 , 分别达到 [] , [] 时, 材料的利用最合理
材料力学
F 4F 0 .6 2 得 d : h 2 .4 dh d
材料力学 第三章 扭转
为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学 第 三 章 扭转
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ
dϕ
dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。
材料力学第三章知识点总结
直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e
⋅
=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。
倾斜了同一个角度,小方格变成了平行四边形。
τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。
有关,见教材P93 之表3.2。
材料力学第三章
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
3.理论分析 3.理论分析 变形几何关系: (1) 变形几何关系: G1G′ ρ ⋅ dϕ γ ρ ≈ tanγ ρ = =
dϕ γρ = ρ dx dϕ :扭转角 沿x轴的变化 轴的变化 ϕ dx 率。对给定截面上的各 它是常量。 点,它是常量。
28
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
5
§3-2 薄壁圆筒的扭转
1 为平均半径) 薄壁圆筒: 薄壁圆筒:壁厚 δ ≤ r0 (r0:为平均半径) 10
实验: 实验:
实验前:绘纵向线,圆周线; 实验前:绘纵向线,圆周线;
然后施加一对外力偶 Me。
6
§3-2 薄壁圆筒的扭转
当其两端面上作用有外力 偶矩时,任一横截面上的 内力偶矩——扭矩(torque) T = Me
4
§3.1 概述
工程实际中,有很多构件,如车床的光杆、 工程实际中,有很多构件,如车床的光杆、搅拌机 轴、汽车传动轴等,都是受扭构件。 汽车传动轴等,都是受扭构件。 还有一些轴类零件,如电动机主轴、水轮机主轴、 还有一些轴类零件,如电动机主轴、水轮机主轴、 机床传动轴等,除扭转变形外还有弯曲变形, 机床传动轴等,除扭转变形外还有弯曲变形,属于组合 变形。 变形。 本章研究杆件发生除扭转变形外,其它变形可忽略 的情况,并且以圆截面(实心圆截面或空心圆截面)杆为 主要研究对象。此外,所研究的问题限于杆在线弹性范 围内工作的情况。
Ⅰ. 横截面上的应力 表面 变形 情况 横截面 上应力 变化规 律 内力与应力的关系 横截面上应 力的计算公 式
23
横截 推断 面的 变形 情况
横截面 上应变 应力-应变关系 的变化 规律
材料力学,第三章 扭转
,或有使用要求(如机床主轴)要采用空心轴,否则,制
造空心轴并不总是值得的。
45
§3–5 等直圆杆在扭转时的变形 · 刚度条件
一、扭转时的变形 由公式
d T dx GI p
知:长为 l一段杆两截面间相对扭转角 为
d
l
0
T dx GI p
Tl (若T 值 不 变 ) GI p
I p A 2 dA 2 2 d
D 2 0
D 4
32
0 .1 D 4
37
d 对于空心圆截面:
I p A 2 dA 2 2 d (
D 2 d 2
d
O
D
d ) D
32 D 4 (1 4 ) 0.1D 4 (1 4 ) 32
Torsion
1
第三章
§3–1 概述
扭 转
§3–2 传动轴的外力偶矩 · 扭矩及扭矩图
§3–3 薄壁圆筒的扭转 §3–4 等直圆杆在扭转时的应力 · 强度分析 §3–5 等直圆杆在扭转时的变形 · 刚度条件
2
§ 3–1
概 述
工程中以扭转为主要变形的构件,我们一般称之为“轴”。如:
机器中的传动轴、石油钻机中的钻杆等。 工程实例
42
Tmax Wt [ ]
Tmax Wt [ ]
[例] 设有一实心圆轴与一内外径比为3/4的空心圆轴,两轴 材料及长度都相同。承受转矩均为m,已知两轴的最大剪应 力相等,试比较两轴的重量。 解.( 1 )实心轴直径 d与 空心轴外径D之间的关系
max
Tmax 16m [] 3 Wt d
材料力学 第三章 应变理论
ij 称为柯西应变张量或小应变张量
其实体表示形式为 1 u u 2
是二阶对称张量,只有六个独立分量。
§3-1 位移和变形
在笛卡尔坐标系中,其常用形式为
11
u1 x1
u x
x ,12
21
1 2
u1 x2
u2 x1
1 u
2
y
v x
xy
yx
22
u2 x2
v y
i
ji
ui x j
j
1
i
ui x j
j
i
可由位移梯度分量 ui 和线元正应变 计算任意方向线元
变形后的方向余弦。x j
考虑两线元间的夹角变化
t cos , t t 2 t 1 1
t
1 t t 2 t
§3-2 小应变张量(几何方程)
若变形前两线元互相垂直,即 t 0
u j xi
ei ej
E 1 u u u u 2
➢ 按照欧拉描述还可以定义描述大变形的阿尔曼西(Almansi,E)
应变张量,即
dS2 dS02 2eijdxidxj
eij
1 2
ui xj
u j xi
um xi
um xj
它也是二阶对称张量
由此可见:物体无变形(线元长度不变,仅作刚体运动) 的充分必要条件是应变张量处处为零。
令 为变形后线元间直角的减小量,则由上式可得
cos
2
cos , t
2 t 2ij it j 2t
通常定义两正交线元间的直角减小量为工程剪应变 t ,即
t 2t 2 t 2ijit j
若 , t 为坐标轴方向的单位矢量,例如 i 1, t j 1(i j)
《材料力学》第三章 轴向拉压变形
第三章 轴向拉压变形
*四、温度应力、装配应力 一)温度应力:由温度引起杆变形而产生的应力(热应力) 。 温度引起的变形量—— L tL 1、静定问题无温度应力。 2、超静定问题存在温度应力。 二)装配应力——预应力、初应力:由于构件制造尺寸产生的制造误差,在装配时产生变形而引起的应 力。 1、静定问题无装配应力 2、超静定问题存在装配应力。 轴向拉压变形小结 一、拉压杆的变形(重点) 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 3、横向变形系数(泊松比) : 4、变形——构件在外力作用下或温度影响下所引起的形状尺寸的变化。 5、弹性变形——外力撤除后,能消失的变形。 6、塑性变形——外力撤除后,不能消失的变形。 3、横向变形系数 7、位移——构件内的点或截面,在变形前后位置的改变量。 8、正应变——微小线段单位长度的变形。
4、求变形: L
FN L EA
LAB
FNAB LAB 240 3.4 104 2.67(m m) EAAB 2.114.54
LCD 0.91mm LEF 1.74mm
5、求位移,变形图如图
LGH 1.63mm
D
LEF LGH DG LGH 1.70 mm EG
第三章 轴向拉压变形
第三章
一、概念 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 二、分析两种变形
轴向拉压变形
§3—1 轴向拉压杆的变形
b
L F F
b1
L1
1、轴向变形:Δ L=L1-L ,
L L F L (2) 、在弹性范围内: L N A
(1) 、轴向正应变线应变:
高等材料力学课件第三章-应变状态
( yz xz xy ) 2 2 x
x x y z
yz
( yz xz xy ) 2 2 y
y x y z
xz
( yz xz xy ) 2 2 z
z x y z
xy
§3.3 应变协调7
•变形协调方程的数学意义
•使3个位移为未知函数的六个几何方程不相矛 盾。
•变形协调方程的物理意义
而且改变了物体内部各个点的相对 位置。
§3.1 变形2
M (x, y, z) M (x, y, z)
u=x'(x,y,z)- x=u(x,y,z) v=y'(x,y,z)- y=v(x,y,z) w=z'(x,y,z)- z=w(x,y,z)
位移u,v,w是单值连续函数
进一步分析假定位移函 数具有连续的三阶导数
• 目录
• §3.1 变形与应变概念
• §3.2 向
主应变与主应变方
• §3.3 应变协调方程
§3.1 变形与应变概念
• 由于外部因素 ——载荷或温度变化 • 位移—— 物体内部各点空间位置发
生变化 • 位移形式 • 刚体位移:物体内部各点位置变化,
但仍保持初始状态相对位置不变。 • 变形位移:位移不仅使得位置改变,
§3.3 应变协调15
• 如果物体表面的位移已知,称为位移边界 • 位移边界用Su表示。
• 如果物体表面的位移 u, v, w,已知
• 边界条件为
uu vv ww
• 称为位移边界条件
§3.3 应变协调16
• 设物体表面为S • 位移已知边界Su • 面力已知边界Ss
则 S=Su+Ss
• 弹性体的整个边界,是由面力边界和位移边 界构成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16T T 40MPa D2 3 1 4 W p2
D2 3
3
16 716.2 1 0.54 40 106
46mm
P 7.5 3 M e T 9.55 10 9.55 10 716.2N m n 100 T 16T 40MPa max 3 Wp d1
sin 2
讨论:
00
900
cos 2
0 max
0
0 0
0
90 0
0 0
90 min
0
450
45 max
45 0
0
τ
450
45 min
轴的转向
mC
mA
mD
B
mB
1
C
mC
2
A
mA
3
D
mD
1
2
5.10kN· m
3
3.82kN· m 7.64kN· m
§4
Me
等直圆杆扭转时的应力 ·强度条件
从三个方面考虑:几何、物理及静力学方面﹗ Me
I、几何方面
预先在圆杆的表面画上等间距 的纵向线和圆周线,从而形成一系
列的正方格子
试验结果: 等直圆杆扭转变形后,两圆周线 绕杆件的轴线相对旋转了一个角度,
dy
z
因为切应力互等定理是由单元体的平衡条件导出的,与材料的性能无关 不论单元体上有无正应力存在,切应力互等定理都是成立的。 若单元体各个截面上只有切应力而无正应力,称为纯剪切状态。 所以不论材料是否处于弹性范围,切应力互等定理总是成立的。
dx
圆轴扭转时斜截面的应力
T A T
e
dA
正确的,因为外层在二者交界处的切应变不为零,根据剪切胡克定
律,切应力也不可能等于零。 根据以上分析,正确答案是(C)
切应力互等定理
根据力偶平衡理论
y
(dydz )dx ( dxdz)dy
x
dz 在相互垂直的两个平 面上,切应力必成对 出现,两切应力的数 值相等,方向均垂直 于该平面的交线,且 同时指向或背离其交 线。
T WP
16 D 80 10 Pa D d 2
当δ≤R0/10时,即可认为是薄壁圆筒
例题
3.6
已知:P=7.5kW,n=100r/min,许用切应力=40MPa,
空心圆轴的内外径之比 = 0.5。 求: 实心轴的直径d1和空心轴的外径D2。
两圆周线的形状和大小均未改变; 在
变形微小的情况下,圆周线的的间距 也未变化,纵向线则倾斜了一个角度
。
平面假设:假设横截面象刚性平面一样地绕杆的轴线转动。
d
是 b-b 截面相对于
a
T
b
a-a 截面象刚性平面一
样绕杆 轴转动的一个角度。 倾角 是横截面圆周上任 一点 A 处的切应变,经过半 径 O2D 上任一点 G 的纵向 线 EG 也 倾 斜 了 一 个 角 度 它也就是横截面半径上任 一点 E 处的切应变 。
直于杆轴线的坐标表示横截面上的扭矩,从而绘制出
表示扭矩与截面位置关系的图线,称为扭矩图。
扭矩图的画法步骤:
⒈ 画一条与杆的轴线平行且与杆等长的直线作基线; ⒉ 将杆分段,凡集中力偶作用点处均应取作分段点; ⒊ 用截面法,通过平衡方程求出每段杆的扭矩;画受 力图时,截面的扭矩一定要按正的规定来画。
⒋ 按大小比例和正负号,将各段杆的扭矩画在基线两
Pk
Pk
2.扭矩
扭矩图
m n m
(a) A n x n n B
mI
I
T T
m
扭 矩 符 号 规 定 :
mI T
T T
I
m T
I
I
右手定则:右手四指内屈,与扭矩转向相同,则拇指的指向表 示扭矩矢的方向,若扭矩矢方向与截面外法线相同,规定扭矩 为正,反之为负。
用平行于杆轴线的坐标表示横截面的位置,用垂
A
截面的极惯性矩
d T dx GI P
T d dx 0 GI l P
l
当等直圆杆仅在两端受一对外力偶作用时
TL GI P
当等直圆杆有两个以上的外力偶作用时,需要先画出扭矩图, 然后分段计算各段的变形,各段变形的代数和即为杆的总变形。
Ti Li i GI P i
G
d G dx
(b) (c)
得
G
此时式说明 : 同一半径 圆周上
各点切应力 均相同 ,且其值与
成正比 , 垂直于半径。
dAT
r
o
dA
静力学方面
整个横截面上的内力元素 dA 的合力必等于零,并组成一个 力偶这就是横截面上的扭矩。
GIP称作扭转刚度
刚度条件
由于杆在扭转时各截面上的扭矩可能并不相同,且杆的 长度也各不相同,因此,在工程中,对于扭转杆的刚度通常 ' 用相对扭转角沿杆长度的变化率 d / dx 来衡量。用 表示, 称为单位长度扭转角。
因不知道壁厚,所以不知道是不是薄壁圆筒。分别按薄壁圆筒和空心圆轴设计 薄壁圆筒设计
d
设平均半径 R0=(d+δ)/2
3 3 2
T 2R02
P
2T d
2
3
D
空心圆轴设计
6
2T 2 100 1032 3. mm100 10 3 m2 2 5 10 N m 2d d m 7 2 D 4 d 4 6 W
max
164DT 80 10 Pa D 4 16 10 3 N m D 0.1m4 8 10 6 Pa 0 4 5 D d D d 107 .7mm 100 mm 3.85mm D 107 .7mm 2 2
IP
d
4
o
Aρ
2
πd dA 32
d 4
IP IP d 3 Wp 32 d d r 16 2 2
空心圆截面:
I P Aρ 2dA A 2π ρ 3dρ
(b)
d
π π D4 ( D4- d 4 ) ( 1- α 4 ) 32 32
(D4 d 4 ) IP IP D 3 32 Wp (1 4 ) D r D 16 2 2
n
dA cos
dA sin
x
f
τ
e
τ
τ
A
τ f
F 0 sin 2 dA dA cos sin dA sin cos 0 F 0
dA dA cos dA sin sin 0 cos cos 2
直角的改变量 2、各纵向线仍为直线,但都
倾斜了同一角度γ,原来的小 矩形变成平行四边形。
横截面上必有τ存在,其 方向垂直于圆筒半径。
每个小矩形的切应变都等于纵向线倾斜的角度γ,故圆筒表 面上每个小矩形侧面上的τ均相等。
Me
n
Me
n
T
dA
n n
r A dA r T
T T 2 2 A0 2r0
2d
T
d O
G2 G1
(A)
(B)
(C)
(D)
解:圆轴受扭时,里、外层之间无相对滑动,这表明二者形成一个 整体,同时产生扭转变形。根据平面假定,二者组成的组合截面, 在轴受扭后依然保持平面,即其直径保持为直线,但要相对于原来 的位置转过一角度。 因此,在里、外层交界处二者具有相同的切应变。由于内层(实 心轴)材料的剪切弹性模量大于外层(圆环截面)的剪切弹性模量 (G1=2G2),所以内层在二者交界处的切应力一定大于外层在二者 交界处的切应力。据此,答案(A)和(B)都是不正确的。 在答案(D)中,外层在二者交界处的切应力等于零,这也是不
§1
概
述
受力特征:在杆的两端垂直于杆轴的平面内,作用着一
对力偶,其力偶矩相等、方向相反。
变形特征:杆件的各横截面环绕轴线发生相对的转动。
扭转角:任意两横截面间相对转过的角度。
§2
薄壁圆筒的扭转
1、各圆周线绕轴有相对转动, 但形状、大小及两圆周线间 的距离不变。
横截面上没有正应力。
:切应变
(b)
max
Tr T T IP IP Wp r
IP Wp 称作扭转截面系数(抗扭截面模量),单位为 r mm3或m3。
(2) 公式只适用于符合平面假设的等直圆杆在线弹性范围以内的
扭转切应力计算
极惯性矩及扭转截面系数的计算 实心圆截面:
I P dA
2 A
d
dA 2(d )
E
T
O
2
O
1
G D
D
G
'
'
A a
dx
b
d
(a)
a
GG' d tg dx EG
d dx
(a)
b
T
T
O
2
O
1
E
G
D
D
G
'