天津市新人教版数学2013高三单元测试题14《统计案例》

合集下载

高三一轮复习专题训练:统计、统计案例(最新题,14页)

高三一轮复习专题训练:统计、统计案例(最新题,14页)

2 分层抽样的关键是根据样本特征的差异进行分层,实质是等比例抽样,求解此类问
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
题需先求出抽样比 —— 样本容量与总体容量的比, 则各层所抽取的样本容量等于该层个体总 数与抽样比的乘积 .
三、预测押题不能少
解析: 由题意知, 0.15(x+ 1)+ 0.2- 0.15 x- 0.2= 0.15. 答案: 0.15
统计与概率的交汇
统计与统计案例的主要内容是随机抽样、 样本估计总体、 变量的相关性、 回归分析和独 立性检验, 该部分内容在高考中占有一定的位置, 近两年高考中由单纯考查统计及统计案例 转化为与概率交汇命题且背景贴近生活,角度新颖,试题多为解答题,难度中档.
D. b^<b′, a^<a′
[解析 ] 由 (1,0), (2,2) 求 b′ , a′,则
2- 0 b′ = = 2,a′ = 0-2× 1=- 2.
2- 1 由上表数据求 b^, a^,
6
xiyi= 0+ 4+ 3+12+ 15+24= 58,
i=1
13 x = 3.5, y = 6 ,
6
x2i = 1+Βιβλιοθήκη 4+ 9+ 16+ 25+ 36= 91,
3n 60= 260,解得 n=13.
(2)将某班的 60 名学生编号为: 01,02,…, 60,采用系统抽样方法抽取一个容量为 5 的 样本,且随机抽得的一个号码为 04,则剩下的四个号码依次是 ________.
解析: 依据系统抽样方法的定义知,将这 60 名学生依次按编号每 12 人作为一组,即
1. (1) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为

人教版高中数学选修1-2《统计案例:复习参考题》【可编辑全文】

人教版高中数学选修1-2《统计案例:复习参考题》【可编辑全文】

(2)建立销售总额为解释变量,利润为预报变量的回归 模型. (3)计算R2,你认为这个模型能较好地刻画销售总额和 利润之间的关系吗?请说明理由.
利润y
销售总额x与利润y的散点图
5000
4500
4000
3500
3000
2500 y = 0.0256x + 1334.5
2000
1500
R²= 0.4572
知识回顾 回归分析的思想及初步应用
1.函数关系与相关关系的区别?
函数关系是一种确定性关系,而相关关系是 一种非确定性关系.
2. 若y与x呈线性相关关系,则 回归直线方程


,满足
知识回顾 回归分析的思想及初步应用
3.回归分析的步骤:
解释变量
确定研究对象
预报变量
散点图
观察数据点的分布
两个变量 非线性相关
不吸烟 a
b a+b
吸烟
c
d c+d
总计 a+c b+d n (2)假设两变量无关;
(3)利用公式计算Κ2的观察值k;
,其中
(4)看下表,k与临界值k0比较; 两者无关的概率
P(K2≥k0) 0.10 0.05 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828 两者有关 90% 95% 97.5% 99% 99.9% 的概率 (5)下结论:两种角度,如
1000
500
0
0 20000 40000 60000 80000 100000 120000 140000
销售总额x
这个模型的销售总额x 对于利润y变化的 贡献率为45.72%

【备考2014】2013高考数学 (真题+模拟新题分类汇编) 统计 文

【备考2014】2013高考数学 (真题+模拟新题分类汇编) 统计 文

统计I1 随机抽样17.I1,I2[2013·安徽卷] 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知, 30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.3.I1[2013·湖南卷] 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差别,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( )A .9B .10C .12D .133.D [解析] 根据抽样比例可得360=n120+80+60,解得n =13,选D.5.I1[2013·江西卷] 总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07C.02 D.015.D [解析] 选出来的5个个体编号依次为:08,02,14,07,01.故选D.7.I1,I4[2013·四川卷] 某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图1-4所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )图1-4图1-57.A [解析] 首先注意,组距为5,排除C,D,然后注意到在[0,5)组和[5,10)组中分别只有3和7各一个值,可知排除B.选A.I2用样本估计总体17.I1,I2[2013·安徽卷] 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知, 30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.16.I2,K1,K2[2013·北京卷] 图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气 重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大.12.I2[2013·湖北卷] 某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4 则(1)平均命中环数为________; (2)命中环数的标准差为________.12.(1)7 (2)2 [解析] x =7+8+7+9+5+4+9+10+7+410=7,标准差σ=110[(7-7)2+(8-7)2+…+(4-7)2]=2. 16.I2[2013·辽宁卷] 为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.16.10 [解析] 由已知可设5个班级参加的人数分别为x 1,x 2,x 3,x 4,x 5,又S 2=4,x =7,所以(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)25=4,所以(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20,即五个完全平方数之和为20,要使其中一个达到最大,之五个数必须是关于0对称分布的,而9+1+0+1+9=20,也就是(-3)2+(-1)2+02+12+32=20,所以五个班级参加的人数分别为4,6,7,8,10,最大数字为10.5.I2[2013·辽宁卷] 某班的全体学生参加英语测试,成绩的频率分布直方图如图1-1,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )图1-1A .45B .50C .55D .605.B [解析] 由成绩的频率分布直方图可以得到低于60分的频率为0.3,而低于60分的人数为15人,所以该班的总人数为150.3=50人.图1-919.B1,I2[2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率. 19.解:(1)当X∈[100,130)时, T =500X -300(130-X)=800X -39 000.当X∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X<130,65 000,130≤X≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.10.I2[2013·山东卷] 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示.则7A.1169 B.367C .36 D.6 7710.B [解析] 由题得91×7=87+90×2+91×2+94+90+x ,解得x =4,剩余7个数的方差s 2=17[(87-91)2+2(90-91)2+2(91-91)2+2(94-91)2]=367.5.I2,K2[2013·陕西卷] 对一批产品的长度(单位:毫米)进行抽样检测,图1-1为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )图1-1A .0.09B .0.20C .0.25D .0.455.D [解析] 利用统计图表可知在区间[25,30)上的频率为:1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为:0.04×5=0.2,故所抽产品为二等品的概率为0.25+0.2=0.45.15.I2,K2[2013·天津卷] 某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级,若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”.求事件B发生的概率.15.解:(1)计算10件产品的综合指标S,如下表:其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为610=0.6.从而可估计该批产品的一等品率为0.6.(2)(i)在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.(ii)在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7}, 共6种.所以P(B)=615=25.18.I2、I5[2013·新课标全国卷Ⅰ] 为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?图1-418.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y, 因此可看出A药的疗效更好.从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.6.I2[2013·重庆卷] 图1-2是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )图1-2A.0.2 B.0.4C.0.5 D.0.66.B [解析] 由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.I3正态分布I4变量的相关性与统计案例19.K1,I4[2013·福建卷] 某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图1-4所示的频率分布直方图.图1-4(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+·n 2+·n +1·n +2⎝ ⎛⎭⎪⎫注:此公式也可以写成K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )19.解:(1)由已知得,样本中有“25周岁以上组”工人60名,“25周岁以下组”工人40名.所以,样本中日平均生产件数不足60件的工人中,“25周岁以上组”工人有60×0.05=3(人),记为A 1,A 2,A 3;“25周岁以下组”工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:所以得K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”. 11.I4[2013·福建卷] 已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b′x+a′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′11.C [解析] 画出散点图即可,选C.4.I4[2013·湖北卷] 四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423;②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^=-4.326x -4.578.其中一定不正确...的结论的序号是( ) A .①② B .②③ C .③④ D .①④ 4.D [解析] r 为正时正相关,r 为负时负相关,r 与k 符号相同,故k>0时正相关,k<0时负相关.7.I1,I4[2013·四川卷] 某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图1-4所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )图1-4图1-57.A [解析] 首先注意,组距为5,排除C ,D ,然后注意到在[0,5)组和[5,10)组中分别只有3和7各一个值,可知排除B.选A.17.I4[2013·重庆卷] 从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得错误!,a =y -bx ,其中x ,y 为样本平均值.线性回归方程也可写为y ^=b ^x +a ^. 17.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =错误!i y i -n x y =184-10×8×2=24,由此得b =l xy l xx =2480=0.3,a =y -bx =2-0.3×8=-0.4,故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为 y =0.3×7-0.4=1.7(千元).I5 单元综合17.I5[2013·广东卷] 从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.17.解: 18.I2、I5[2013·新课标全国卷Ⅰ] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?图1-418.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y. 由观测结果可得x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y, 因此可看出A药的疗效更好.从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.1.[2013·宝鸡检测] 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数x≤3;②标准差s≤2;③平均数x≤3且标准差s≤2;④平均数x≤3且极差小于或等于2;⑤众数等于1且极差小于或等于4.A.①② B.③④C.③④⑤ D.④⑤1.D [解析] ①②③错,④对.若极差等于0或1,在x≤3的条件下显然符合指标,若极差等于2,则有下列可能,(1)0,1,2,(2)1,2,3,(3)2,3,4,(4)3,4,5,(5)4,5,6.在x≤3的条件下,只有(1)(2)(3)成立,符合标准.⑤正确,若众数等于1且极差小于等于4,则最大数不超过5,符合指标,故选D.2.[2013·惠州三调] 某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图K39-1所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( ) A.19,13 B.13,19C.20,18 D.18,20K39-1K39-22.A [解析] 甲的中位数为19,乙的中位数为13.故选A.3.[2013·青岛一中显然所减分数y ( )A .y =0.7x +5.25B .y =-0.6x +5.25C .y =-0.7x +6.25D .y =-0.7x +5.253.D [解析] 由题意可知,所减分数y 与模拟考试次数x 之间为负相关,所以排除A.考试次数的平均数为x =14(1+2+3+4)=2.5,所减分数的平均数为y =14(4.5+4+3+2.5)=3.5,即直线应该过点(2.5,3.5),代入验证可知直线y =-0.7x +5.25成立,选D.[规律解读] 线性回归直线方程过点(x ,y)是解决此类问题的关键.4.[2013·长治二中月考] 在第29届奥运会上,中国运动员取得了51金、21银、28铜的好成绩,稳居世界金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数与中国进入体育强国有无关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率4.C [解析] 根据题意,可以列出列联表,计算K 2的值,说明金牌数与体育强国的关系,故用独立性检验最有说服力.5.[2013·乌鲁木齐一诊] 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程y ^=0.67x +54.9.5.68 [解析] 设遮住部分的数据为m ,x =10+20+30+40+505=30,由y ^=0.67x +54.9过点(x ,y),得y =0.67×30+54.9=75,∴62+m +75+81+895=75,故m =68.。

天津市各地市高考数学 最新联考试题分类汇编(13) 统计

天津市各地市高考数学 最新联考试题分类汇编(13) 统计

1 天津市各地市2013年高考数学 最新联考试题分类汇编(13) 统计
一、填空题
:
9. (天津市南开中学2013届高三第四次月考理)某校高中生共有2000人,其中高一年级560人,高二年级640人,高三年级800人,现采取分层抽样抽取容量为100的样本,那么高二年级应抽取的人数为 人。

【答案】32
9. (天津市2013年滨海新区五所重点学校高三毕业班联考理)某工厂生产,,A B C 三种不同型号的产品,三种产品数量之比依次为4:3:2,现采用分层抽样的方法从中抽出一个容量为n 的样本,样本中A 型号的产品有16件,那么此样本容量=n .
【答案】 72 由题意可知22()162349
n n ⨯==++,解得72n =。

(好题)高中数学选修1-2第一章《统计案例》检测(答案解析)(3)

(好题)高中数学选修1-2第一章《统计案例》检测(答案解析)(3)

一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5323.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A .25 B .310 C .15D .1106.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13 D .297.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >=B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 8.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20009.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好10.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .3511.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .4012.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A.130 B.190C.240 D.250二、填空题13.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.已知x、y之间的一组数据如下:=+所表示的直线必经过点________.则线性回归方程ˆy a bx16.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________17.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知=)=,lg30.4771lg20.301018.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=_____.19.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.20.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求:(i)三个球中有两个红球一个黑球的概率;(ii)第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查结果如下面22⨯列联表.22⨯与性别有关”?(2)现在从这100名学生中按性别采取分层抽样的方法抽取5名学生,如果再从中随机选取2人进行有关“嫦娥五号”情况的宣讲,求选取的2名学生中恰有1名女生的概率.若将频率视为概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ 23.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()22n ad bc K a b c d a c b d -=++++25.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()20P K k ≥ 0.050 0.010 0.001 0k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++26.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为x ,若每次抽取的结果是相互独立的,求x 的分布列,期望和方差. 附表:22()()()()()n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率, 首先求两次数字乘积为偶数的概率, 然后两次为非零偶数的概率,再按照条件概率的公式求解. 【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是22169⎛⎫= ⎪⎝⎭, 所以两次数字乘积为偶数的概率P =228169⎛⎫-= ⎪⎝⎭ ; 若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

天津市高三数学单元测试题16《统计案例》 新人教版

天津市高三数学单元测试题16《统计案例》 新人教版

天津新人教版数学2013高三单元测试16《统计案例》( 时间:60分钟 满分100分)一、选择题(每小题5分,共50分)1、对于散点图下列说法中正确一个是( )(A )通过散点图一定可以看出变量之间的变化规律(B )通过散点图一定不可以看出变量之间的变化规律(C )通过散点图可以看出正相关与负相关有明显区别(D )通过散点图看不出正相关与负相关有什么区别2、在画两个变量的散点图时,下面叙述正确的是( )(A )预报变量在x 轴上,解释变量在y 轴上(B )解释变量在x 轴上,预报变量在y 轴上(C )可以选择两个变量中的任意一个变量在x 轴上(D )可以选择两个变量中的任意一个变量在y 轴上3、如果根据性别与是否爱好运动的列联表,得到841.3852.3>≈k ,所以判断性别与运动有关,那么这种判断出错的可能性为( )(A )0020 (B )0015 (C )0010 (D )0054、下列关于线性回归的说法,不正确的是( )(A )变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;(B )在平面直角坐标系中用描点法的方法得到表示具有相关关系的两个变量的一组数据的图形叫散点图;(C )线性回归直线方程最能代表观测值y x ,之间的关系;(D )任何一组观测值都能得到具有代表意义的回归直线方程;5、在两个变量y 与x 的回归模型中,分别选择了四个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的为( )(A )模型①的相关指数为976.0 (B )模型②的相关指数为776.0(C )模型③的相关指数为076.0 (D )模型④的相关指数为351.06、关于如何求回归直线的方程,下列说法正确的一项是( )(A )先画一条,测出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测出此时的斜率与截距,就可得到回归直线方程(B )在散点图中,选两点,画一条直线,使所画直线两侧的点数一样多或基本相同,求出此直线方程,则该方程即为所求回归方程(C )在散点图中多选几组点,分别求出各直线的斜率与截距,再求它们的平均值,就得到了回归直线的斜率与截距,即可产生回归方程(D )上述三种方法都不可行7、若对于变量y 与x 的10组统计数据的回归模型中,相关指数95.02=R ,又知残差平方和为53.120,那么∑=-1012)(i i y y的值为( )(A )06.241 (B )6.2410 (C )08.253 (D )8.25308、右表是对与喜欢足球与否的统计列联表依据表中的数据,得到( )(A )564.92=K(B )564.32=K(C )706.22<K(D )841.32>K9、某医院用光电比色计检验尿汞时,得尿汞含量)/(L mg 与消光系数读数的结果如下:如果y 与x 之间具有线性相关关系,那么当消光系数的读数为480时,( )(A )汞含量约为L mg /27.13 (B )汞含量高于L mg /27.13(C )汞含量低于L mg /27.13 (D )汞含量一定是L mg /27.1310、由一组样本数据),(,),,(),,(2221n n y x y x y x 得到的回归直线方程a bx y +=∧,那么下面说法正确的是( )(A )直线a bx y +=∧必过点),(--y x(B )直线a bx y +=∧必经过),(,),,(),,(2221n n y x y x y x 一点(C )直线a bx y +=∧经过),(,),,(),,(2221n n y x y x y x 中某两个特殊点(D )直线a bx y +=∧必不过点),(--y x二、填空题(每小题4分,共16分.把答案填在题中的横线上)11、下表是关于出生男婴与女婴调查的列联表那么,A= ,B= ,C= ,D= ,E= ;12、如右表中给出五组数据),(y x ,从中选出四组使其线性相关最大,且保留第一组)3,5(--,那么,应去掉第 组。

高三数学 章末综合测试题(18)统计与统计案例、算法初步(2)

高三数学 章末综合测试题(18)统计与统计案例、算法初步(2)

2013届高三数学章末综合测试题(18)统计、统计案例一、选择题:本大题共12小题,每小题5分,共60分.1.①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学月考中,某班有12人在100分以上,30人在90~100分,12人低于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加4×100 m 接力的6支队安排跑道.就这三个事件,恰当的抽样方法分别为( )A .分层抽样、分层抽样、简单随机抽样B .分层抽样、简单随机抽样、简单随机抽样C .分层抽样、简单随机抽样、简单随机抽样D .系统抽样、分层抽样、简单随机抽样D 解析:事件①中总人数较多,适合用系统抽样;事件②中有明显的层次差异,适合用分层抽样;事件③中总体的个体数较少,适合用简单随机抽样.2.已知下列各组对应变量:①产品的成本与质量; ②学生的数学成绩与总成绩;③人的身高与脚的长度.其中具有相关关系的组数为( )A .3B .2C .1D .0A 解析:由两个变量具有相关关系的含义知,题中三组变量都具有相关关系. 3.对于样本中的频率分布直方图与总体密度曲线的关系,下列说法正确的是( ) A .频率分布直方图与总体密度曲线无关B .频率分布直方图就是总体密度曲线C .样本容量很大的频率分布直方图就是总体密度曲线D .如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线D 解析:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布直方图就会越来越接近于总体密度曲线.4.在样本的频率分布直方图中,共有n 个小长方形,若中间一个小长方形的面积等于另外n -1个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .35B .34C .33D .32D 解析:由已知设中间小长方形的频率为x ,则5x =1,∴x =15,∴中间一组频数为15×160=32.5.某校有高一学生300人,高二学生270人,高三学生210人,现教育局督导组欲用分层抽样的方法抽取26名学生进行问卷调查,则下列判断正确的是( )A .高一学生被抽到的概率最大B .高三学生被抽到的概率最大C .高三学生被抽到的概率最小D .每名学生被抽到的概率相等D 解析:用分层抽样法抽样,总体中每个个体被抽到的概率相等,它与每一层的个体数的多少无关.6.在第29届奥运会上,中国运动员取得了51金、21银、28铜的好成绩,稳居世界金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数与中国进入体育强国有无关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率C 解析:根据题意,可以列出列联表,计算K 2的值,说明金牌数与体育强国的关系,故用独立性检验最有说服力.7.从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为( )A .25,60,15B .15,60,25C .15,25,60D .25,15,60A 解析:∵该社区共有家庭150+360+90=600(户),∴每一户被抽到的概率为100600=16, ∴三种家庭应分别抽取的户数为150×16=25,360×16=60,90×16=15.8.一个容量为100的样本,其数据的分组与各组的频数如下表:A .0.13B .0.39C .0.52D .0.64解析:由表知数据在[10,40)上的频数为13+24+15=52,∴其相应的频率为52100=0.52.答案:C9.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”.利用2×2列联表计算,得K2的观测值k≈3.918.经查对临界值表,知P(k2≥3.841)≈0.05.给出下列结论:①在犯错误的概率不超过0.05的前提下,认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.其中正确结论的序号是( )A.①③ B.②④C.① D.③解析:由独立性检验的意义知,当k>3.841时,就有95%的把握认为所研究的两个事件X与Y之间有关系.答案:C10.200辆汽车经过某一雷达地区,时速频率分布直方图如下图所示,则时速超过60 km/h 的汽车数量为( )A.65辆B.76辆C.88辆D.95辆解析:由频率分布直方图可得:设车速为v,当v≥60 km/h时,频率为(0.028+0.010)×10=0.038×10=0.38.∴汽车数量为n=0.38×200=76辆.答案:B11.若数据x1,x2,x3,…,x n的平均数是x,方差是s2,则3x1+5,3x2+5,3x3+5,…,3x n+5的平均数和方差分别是( )A.x,s2B.3x+5,9s2C .3x +5,s 2D .3x +5,9s 2+30s +25B 解析:∵x =1n(x 1+x 2+…+x n ),s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],∴x ′=1n [(3x 1+5)+(3x 2+5)+…+(3x n +5)]3n(x 1+x 2+…+x n )+5=3x +5,s ′2=1n[(3x 1+5-3x -5)2+(3x 2+5-3x -5)2+…+(3x n +5-3x -5)2]=9n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=9s 2.12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力从4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .27,83A 解析:∵频率=频数100,∴由题意知,前4组的频率成等比数列,后6组的频率成等差数列. 设前4组的频率分别为a 1,a 2,a 3,a 4,则a 1=0.1×0.1=0.01,a 2=0.3×0.1=0.03, ∴公比q =3, ∴a =a 4=a 1q 3=0.01×33=0.27,设后6组的频数分别为b 1,b 2,b 3,b 4,b 5,b 6,公差为d , 则b 1=0.27×100=27,∴b 1+b 2+…+b 6=6b 1+6×52d =6×27+15d =162+15d .又∵b 1+b 2+…+b 6=100-(0.01+0.03+0.09)×100=87, ∴162+15d =87,d =-5,∴b =b 1+b 2+b 3+b 4=4×27+4×32×(-5)=78.二、填空题:本大题共4个小题,每小题5分,共20分.13.某学校有初中一1 080人,高中生900人,教师120人,现对学校的师生进行样本容量为n 的分层抽样调查,已知抽取的高中生为60人,则样本容量n =__________.解析:由题意,得60900=n 1 080+900+120,故n =140.答案:14014.一个高中研究性学习小组对本地区2002年到2004年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如下图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭__________万盒.解析:由题意得这三年中该地区每年平均销售盒饭为(30×1.0+45×2.0+90×1.5)=10+30+45=85(万盒).答案:8515.已知一个样本中各个个体的值由小到大依次为:4,6,8,9,x ,y,11,12,14,16,且其中位数为10,要使该样本的方差最小,则x ,y 的取值分别为__________.解析:由题意,样本容量为10,其中位数为x +y2=10,即x +y =20,∴样本平均数为x =110(4+6+8+9+x +y +11+12+14+16)=10.∵s 2=110[(4-x )2+(6-x )2+…+(x -x )2+(y -x )2+(11-x )2+…+(16-x )2],∴要使方差最小,x =y =x =10. 答案:10,10 16.给出下列命题:①样本标准差反映了样本数据与样本平均值的偏离程度,标准差越大,偏离程度越大; ②在散点图中,若点的分布是从左下角到右上角,则相应的两个为量正相关;③回归直线方程y ^=b ^x +a ^中截距a ^=b ^y -x ;④第11届全运动会前夕,政府在调查居民收入与来济观看全运会的关系时,抽查了3 000人.经济计算发展K 2的观测值k =6.023,则根据这一数据查阅下表,说明在犯错误的概率不超过0.025的前提下认为居民收入与来济观看全运会存在关系.解析:①由样本标准差的定义可知正确; ②根据两个变量正相关的概念知正确;③由回归地线主程b ^与a ^的关系知③不正确;④经过计算发现k =6.023,则根据这一数据查阅上表,k =6.023>5.024,说明在犯错误的概率不超过0.025的前提下认为居民收入与来济观看全运会存在关系.答案:①②④三、解答题:本大题共6小题,共70分.17.(10分)吸烟有害健康,现在很多公共场所都明令禁止吸烟.为研究是否喜欢吸烟与性别之间的关系,在某地随机抽取400人调研,得到列联表:(参考公式及数据:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2>3.841)=0.05,P (K 2>6.635)=0.010, P (K 2>10.828)=0.001)解析:由列联表中的数据得k =400×(120×180-20×80)2140×260×200×200≈109.890>10.828.∴在犯错误的概率不超过0.001的前提下认为“是否喜欢吸烟与性别有关”. 18.(12分)为备战2010年广州第十六届亚运会,某教练对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得它们的最大速度(m/s)的数据如下:解析:x =16(27+38+30+37+35+31)=33,x 乙=16(33+29+38+34+28+36)=33.他们的平均速度相同,再看方差及标准差:s 甲2=16[(-6)2+52+(-3)2+42+22+(-2)2]=473, s 乙2=16[02+(-4)2+52+12+(-5)2+32]=383.则s 甲2>s 乙2,即s 甲>s 乙.故乙的成绩比甲稳定.所以,应选乙参加亚运会.19.(12分)我国是世界上缺水严重的国家之一,如北京、天津等大城市缺水尤其严重,所以国家积极倡导节约用水.某公司为了解一年内用水情况,抽查了10天的用水量如下表:(1)这10天中,该公司用水的平均数是多少? (2)这10天中,该公司每天用水的中位数是多少?(3)你认为应该使用平均数和中位数中哪一个来描述该公司每天的用水量? 解析:(1)x =22+38+40+2×41+2×44+50+2×9510=51(t).(2)中位数=41+442=42.5(t).(3)用中位数42.5 t 来描述该公司的每天用水量较合适, 因为平均数受极端数据22、95的影响较大.20.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如右图.(1)根据茎叶图判断哪个班的平均身高较高;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解析:(1)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~179之间.因此乙班平均身高高于甲班;(2)设身高为176 cm 的同学被抽中的事件为A ,从乙班10名同学中抽中两名身高不低于173 cm 的同学们有:(181,173)、(181,176)、(181,178)、(181,179)、(179,173)、(179,176)、(179,178)、(178,173)、(178,176)、(176,173)共10个基本事件,而事件A 含有4个基本事件:(181,176)、(179,176)、(178,176)、(176,173). ∴P (A )=410=25.21.(12分)某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应关系:(1)假定y 与x (2)若实际销售额不少于60百万元,则广告费支出应不少于多少? 解析:(1)x =2+4+5+6+85=5,y =30+40+60+50+705=50.∑5i =1x i 2=145,∑5i =1x i y i =1 380. 设所求回归方程为y ^=b ^x +a ^,则b ^=∑5i =1(x i -x )(y i -y )∑5i =1 (x i -x )2=∑5i =1x i y i -5xy ∑5i =1x i 2-5x 2=1 380-5×5×50145-5×52=6.5. a ^=y -b ^x =50-6.5×5=17.5.(2)由回归方程,得y ^≥60,即6.5x +17.5≥60,解得x ≥8513,故广告费支出应不少于8513百万元.22.(12分)为了了解九年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:(1)求出表中m ,n ,M ,N 所表示的数分别是多少? (2)画出频率分布直方图;(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率.解析:(1)M =10.02=50,m =50-(1+4+20+15+8)=2,N =1,n =m M =250=0.04. (2)作出直角坐标系,组距为4,纵轴表示频率/组距,横轴表示身高,画出直方图如下图所示.(3)身高在[153.5,157.5)范围内的人数最多,估计身高在161.5以上的概率为。

天津市高三数学单元测试题14《统计案例》新人教版

天津市高三数学单元测试题14《统计案例》新人教版

天津新人教版数学2013 高三单元测试 16《统计事例》(时间: 60 分钟满分 100 分)一、选择题(每题 5 分,共 50 分)1.以下属于有关现象的是()A.利息与利率B.居民收入与积蓄存款C.电视机产量与苹果产量D.某种商品的销售额与销售价钱2.已知盒中装有 3 只螺口与 7 只卡口灯泡,这些灯泡的外形与功率都同样且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只其实不放回,则在他第 1 次抽到的是螺口灯泡的条件下,第 2 次抽到的是卡口灯泡的概率为( )3 2 7 7A. 10B. 9C. 8D. 93.以下图,图中有 5 组数据,去掉组数据后(填字母代号),剩下的 4 组数据的线性有关性最大()A. E B. C C. D D. A4.为检查抽烟能否对患肺癌有影响,某肿瘤研究所随机地检查了9965 人,得到如下结果不患肺病患肺病共计(单位:人)不抽烟7775 42 7817抽烟2099 49 2148共计9874 91 9965依据表中数据,你认为抽烟与患肺癌有关的掌握有()A. 90%B.95%C.99%D.100%5.检查某医院某段时间内婴儿出生的时间与性其他关系,获得下边的数据表:夜晚白日共计男婴24 31 55女婴8 26你认为婴儿的性别与出生时间有关系的把握为34共计32 57()89A. 80% B. 90% C. 95% D. 99%- 1 -6.已知有线性有关关系的两个变量成立的回归直线方程为$bx ,方程中的回归系数b y a()A.能够小于 0 B.只好大于 0 C.能够为 0 D.只好小于 07.每一吨铸铁成本y c ( 元 ) 与铸件废品率x%成立的回归方程y c 56 8x ,以下说法正确的选项是()A.废品率每增添1%,成本每吨增添64 元B.废品率每增添1%,成本每吨增添8%C.废品率每增添1%,成本每吨增添8 元D.假如废品率增添1%,则每吨成本为56 元8.以下说法中正确的有:①若r 0 ,则 x 增大时, y 也相应增大;②若r 0 ,则 x 增大时,y 也相应增大;③若r 1,或 r 1 ,则 x 与 y 的关系完整对应(有函数关系),在散点图上各个散点均在一条直线上()A.①②B.②③C.①③D.①②③9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,获得一个卖出的热饮杯数与当日气温的对照表:摄氏5 0 4 7 12 15 19 23 27 31 36 温度热饮156 150 132 128 130 116 104 89 93 76 54 杯数假如某天气温是 2℃,则这日卖出的热饮杯数约为()A. 100 B. 143 C. 200 D. 24310.甲、乙两个班级进行一门考试,依据学生考试成绩优异和不优异统计成绩后,获得以下列联表:优异不优异共计甲班10 35 45乙班7 38 45共计17 73 90利用独立性查验预计,你认为推测“成绩与班级有关系”错误的概率介于()- 2 -A. 0.3 ~ 0.4B.0.4~0.5C.0.5~0.6D.0.6~0.7二、填空题(每题4 分,共 16 分 . 把答案填在题中的横线上)11.某矿山采煤的单位成本Y 与采煤量x 有关,其数据以下:采煤量289298316322327329329331350(千吨)单位成本43.542.942.139.639.138.538.038.037.0 (元)则 Y 对 x 的回归系数.$12.对于回归直线方程 y 4.75x257 ,当 x 28时, y 的预计值为.13.在某医院,由于患心脏病而住院的665 名男性病人中,有 214 人秃头;而此外 772 名不 =是由于患心脏病而住院的男性病人中有175 人秃头,则 2 .314.设 A、 B 为两个事件,若事件 A 和 B 同时发生的概率为10,在事件 A 发生的条件下,事件1B 发生的概率为2,则事件 A 发生的概率为 ________________ .三、解答题(本大题共四个小题,15 题 11 分, 16 题 11 分, 17 题 12 分,共 24 分. 解答应写出文字说明,证明过程或演算过程)1 1 1,乙、丙去北京旅行的概率分别为4,5. 假定三人的15. 国庆节放假,甲去北京旅行的概率为3行动互相之间没有影响,求这段时间内起码有 1 人去北京旅行的概率16.某教育机构为了研究人拥有大学专科以上学历(包含大学专科)和对待教育改革态度的关系,随机抽取了 392 名成年人进行检查,所得数据以下表所示:踊跃支持教育改革不太同意教育改革共计- 3 -大学专科以上学历39 157 196大学专科以放学历29 167 196共计68 324 392对于教育机构的研究项目,依据上述数据能得出什么结论.17. 1907 年一项对于16 艘轮船的研究中,船的吨位区间位于192 吨到 3246 吨,海员的人数从 5 人到 32 人,海员的人数对于船的吨位的回归剖析获得以下结果:海员人数=9. 1+0. 006×吨位.(1)假定两艘轮船吨位相差 1000 吨,海员均匀人数相差多少?(2)对于最小的船预计的海员数为多少?对于最大的船预计的海员数是多少?18.假定一个人从出生到死亡,在每个诞辰都丈量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增添数占有时能够用线性回回来剖析.下表是一位母亲给儿子作的成长记录:年纪/周3456789岁身高/ cm90.8 97.6 104.2 110.9 115.6 122.0 128.5 年纪/周10111213141516岁身高/ cm 134.2 140.8 147.6 154.2 160.9 167.6 173.0 ( 1)作出这些数据的散点图;( 2)求出这些数据的回归方程;( 3)对于这个例子,你怎样解说回归系数的含义?( 4)用下一年的身高减去当年的身高,计算他每年身高的增添数,并计算他从3~16 岁身高的年均增添数.- 4 -( 5)解说一下回归系数与每年均匀增添的身高之间的联系.统计事例检测题答案一、选择题 1-5 BDACB 6-10 ACCBB二、填空题0.1229390 13. 16.373 14.3 11.12.解答题51 1115. 解:因甲、乙、丙去北京旅行的概率分别为3,4,5.所以,他们不去北京旅行的概率分别为 2, 3, 4,所以,起码有 1 人去北京旅行的概率为P = 1- 2× 3×4= 3 .3 4 53 4 5 516. 解: K 2392 (39167 157 29)2 1.78 .196 196 68 324由于 1.78 2.706,所以我们没有原因说人拥有大学专科以上学历(包含大学专科)和对待教 育改革态度有关.17.解:由题意知: ( 1)海员均匀人数之差=0.006 ×吨位之差 =0.006 × 1000=6, ∴海员均匀相差6 人;( 2)最小的船预计的海员数为: 9.1+0.006 ×192=9.1+1.152=10.252 ≈ 10(人).最大的船预计的海员数为: 9.1+0.006 × 3246=9.1+19.476=28.576 ≈ 28(人). 18. 解:( 1)数据的散点图以下:( 2)用 y 表示身高, x 表示年纪,则数据的回归方程为y=6. 317x+71. 984; ( 3)在该例中,回归系数6. 317 表示该人在一年中增添的高度; ( 4 )每年身高的增添数略.3~16 岁身高的年均增添数约为6.323cm ; ( 5)回归系数与每年均匀增添的身高之间近似相等.- 5 -。

天津市2013届高三数学总复习之综合专题:概率论与数理统计(理)(教师版)

天津市2013届高三数学总复习之综合专题:概率论与数理统计(理)(教师版)

概率论与数理统计(理)考查内容:本小题主要考查排列、组合知识与等可能事件、二项分布、随机事件、 互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期 望等基础知识,考查运用概率知识解决实际问题的能力。

1、在每道单项选择题给出的4个备选答案中,只有一个是正确的。

若对4道选择题中的每一道都任意选定一个答案,求这4道题中:(1)恰有两道题答对的概率; (2)至少答对一道题的概率。

解:设“选择每道题的答案”为一次试验,则这是4次独立重复试验,且每次试验中“选择正确”这一事件发生的概率为14,由独立重复试验的概率公式得: (1)恰有两道题答对的概率为128274341)2(22244=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛=C P ; (2)至少有一道题答对的概率为00444131(0)1C ()()44P -=-811751.256256=-= 2、为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。

某人一次种植了n 株沙柳。

各株沙柳的成活与否是相互独立的,成活率为P ,设ξ为成活沙柳的株数,数学期望E ξ为3,标准差σξ为26。

(1)求P n ,的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率。

解:由题意知,ξ服从二项分布1()B n p ,()(1)01k kn k n P k C p p k n ξ-==-= ,,,,。

(1)由233()(1)2E np np p ξσξ===-=,,得112p -=,从而21,6==P n 。

ξ的分布列为:(2)记“需要补种沙柳”为事件A ,则()(3)P A P ξ=≤,得16152021()6432P A +++==,或156121()1(3)16432P A P ξ++=->=-=。

3、甲、乙等五名奥运志愿者被随机地分到D C B A ,,,四个不同的岗位服务,每个岗位至少有一名志愿者。

(1)求甲、乙两人同时参加A 岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率。

(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)

(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)

一、选择题1.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9162.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .595.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7106.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1157.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 10.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .312.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是_____.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者年轻受试者合计舒张压偏高或偏低舒张压正常合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X,求X的分布列和数学期望.运算公式:()()()()()22n ad bcKa b c d a c b d-=++++,对照表:22.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22⨯列联表,并问是否有0099的把握认为“两个分厂生产的零件的质量有差异”.附:22()()()()()n ad bcKa b c d a c b d-=++++23.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关? ()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001k2.0722.7063.8415.0246.6357.879 10.82824.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==).(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.01 0.005 0.001 0k 3.8416.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.5.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.6.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.11.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.12.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.二、填空题13.【分析】根据甲乙两人各射击一次得分之和为2的概率为列方程解方程求得的值【详解】甲乙两人各射击一次得分之和为2可能是甲击中乙未击中或者乙击中甲未击中故解得故答案为:【点睛】本小题主要考查相互独立事件概解析:34【分析】根据甲、乙两人各射击一次得分之和为2的概率为920列方程,解方程求得p 的值. 【详解】甲、乙两人各射击一次得分之和为2,可能是甲击中乙未击中,或者乙击中甲未击中,故()339115520p p ⎛⎫⋅-+⋅-= ⎪⎝⎭,解得34p =. 故答案为:34【点睛】本小题主要考查相互独立事件概率计算,属于基础题.14.【解析】设第一次摸出正品为事件第二次摸出正品为事件则事件和事件相互独立在第一次摸出正品的条件下第二次也摸到正品的概率为:故答案为 解析:【解析】设“第一次摸出正品”为事件A ,“第二次摸出正品”为事件B , 则事件A 和事件B 相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:()()655109|6910P AB P B A P A ⨯===().故答案为5915.994【解析】由题意知本题是一个相互独立事件同时发生的概率种开关中至少有个开关能正常工作的对立事件是种开关都不能工作分别记开关能正常工作分别为事件故答案为解析:994 【解析】由题意知本题是一个相互独立事件同时发生的概率,,,A B C ,3种开关中至少有1 个开关能正常工作的对立事件是3种开关都不能工作,分别记,,A B C 开关能正常工作分别为事件123,,A A A ,()()1231,,10.10.20.30.994P E P A A A =-=-⨯⨯=, 故答案为0.994. 16.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.17.乙【解析】线性回归模型中越接近1效果越好故乙效果最好解析:乙 【解析】线性回归模型中2R 越接近1,效果越好,故乙效果最好.18.【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件分别做出甲至多命中2个球的概率和乙至少命中两个球的概率根据相互独立事件的概率公式得到结果【详解】甲至多命中2个且乙至少命中2个包含的解析:1118【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件,分别做出甲至多命中2个球的概率和乙至少命中两个球的概率,根据相互独立事件的概率公式得到结果. 【详解】甲至多命中2个且乙至少命中2个包含的两个事件是互相独立事件, 设“甲至多命中2个球”为事件A ,“乙至少命中2个球”为事件B ,由题意()41322124411111112222216P A C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()22342344212128333339P B C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴甲至多命中2个球且乙至少命中2个球的概率为()()1181116918P A P B ⋅=⨯=,故答案为1118. 【点睛】本题考查独立重复试验,考查离散型随机变量,是一个综合题,解题时注意进球的个数对应的是乙所得的分数,注意分数与进球个数的对应.19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的车能够充电2500次为事件B 即求条件概率:由条件概率公式即得解【详解】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的解析:717【分析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题21.(1)没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)分布列见解析,()32E X = 【分析】(1)根据题意列出列联表,再计算2 4.762 6.635K ≈<,故没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)由分层抽样得抽得样本的大龄受试者有3人,年轻受试者有3人,X 的可能取值为0,1,2,3,再结合超几何分布求概率和期望即可.【详解】解:()122⨯列联表如下:()210010601020 4.762 6.63530702080K ⨯⨯-⨯∴=≈<⨯⨯⨯所以,没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关.(2)由题意得,采用分层抽样抽取的6人中,大龄受试者有3人,年轻受试者有3人, 所以大龄受试者人数为X 的可能取值为0,1,2,3,所以()33361020C P X C ===,()2133369120C C P X C ===, ()1233369220C C P X C ===,()33361320C P X C ===,所以X 的分布列为:所以()0123202020202E X =⨯+⨯+⨯+⨯=. 【点睛】本题第二问解题的关键在于根据题意得抽取的6人中,大龄受试者有3人,年轻受试者有3人,进而根据超几何分布求概率分布列与数学期望,考查运算求解能力,是中档题.22.(1) 72% 64% (2) 有99%的把握认为“两个分厂生产的零件的质量有差异” 【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=()1000360180320140500500680320⨯⨯-⨯⨯⨯⨯≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”. 23.(1)0.035,41.5;(2)有. 【分析】(1)由频率分布直方图求出a 的值,再计算数据的平均值;(2)由题意填写列联表,计算观测值,对照临界值得出结论. 【详解】(1)由频率分布直方图可得:10×(0.01+0.015+a +0.03+0.01)=1, 解得a =0.035,所以通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1, ∴纸质阅读的人数为20014⨯=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为1500.10.150.35⨯++()=90,则中老年有60人, 得2×2列联表,计算()2200903060202006.061 5.024501501109033K ⨯-⨯==≈>⨯⨯⨯,所以有97.5%的把握认为认为阅读方式与年龄有关. 【点睛】本题考查了频率分布直方图与独立性检验的应用问题,考查了阅读理解的能力,是基础题.24.(1)4.76;(2)有90%的把握认为“微信控”与“性别”有关 【解析】 试题分析:(1)由频率直方图中各概率乘以各方块中点频率相加后即得;(2)从频率直方图中可计算出“微信控”和“非微信控”的男女生人数,再计算出2K 可得. 试题(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76. (2)2(0.04+a +0.14+2×0.12)=1,解得a =0.08. 由题设条件得列联表:所以K 2==≈2.941>2.706.所以有90%的把握认为“微信控”与“性别”有关.25.(1)指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+;(2)20.99r ≈;用反比例函数模型拟合效果更好;(3)612(千元). 【分析】(1)由96.54dx y e =,得ln ln96.54 4.6y dx dx ν=+⇔=+,将 3.7ν=, 4.5x =代入可得指数模型回归方程.令1xμ=,则y b a μ=+,代入y ,求得b ,a ,可得反比例函数回归方程.(2)求得y 与u 的相关系数为2r ,由12r r <,可得结论. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,可求得订单的期望,从而求得该企业的利润约. 【详解】解:(1)因为96.54dx y e =,所以ln ln96.54 4.6y dx dx ν=+⇔=+, 将 3.7ν=, 4.5x =代入上式,得0.2d =-,所以0.296.54x y e -=.令1xμ=,则y b a μ=+, 因为360458y ==,所以182218183.480.34451001.5380.1158ni ii i i u y u yb u u==-⋅-⨯⨯===-⨯-∑∑,则451000.3411a y b u =-⋅=-⨯=,所以11100y u =+, 所以y 关于x 的回归方程为10011y x=+. 综上,指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+. (2)y 与u 的相关系数为812882222118610.9961.40.616185.588i ii i i i i u y u yr u u y y ===-⋅===≈⨯⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑,因为12r r <,所以用反比例函数模型拟合效果更好. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 令109811111123102222T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 则111092111111*********T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, ②-①,得11109211111522222T ⎛⎫⎛⎫⎛⎫⎛⎫-=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简得10192T ⎛⎫=+ ⎪⎝⎭,所以101391292256S ⎛⎫=+⨯=+ ⎪⎝⎭,所以该企业的利润约为:3310091009101161232562569256⎡⎤⎢⎥⎛⎫⎛⎫+⨯-+⨯++≈ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎢⎥⎣⎦(千元). 【点睛】本题考查线性回归方程的求得,相关系数的比较,以及运用数学期望求利润,属于中档题. 26.(1)0.05n =;(2)①列联表见解析;②不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关 【分析】(1)根据频率分布直方图列方程组求得n 的值;(2)根据题意得到22⨯列联表,计算观测值,对照临界值表得出结论. 【详解】 (1)月工资收入在[45,50)(百元)内的人数为15月工资收入在[45,50)(百元)内的频率为:150.15100=; 由频率分布直方图得:(0.020.0420.01)50.151n +++⨯+=0.05n ∴=(2)①根据题意得到列联表:技术工 非技术工总计月工资不高于平均数193150月工资高于平均数3119 50总计 50 50 1002 5.7610.82850505050K ==<⨯⨯⨯ 不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.【点睛】本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.。

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2?统计案例?、?推理与证明?单元测试可能用到的公式:回归直线的方程是:a bx y+=ˆ,其中1221,ni i i nii x y nxyb a y bx xnx ==-==--∑∑;相关指数21122)()ˆ(1∑∑==---=n i ini i iy yyyR ,总偏差平方和:21()nii y y =-∑,残差平方和:21ˆ()niii y y=-∑.随机变量()()()()()22n ad bc K a b c d a c b d -=++++一、选择题 〔每题 5分,共 10小题,共 50分〕1. 工人月工资 〔元〕 依劳动生产率 〔千元〕 变化的回归直线方程为6090y x =+, 以下判断正确的选项是 〔 〕.A. 劳动生产率为 1000元时,工资为 50 元B. 劳动生产率提高 1000 元时,工资提高 150元C. 劳动生产率提高 1000 元时,工资提高 90 元D. 劳动生产率为 1000元时,工资为 90 元2. 在画两个变量的散点图时,下面哪个表达是正确的〔 〕. A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上 C. 可以选择两个变量中任意一个变量在x 轴上 D. 可以选择两个变量中任意一个变量在 y 轴上3. 回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),那么回归直线的方程是 〔 〕. A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D. 0.08 1.23y x =+4.在两个变量 y 与 x 的回归模型中,分别选择了 4 个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是〔 〕A. 模型 1 的相关指数 2R 为 0.95 B. 模型 2的相关指数2R 为 0.80 C. 模型 3 的相关指数2R 为 0.50 D. 模型 4的相关指数2R 为 0.25 5. x 与y 那么y 与x 的线性回归方程为y bx a =+必过点〔 〕.A. 〔2,2〕B. 〔1.5,3〕C. 〔1,2〕D. 〔1.5,4〕A.“假设33a b ⋅=⋅,那么a b =〞类推出“假设00a b ⋅=⋅,那么a b =〞B.“假设()a b c ac bc +=+〞类推出“()a b c ac bc ⋅=⋅〞C.“假设()a b c ac bc +=+〞 类推出“a b a bc c c+=+ 〔c ≠0〕〞 D.“n n a a b =n (b )〞 类推出“n n a a b +=+n(b )〞7. 有一段演绎推理是这样的:“直线平行于平面,那么平行于平面内所有直线;直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,那么直线b ∥直线a 〞的结论显然是错误的,这是因为 〔 〕 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误8.用反证法证明命题:“三角形的内角中至少有一个不大于60度〞时,反设正确的选项是〔 〕。

2013年天津高考文科数学试题及答案(Word版)

2013年天津高考文科数学试题及答案(Word版)

⎨ ⎩2013 年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共 150 分. 考试用时 120 分钟. 第Ⅰ卷 1 至 2 页, 第Ⅱ卷 3 至 5 页.第Ⅰ卷参考公式:如果事件 A , B 互斥, 那么P ( A ⋃ B ) = P ( A ) + P (B )·棱柱的体积公式 V = Sh ,其中 S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件 A , B 相互独立, 那么P ( AB ) = P ( A )P (B )·球的体积公式V = 4 π R 3.3其中 R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合 A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则 A ⋂ B =(A)(-∞, 2](B) [1,2] (C) [-2,2] (D) [-2,1]⎧3x + y - 6 ≥ 0, (2)设变量 x , y 满足约束条件⎪x - y - 2 ≤ 0, ⎪ y - 3 ≤ 0, 则目标函数 z = y -2x 的最小值为(A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7(B) 6⎦(C) 5(D) 4(4) 设a , b ∈ R , 则 “ (a - b )a 2 < 0 ”是“ a < b ”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件(D) 既不充分也不必要条件(5) 已知过点 P (2,2) 的直线与圆(x - 1)2 + y 2 = 5 相切, 且与直线ax - y + 1 = 0 垂直, 则a =(A)- 1 2(B) 1 (C) 2(D) 12(6) 函数 f (x ) = sin ⎛ 2x - π ⎫ 在区间⎡0, π ⎤上的最小值是4 ⎪ ⎢ 2 ⎥ ⎝ ⎭ (A) -1⎣ ⎦(B) - 2 2(C)22(D) 0(7) 已知函数 f (x ) 是定义在 R 上的偶函数, 且在区间[0, +∞) 上单调递增. 若实数 a 满足f (log 2 a ) + f (log 1 a ) ≤ 2 f (1) , 则 a 的取值范围是2(A)[1, 2](B) ⎛ 0, 1 ⎤ 2 ⎥(C) ⎡1 ⎤⎝ ⎦(D)(0, 2]⎢⎣ 2 ,2⎥ (8) 设函数 f (x ) = e x + x - 2, g (x ) = ln x + x 2 - 3 . 若实数 a , b 满足 f (a ) = 0, g (b ) = 0 , 则(A)g (a ) < 0 < f (b )(B) f (b ) < 0 < g (a ) (C) 0 < g (a ) < f (b )(D)f (b ) <g (a ) < 02013 年普通高等学校招生全国统一考试(天津卷)文 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共 12 小题, 共 110 分.二.填空题: 本大题共 6 小题, 每小题 5 分, 共 30 分. (9) i 是虚数单位. 复数(3 + i )(1-2i ) = .(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为 9π , 则正方体的棱长2为 .2x 2 y 2(11) 已知抛物线 y= 8x 的准线过双曲线 a 2 - b2 = 1(a > 0,b > 0) 的一个焦点,且双曲线的离心率为 2, 则该双曲线的方程为.(12) 在平行四边形 ABCD 中, AD = 1, ∠BAD = 60︒ , E 为 CD 的中点. 若 AC ·BE = 1 , 则 AB 的长为 .(13) 如图, 在圆内接梯形 ABCD 中, AB //DC , 过点 A 作圆的切线与 CB 的延长线交于点 E . 若 AB = AD = 5, BE = 4, 则弦 BD 的长为 .(14) 设 a + b = 2, b >0, 则 12 | a | + | a | 的最小值为 .b三.解答题: 本大题共 6 小题, 共 70 分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分 13 分)某产品的三个质量指标分别为 x , y , z , 用综合指标 S = x + y + z 评价该产品的等级. 若 S ≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取 10 件产品作为样本, 其质量指标列表⎪ 如下:产品编号 A 1 A 2 A 3 A 4 A 5质量指标(x , y , z ) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A 6A 7A 8A 9A 10质量指标(x , y , z ) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(I)利用上表提供的样本数据估计该批产品的一等品率;(II) 在该样品的一等品中, 随机抽取 2 件产品, (⒈) 用产品编号列出所有可能的结果;(⒉) 设事件 B 为 “在取出的 2 件产品中, 每件产品的综合指标 S 都等于 4”, 求事件 B 发生的概率.(16) (本小题满分 13 分)在△ABC 中, 内角 A , B , C 所对的边分别是 a , b , c . 已知b sin A = 3c sin B , a = 3,(I) 求 b 的值;cos B =2.3(II) 求 ⎛ sin 2B - π ⎫ 的值.3 ⎝⎭(17) (本小题满分 13 分)如图, 三棱柱 ABC -A 1B 1C 1 中, 侧棱 A 1A ⊥底面 ABC ,且各棱长均相等. D , E , F 分别为棱 AB , BC , A 1C 1 的中点. (I)证明 EF //平面 A 1CD ;(II) 证明平面 A 1CD ⊥平面 A 1ABB 1;(III) 求直线 BC 与平面 A 1CD 所成角的正弦值.(18) (本小题满分 13 分)设椭圆 x2+ y 2 = > > 的左焦点为 F , 离心率为 3 , 过点 F 且与 x 轴垂直的直线被椭圆截a 2b 21(a b 0)3得的线段长为 4 3 .3(I)求椭圆的方程;(II) 设 A , B 分别为椭圆的左,右顶点, 过点 F 且斜率为 k 的直线与椭圆交于 C , D 两点. 若AC ·DB + AD ·CB = 8 , 求 k 的值.(19) (本小题满分 14 分)已知首项为 3 的等比数列{a } 的前 n 项和为S (n ∈ N *) , 且-2S , S , 4S成等差数列.2nn234(I) 求数列{a n} 的通项公式;(II) 证明S n + S n≤ 13 (n ∈ N *) .6(20) (本小题满分 14 分)⎧ 设a ∈[-2, 0], 已知函数 f (x ) = ⎪ x 3 - (a + 5)x ,x ≤ 0,⎨x 3- a + 3 x 2 + ax , x > 0.⎪⎩2(I)证明 f (x ) 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增; (II) 设曲线 y = f (x ) 在点P (x , f (x ))(i = 1, 2, 3) 处的切线相互平行, 且x x x ≠ 0,证明x + x+ x >1 . iii1 2 3123312013 年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题:本题考查基本知识和基础运算。

高中数学统计案例综合检测试题及答案-word文档

高中数学统计案例综合检测试题及答案-word文档

高中数学统计案例综合检测试题及答案选修2-3第三章统计案例综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2019宁夏银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4用水量y 4.5 4 3 2.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y^=-0.7x+a,则a等于() A.10.5 B.5.15C.5.2 D.5.25[答案] D[解析] x=2.5,y=3.5,∵回归直线方程过定点(x,y),3.5=-0.72.5+a,a=5.25.故选D.2.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A.b与r的符号相同B.a与r的符号相同C.b与r的符号相反D.a与r的符号相反[答案] A[解析] 因为b0时,两变量正相关,此时,r0;b0时,两变量负相关,此时r0.3.有下列说法:①随机误差是引起预报值与真实值之间的误差的原因之一;②残差平方和越小,预报精度越高;③在独立性检验中,通过二维条形图和三维柱形图可以粗略判断两个分类变量是否有关系.其中真命题的个数是()A.0 B.1C.2 D.3[答案] D4.有甲、乙两种钢材,从中各取等量样品检验它们的抗拉强度指标如下:甲X 110 120 125 130 135P 0.1 0.2 0.4 0.1 0.2乙X 100 115 125 130 145P 0.1 0.2 0.4 0.1 0.2现要比较两种钢材哪一种抗拉强度较好,应考察哪项指标() A.期望与方差 B.正态分布C.卡方K2 D.概率[答案] A5.为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.期望与方差 B.排列与组合C.独立性检验 D.概率[答案] C6.(2009海南宁夏理,3)对变量x,y观测数据(x1,y1)(i =1,2,…,10),得散点图1;对变量u,v有观测数据(u1,v1)(i=1,2,…,10),得散点图2.由这两个散点图可以判断.()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关[答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.用散点图可以判断变量x与y负相关,u与v正相关.7.某地2019年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:行业名称计算机机械营销物流贸易应聘人数 215830 201950 154676 74570 65280行业名称计算机营销机械建筑化工招聘人数 124620 102935 89115 76516 70436若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是() A.计算机行业好于化工行业B.建筑行业好于物流行业C.机械行业最紧张D.营销行业比贸易行业紧张[答案] B[解析] 建筑行业的比值小于6528076516,物流行业的比值大于7457070436,故建筑好于物流.8.工人月工资y(单位:元)关于劳动生产率x(单位:千元)的回归方程为y^=650+80x,下列说法中正确的个数是()①劳动生产率为1000元时,工资约为730元;②劳动生产率提高1000元时,则工资约提高80元;③劳动生产率提高1000元时,则工资约提高730元;④当月工资为810元时,劳动生产率约为2019元.A.1 B.2C.3 D.4[答案] C[解析] 代入方程计算可判断①②④正确.9.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是()A.由样本数据得到的回归方程为y^=b^x+a^必过样本点的中心(x-,y-)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有线性相关关系[答案] C[解析] R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C.10.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是()A.三维柱形图 B.二维条形图C.等高条形图 D.独立性检验[答案] D[解析] 前三种方法只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.11.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合得最好的模型为()A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25D.模型4的相关指数R2为0.55[答案] B[解析] 相关指数R2的值越大,意味着残差平方和越小,也就是说模型的拟合效果越好,故选B.12.下面是某市场农产品的调查表.市场供应量表:单价(元/千克) 2 2.4 2.8 3.2 3.6 4供应量(1000千克) 50 60 70 75 80 90市场需求量表:单价(元/千克) 4 3.4 2.9 2.6 2.3 2供应量(1000千克) 50 60 70 75 80 90根据以上信息,市场供需平衡点(即供应量和需求量相等的单价)应在区间()A.(2.3,2.6) B.(2.4,2.6)C.(2.6,2.8) D.(2.8,2.9)[答案] C[解析] 以横轴为单价,纵轴为市场供、需量,在同一坐标系中描点,用近似曲线观察可知选C.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.当且仅当r满足________时,数据点(xi,yi)(i=1,2,…,n)在一条直线上.[答案] |r|=1[解析] 当数据点(xi,yi)在一条直线上时,y只受x的影响,即数据点完全线性相关,此时|r|=1.14.已知一个回归直线方程为y^=1.5x+45,x{1,7,5,13,19},则y=__________.[答案] 58.5[解析] 因为x=15(1+7+5+13+19)=9,且y=1.5x+45,所以y=1.59+45=58.5.本题易错之处是根据x的值及y^=1.5x+45求出y的值再求y,由y^=1.5x+45求得的y值不是原始数据,故错误.15.对具有线性相关关系的变量x和y,测得一组数据如下表.若已求得它们的回归直线方程的斜率为6.5,则这条回归直线的方程为________.x 2 4 5 6 8y 30 40 60 50 70[答案] y^=17.5+6.5x[解析] 由数据表得x=5,y=50,所以a^=y-6.5x=17.5,即回归直线方程为y^=17.5+6.5x.16.(2019广东文,12)某市居民2019~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:年份 2019 2019 2019 2019 2009收入x 11.5 12.1 13 13.3 15支出Y 6.8 8.8 9.8 10 12根据统计资料,居民家庭平均收入的中位数是__________,家庭年平均收入与年平均支出有__________线性相关关系.[答案] 13 正[解析] 中位数的定义的考查,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时须取中间两数的平均数.由统计资料可以看出,当平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:患胃病未患胃病合计生活不规律 60 260 320生活有规律 20 200 220合计 80 460 540根据以上数据回答40岁以上的人患胃病与生活规律有关吗?[解析] k=540(60200-26020)232022080460=24969602590729.638∵9.638>6.63540岁以上的人患胃病与生活是否有规律有关,有99%的把握认为生活不规律的人易患胃病.18.(本题满分12分)一台机器可以按各种不同的速度运转,其生产的物件有一些会有问题,每小时生产有问题物件的多寡,随机器运转的速度而变化,下面表格中的数据是几次试验的结果.速度(转/秒) 每小时生产有问题物件数8 512 814 916 11(1)求出机器速度影响每小时生产有问题物件数的回归直线方程;(2)若实际生产中所允许的每小时最大问题物件数为10,那么机器的速度不得超过多少转/秒?[解析] (1)用x表示机器速度,y表示每小时生产有问题物件数,那么4个样本数据为:(8,5)、(12,8)、(14,9)、(16,11),则x-=12.5,y-=8.25.于是回归直线的斜率为b^=xiyi -4x-y-x2i-4x-2=25.5350.7286,a^=y--b^x-=-0.8575,所以所求的回归直线方程为y=0.7286x-0.8575.(2)根据公式y^=0.7286x-0.8575,要使y10,则就需要0.7286x-0.857510,x14.9019,即机器的旋转速度不能超过14.9019转/秒.19.(本题满分12分)在从烟台大连的某次航运中,海上出现恶劣气候.随机调查男、女乘客在船上晕船的情况如下表所示:晕船不晕船合计男人 32 51 73女人 8 24 32合计 40 75 115根据此资料你是否认为在恶劣气候航行中,男人比女人更容易晕船?[解析] 男人晕船所占比例为3283100%=0.386,女人晕船所占比例为832100%=0.25,虽然0.386远大于0.25,但我们不能用此判断在恶劣气候中航行,男人比女人更容易晕船,而应根据独立性检验进行分析.由公式得:K2=115(3224-518)2833240751.870.因为1.8702.706,所以我们没有充分的证据说晕船跟男女性别有关.20.(本题满分12分)有两个分类变量X与Y,其一组观测的22列联表如下表.其中a,15-a均为大于5的整数,则a取何值时有90%以上的把握认为“X与Y之间有关系”?y1 y2x1 a 20-ax2 15-a 30+a[解析] 查表可知,要使有90%以上的把握认为X与Y之间有关系,则K22.706,而其观测值k=65[a(30+a)-(20-a)(15-a)]220451550 =13(65a-300)2604550=13(13a-60)26090,解k2.706得a7.19或a2.04.又因为a5且15-a5,aZ,所以a=8,9,故当a取8或9时有90%以上的把握认为“X与Y之间有关系”.[点拨] 首先计算K2值,由题意K22.706,求得a的范围,再结合a5且15-a5,aZ,即可求得a的值.21.(本题满分12分)某超市为了了解热茶销售与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表如下表:气温x(℃) 26 18 13 10 4 -1杯数y 20 24 34 38 50 64画出散点图并计算相关系数r,判断热茶销售量与气温之间是否具有线性相关关系.[解析] 由表中数据画出散点图如图所示.由表中数据得x=16(26+18+13+10+4-1)11.67,y=16(20+24+34+38+50+64)38.33,i=16xiyi=2620+1824+1334+1038+450-164=1910,i =16x2i=262+182+132+102+42+(-1)2=1286,i=16y2i=202+242+342+382+502+642=10172,所以r-0.97,因为|r|0.970.75,所以热茶销售量与气温之间具有很强的线性相关关系.22.(本题满分14分)在一个文娱网络中,点击观看某个节目的累积人次和播放天数如下表:播放天数 1 2 3 4 5点击观看的累积人次 51 134 213 235 262播放天数 6 7 8 9 10点击观看的累积人次 294 330 378 457 533(1)画出散点图;(2)判断两变量之间是否具有线性相关关系,求回归直线方程是否有意义?[解析] (1)散点图如图所示.(2)由散点图知两变量线性相关,故求回归直线方程有意义.或借助科学计算器,完成下表中的有关计算.i 1 2 3 4 5 6 7 8 9 10xi 1 2 3 4 5 6 7 8 9 10yi 51 134 213 235 262 294 330 378 457 533xiyi 51 268 639 940 1310 1764 2310 3024 4113 5330x=5.5,y=288.7,i=110x2i=385,i=110y2i=1020953,i=110xiyi=19749 利用上表的结果,计算累积人次与播放天数之间的相关系数r=19749-105.5288.7(385-105.52)(1020953-10288.72)0.9840.75.这说明累积人次与播放天数之间存在着线性相关关系,自然求回归直线方程有意义.。

(压轴题)高中数学选修1-2第一章《统计案例》测试题(包含答案解析)(2)

(压轴题)高中数学选修1-2第一章《统计案例》测试题(包含答案解析)(2)

一、选择题1.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A.12B.25C.35D.452.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.213.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为()A.25B.310C.15D.1104.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22列联表,则至少有()的把握认为喜爱打篮球与性别有关.附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.78910.828A .99.9%B .99.5%C .99%D .97.5%5.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0k2.7063.8415.0246.6357.879以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系6.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为2133、,则小球落入A 袋中的概率为 ( )A .34B .14C .13D .237.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关D .变量x 和y 是负相关,变量u 和v 是正相关8.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为x y +为偶数,事件B 为x y ≠ ,则概率(|)P B A =( )A .14B .13C .12D .239.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1410.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131511.某校自主招生面试共有7道题,其中4道理科题,3道文科题,要求不放回地依次任取3道题作答,则某考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为( ) A .17B .15C .37D .4512.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.某人进行射击训练,射击一次命中靶心的概率是0.9,各次射击相互独立,他连续射击3次,则“第一次没有命中靶心后两次命中靶心” 的概率是______.14.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.15.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________. 16.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)17.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________. 18.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R 的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.19.某团队派遣甲、乙、丙、丁四人分别完成一项任务,已知甲完成任务的概率为14,乙完成任务的概率为12,丙、丁完成任务的概率均为23,若四人完成任务与否相互独立,则至少2人完成任务的概率为____.20.一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表: 土地使用面积x (单位:亩) 1 2 3 4 5 管理时间y (单位:月)911142620愿意参与管理 不愿意参与管理x的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()ni ix x y yr--=∑()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.临界值表:22.面对环境污染,党和政府高度重视,各级环保部门制定了严格措施治理污染,同时宣传部门加大保护环境的宣传力度,因此绿色低碳出行越来越成为市民的共识,为此吉安市在吉州区建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分缴费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间为3小时以上且不超过4小时,扣3分;⑤租车时间超过4小时除扣3分外,超出时间按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过4小时,设甲、乙租用时间不超过一小时的概率分别是0.4,0.3;租用时间为1小时以上且不超过2小时的概率分别是0.4,0.5;租用时间为2小时以上且不超过3小时的概率分别是0.1,0.1.(1)求甲比乙所扣积分多的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.23.2020年10月份黄山市某开发区一企业顺利开工复产,该企业生产不同规格的一种产品,根据检测标准,其合格产品的质量y(单位:g)与尺寸x(单位:mm )之间近似满足关系式by c x=⋅(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数试求随机变量的分布列和期望;(2)根据测得数据作了初步处理,得相关统计量的值如下表:②已知优等品的收益z (单位:千元)与x ,y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1) 附:对于样本(),(1,2,,)i i v u i n =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆnniii i i i nni ii i v v u uv unvu bv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7182e ≈. 24.H 市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x (吨)与相应的生产总成本y (万元)的五组对照数据. ˆˆˆybx a =+;参考公式:1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-. (2)记第(1)问中所求y 与x 的线性回归直线方程ˆˆˆybx a =+为模型①,同时该企业科研人员利用计算机根据数据又建立了y 与x 的回归模型②:2112ˆyx =+.其中模型②的残差图(残差=实际值-预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y 关于x 的回归方程?并说明理由;(3)根据模型①中y 与x 的线性回归方程,预测产量为6吨时生产总成本为多少万元? 25.某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是12,从第二代开始,若上一代开红花,则这一代开红花的概率是13,开黄花的概率是23;若上一代开黄花,则这一代开红花的概率是35,开黄花的概率是25.记第n 代开红花的概率为n p ,第n 代开黄花的概率为n q . (1)求2p ;(2)①证明:数列9()19n p n N *⎧⎫-∈⎨⎬⎩⎭为等比数列;②第*(,2)n n N n ∈≥代开哪种颜色花的概率更大?26.近年来,国资委党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某扶贫小组为更好的执行精准扶贫政策,为某扶贫县制定了具体的扶贫政策,并对此贫困县2015年到2019年居民家庭人均纯收入(单位:百元)进行统计,数据如下表: 年份 2015 2016 2017 2018 2019 年份代号(t ) 12345人均纯收入(y )5.86.67.28.89.6并调查了此县的300名村民对扶贫政策的满意度,得到的部分数据如下表所示:满意 不满意(1)求人均纯收入y 与年份代号t 的线性回归方程;(2)是否有99.9%的把握认为村民的年龄与对扶贫政策的满意度具有相关性? (3)若以该村的村民的年龄与对扶贫政策的满意度的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不满意扶贫政策的45岁以上的村民人数为x ,求x 的分布列及数学期望.参考公式:回归直线ˆya bx =+中斜率和截距的最小二乘估计公式分别为:()121(,)(,)nii n i x x yy b x x ==--=-∑∑,a y bx =-;22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.2.C解析:C 【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3, 根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.3.C解析:C 【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解. 【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个, 某人在银行自动提款机上取钱时,忘记了密码最后一位数字, 任意按最后一位数字,不超过2次就按对的概率为:p=19110109+⨯=15. 故选C . 【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表,得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.5.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.6.D解析:D 【分析】小球落入A 袋中的概率为P (A )1P =-(B ),由此利用对立事件概率计算公式能求出小球落入A 袋中的概率. 【详解】 解:将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为21,33, 小球落入A 袋中的概率为:P (A )1P =-(B )1112221()333333=-⨯⨯+⨯⨯23=. 故选:D . 【点睛】 本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.7.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.8.D解析:D 【解析】因为事件A 的基本事件分别为A(1,1),(1,3),(3,1),(2,2),(2,4),(4,2),(3,3),(4,4),(4,6),(6,4),(5,5),(1,5),(5,1),(6,6),(3,5),(5,3),(2,6),(6,2),共18种情形;其中x y =的情形(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6种情形,所以事件B 为x y ≠的情形有12种,则所求条件事件的概率()122|183P B A ==,应选答案D 。

天津市高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

天津市高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

一、选择题1.在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据判断如下结论中正确的是( )A .在此次调查中有95%的把握认为是否说谎与性别有关B .在此次调查中有99%的把握认为是否说谎与性别有关C .在此次调查中有99.5%的把握认为是否说谎与性别有关D .在此次调查中没有充分证据显示说谎与性别有关 2.下列四个命题中,正确的有( )①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”; ③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x =-有极值0,则2a =,9b =或1a =,3b =.A .0B .1C .2D .33.以下四个结论,正确的是( )①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在回归直线方程0.1.3ˆ1y x =+中,当变量ˆx 每增加一个单位时,变量ˆy增加0.13个单位;③在频率分布直方图中,所有小矩形的面积之和是1;④对于两个分类变量X 与Y ,求出其统计量2K 的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大. A .②④B .②③C .①③D .③④4.已知x 与y 之间的几组数据如下表: x 1 2 4 5 y 0 2 3 5假设根据上表数据所得线性回归直线方程y=bx+a,若某同学根据上表中的前两组数据(1,0)和(2,2),求得的直线方程为y=b'x+a',则以下结论正确的是( ) A .b>b',a>a' B .b<b',a<a' C .b>b',a<a'D .b<b',a>a'5.某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表,根据表中数据则可判定秃发与患心脏病有关,那么这种判定出错的可能性为( ) 患心脏病情况秃发情况 患心脏病无心脏病 秃发 20 300 不秃发5450A .0.1B .0.05C .0.01D .0.996.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是 ( ) A .0.1E ξ=B .•01D ξ=C .10()0.01?0.99k k P k ξ-==D .1010()0.99?0.01kkkP k C ξ-==7.下列判断错误的是A .若随机变量ξ服从正态分布()()21,,30.72N P σξ≤=,则()10.28P ξ≤-=;B .若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上,则相关系数1r =-;C .若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭, 则()1E ξ=; D .am bm >是a b >的充分不必要条件;8.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%9.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:性别与读营养说明列联表请问性别和读营养说明之间在多大程度上有关系 ( ) A .99%的可能性 B .99.75%的可能性 C .99.5%的可能性D .97.5%的可能性10.已知样本789x y 、、、、的平均数是8xy 值为 A .8B .32C .60D .8011.如表为某公司员工工作年限x (年)与平均月薪y (千元)对照表.已知y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )A .回归直线一定过点(4.5,3.5)B .工作年限与平均月薪呈正相关C .t 的取值是3.5D .工作年限每增加1年,工资平均提高700元12.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”( )A .1%B .99%C .2.5%D .97.5%二、填空题13.以下四个命题中:①在回归分析中,可用相关系数r 的值判断模型的拟合效果,|r |越大,模拟的拟合效果越好;②在一组样本数据()()()112212,,,,...,,(2,,,...,n n n x y x y x y n x x x ≥不全相等)的散点图中,若所有样本点()()11,1,2,...x y i n =都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;③对分类变量x 与y 的随机变量2k 来说,2k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为__________.14.设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为______.15.某单位为了了解用电量y (度)与气温x (度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表由表中数据,得回归直线方程ˆˆˆy bx a =+,若ˆ2b=-,则ˆa =________. 16.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考查某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,在犯错误的概率不超过______(填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.17.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温. 气温(℃)14 12 86用电量(度) 22 26 34 38由表中数据得线性方程x b a yˆˆˆ+=中2ˆ-=b ,据此预测当气温为5℃时,用电量的度数约为 .18.一个三位自然数百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若{},,1234a b c ∈,,,,且a ,b ,c 互不相同,则这个三位数为”有缘数”的概率是__________.19.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下联表:感染 未感染 总计服用 10 40 50 未服用 20 30 50总计3070100参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828参照附表,在犯错误的概率最多不超过__________(填百分比)的前提下,可认为“该种疫苗由预防埃博拉病毒感染的效果”. 20.有如下四个命题:①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.83r =-,表明两个变量的相关性较弱.③若由一个2⨯2列联表中的数据计算得2K 的观测值 4.103k ≈,那么有95%的把握认为两个变量有关.④用最小二乘法求出一组数据(,),(1,,)i i x y i n =的回归直线方程ˆˆˆy bx a =+后要进行残差分析,相应于数据(,),(1,,)i i x y i n =的残差是指()ˆˆˆi i ie y bx a =-+. 以上命题“错误”的序号是_________________三、解答题21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由; (2)求该20名学生评分的中位数m ,并将评分超过m 和不超过m 的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生 女生 总计附:22()()()()()n ad bc K a b c d a c b d -=++++. 20()P K k 0.10 0.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.82822.为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?不合格合格男生1416女生1020(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望()E X.附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.1000.0500.0100.001k2.7033.8416.63510.82823.黑人乔治•弗洛伊德被残杀死亡事件,引发了全世界的抗议.近期某校高二年级A班班主任对该班进行了一次调查,发现全班50名同学中,对此事关注的占25,他们在本学期期末考试中的政治成绩(满分100分)如下面的频率分布直方图:(1)根据频率分布直方图,求对此事关注的学生政治成绩的中位数的估计值(精确到0.1);(2)若政治成绩不低于80分的为优秀,请以是否优秀为分类变量, ①补充下面的22⨯列联表:政治成绩优秀 政治成绩不优秀 合计对此事关注 对此事不关注 合计参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据: P(20K k ≥)0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k 2.0722.7063.8415.0246.6357.87910.82824.某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[)45,50,得到的频率分布直方图如图所示.(1)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[)35,40的人数为ξ,求ξ的数学期望;(2)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)喜欢阅读国学类不喜欢阅读国学类合计 男 16 4 20 女 8 12 20 合计241640根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++()20P K k ≥0.025 0.010 0.005 0.001 0k 5.0246.6357.87910.82825.冠状病毒是一个大型病毒家族,今年出现的新型冠状病毒(nCoV )是以前从未在人体中发现的冠状病毒新毒株.(1)某科研团队为研究潜伏期与新冠肺炎患者年龄的关系,组织专家统计了该地区新冠肺炎患者新冠病毒潜伏期的相关信息,其中被统计的患者中60岁以下的人数与60岁以上的人数相同,60岁以下且潜伏期在7天以下的人数约占15,60岁以上且潜伏期在7天以下的人数约占35,若研究得到在犯错误概率不超过0.010的前提下,认为潜伏期与新冠肺炎患者年龄有关,现设被统计的60岁以上的人员人数为5x ,请完成下面2×2列联表并计算被统计的60岁以上的人员至少多少人?附1:()()()()()22n ad bc X a b c d a c b d -=++++,其中n ab c d =+++(2)某地区的新冠肺炎治愈人数y (人)与3月份的时间x (日)满足回归直线方程ˆˆˆybx a =+,统计数据如下:已知5=11405i i y y ==∑,52=190i i x =∑,5=1885i i i x y =∑,请利用所给数据求t 和回归直线方程ˆˆˆy bx a =+;附2:()1221ˆni ii ni i x y nx ybx n x ==-⋅=-∑∑,ˆˆa y bx=-. 26.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取100名观众进行调查,将日均收看体育节目时间不低于40分钟的观众称为“体育迷”,数据统计如下表:(1)是否有99%的把握认为“体育迷”与性别有关?(2)该体育类节目为了提升收视率,规定“体育迷”每天奖励积分2分,“非体育迷”每天奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的物品.用表中的样本频率作为概率的估计值.某日3名观众来领取积分,记此3人当日的积分总和为随机变量ξ,求ξ的分布列和数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】根据上表数据可求得20.027 1.323k ≈<,再结合课本上的概率附表可知在此次调查中没有充分证据显示说谎与性别有关,故选D2.A解析:A 【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-= 解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。

天津市高中数学选修2-3第三章《统计案例》检测卷(含答案解析)

天津市高中数学选修2-3第三章《统计案例》检测卷(含答案解析)

一、选择题1.下列说法错误的是()A.在回归直线方程0.2 0.8y x=+中,当解释变量x每增加1个单位时,预报变量y平均增加0.2个单位.B.对分类变量X与Y,随机变量2K的观测值k越大,则判断“X与Y有关系”的把握程度越小.C.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.D.回归直线过样本点的中心(),x y.2.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:临界值参考:(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别无关”C.有99.99%以上的把握认为“喜欢“应用统计”课程与性别有关”D.有99.99%以上的把握认为“喜欢“应用统计”课程与性别无关”3.假设有两个分类变量X和Y的22⨯列联表为:1x5b5b +2x15d15d + 总计20 4060对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则 下列结论正确的是 ( ) A .0.1E ξ=B .•01D ξ=C .10()0.01?0.99k k P k ξ-==D .1010()0.99?0.01kkkP k C ξ-==5.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系 6.对两个分类变量A ,B 的下列说法中正确的个数为( )①A 与B 无关,即A 与B 互不影响; ②A 与B 关系越密切,则K 2的值就越大; ③K 2的大小是判定A 与B 是否相关的唯一依据 A .0 B .1 C .2 D .37.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k =,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响8.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )A .90%B .95%C .97.5%D .99.5%9.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.00110.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 11.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K =,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )A .90%B .95%C .97.5%D .99.5%12.已知变量x ,y 的一组观测数据如表所示:据此得到的回归方程为y bx a =+,若a =7.9,则x 每增加1个单位,y 的预测值就( ) A .增加1.4个单位B .减少1.2个单位C .增加1.2个单位D .减少1.4个单位二、填空题13.某汽车销售公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:百辆)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,...,8)i =数据作了初步处理,得到年销售量y 与年宣传费具有近似关系:ˆyb x a =+以及一些统计量的值如下:81i i x ==∑372.8,81i i y ==∑450.4,8i i x ==∑54.4,8i i y ==∑76.2 .已经求得近似关系中的系数68b =,请你根据相关回归分析方法预测当年宣传费100x =(千元)时,年销售量y =__________(百辆).14.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考查某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,在犯错误的概率不超过______(填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.15.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 16.在2017年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示: 价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是:3.2y x a =-+,则a =__________.17.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 的距离是19; ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.18.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.19.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好.20.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 ②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④乙同学的总成绩排名比丙同学的总成绩排名更靠前 则所有正确结论的序号是_________.三、解答题21.随着新冠疫情防控进入常态化,人们的生产生活逐步步入正轨.为拉动消费,某市发行2亿元消费券.为了解该消费券使用人群的年龄结构情况,该市随机抽取了50人,对是否使用过消费券的情况进行调查,结果如下表所示,其中年龄低于45岁的人数占总人数的35.99%的把握认为是否使用消费券与人的年龄有关.2.07222()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. (2)从使用消费券且年龄在[15,25)与[25,35)的人中按分层抽样方法抽取6人,再从这6人中选取2名,记抽取的两人中年龄在[15,25)的人数为X ,求X 的分布列与数学期望. 22.2019年4月,中国电信公布了2019年的终端洞察报告,其中,国产手机品牌表现抢眼,统治地位不容置疑.在2018年6~11月上市的新机中,用户最满意机型与用户推荐机型的项目中国产手机优势明显,华为及荣耀手机分别占据不同价位段的榜单第一,OPPO 、vivo 、小米、魅族均有机型占据榜单.在用户满意机型调研项目中,曾经位于神坛地位的苹果手机也仅仅只有iPhone XR 一款位列第三.(1)从上表中15个机型中任取3个,求这3个机型恰好有2个是“华为”或“荣耀”的概率; (2)测试数据源于消费者的反馈,从反馈信息中随机抽取500个“华为畅享9plus ”消费者,其中来自城市300个,来自农村200个,统计他们对“华为畅想9plus ”的满意情况如下:满意 不满意城市 270 30农村170 30(附:()()()()()22n ad bc a b c d a c b d χ-=++++,当2 3.841χ>时,有95%的把握说事件A 与B 有关;当26.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的)23.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,从上述500名患者中抽取300人,得到如下列联表,根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:短潜伏者 长潜伏者 合计60岁及以上 90 70 160 60岁以下 60 80 140 合计 15015030020P K k ≥()0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.8282()()()()()n ad bc K a b c d a c b d -=++++24.我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如表频数分布表:(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值; (2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如表列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.参考公式和数据:()()()()()22n ad bc K a b c d a c b d -=++++.(其中n a b c d =+++为样本容量)25.近年来,“家长辅导孩子作业”已成为家长朋友圈里的一个热门话题.某研究机构随机调查了该区有孩子正在就读小学的140名家长,以研究辅导孩子作业与家长性别的关系,得到下面的数据表:(1)请将下列列联表填写完整,并判断能否在犯错误的概率不超过0.05的前提下,认为是否辅导孩子作业与家长性别有关?是否辅导家长性别辅导不辅导 合计男50女 40 合计70(2)若从被调查的50名爸爸中任选2名爸爸,并用A 表示事件“至少1名爸爸辅导”,用B 表示事件“2名爸爸都辅导”,求()|P B A .参考公式:22(),()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++. 参考数据:26.某学校为了推进素质教育,因材施教,提高课堂教学及学生学习效率,特将高一入学的前80名均分设立第一层次的两个零级班零甲班和零乙班,现以一次考试的数学成绩为样本,并规定成绩数据落在[]120150,之内的数据为优秀,否则为不够优秀,考试成绩数据如表所示:(1)若从零甲的数学考试成绩中,依次有放回的随机抽查5个数据,设抽到优秀成绩的次数为ξ,求ξ的分布列与数学期望及方差;(以频率作为概率)(2)由以上统计数据完成下面22⨯列联表,并回答有多大的把握认为抽取的数据为优秀成绩与对两个班级的选择有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据线性回归方程,相关系数,独立性检验的相关知识即可判断选项的正误. 【详解】对于选项A :在回归直线方程0.2.8ˆ0yx =+中,当解释变量x 每增加1个单位时,预报变量y 平均增加0.2个单位,正确.对于选项B :对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系"的把握程度越大,错误.对于选项C :两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,正确. 对于选项D :回归直线过样本点的中心(),x y ,正确. 故选: B 【点睛】本题主要考查了线性回归的有关知识,考查了随机变量的相关性,考查了推理能力,属于中档题.2.A解析:A 【分析】计算212.010.828K ≈>,对比临界值表得到答案. 【详解】()222552020105()53912.010.828()()()()3025302545n ad bc K a b c d a c b d ⨯-⨯-===≈>++++⨯⨯⨯,故在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”. 故选:A. 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.3.D解析:D 【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.A解析:A【解析】【分析】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,实验的结果只有发生和不发生两种结果,故本题符合独立重复试验,由独立重复试验的期望公式得到结果.【详解】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,故本题符合独立重复试验,即ξ~(10,0.01)B.∴100.010.1Eξ=⨯=故选A.【点睛】解决离散型随机变量分布列和期望问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.5.B解析:B【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P(K2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A与B有关系.【详解】 依据下表:6.635K >,2 6.6350.01P K =(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A 与B 有关系, 故选B . 【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.6.B解析:B 【解析】 【分析】根据独立性检验的思想,对题目中的命题进行分析、判断正误即可. 【详解】对于①,对事件A 与B 无关时,说明两事件的影响较小,不是两个互不影响,①错误; 对于②,事件A 与B 关系密切,说明事件A 与B 的相关性就越强,K 2就越大,②正确; 对于③,K 2的大小不是判定事件A 与B 是否相关的唯一根据,判定两事件是否相关除了公式外;还可以用三维柱形图和二维条形图等方法来判定,③错误; 故选:B . 【点睛】本题考查了独立性检验思想的应用问题,属于基础题.K 2值是用来判断两个变量相关的把握度的,不是用来判断两个变量是否相关的.7.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.8.C解析:C 【详解】∵2 6.023 5.024K =>∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算出2K 的值;(3)查表比较2K 与临界值的大小关系,作统计判断.9.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)10.A解析:A 【解析】试题分析:因为商品销售量x 与销售价格ˆy负相关,所以排除B ,D 选项, 将0x =代入10200ˆyx =--可得2000ˆy =-<,不符合实际.故A 正确. 考点:线性回归方程.【方法点睛】本题主要考查线性回归方程,属容易题.线性回归方程ˆˆˆy bx a =+当ˆ0b<时ˆ,x y 负相关;当ˆ0b >时ˆ,x y 正相关. 11.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【KS5U】独家】天津新人教版数学2013高三单元测试16《统
计案例》
(时间:60分钟满分100分)
一、选择题(每小题5分,共50分)
1.下列属于相关现象的是()
A.利息与利率
B.居民收入与储蓄存款
C.电视机产量与苹果产量
D.某种商品的销售额与销售价格
2.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( )
A.3
10
B.
2
9
C.
7
8
D.
7
9
3.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大()
A.EB.CC.DD.A
4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,
得到如下结果(单位:人)
根据表中数据,你认为吸烟与患肺癌有关的把握有()
A.90%B.95%C.99%D.100%
5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
你认为婴儿的性别与出生时间有关系的把握为( ) A.80%
B.90%
C.95%
D.99%
6.已知有线性相关关系的两个变量建立的回归直线方程为 y a bx =+,方程中的回归系数b ( )
A.可以小于0 B.只能大于0 C.可以为0
D.只能小于0
7.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( )
A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元
8.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①②
B.②③
C.①③
D.①②③
9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:
如果某天气温是2℃,则这天卖出的热饮杯数约为( ) A.100
B.143
C.200
D.243
10.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:
利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于( ) A.0.3~0.4
B.0.4~0.5
C.0.5~0.6
D.0.6~0.7
二、填空题(每小题4分,共16分.把答案填在题中的横线上) 11.某矿山采煤的单位成本Y 与采煤量x 有关,其数据如下:
则Y 对x 的回归系数 .
12.对于回归直线方程 4.75257y x =+,当28x =时,y 的估计值为 .
13.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不=是因为患心脏病而住院的男性病人中有175人秃顶,则2χ .
14.设A 、B 为两个事件,若事件A 和B 同时发生的概率为3
10,在事件A 发生的条件下,事件
B 发生的概率为1
2
,则事件A 发生的概率为________________.
三、解答题(本大题共四个小题,15题11分,16题11分,17题12分,共24分.解答应写出文字说明,证明过程或演算过程)
15.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,1
5.假定三人的
行动相互之间没有影响,求这段时间内至少有1人去北京旅游的概率
16.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:
对于教育机构的研究项目,根据上述数据能得出什么结论.
17.1907年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.
(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?
(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?
18.假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:
(1)作出这些数据的散点图;
(2)求出这些数据的回归方程;
(3)对于这个例子,你如何解释回归系数的含义?
(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.
(5)解释一下回归系数与每年平均增长的身高之间的联系.
统计案例检测题答案
一、选择题
1-5 BDACB 6-10 ACCBB 二、填空题
11.0.1229- 12. 390 13. 16.373 14.3
5 解答题
15.解:因甲、乙、丙去北京旅游的概率分别为13,14,1
5.因此,他们不去北京旅游的概率分别
为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35. 16.解:2
2
392(3916715729)
1.7819619668324
K ⨯⨯-⨯=
≈⨯⨯⨯.
因为1.78 2.706<,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.
17. 解:由题意知:(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6, ∴船员平均相差6人;
(2)最小的船估计的船员数为:9.1+0.006×192=9.1+1.152=10.252≈10(人). 最大的船估计的船员数为:9.1+0.006×3246=9.1+19.476=28.576≈28(人). 18.解:(1)数据的散点图如下: (2)用y 表示身高,x 表示年龄,则数据的回归方程为y=6.317x+71.984;
(3)在该例中,回归系数6.317表示该人在一年中增加的高度; (4)每年身高的增长数略.3~16岁身高的年均增长数约为6.323cm ; (5)回归系数与每年平均增长的身高之间近似相等.。

相关文档
最新文档