2018全国高考文科数学试题及答案解析_全国1卷

合集下载

2018年高考全国卷1文科数学试题及含答案

2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

2018年高考文科数学全国卷1(含详细答案)

2018年高考文科数学全国卷1(含详细答案)

数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

2018年高考全国卷1文科数学试题含答案

2018年高考全国卷1文科数学试题含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。

2018全国高考1卷(文科数学)---详细解析(word精美版)

2018全国高考1卷(文科数学)---详细解析(word精美版)

2018年普通高等学校招生全国统一考试(新课标I 卷)文科数学本试卷4页,23小题,满分150分.考试用时120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}2,0{=A ,}2,1,0,1,2{--=B ,则=B A ( )A .}2,0{B .}2,1{C .}0{D .}2,1,0,1,2{-- 1.【解析】}2,0{=B A ,选A . 2.设i 2i1i1++-=z ,则=z ( ) A .0 B .21C .1D .2 2.【解析】()()()i i 22i2i 2i 1i 1i 12=+-=+-+-=z ,则1=z,选C .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面的结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.【解析】经过一年的新农村建设,农村的经济收入增加了一倍,所以建设前与建设后在比例相同的情况下,建设后的经济收入是原来的2倍,所以建设后种植收入为37%相当于建设前的74%,故选A .4.已知椭圆14:222=+y ax C 的一个焦点为)0,2(,则C 的离心率为( ) 28%5% 30%37%第三产业收入其他收入养殖收入种殖收入建设后经济收入构成比例6%4% 30%60%第三产业收入其他收入养殖收入种殖收入建设前经济收入构成比例A .31 B .21C .22D .3224.【解析】844222=+=+=c b a ,所以离心率22222===a c e ,故选C . 5.已知圆柱的上、下底面的中心分别为21,O O ,过直线21O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .π212B .π12C .π28D .π105.【解析】易得圆柱的母线长与底面圆的直径均为22,所以圆柱的表面积222⨯⨯=πS 2222⨯+ππ12=,故选B .6.设函数ax x a x x f +-+=23)1()(.若)(x f 为奇函数,则曲线)(x f y =在点)0,0(处的切线方程为( )A .x y 2-=B .x y -=C .x y 2=D .x y =6.【解析】R x ∈,ax x a x ax x a x x f x f +-++--+-=+-2323)1()1()()(2)1(2x a -=0=,则1=a ,则x x x f +=3)(,13)(2+='x x f ,所以1)0(='f ,在点)0,0(处的切线方程为x y =,故选D .7.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+ 7.【解析】AB 4341)(4121)21(21)(21-=-+=+=+=, 则4143-=,故选A . 8.已知函数2sin cos 2)(22+-=x x x f ,则( )A .)(x f 的最小正周期为π,最大值为3B .)(x f 的最小正周期为π,最大值为4C .)(x f 的最小正周期为π2,最大值为3D .)(x f 的最小正周期为π2,最大值为4 8.【解析】252cos 31cos 32)cos 1(cos 2)(222+=+=+--=x x x x x f ,最小正周期为π,最大值为4,故选B .9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面 上的点N 在左视图上的对应点为B ,则在此圆柱侧面上, 从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .29.【解析】将三视图还原成直观图,并沿点A 所在的母线把圆柱侧面展开成如图所示的矩形,从点M 到点N 的运动轨迹在矩形中为直线段时路径最短,长度为52,故选B .A BDE10.在长方体1111D C B A ABCD -中,2==BC AB ,1AC 与平面C C BB 11所成的角为30,则该长方体的体积为( )A .8B .26C .28D .3810.【解析】1AC 与平面C C BB 11所成的角的平面角为301=∠B AC ,因为2==BC AB ,所以3260tan 1== AB B C ,则221=BB ,长方体的体积282222=⨯⨯=V ,故选C .11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点),2(),,1(b B a A ,且322cos =α,则=-b a ( )A .51B .55C .552D .111.【解析】321cos 22cos 2=-=αα ,65cos 2=∴α,51tan ,61sin 22==∴αα.又角α终边上有两点),2(),,1(b B a A ,则)0(2tan >==ab b a α.555525551422=-=-⇒==∴b a b a ,故选B . 12.已知函数⎩⎨⎧>≤=-0,10,2)(x x x f x ,则满足)2()1(x f x f <+的x 的取值围是( )A .(]1,-∞-B .()+∞,0C .()0,1-D .()0,∞- 12.【解析】方法1:函数)(x f y =的图像如图所示, 则)2()1(x f x f <+即⎩⎨⎧+<<1202x x x ,解得0<x .故选D .方法2:将1-=x 代入)2()1(x f x f <+得)2()0(-<f f ,显然成立,所以排除B 、D ;将21-=x 代入)2()1(x f x f <+得)1()21(-<f f ,显然成立,所以排除A ;故选D .D 1AB C DA 1C 1 B 1M (A二、填空题:本题共4小题,每小题5分,共20分.13.已知函数)(log )(22a x x f +=,若1)3(=f ,则=a .13.【解析】71)9(log )3(2-=⇒=+=a a f .14.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--001022y y x y x ,则y x z 23+=的最大值为 .14.【解析】可行域为ABC ∆及其部,当直线223zx y +-=经过点)0,2(B 时,6max =z .15.直线1+=x y 与圆03222=-++y y x 交于B A ,两点,则=AB . 15.【解析】圆03222=-++y y x 的半径为2=r ,其圆心)1,0(-到直线1+=x y 的距离为222==d ,所以22222=-=dr AB .16.ABC ∆的角C B A ,,的对边分别为c b a ,,.已知C B a B c C b sin sin 4sin sin =+,8222=-+a c b ,则ABC ∆的面积为 .16.【解析】由正弦定理得C B A B C C B sin sin sin 4sin sin sin sin =+,即21sin =A .由根据余弦定理可得8cos 2222==-+A bc a c b ,所以0cos >A ,得23sin 1cos 2=-=A A ,338=bc ,则ABC ∆的面积为3322133821sin 21=⨯⨯==∆A bc S ABC .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知数列{}n a 满足11=a ,n n a n na )1(21+=+,设na b nn =. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.17.【解析】(1)11=a ,4412==∴a a ;1262323=⇒=a a a .11=∴b ,22=b ,43=b .(2)n n a n na )1(21+=+ ,nan a n n 211=+∴+,n n b b 21=∴+,即21=+n n b b .∴数列{}n b 是为等比数列,首项为1,公比为2.(3)由(2)知12-=n n b ,又na b n n =,所以12-⋅=n n n a ,即{}n a 的通项公式为12-⋅=n n n a .18.(12分)如图,在平行四边形ABCM 中,3==AC AB ,90=∠ACM .以AC 为折痕将ACM ∆折起,使点M 达到D 的位置,且DA AB ⊥.(1)证明:平面⊥ACD 平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且DA DQ BP 32==,求三棱锥ABP Q -的体积. 18.【解析】(1)证明: 平行四边形ABCM 中90=∠ACM ,90=∠∴BAC ,即AC AB ⊥.又DA AB ⊥,A DA AC =⊥,⊥∴AB 平面ACD ,⊂AB 平面ABC ,∴平面⊥ACD 平面ABC .(2)DA DQ BP 32== , ∴ABC ABP S S ∆∆=32且点Q 到平面ABC 的距离是点D 到平面ABC 的距离的31. 3==AC AB 且 90=∠ACD ,∴13332127231929292=⨯⨯⨯⨯=⋅⨯===∆---AB S V V V ACD ACD B ABC D ABP Q .19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表AP BQMC D使用了节水龙头50天的日用水量频数分布表(2)估计该家庭使用节水龙头后,日用水量小于0.353m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)19.【解析】(1)使用了节水龙头50天的日用水量数据的频数分布直方图:(2)样本中,该家庭使用节水龙头后日用水量小于0.353m 的频率为0.48, 估计该家庭使用节水龙头后,日用水量小于0.353m 的概率为0.48. (3)未使用节水龙头50天的日用水量的平均值约为:频率/组距/3m频率/组距日用水量/3m48.024501]565.02655.0945.0435.0225.0315.0105.0[501=⨯=⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯; 使用了节水龙头50天的日用水量的平均值约为:35.05.17501]555.01645.01035.01325.0515.0105.0[501=⨯=⨯+⨯+⨯+⨯+⨯+⨯⨯, ()45.4735.048.0365=-⨯ ,∴估计该家庭使用节水龙头后,一年能节省47.453m 的水.20.(12分)设抛物线x y C 2:2=,点)0,2(A ,)0,2(-B ,过点A 的直线l 与C 交于N M ,两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABN ABM ∠=∠.20.【解析】(1)当l 与x 轴垂直时,M 为)2,2(或)2,2(-,则直线BM 的斜率为21或21-,直线BM 的方程为)2(21+=x y 或)2(21+-=x y . (2)方法1:易知直线l 的斜率不为0,不妨设2:+=my x l 且直线BN BM ,的斜率分别为21,k k .由⎩⎨⎧=+=xy my x 222得0422=--my y ,则4,22121-==+y y m y y , 因为21k k +0)4)(4(88)4)(4()(4244222121212122112211=+++-=++++=+++=+++=my my mm my my y y y my my y my y x y x y , 所以直线BN BM ,的倾斜角互补,得ABN ABM ∠=∠. 方法2:设直线BN BM ,的斜率分别为21,k k .①当l 与x 轴垂直时,由(1)知21k k -=,即直线BN BM ,的倾斜角互补,所以ABN ABM ∠=∠; ②当l 不与x 轴垂直时,设),2(:-=x k y l ),(),,(2211y x N y x M .由⎩⎨⎧=-=xy x k y 2)2(2得04)24(2222=++-k x k x k ,则0≠k 且4,24212221=+=+x x k k x x . 因为21k k +0)2)(2()82(2)2(2)2(22212122112211=++-=+-++-=+++=x x x x k x x k x x k x y x y , 所以直线BN BM ,的倾斜角互补,得ABN ABM ∠=∠. 综合①②所述,得ABN ABM ∠=∠.21.(12分)已知函数1ln )(--=x ae x f x.(1)设2=x 是)(x f 的极值点,求a ,并求)(x f 的单调区间; (2)证明:当ea 1≥时,0)(≥x f . 21.【解析】(1))0(1)(>-='x x ae x f x,2221021)2(ea ae f =⇒=-='∴, 又221e a =时,xe e xf x 121)(2-='.由x e e y 221=与xy 1=的图像只有一个交点)21,2(可知0)(='x f 在),0(+∞只有一个解2=x , )2,0(∈x 时,0)(<'x f ,)(x f 为减函数;),2(+∞∈x 时,0)(>'x f ,)(x f 为增函数,即2=x 是)(x f 的极小值点, 则221ea =,)(x f 的减区间为)2,0(,)(x f 的增区间为),2(+∞. (2)方法1:证明:当ea 1≥时,1-≥x x e ae . 令1ln )(1--=-x ex g x ,则xe x g x 1)(1-='-, 令x ex g x h x 1)()(1-='=-,则01)(21>+='-xe x h x ,)(x g y '=为),0(+∞上的增函数. 又01)1()1(0=-='=e g h ,所以)1,0(∈x 时,0)(<'x g ,)(x g 为减函数;),1(+∞∈x 时,0)(>'x g ,)(x g 为增函数,则010)1()(0min =--==e g x g ,即01ln 1≥---x e x .故当ea 1≥时,≥--=1ln )(x ae x f x 01ln 1≥---x e x ,得证. 方法2:证明:当ea 1≥时,1-≥x x e ae . 令x ex g x -=-1)(,则1)(1-='-x e x g ,)1,0(∈x 时,0)(<'x g ,)(x g 为减函数;),1(+∞∈x 时,0)(>'x g ,)(x g 为增函数,则01)1()(0min =-==e g x g ,即x e x ≥-1.又令1ln )(--=x x x h ,则xx x x h 111)(-=-=', )1,0(∈x 时,0)(<'x h ,)(x h 为减函数;),1(+∞∈x 时,0)(>'x h ,)(x h 为增函数,则0101)1()(min =--==h x h ,即1ln +≥x x .综上所述,当ea 1≥时,1ln +≥x ae x,即0)(≥x f . 方法3:证明:令xex x g 1ln )(+=,)0(1ln 1)1(ln )(2>+-=+-='x e x x e x e x e x g x x x x , 令1ln 1)(+-=x x x h ,则22111)(xxx x x h +-=--=', 当0>x 时,0)(<'x h ,)(x h 为减函数.又0101)1(=--=h ,则)1,0(∈x 时,0)(>x h ;),1(+∞∈x 时,0)(<x h .即当)1,0(∈x 时,0)(>'x g ,)(x g 为增函数;当),1(+∞∈x 时,0)(<'x g ,)(x g 为减函数, 所以ex g 1)(max =. 又ea 1≥,即max )(x g a ≥, 所以)(x g a ≥恒成立,即0)(1ln 1ln ≥⇔+≥⇔+≥x f x ae ex a xx,得证.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2||+=x k y .以坐标原点为极点,x 轴正半轴为机轴建立极坐标系,曲线2C 的极坐标方程为03cos 22=-+θρρ.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 22.【解析】(1)θρθρsin ,cos ==y x ,所以2C 的直角坐标方程为03222=-++x y x ; (2)曲线1C :⎩⎨⎧<+-≥+=0,20,2x kx x kx y ,其图像是关于y 轴对称且以)2,0(为端点的两条射线.2C :4)1(22=++y x ,其图像是以)0,1(-为圆心,半径为2的圆.若1C 与2C 有且仅有三个公共点,则0<k 且)0(2≥+=x kx y 与2C 相切(如图). 由2122=++-k k 且0<k ,解得34-=k ,则1C 的方程为:||34+-=x y23.[选修4—5:不等式选讲](10分)已知11)(--+=ax x x f .(1)当1=a 时,求不等式1)(>x f 的解集;(2)若)1,0(∈x 时不等式x x f >)(成立,求a 的取值围. 23.【解析】(1)当1=a 时,11)(--+=x x x f ,则1-≤x 时,2)(-=x f ,则1)(>x f 无解;11<<-x 时,x x f 2)(=,则1)(>x f 的解集为)1,21(;1≥x 时,2)(=x f ,则1)(>x f 的解集为),1[+∞.综上所述,所求解集为),21(+∞.(2))1,0(∈x 时不等式x x f >)(成立,即x ax x >--+11,则11<-ax 成立. 所以xa ax 20111<<⇒<-<-. 因为10<<x 时,有),2(2+∞∈x,所以20≤<a .。

2018年全国卷1文科数学高考卷版含答案

2018年全国卷1文科数学高考卷版含答案

2018年全国卷1文科数学高考卷(含答案)一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合A={x|0≤x≤2},集合B={x|x²3x+2=0},则A∩B=()A. {1, 2}B. {1}C. {2}D. 空集2. 已知复数z满足|z|=1,则|z1|的最小值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=1,a3=3,则数列的公差为()A. 1B. 2C. 3D. 44. 函数f(x)=x²2x+3在区间(0,+∞)上的单调性为()A. 单调递增B. 单调递减C. 先单调递增后单调递减D. 先单调递减后单调递增5. 已知函数f(x)=|x1|,则f(f(2))的值为()B. 1C. 2D. 36. 平面向量a和b满足|a|=3,|b|=4,a•b=6,则cos<a,b>的值为()A. 1/2B. 3/4C. 2/3D. 4/57. 若直线y=kx+b与圆x²+y²=1相切,则k的取值范围是()A. [1,1]B. (1,1)C. [√2,√2]D. (√2,√2)8. 在三角形ABC中,a=3,b=4,cosA=1/4,则三角形ABC的面积为()A. 3B. 4C. 6D. 89. 已知数列{an}满足an+1=2an+1,a1=1,则数列的前n项和为()A. 2n1C. 2n+1D. 2n+210. 若函数f(x)在区间(a,b)上可导,且f'(x)≠0,则函数f(x)在区间(a,b)上()A. 单调递增B. 单调递减C. 有极值D. 不单调11. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=2x+1上,若|AB|=√10,则点B的坐标为()A. (1,3)B. (2,5)C. (3,7)D. (4,9)12. 已知函数f(x)=x²2x+3,g(x)=2x1,则f[g(x)]的值域为()A. [2,+∞)B. [3,+∞)C. [4,+∞)D. [5,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知数列{an}是等比数列,a1=2,a3=8,则数列的公比为______。

2018年高考全国1卷-文科数学试卷及答案(清晰word版).doc

2018年高考全国1卷-文科数学试卷及答案(清晰word版).doc

2018年高考全国1卷-文科数学试卷及答案(清晰word版)文科数学试题 第2页(共19页)2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{0,2}A,{2,1,0,1,2}B,则AB =A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z =文科数学试题第3页(共19页)文科数学试题 第4页(共19页)D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C 2D 225.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数32()(1)f x xa x ax=+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数22()2cossin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3文科数学试题 第5页(共19页)B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C所成的角为30︒, 则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴文科数学试题 第6页(共19页)的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -= A .15B 5C 25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

2018年高考全国卷1文科数学试题含答案

2018年高考全国卷1文科数学试题含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15B .55C .255D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。

2018年全国高考1卷文科数学试题及答案解析[官方]版

2018年全国高考1卷文科数学试题及答案解析[官方]版

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A=,,{}21012B=--,,,,,则A B=()A.{}02,B.{}12,C.{}0D.{}21012--,,,,2.设121iz ii-=++,则z=()A.0 B.12C.1D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:22214x ya+=的一个焦点为()2,0,则C的离心率()A.13B.12C D5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( ) A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

2018年度全国高考1卷文科数学试题及其规范标准答案解析[官方]版

2018年度全国高考1卷文科数学试题及其规范标准答案解析[官方]版

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A=,,{}21012B=--,,,,,则A B=I()A.{}02,B.{}12,C.{}0D.{}21012--,,,,2.设121iz ii-=++,则z=()A.0 B.12C.1D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:22214x ya+=的一个焦点为()2,0,则C的离心率()A.13B.12C D5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( )A .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( ) A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

(完整版)2018全国高考1卷文科数学试题及答案(官方)word版

(完整版)2018全国高考1卷文科数学试题及答案(官方)word版

2018年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑•如需改动,用橡皮擦干净后,再选涂其它答案标号•回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3 •考试结束后,将本试卷和答题卡一并交回.、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1 .已知集合A0 ,2 , B 2, 1 , 0, 1 , 2,则AI B ( )A •0 , 2B•1, 2 C •0D • 2 , 1 , 0 , 1 ,22•设z 1 i1 i2i,则z( )A • 0B•1 C • 12D •23•某地区经过一年的新农村建设,农村的经济收入增加了一倍•实现翻番•为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例•得到如下饼图:则下面结论中不正确的是()A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2 24已知椭圆C: J 丁1的一个焦点为2,0,则C的离心率(5•已知圆柱的上、下底面的中心分别为 O i , O 2,过直线。

1。

2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A • 12 2B . 12D . 106. 设函数f 1 x 2ax .若为奇函数,则曲线 y f x 在点o ,o 处的切线方程为7. 8. ( )A . y 2x在△ ABC 中, 3 uun A . -AB43 uunC . — AD 为BC 边上的中线,E 为AD1 ujir AC 4 1 uur — AC 4C.y 2x的中点,则 uuEB1 juu -AB 3uurB3 AC4 41 uuu -AB 3uur D3 AC4 4已知函数f x2 2cos x 2sin x 2,则(的最小正周期为 ,最大值为 的最小正周期为,最大值为C . f x的最小正周期为 ,最大值为3 的最小正周期为,最大值为49.某圆柱的高为 2,底面周长为16,其三视图如图所示,圆柱表面上的点 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为()A . 2 17B . 2 5C . 3(M B ,则A1B1C1D1 中,AB10.在长方体ABCD BC 2 , AG与平面BB1C1C所成的角为30,则该长方体的体积为()A. 8B. 6 2C. 8.2D. 8 - 3x 2y 2 < 0x y 1 > 0 ,则z 3x 2y 的最大值为 y < 015. _________________________________________________________________ 直线y x 1与圆x 2y 22y 3 0交于A , B 两点,贝U |AB ______________________________________________ ._ 2 2 216. __________________________ △ ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 bsinC csinB4asinBsinC ,b c a 则△ ABC 的面积为.三、解答题(共70分。

2018年全国高考新课标1卷文科数学试题(解析版)

2018年全国高考新课标1卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2} 解析:选A2.设z=1-i1+i+2i ,则|z|=A .0B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .223解析:选C ∵ c=2,4=a 2-4 ∴a=2 2 ∴e=225.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π解析:选B 设底面半径为R,则(2R)2=8 ∴R=2,圆柱表面积=2πR ×2R+2πR 2=12π6.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 7.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →8.已知函数f(x)=2cos 2x-sin 2x+2,则A .f(x)的最小正周期为π,最大值为3B .f(x) 的最小正周期为π,最大值为4C .f(x) 的最小正周期为2π,最大值为3D .f(x)的最小正周期为2π,最大值为4 解析:选B f(x)= 32cos2x+52故选B9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2 解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长10.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为300,则该长方体的体积为 A .8 B .6 2 C .8 2 D .8 3解析:选C ∵AC 1与平面BB 1C 1C 所成的角为300,AB=2 ∴AC 1=4 BC 1=2 3 BC=2 ∴CC 1=2 2 V=2×2×22=8 2 11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|= A .15B .55C .255D .1解析:选B ∵cos2α=23 2cos 2α-1=23 cos 2α=56 ∴sin 2α=16 ∴tan 2α=15又|tan α|=|a-b| ∴|a-b|=5512.设函数f(x)= ⎩⎪⎨⎪⎧2-x,x ≤01,x>0,则满足f(x+1)< f(2x)的x 的取值范围是A .(-∞,-1]B .(0,+ ∞)C .(-1,0)D .(-∞,0)解析:选D x ≤-1时,不等式等价于2-x-1<2-2x,解得x<1,此时x ≤-1满足条件-1<x ≤0时,不等式等价于1<2-2x, 解得x<0, 此时-1<x<0满足条件 x>0时,1<1不成立 故选D二、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=log 2(x 2+a),若f(3)=1,则a=________. 解析:log 2(9+a)=1,即9+a=2,故a=-714.若x ,y 满足约束条件⎩⎪⎨⎪⎧x-2y-2≤0x-y+1≥0 y ≤0 ,则z=3z+2y 的最大值为_____________.解析:答案为615.直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R 2-d 2=2 216.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知bsinC+csinB=4asinBsinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.解析:由正弦定理及bsinC+csinB=4asinBsinC 得2sinBsinC=4sinAsinBsinC ∴sinA=12由余弦定理及b 2+c 2-a 2=8得2bccosA=8,则A 为锐角,cosA=32, ∴bc=833∴S=12bcsinA=233三、解答题:共70分。

2018年高考文科数学(全国I卷)试题及参考答案

2018年高考文科数学(全国I卷)试题及参考答案

2018年高考文科数学(全国I 卷)试题及参考答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B = A.{0,2} B.{1,2} C.{0} D.{2,1,0,1,2}--2.设1i2i 1i z -=++,则||z =A.0B.12C.1 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A.13B.12C. D.5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.12πC.D.10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A.2y x =-B.y x =-C.2y x =D.y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.3144AB AC- B.1344AB AC- C.3144AB AC+D.1344AB AC+8.已知函数22()2cos sin 2f x x x =-+,则 A.()f x 的最小正周期为π,最大值为3 B.()f x 的最小正周期为π,最大值为4 C.()f x 的最小正周期为2π,最大值为3 D.()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为A. B.C.3D.210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A.8 B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -= A.15B.C. D.112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是 A.(,1]-∞- B.(0,)+∞ C.(1,0)- D.(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.2017年普通高等学校招生全国统一考试1卷文科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A=x|x2,B=x|32x0,则A.AB=3x|xB.ABC.AB23x|xD.AB=R22.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,⋯,xn的平均数B.x1,x2,⋯,xn的标准差C.x1,x2,⋯,x n的最大值D.x1,x2,⋯,x n的中位数3.下列各式的运算结果为纯虚数的是A.i(1+i) 2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π45.已知F是双曲线C:x2-2-2y3=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为()A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接A B与平面MNQ不平行的是x3y3,7.设x,y满足约束条件则z=x+y的最大值为xy1,y0,A.0B.1C.2D.38..函数ysin2x1cosx的部分图像大致为()Word资料.9.已知函数f(x)lnxln(2x),则A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图像关于直线x=1对称D.y=f(x)的图像关于点(1,0)对称nn的最小偶数n,那么在和两个空白框中,10.如图是为了求出满足321000可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.△ABC的内角A、B、C的对边分别为a、b、c。

已知sinBsinA(sinCcosC)0,a=2,c=2,则C=A.π12 B.π6C.π4D.π312.设A、B是椭圆C:22xy3m1长轴的两个端点,若C上存在点M满足∠A MB=120°,则m的取值范围是A.(0,1][9,)B.(0,3][9,)C.(0,1][4,)D.(0,3][4,)二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.14.曲线21yxx在点(1,2)处的切线方程为_________________________.15.已知πa(0,),tanα=2,则2πcos()4=__________。

16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。

若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)记S n为等比数列a的前n项和,已知S2=2,S3=-6.n(1)求a n的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列。

Word资料.18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且BAPCDP90(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC,APD90,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零 件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04 抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16 1 xx9.97,i16i1161611222s(x x )(x16x)0.212,ii1616i1i11616 2(i8.5)18.439,(x i x)(i8.5)2.78,其中x i 为抽取的第i 个零件的尺寸,i1,2,,16. i1 i1(1)求(x ,i )(i1,2,,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的i进行而系统地变大或变小(若|r|0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大 或变小).(2)一天内抽检零件中,如果出现了尺寸在(x3s,x3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(x3s,x3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)n(xx)(yy) ii附:样本(,)xy(i1,2,,n)的相关系数 iiri1 nn22(x x)(yy),0.0080.09.WORD格式iii1i1 Word资料.20.(12分)设A ,B 为曲线C :y=2 x 4上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AMBM ,求直线AB 的方程.21.(12分)已知函数f(x)=e x (e x ﹣a)﹣a 2x . (1)讨论f(x )的单调性;(2)若f(x)0,求a 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为x y 3cos, sin,(θ为参数),直线l 的参数方程为xa4t, t(为参数).y1t,(1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a. 23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x2+ax+4,g (x )=│x+1│+│x –1│. (1)当a=1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.Word资料.参考答案一、选择题:1.A2.B3.C4.D5.A6.A7.D8.C9.C10.D11.B12.A二、填空题:13.714.yx115. 3101016.36三、解答题:17.解:(1)设{a}的公比为q,由题设可得na(1q)2,12a(1qq)6.2解得q2,a21故{a}的通项公式为a(2)nnn (2)由(1)可得S nnna1(1q)22n(1)1q331由于n3n2n142222nnSS(1)2[(1)]2Sn2n1n3333故S n1,S n,S n2成等差数列18.解:(1)由已知BAPCDP90,得ABAP,CDPD由于AB//CD,故ABPD,从而AB平面PAD又AB平面PAB,所以平面PAB平面PAD(2)在平面PAD内作PEAD,垂足为E由(1)知,AB平面PAD,故ABPE,可得PE平面ABCD设ABx,则由已知可得2,2ADxPEx2故四棱锥PABCD的体积113VABADPExPABCD33Word资料WORD格式.由题设得183 xx2 33从而PAPD2,ADBC22,PBPC22可得四棱锥PABCD的侧面积为1111 PAPDPAABPDDCBC 2222 2sin606232.解:(1)由样本数据得(,)(1,2, (16)xii的相关系数为i16r(xx)(i8.5)ii1161622(x x)(i8.5)i8.14.1618.43919. i1i1由于|r|0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小。

(2)(i)由于x9.97,s0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x3s,x3s)以外,因此需对当天的生产过程进行检查。

(ii)剔除离群值,即第13个数据,剩下数据的平均数为115(169.979.92)10.02这条生产线当天生产的零件尺寸的均值的估计值为10.0216222x160.212169.971591.134,ii1剔除第13个数据,剩下数据的样本方差为1 15 22(1591.1349.221510.02)0.008这条生产线当天生产的零件尺寸的标准差的估计值为0.0080.09 3.解:(1)设A(x,y),B(x,y),则112222xx12 x1x2,y1,y2,x1x24,44于是直线AB的斜率k y yxx1212xx1241WORD 格式(2)由2 x y ,得4yx 2Word 资料.设M(x,y),由题设知33 x312,解得x32,于是M(2,1)设直线AB的方程为yxm代入2xy得42440xxm当16(m1)0,即m1时,x1,222m1从而|AB|2|xx|42(m1)12由题设知|AB|2|MN|,即42(m1)2(m1),解得m7所以直线AB的方程为yx74.解:(1)函数f(x)的定义域为2xx2xx (,),f(x)2eaea(2ea)(ea)①若a0,则2xf(x)e,在(,)单调递增②若a0,则由f(x)0得xlna当x(,lna)时,f(x)0;当x(lna,)时,f(x)0;故f(x)在(,lna)单调递减,在(lna,)单调递增a③若a0,则由f(x)0得ln()x2a当(,ln())x时,f(x)0;2a当(ln(),)x时,f(x)0;2a 故f(x)在(,ln())2a单调递减,在(ln(),)2单调递增(2)①若a0,则2xf(x)e,所以f(x)0②若a0,则由(1)得,当xlna时,f(x)取得最小值,最小值为2 f(lna)alna,从而当且仅当a a,即a1时,f(x)02ln02ln0a ③若a0,则由(1)得,当ln()x时,f(x)取得最小值,2最小值为a23af(ln())a[ln()],242Word资料.从而当且仅当23aa[ln()]0,即423 4a2e 时,f(x)03综上,a 的取值范围是4 [2e,1]5.解:(1)曲线C 的普通方程为2 x 921y 当a1时,直线l 的普通方程为x4y30x4y 30, 由2 x92 y 1解得x y 3, 0或 x y21 25 24 25,从而C 与l 的交点坐标为2124 (3,0),(,) 2525(2)直线l 的普通方程为x4y a40,故C 上的点(3cos,sin)到l 的距离为d|3cos4sina4| 17当a4时,d 的最大值为a 9 17 ,由题设得a 9 17 17,所以a8;当a4时,d 的最大值为a 171 ,由题设得a 1 17 17,所以a16;综上a8或a166.解:(1)当a1时,不等式f(x)g(x)等价于2|1||1|40 xxxx ①当x1时,①式化为2340xx ,无解;当1x1时,①式化为220xx ,从而1x1;当x1时,①式化为240 xx ,从而1x117 2所以f(x)g(x)的解集为{|1117}xx2(2)当x[1,1]时,g(x)2Word资料.所以f(x)g(x)的解集包含[1,1],等价于当x[1,1]时f(x)2又f(x)在[1,1]的最小值必为f(1)与f(1)之一,所以f(1)2且f(1)2,得1a1所以a的取值范围为[1,1]每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济效益或者其他积极效果,呈报总经办。

相关文档
最新文档