圆锥曲线[椭圆]专项训练[附答案解析]

合集下载

圆锥曲线之椭圆题库 含详解 高考必备

圆锥曲线之椭圆题库 含详解 高考必备

椭圆题库1 E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1) 当AE AF ⊥时,求AEF ∆的面积; (2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩,则 5.AF BF +=(1)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221()(1663t t t t t t -=-÷+==≤++,当t =30tan EPF EPF ∠=⇒∠= 2 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF (1)求点T 的轨迹C 的方程;(2)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.(1)解 :设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF 且时,由0||||2=⋅TF ,得2TF ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+ (2)解:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤所以,当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M.当cb a 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 3 已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-b y a x ,则.1,31422222==+=-=b c b a a 得再由 故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 ③ ④由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x OB OA k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得 .31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----4.已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2,并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10.椭圆上不同的两点A (x 1,y 1)、C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.(12a =|F 1B |+|F 2B |=10,得a =5.又c =4, 所以b =22c a -=3.故椭圆方程为252x +92y =1.(2)解:由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59. 方法一:因为椭圆右准线方程为x =425,离心率为54.根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2).由|F 2A |、|F 2B |、|F 2C |成等差数列,得 54(425-x 1)+54(425-x 2)=2³59. 由此得出x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0), 则x 0=221x x +=28=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上,得9x 12+25y 12=9³25, ④ 9x 22+25y 22=9³25. ⑤由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0,即9(221x x +)+25(221y y +)(2121x x y y --)=0(x 1≠x 2).将221x x +=x 0=4,221y y +=y 0,2121x x y y --=-k1(k ≠0)代入上式,得9³4+25y 0(-k 1)=0(k ≠0).由上式得k =3625y 0(当k =0时也成立).由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0.由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59.所以-516<m <516.5 设x 、y ∈R ,i 、j 为直角坐标平面内x 、y 轴正方向上的单位向量,若向量a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8.(1)求点M (x ,y )的轨迹C 的方程.(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设=+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.(1)解:∵a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8, ∴点M (x ,y )到两个定点F 1(0,-2),F 2(0,2)的距离之和为8.∴轨迹C 为以F 1、F 2为焦点的椭圆,方程为122x +162y =1.(2)∵l 过y 轴上的点(0,3),若直线l 是y 轴,则A 、B 两点是椭圆的顶点.∵OP =OA +OB =0,∴P 与O 重合,与四边形OAPB 是矩形矛盾.∴直线l 的斜率存在.设l 方程为y =kx +3,A (x 1,y 1),B (x 2,y 2),y =kx +3,122x +162y =1, (-21)>0恒成立,且x 1+x 2=-23418k k +,x 1x 2=-23421k +. ∵=+,∴四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA ⊥OB ,即²=0.∵=(x 1,y 1),=(x 2,y 2), ∴OA ²OB =x 1x 2+y 1y 2=0, 即(1+k 2)x 1x 2+3k (x 1+x 2)+9=0, 即(1+k 2)²(-23421k +)+3k ²(-23418k k +)+9=0,即k 2=165,得k =±45.∴存在直线l :y =±45x +3,使得四边形OAPB 是矩形. 6 设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ²2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围. 解:(Ⅰ):易知2,1,a b c == 所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-由 消y 得(4+3k 2)x 2+18kx -21=0.此时,Δ=(18k 2)-4(4+3k 2)因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭∴12122243,44k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:k <或k > 又00090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+∵2223101144k k k -++>++,即24k < ∴22k -<<故由①、②得2k -<<2k << 7 如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S . (I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当2b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ② 又因为O 到AB的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+=解得,2213,22k b ==,代入①式检验,△>0 故直线AB 的方程是22y x =+或22y x =-或22y x =-+或22y x =-- 8 已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e . 直线,l :y=ex +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△MF 1F 2的周长为6;写出椭圆C 的方程;(理科无此问) (Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B的坐标分别是2222222.,,1,).,0(),0,(b a c a b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得.(Ⅱ)当43=λ时,21=c ,所以.2c a = 由△MF 1F 2的周长为6,得.622=+c a所以.3,1,2222=-===c a b c a 椭圆方程为.13422=+y x (Ⅲ)因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e e e =+- 所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 9 如图,椭圆2222:1(0)x y Q a b a b+=>>的右焦点为(,0)F c ,过点F 的一动直线m 绕点F转动,并且交椭圆于A 、B 两点, P 为线段AB 的中点. (1) 求点P 的轨迹H 的方程;(2) 若在Q 的方程中,令221cos sin ,sin (0).2a b πθθθθ=++=≤<确定θ的值,使原点距椭圆Q 的右准线l 最远.此时设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?解:如图(1)设椭圆2222:1x y Q a b+=上的点1,1()A x y 、2,2()B x y ,又设P 点坐标为(,)P x y ,则2222221122222222b x a y a b b x a y a b⎧+=⎪⎨+=⎪⎩………………① ………………②1︒ 当AB 不垂直x 轴时,12,x x ≠由①—②得22121221221222222()2()20,,0,(*)b x x x a y y y y y b x yx x a y x cb x a y b cx -+-=-∴=-=--∴+-=2︒当 AB 垂直于x 轴时,点P 即为点F ,满足方程(*). 故所求点P 的轨迹H 的方程为: 222220b x a y b cx +-=.(2)因为,椭圆Q 右准线l 方程是2a x c =,原点距椭圆Q 的右准线l 的距离为2a c,222222,1c o s s i n ,s i n (0).2s 2s i n ().24c a b a b a c πθθθθθπ=-=++=≤==+由于则<2πθ=当时,上式达到最大值,所以当2πθ=时,原点距椭圆Q 的右准线l 最远.此时222,1,1,(2,0),1a b c D DF ====.设椭圆 22:121x y Q +=上的点1,1()A x y 、2,2()B x y , △ABD 的面积1212111.222S y y y y =+=- 设直线m 的方程为1x ky =+,代入22121x y +=中,得22(2)210.k y ky ++-= 由韦达定理得12122221,,22k y y y y k k +=-=-++ ()()222212121222814()()4,2k S y y y y y y k+=-=+-=+令211t k =+≥,得28424tS t≤=,当1,0t k ==取等号. 因此,当直线m 绕点F 转动到垂直x 轴位置时, 三角形ABD 的面积最大.9. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆相交于点P 和点Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.∴椭圆方程为22x +23y 2=1或23x 2+22y =1.10设A 、B 分别为椭圆22221x x a b+=(,0a b >)的左、右顶点,椭圆长半轴...的长等于焦距,且4x =为它的右准线。

高中数学圆锥曲线专题复习考试椭圆(含考试习题加详解)

高中数学圆锥曲线专题复习考试椭圆(含考试习题加详解)

高中数学圆锥曲线专题复习(1)---------椭圆一.椭圆标准方程1.椭圆标准方程的求法:定义法、待定系数法①定位:确定焦点所在的坐标轴;②定量:求a, b 的值.2.,a b 为椭圆的定型条件,对,,a b c 三个值中知道任意两个(知二求三),可求第三个,其中,a b a c >>1.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是2.已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点⎪⎪⎭⎫ ⎝⎛26,23M 在椭圆上,求椭圆C 的方程;3.变式:与椭圆4x 2+y 2=16有相同焦点,且过点 的椭圆方程是 . 4.(2013山东)椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,离心率为,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1(通径=2 ).求椭圆C 的方程;5.若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B ,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是22221x y a b +=x 1222+=1x y AB二.离心率c e a ==椭圆上任一点P 到焦点的距离点P 到相应准线的距离e =一、 直接求(找)出a 、c ,求解e1. 已知椭圆2222:1x y C a b+=的两个焦点分别为F1(-1,0),F2(1,0),椭圆C 经过点 P( , ),求C 的离心率_______。

二、 根据题设条件构造a 、c 的齐次式方程,进而得到关于 e 的一元方程,解出e 。

1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是_____。

三、采用离心率的定义以及椭圆的定义求解1.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若21PF F ∆为等腰直角三角形,则椭圆的离心率是________。

圆锥曲线大题20道(含答案解析)

圆锥曲线大题20道(含答案解析)

1.已知中心在原点的双曲线C 的右焦点为〔2,0,右顶点为)0,3( 〔1求双曲线C 的方程; 〔2若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B,且2>⋅OB OA 〔其中O 为原点. 求k 的取值范围.解:〔Ⅰ设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x 〔Ⅱ将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1〔a >b >0的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .〔Ⅰ证明:λ=1-e 2;〔Ⅱ确定λ的值,使得△PF 1F 2是等腰三角形.〔Ⅰ证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是〔a b c 2,-. 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-ee b a a e aλλλλ所以 解得.1122e e -=-=λλ即〔Ⅱ解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.〔Ⅰ求点),(y x P 的轨迹C 的方程;〔Ⅱ若A 、B 为轨迹C 上的两点,满足MB AM =,其中M 〔0,3,求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. 〔Ⅰ求椭圆的离心率;〔Ⅱ设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.〔1解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A 〔11,y x ,B 22,(y x ,则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,即232222c ba c a =+,所以36.32222ab ac b a =-=∴=, 故离心率.36==a c e 〔II 证明:〔1知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由〔1知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A<–1,0>,过点A 的直线与抛物线相交于P 、Q 两点. 〔1求抛物线的方程;〔2若FP •FQ =0,求直线PQ 的方程;〔3设AP =λAQ 〔λ>1,点P 关于x 轴的对称点为M,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP j ∆=,且3,OF FP t OM OP j ⋅==+ .〔I 设4t OF FP θ<<求向量与 的夹角的取值范围;〔II 设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. 〔Ⅰ当点A 在x 轴上移动时,求动点P 的轨迹C 方程;〔Ⅱ过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程. 8.已知点C 为圆8)1(22=++y x 的圆心,点A 〔1,0,P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅〔Ⅰ当点P 在圆上运动时,求点Q 的轨迹方程; 〔Ⅱ若直线12++=k kx y 与〔Ⅰ中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积 已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫⎪⎝⎭三点.〔Ⅰ求椭圆E 的方程;〔Ⅱ若直线l :()1y k x =-〔0k ≠与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P<0,m><m>0>作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)一、题型选讲题型一 、圆锥曲线定义与性质的考查例1、(202年山东卷)已知曲线22:1C mx ny +=( ) A .若0m =,0n >,则C 是两条直线 B .若0m n =>,则CC .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【答案】AD【详解】对于A ,若0m =,0n >,则2:1C ny =即y =,为两条直线,故A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n<<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.例2、已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是( ) A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点 D.直线10x -=与C 有两个公共点【答案】AC【详解】对于A:由双曲线的渐近线方程为3y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确; 对于B :由23a =,21b =,得2c =,∴双曲线C=,故B 错误; 对于C :取20x +=,得2x =-,0y =,曲线21x y e +=-过定点(2,0)-,故C 正确;对于D :双曲线的渐近线0x ±=,直线10x --=与双曲线的渐近线平行,直线10x -=与C 有1个公共点,故D 不正确.故选:AC .例3、(2020·山东济南外国语学校高三月考)已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( ) A .B .C .D .【答案】ABCD【解析】由双曲线的定义知:, 由,在中,由余弦定理可得:,22221(0,0)x y a b a b-=>>12,,F F P122PF PF =12sin 4F PF ∠=,,,a b c e e =2e =b =b =12212,4PF PF PF a PF a -==∴=12sin F PF ∠=121cos 4F PF ∠=±12PF F △222416412244a a c a a +-=±⨯⨯解得或,, 或,又, 可得或故选:ABCD例4、已知双曲线,若的离心率最小,则此时( )A.BC .双曲线的一个焦点坐标为D【答案】AB【解析】因为,所以双曲线的焦点在轴上,所以,,所以.又双曲线的离心率,则.因为,所以,当且仅当,即时,等号成立,则双曲线的离心率最小时,,,,则双曲,故A ,B 正确;双曲线的焦点坐标为(,0),故C 错误;焦点,故D 错误.故选:AB .题型二圆锥曲线的综合性问题例5、的椭圆为“黄金椭圆”.如图,已知椭圆C :22221(0)x y a b a b +=>>,12,A A 分别为左、右顶点,1B ,2B 分别为上、下顶点,1F ,2F 分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( )224c a =226c a=2ce a∴==2c a ∴=c =222c a b =+b =b =()222:104x y C m m m m -=>-+C 2m =0y ±=)0m >C x 2a m =224b m m =-+224c m =+c e a =222244c m e m a m m+===+0m >244e m m =+≥=4m m=2m =C 22a =26b =28c =0y ±=±()0y +=2==A .2112212A F F A F F ⋅= B .11290F B A ∠=︒C .1PF x ⊥轴,且21//PO A BD .四边形221AB A B 的内切圆过焦点1F ,2F【答案】BD【详解】∵椭圆2222:1(0)x y C a b a b+=>>∴121212(,0),,0),(0,),(0,),(,0),(,)(0A a A a B b B b F c F c ---对于A ,若2112212A F F A F F ⋅=,则22()(2)a c c -=,∴2a c c -=,∴13e =,不满足条件,故A 不符合条件;对于B ,11290F B A ︒∠=,∴222211112A F B F B A =+ ∴2222()a c a a b +=++,∴220c ac a +-= ∴210e e +-=,解得e =e =,故B 符合条件; 对于C ,1PF x ⊥轴,且21//PO A B ,∴2,b P c a ⎛⎫- ⎪⎝⎭∵21PO A B k k =∴2b c ab a =--,解得 ∵,∴b c =222a b c =+a =∴,不满足题意,故C不符合条件;对于D,四边形的内切圆过焦点即四边形的内切圆的半径为c,∴∴,∴,解得(舍去)或,∴,故D符合条件.例6、已知椭圆()22:10x yC a ba b+=>>的左、右焦点分别为1F,2F且122F F=,点()1,1P在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.1QF QP+的最小值为1B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为⎛⎝⎭D.若11PF FQ=,则椭圆C【答案】ACD【详解】A.因为12||2F F,所以22(1,0),||1F PF=,所以122||||||||||1QF QP QF QP PF+=+≥=,当2,,Q F P,三点共线时,取等号,故正确;B.若椭圆C的短轴长为2,则1,2b a==,所以椭圆方程为22121x y+=,11121+>,则点P在椭圆外,故错误;C.因为点(1,1)P在椭圆内部,所以111a b+<,又1a b-=,所以1b a=-,所以1111+<-a a,即2310a a-+>,解得236(1244a+++>==,12+>,所以12=<e,所以椭圆C的离心率的取值范围为,故正确;2cea===1221A B A B12,F F1221A B A B ab=422430c a c a-+=42310e e-+=235e+=235e-=51e-=D .若11PF FQ =,则1F 为线段PQ 的中点,所以(3,1)Q --,所以911+=a b,又1a b -=,即21190-+=a a ,解得a ====,所以椭圆C,故正确.例7、(2020·山东高三开学考试)已知双曲线,过其右焦点的直线与双曲线交于两点、,则( )A .若、同在双曲线的右支,则的斜率大于B .若在双曲线的右支,则最短长度为C .的最短长度为D .满足的直线有4条 【答案】BD【解析】易知双曲线的右焦点为,设点、,设直线的方程为, 当时,直线的斜率为, 联立,消去并整理得. 则,解得. 对于A 选项,当时,直线轴,则、两点都在双曲线的右支上,此时直线的斜率不存在,A 选项错误;对于B 选项,,B 选项正确; 对于C 选项,当直线与轴重合时,,C 选项错误; 对于D 选项,当直线与轴重合时,; 当直线与轴不重合时,由韦达定理得,, 22:1916x y C -=F l A B A B l 43A FA 2AB 32311AB =C ()5,0F ()11,A x y ()22,B x y l 5x my =+0m ≠l 1k m=225169144x my x y =+⎧⎨-=⎩x ()221691602560m y my -++=()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩34m ≠0m =l x ⊥A B l min 532F c a A =-=-=l x 32263AB a ==<l x 2611AB a ==≠l x 122160169m y y m +=--122256169y y m =-由弦长公式可得,解得或.故满足的直线有条,D 选项正确. 故选:BD.例8、(2020·江苏扬州中学高二月考)已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A .的最小值为B .椭圆的短轴长可能为2C .椭圆的离心率的取值范围为D .若,则椭圆【答案】ACD【解析】A. 因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以椭圆的离心率的取值范围为,故正确;()2122961169m AB y y m +=-==-()226161611169m m +==-4m =±m =11AB =4()22:10x y C a b a b+=>>1F 2F 122F F =()1,1P Q 1QF QP +21a -C C ⎛ ⎝⎭11PF FQ =C 122F F =()221,0,1=F PF 1222221+=-+≥-=-QF QP a QF QP a PF a 2,,Q F P C 1,2b a ==22121x y +=11121+>P ()1,1P 111a b+<1a b -=1b a =-1111+<-a a 2310a a -+>(2136244++>==a >12=<e C 10,2⎛⎫⎪ ⎪⎝⎭D. 若,则为线段的中点,所以,所以,又,即,解得,所以椭圆的,故正确.故选:ACD例9、(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,11PF FQ =1F PQ ()3,1Q --911+=a b1a b -=21190-+=a a 21122244++===a =C这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.二、达标训练1、(2020·山东高三其他模拟)关于双曲线与双曲线,下列说法正确的是( ).A .它们有相同的渐近线B .它们有相同的顶点C .它们的离心率不相等D .它们的焦距相等【答案】CD【解析】双曲线的顶点坐标,渐近线方程:,离心率为:,焦距为10.双曲线,即:,它的顶点坐标,渐近线方程:,离心率为:,焦距为10. 所以它们的离心率不相等,它们的焦距相等. 故选:.2、(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;221:1916x y C -=222:1916y x C -=-221:1916x y C -=(3,0)430x y ±=53222:1916y x C -=-221169x y -=(4,0)±340±=x y 54CDB 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.3、(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =C .2BD BF =D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 60,//AE x 轴,60EAF ∴∠=,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=,则30PEF ∠=,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==,又//PF AE ,F ∴为AD 的中点,则DF FA =,B 选项正确;60DAE ∴∠=,30ADE ∴∠=,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =,118333BF DF AF ∴===,D 选项错误. 故选:ABC.4、(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为4【答案】ACD【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离: 对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误. 对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.5、(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC【解析】2216x y += a ∴=,1b =c ∴===C 的焦距为c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ =. 故选:BC .6、(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确; 对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC7、(2020·福清西山学校高二期中)在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线:与交于,两点,则( ) A .的方程为B .C .的渐近线与圆相切D .满足的直线仅有1条【答案】AC【解析】设点,整理得,所以点的轨迹为曲线的方程为,故A 正确;又离心率,故B 不正确; 圆的圆心到曲线的渐近线为的距离为,又圆的半径为1,故C 正确;直线与曲线的方程联立整理得,设, ,且,xOy P ()1F)2F 13P E l ()2y k x =-E A B E 221(3x y x -=≠E E ()2221x y -+=AB =l (),P xy 13=2213x y -=P E 221(3x y x -=≠e ==()2221x y -+=()20,E y x =1d ==()2221x y -+=l E ()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩()222213+121230k x x k k ---=()()1122,,A B x y x y ,()()()224214441312312+1>0kk kk ∆=----=2130k -≠有,所以, 要满足,则需或或,当,此时,而曲线E 上,所以满足条件的直线有两条,故D 不正确,故选:AC .2122221212123+,1313x xx k x kk k ---==--)221+13k AB k===-AB =)221+13k k=-0k =1k =1k =-0k =)()AB ,x ≠。

高中数学选修圆锥曲线与方程椭圆的性质专题练习(附详解答案)

高中数学选修圆锥曲线与方程椭圆的性质专题练习(附详解答案)

椭圆的性质专题练习一.选择题(共12小题)1.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.2.已知椭圆+=1过点(﹣4,)和(3,﹣),则椭圆离心率e=()A.B.C.D.3.方程表示焦点在x轴上的椭圆,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1]C.(0,1) D.(﹣1,0)4.曲线=1与曲线=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.6.设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.47.椭圆x2+=1(0<b<1)的左焦点为F,上顶点为A,右顶点为B,若△FAB的外接圆圆心P(m,n)在直线y=﹣x的左下方,则该椭圆离心率的取值范围为()A.(,1)B.(,1)C.(0,)D.(0,)8.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣19.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2 B.C.4 D.10.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则椭圆的离心率为()A.B.C.或D.11.已知点P(x0,y0)(x0≠±a)在椭圆C:(a>b>0)上,若点M为椭圆C的右顶点,且PO⊥PM(O为坐标原点),则椭圆C的离心率e的取值范围是()A.(0,)B.(,1)C.(,1)D.(0,)12.F1、F2是椭圆的左、右焦点,点P在椭圆C上,|PF1|=6,过F1作∠F1PF2的角平分线的垂线,垂足为M,则|OM|的长为()A.1 B.2 C.3 D.4二.解答题(共13小题)13.已知椭圆C:=1(a>b>0)过点P(﹣2,1),且椭圆C的离心率为.(1)求椭圆C的方程;(2)过点Q(2,0)的直线,l与C相交于A,B两点,且PA⊥PB,求直线1的方程.14.已知椭圆C:=1(a>b>0)的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是6.(1)求椭圆C的方程;(2)设圆T:(x﹣t)2+y2=,过椭圆的上顶点M作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(0,1)时,求EF的斜率的取值范围.15.直线L的方程为,其中p>0;椭圆E的中心为,焦点在X轴上,长半轴为2,短半轴为1,它的一个顶点为,问p在什么范围内取值时,椭圆上有四个不同的点,它们中的每一点到点A的距离等于该点到直线L的距离.16.已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别为F1、F2,过右焦点F2的直线与椭圆交于P、Q两点,且△PQF1的周长为4.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F1的直线与椭圆C相交于A,B两点.且|AB|=,求△AF2B的面积.17.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.18.已知椭圆=1(a>b>0)的短轴长为,离心率为,点A(3,0),P是C上的动点,F为C的左焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)若点P在y轴的右侧,以AP为底边的等腰△ABP的顶点B在y轴上,求四边形FPAB面积的最小值.19.已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,设点A(0,b),在△AF1F2中,∠F1AF2=,周长为4.(1)求椭圆C的方程;(2)设不经过点A的直线l与椭圆C相交于M,N两点,若直线AM与AN的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标.20.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.21.已知椭圆(a>b>0)的左焦点F(﹣2,0)左顶点A1(﹣4,0).(Ⅰ)求椭圆C的方程;(Ⅱ)已知P(2,3),Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.若∠APQ=∠BPQ,试问直线AB的斜率是否为定值?请说明理由.22.已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.23.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB 的面积是△AOM的面积的2倍,求直线AB的方程.24.已知椭圆(a>b>0)的离心率为,点在椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)设AB是椭圆的一条弦,斜率为k(k≠0),N(t,0)是x轴上的一点,△ABN的重心为M,若直线MN的斜率存在,记为k',问:t为何值时,k•k'为定值?25.已知椭圆E:+=1(a>b>0)过点,且两个焦点的坐标分别为(﹣1,0),(1,0).(1)求E的方程;(2)若A,B,P为E上的三个不同的点,O为坐标原点,且,求证:四边形OAPB 的面积为定值.参考答案与解析一.选择题1.解:椭圆C:+=1的一个焦点为(2,0),可得a2﹣4=4,解得a=2,∵c=2,∴e===.故选:C.2.解:椭圆+=1过点(﹣4,)和(3,﹣),则,解得a=5,b=1,∴c2=a2﹣b2=24,∴c=2,∴e==,故选:A.3.解:方程表示焦点在x轴上的椭圆,可得m∈(0,1).故选:C.4.解:曲线=1表示焦点在x轴上,长轴长为10,短轴长为6,离心率为,焦距为8.曲线=1(k<9)表示焦点在x轴上,长轴长为2,短轴长为2,离心率为,焦距为8.对照选项,则D正确.故选:D.5.解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.6.解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.7.解:方法一:如图所示,B是右顶点(1,0),上顶点A(0,b),左焦点F(,0),线段FB的垂直平分线为:x=.线段AB的中点(,).∵k AB=﹣b.∴线段AB的垂直平分线的斜率k=.∴线段AB的垂直平分线方程为:y﹣=(x﹣),把x==m,代入上述方程可得:y==n.由P(m,n)在直线y=﹣x的左下方,则m+n<0,∴+<0.化为:b<,又0<b<1,解得:0<b<.∴e==c=∈(,1).∴椭圆离心率的取值范围(,1).故选A.方法二:设A(0,b),B(a,0),F(﹣c,0),设△FAB的外接圆的方程x2+y2+Dx+Ey+F=0,将A,B,F代入外接圆方程,解得:m=,n=,由P(m,n)在直线y=﹣x的左下方,则m+n<0,∴+<0,整理得:1﹣c+b﹣<0,∴b﹣c+<0,∴b﹣c<0,由椭圆的离心率e==c,∴2e2>1,由0<e<1,解得:<e<1,∴椭圆离心率的取值范围(,1).故选:A.8.解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.9.解:如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.10.解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得即:,解得,或,当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0,函数在R上单调递增,函数无极值,舍去,椭圆,m=2,n=9,则a=9,c=77,所以椭圆的离心率为:.故选:B.11.解:由题意知M(a,0),点P(x0,y0),则=(﹣x0,﹣y0),=(a﹣x0,﹣y0),∵PO⊥PM,∴•=(﹣x0)(a﹣x0)+(﹣y0)(﹣y)=0,∴=ax0﹣>0;又﹣a<x0<a,代入椭圆方程中,整理得(b2﹣a2)+a3x0﹣a2b2=0;令f(x)=(b2﹣a2)x2+a3x﹣a2b2=0,x∈(﹣a,a);∵f(0)=﹣a2b2<0,f(a)=0,如图所示:△=(a3)2﹣4×(b2﹣a2)×(﹣a2b2)=a2(a4﹣4a2b2+4b4)=a2(a2﹣2c2)2≥0,∴对称轴满足0<﹣<a,即0<<a,∴<1,∴>,∴e=>;又0<e<1,∴<e<1;则椭圆C的离心率e的取值范围是(,1).故选:C.12.解:延长F1M和PF2交于N,椭圆,可得:a=5,由椭圆的定义可得|PF1|+|PF2|=2a=10,由|PF1|=6,可得|PF2|=4,由等腰三角形的三线合一,可得|PF1|=|PN|=6,可得|NF2|=6﹣4=2,由OM为△F1F2N的中位线,可得|OM|=|F2N|=1.故选:A.二.解答题13.解:(1)由椭圆的离心率e===,则a=2b,将P(﹣2,1)代入椭圆方程:,解得:b2=2,则a2=8,∴椭圆的标准方程为:;(2)设直线l的方程为:x=my+2,A(x1,y1),B(x2,y2).联立,整理得(m2+4)y2+4my﹣4=0,则y1+y2=﹣,y1y2=﹣,x1+x2=m(y1+y2)+4=,x1x2=m2y1y2+2m(y1+y2)+4=,由PA⊥PB,则•=0,即(x1+2,y1﹣1)(x2+2,y2﹣1)=0,x1x2+2(x1+x2)+4+y1y2﹣(y1+y2)+1=0,整理得:3m2﹣4m﹣64=0,解得:m=﹣4,或m=,当m=﹣4时,直线l:x+4y﹣2=0,过点P,舍去,当m=,直线l:3x﹣16y﹣6=0,∴直线l的方程为:3x﹣16y﹣6=0.14.解:(1)由e=,即=,由△PF1F2的周长是6,由椭圆的定义可得2a+2c=6,解得a=2,c=1,b==,所求椭圆方程为+=1;(2)椭圆的上顶点为M(0,),设过点M与圆T相切的直线方程为y=kx+,由直线y=kx+与T相切可知=,即(9t2﹣4)k2+18tk+23=0,可得k1+k2=﹣,k1k2=,由,得(3+4k12)x2+8k1x=0.解得x E=﹣,同理x F=﹣,则k EF=====.当0<t<1时,f(t)=为增函数,故EF的斜率的范围为(0,).15.解:因为椭圆上有四个不同的点到点A的距离等于该点到直线L的距离相等,所以由抛物线的定义知:这四个不同的点在是以A为焦点的抛物线,所以点P的方程为y2=2px.又根据题意,椭圆的方程为:(x﹣2﹣)2+4y2=4,则联立椭圆与抛物线的方程,消去y,可得:x2﹣(4﹣7p)x+2p+=0,此方程必有正实数根,所以△=(4﹣7p)2﹣4(2p+)≥0,且4﹣7p>0,p>0,解得:0<p<.故p在(0,)范围内取值时,椭圆上有四个不同的点,它们中的每一点到点A的距离等于该点到直线L的距离.16.解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,∴=,…(1分)∵过右焦点F2的直线与椭圆交于P、Q两点,且△PQF1的周长为4.∴4a=4.故a=,c=…(3分)故b=1.…(4分)故椭圆C的方程为:.…(5分)(Ⅱ)若直线AB的方程为x=﹣,则|AB|=,不符合题意.设直线AB的方程为y=k(x+),代入椭圆方程消去y得(1+3k2)x2+6k2x+6k2﹣3=0,…(6分)显然△>0成立,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=…(7分)所以|AB|=•|x1﹣x2|=•.…(9分)由已知•=,解得k=±.…(10分)当k=时,直线AB的方程为y=(x+),即x﹣y+=0,点F2到直线AB的距离d=.…(11分)所以△AF2B的面积=|AB|d=.…(12分)同理,当k=﹣时,△AF2B的面积也等于.综上,△AF2B的面积等于.…(13分)17.解:(1)根据题意:,解得,∴b2=a2﹣c2=4,∴椭圆C的标准方程为;(2)由椭圆的定义得:PF1+PF2=6,可得PF2=2,设点P到右准线的距离为d,根据第二定义,得,解得:.18.解:(Ⅰ)依题意得,解得,∴椭圆C的方程是;(Ⅱ)设,设线段AP中点为M,A(3,0),∴AP中点,直线AP斜率为,由△ABP是以AP为底边的等腰三角形,可得BM⊥AP,∴直线AP的垂直平分线方程为y﹣=(x﹣),令x=0得,∵,∴,由F(﹣2,0),∴四边形FPAB面积,当且仅当即时等号成立,四边形FPAB面积的最小值为.19.(1)解:由,∴,①又△AF1F2的周长为,∴,②联立①②,解得,∴椭圆方程为;(2)证明:设直线l方程:y=kx+m,交点M(x1,y1),N(x2,y2),由.,依题:,∵y1=kx1+m,y2=kx2+m,∴,∴.∴直线l方程为:y=kx+m=kx﹣2k﹣1=k(x﹣2)﹣1,则过定点(2,﹣1).20.解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2﹣b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,因此k一定小于0,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.21.解:(Ⅰ)由题意可得,a=4,c=2由a2=b2+c2,得b2=42﹣22=12,所以椭圆C的方程为.(Ⅱ)当∠APQ=∠BPQ时,AP,BP的斜率之和为0,设直线PA的斜率为k,则直线PB的斜率为﹣k,设A(x1,y1)B(x2,y2),PA的方程为y﹣3=k(x﹣2).联立消y得(3+4k2)x2+8(3k﹣k2)x+4(4k2+9﹣12k)﹣48=0所以,同理,所以,,所以k AB===,所以AB的斜率为定值.22.解:(Ⅰ)由题意可得,2b=2,即b=1,,得,解得a2=4,椭圆C的标准方程为;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线PA的方程为,同理:直线PB的方程为,直线PA与直线x=4的交点为,直线PB与直线x=4的交点为,线段MN的中点,所以圆的方程为,令y=0,则,因为,所以,所以,设交点坐标(x1,0),(x2,0),可得x1=4+,x2=4﹣,因为这个圆与x轴相交,该方程有两个不同的实数解,所以,解得.则()所以当x0=2时,该圆被x轴截得的弦长为最大值为2.方法二:设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线PA的方程为,同理:直线PB的方程为,直线PA与直线x=4的交点为,直线PB与直线x=4的交点为,若以MN为直径的圆与x轴相交,则,即,即.因为,所以,代入得到,解得.该圆的直径为,圆心到x轴的距离为,该圆在x轴上截得的弦长为;所以该圆被x轴截得的弦长为最大值为2.23.解:(1)设椭圆的焦距为2c,由题意得,=,=4,解得a=2,c=b=.∴椭圆的方程为:+=1.(2)△AOB的面积是△AOM的面积的2倍,∴AB=2AM,∴点M为AB的中点.∵椭圆的方程为:+=1.∴A(﹣2,0).设M(x0,y0),则B(2x0+2,2y0).由+=,+=1,化为:﹣18x0﹣16=0,≤x0≤.解得:x0=﹣.代入解得:y0=,∴k AB=,因此,直线AB的方程为:y=(x+2).24.解:(Ⅰ)由已知可得:,结合a2=b2+c2,解得,∴椭圆方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),则重心,,.由于AB斜率为k存在且k≠0,故,则∵则要使为定值,则当且仅当t=0,即N(0,0)时,k•k'为定值为.25.解:(1)根据题意,椭圆E:+=1的两个焦点的坐标分别为(﹣1,0),(1,0).则c=1,又由椭圆经过点,则2a=+=2,即a=,b==1,则E的方程为;(2)证明:根据题意,分2种情况讨论:①,当直线AB的斜率不为零时,可设AB:x=my+t代入得:(m2+2)y2+2mty+t2﹣2=0,设A(x1,y1),B(x2,y2),则,△=8(m2+2﹣t2),设P(x,y),由,得,∵点P在椭圆E上,∴,即,∴4t2=m2+2,,原点到直线x=my+t的距离为.∴四边形OAPB的面积:.②当AB的斜率为零时,四边形OAPB的面积,∴四边形OAPB的面积为定值.。

圆锥曲线-椭圆

圆锥曲线-椭圆

圆锥曲线-椭圆一.解答题(共28小题)1.求椭圆16x2+25y2=400的长轴长、短轴的长、焦点坐标、离心率、顶点坐标.2.已知曲线9x2+y2=81(1)求其长轴长,焦点坐标,离心率(2)求与已知曲线共焦点且离心率为的双曲线方程.3.若过椭圆+=1(a>b>0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.4.求适合下列条件的椭圆的标准方程(1)焦点在x轴上,焦距为4,并且经过点P(3,)(2)焦距为8,离心率为0.8.5.已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,).(1)求椭圆C的标准方程;(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q 两点,求线段PQ的长(提示:|PQ|=|x1﹣x2|).6.在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C 的方程.8.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.9.已知椭圆C:+y2=1,F1,F2分别是椭圆C的左、右焦点.(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.10.已知椭圆的焦点在y轴上,长轴长为10,短轴长为8,F1、F2为椭圆的左、右焦点.(1)求椭圆的标准方程;(2)求椭圆的焦点坐标、离心率;(3)求以椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.11.已知定圆C1:(x+1)2+y2=36及定圆C2:(x﹣1)2+y2=4,动圆P与C1内切,与C2外切,求动圆圆心P的轨迹方程.12.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.13.已知椭圆的左、右焦点分别为F1,F2,圆C的方程为(x+k)2+(y﹣2)2=25(k∈R).(1)求椭圆G的焦点坐标与离心率;(2)求△CF1F2的面积.14.在平面直角坐标系xOy中,椭圆C的方程为+y2=1,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=4.(1)写出直线l的直角坐标方程和曲线C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|x﹣y﹣4|的最小值.15.求适合下列条件的圆锥曲线的标准方程.(1)准线方程为x=﹣1的抛物线;(2)离心率为,准线方程为y=±4的椭圆;(3)焦点在y轴上,一条渐近线方程为,实轴长为12.16.已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.17.已知椭圆的左右焦点分别为F1,F2,上顶点为M,若直线MF1的斜率为1,且与椭圆的另一个交点为N,△F2MN的周长为.(1)求椭圆的标准方程;(2)过点F1的直线l(直线l的斜率不为1)与椭圆交于P,Q两点,点P在点Q的上方,若,求直线l的斜率.18.已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.19.若A(x1,x2),B(y1,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.20.已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.已知椭圆.(1)若椭圆C的一个焦点为(1,0),且点在C上,求椭圆C的标准方程;(2)已知椭圆C上有两个动点A(x1,y1),B(x2,y2),O为坐标原点,且OA ⊥OB,求线段|AB|的最小值(用a,b表示).22.已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.23.已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与P2B直线的斜率的和为﹣1,证明:l过定点.24.已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.25.已知椭圆C的中心在原点,焦点在x轴上,焦距为,离心率为(1)求椭圆C的方程;(2)设直线L经过点M(0,1),且与椭圆C交于A,B两点,若,求直线L的方程.26.已知椭圆(a>b>0)的离心率为,且过点A(0,1).(1)求椭圆的标准方程;(2)过点A作两条互相垂直的直线分别交椭圆于M,N两点.求证:直线MN 恒过定点.27.已知椭圆C的中心在坐标原点,左焦点为F1(﹣,0),点M(,)在椭圆上.(1)求椭圆C的标准方程;(2)过点P(1,0)的直线l交椭圆C于两个不同的点A、B,若△AOB(O是坐标原点)的面积S=,求直线AB的方程.28.已知椭圆的长轴为,离心率为.(1)求C的方程;(2)若直线l与曲线C交于A,B两点,且,求证:直线l与圆E:x2+y2=2相切.圆锥曲线-椭圆参考答案与试题解析一.解答题(共28小题)1.求椭圆16x2+25y2=400的长轴长、短轴的长、焦点坐标、离心率、顶点坐标.【分析】把椭圆方程化为标准方程,然后求解长轴长、短轴的长、焦点坐标、离心率、顶点坐标.【解答】(本小题12分)解:把已知方程椭圆16x2+25y2=400化为标准方程:,这里a=5,b=4,所以c==3因此,椭圆的长轴和短轴长分别是2a=10,2b=8离心率e==.两个焦点分别是F1(﹣3,0),F2(3,0),四个顶点分别是A1(﹣5,0),A1(5,0),B1(0,﹣4),B1(0,4).【点评】本题考查椭圆标准方程以及椭圆的简单性质的应用,考查计算能力.2.已知曲线9x2+y2=81(1)求其长轴长,焦点坐标,离心率(2)求与已知曲线共焦点且离心率为的双曲线方程.【分析】(1)化椭圆方程为标准方程,然后求解其长轴长,焦点坐标,离心率.(2)利用焦点坐标,结合离心率求解双曲线方程即可.【解答】(10分)解:(1)曲线9x2+y2=81,的标准方程为:,可得a=9,b=3,c==6,所以长轴长为:18,焦点坐标(0,).(2)与已知曲线共焦点,可得c=6,离心率为,则a=6,则b==6.所求的双曲线方程为:y2﹣x2=36.(5分)【点评】本题考查双曲线方程的求法,椭圆的简单性质的应用,考查计算能力.3.若过椭圆+=1(a>b>0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.【分析】设左、右焦点分别为F,F',两个交点为A,B,由椭圆的定义可得|AF|+|AF'|=|BF|+|BF'|=2a,则4a=16,运用离心率公式可得c=2,求得b,进而得到椭圆方程.【解答】解:设左、右焦点分别为F,F',两个交点为A,B,由椭圆的定义可得|AF|+|AF'|=|BF|+|BF'|=2a,即有三角形的周长为4a=16,解得a=4,由e==,解得c=2,b==2,则椭圆的方程为+=1.【点评】本题考查椭圆的方程的求法,注意运用椭圆的定义和基本量的关系,考查运算能力,属于基础题.4.求适合下列条件的椭圆的标准方程(1)焦点在x轴上,焦距为4,并且经过点P(3,)(2)焦距为8,离心率为0.8.【分析】(1)设出椭圆方程,利用已知条件化简求解即可.(2)利用椭圆的性质转化求解椭圆方程即可.【解答】解:(1)焦点在x轴上,设椭圆的标准方程,焦距为4,可得a2﹣b2=4,…①,椭圆经过点P(3,),可得:…②,解①②,可以得到b2=32解:①②可得:a2=36,b2=32,所求椭圆方程为:.(2)焦距为8,离心率为0.8.可得c=4,a=5,则b=3,椭圆的标准方程为:或.【点评】本题考查椭圆的简单性质椭圆方程的求法,考查计算能力.5.已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,).(1)求椭圆C的标准方程;(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q 两点,求线段PQ的长(提示:|PQ|=|x1﹣x2|).【分析】(1)利用待定系数法求出椭圆方程;(2)联立方程组,利用根与系数的关系和弦长公式计算弦长.【解答】解:(1)由题意可知椭圆焦点在x轴上,设椭圆方程为(a >b>0),由题意可知,∴a=3,b=.∴椭圆的标准方程为=1.(2)直线l的方程为y=x+2,联立方程组,得14x2+36x﹣9=0,设P(x1,y1),Q(x2,y2),则x1+x2=﹣,x1x2=﹣,∴|PQ|=|x1﹣x2|===.【点评】本题考查了椭圆的性质,弦长公式,属于基础题.6.在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.【分析】(1)由题意可得A,B,C的坐标,写出直线BF的方程,再由AC的中点在直线BF上求得a,由隐含条件求得b,则椭圆方程可求;(2)由直线BF的斜率可得b,求出a,得到椭圆方程,联立直线方程和椭圆方程求得D的坐标,则点D到椭圆E右准线的距离可求.【解答】解:(1)由题意,A(﹣a,0),B(0,b),C(0,﹣b),又F(﹣1,0),∴c=1,直线BF:y=bx+b.∵M为AC的中点,∴,代入直线BF:y=bx+b,得a=3,由a2=b2+c2=b2+1,得b2=8,∴椭圆E的标准方程是;(2)∵直线BF的斜率为1,则,∴椭圆,又直线BF:y=x+1,联立,解得x=0(舍),或,∵右准线的方程为x=2,∴点D到右准线的距离为.【点评】本题考查椭圆的简单性质,考查了椭圆标准方程的求法,是基础的计算题.7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C 的方程.【分析】画出图形,结合图形以及椭圆的定义与性质,求出a、b的值,即可写出椭圆的方程.【解答】解:如图所示,设椭圆的长轴是2a,短轴是2b,焦距是2c;则离心率e==,∴4a=|AF1|+|AF2|+|BF1|+|BF2|=16;∴a=4,∴c=×4=2,∴b2=a2﹣c2=42﹣=8;∴椭圆的方程是.【点评】本题考查了椭圆的定义与简单的几何性质的应用问题,解题时应结合图形进行解答问题,是基础题.8.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.【分析】(1)由已知可得a,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求;(2)由题意定义结合已知求得PF2,再由椭圆的第二定义可得点P到右准线的距离.【解答】解:(1)根据题意:,解得,∴b2=a2﹣c2=4,∴椭圆C的标准方程为;(2)由椭圆的定义得:PF1+PF2=6,可得PF2=2,设点P到右准线的距离为d,根据第二定义,得,解得:.【点评】本题考查椭圆的简单性质,考查了椭圆定义的应用,是基础题.9.已知椭圆C:+y2=1,F1,F2分别是椭圆C的左、右焦点.(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.【分析】(Ⅰ)由椭圆的方程及性质直接求解.(Ⅱ)由椭圆的定义知①,勾股定理,得|PF1|2+|PF2|2=|F1F2|2=4c2②,①2﹣②,得|PF1|•|PF2|即可.【解答】解:(Ⅰ)由椭圆知a2=2,b2=1,则,故c=1﹣﹣﹣(2分)所以椭圆C的长轴,短轴2b=2,离心率,左焦点F1(﹣1,0).(6分)(Ⅱ)解:由(Ⅰ)可得,b=1,c=1.由椭圆的定义知①,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)在Rt△PF1F2中,由勾股定理,得|PF1|2+|PF2|2=|F1F2|2=4c2②,①2﹣②,得2|PF1|•|PF2|=8﹣4=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴|PF 1|•|PF2|=2,∴S=|PF1|•|PF2|=×2=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查了椭圆的方程及焦点三角形的面积,属于基础题.10.已知椭圆的焦点在y轴上,长轴长为10,短轴长为8,F1、F2为椭圆的左、右焦点.(1)求椭圆的标准方程;(2)求椭圆的焦点坐标、离心率;(3)求以椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.【分析】(1)由题意求得椭圆的长半轴和短半轴长,再由椭圆的焦点在y轴上可得椭圆的标准方程;(2)由隐含条件求得c,则椭圆的焦点坐标、离心率可求;(3)由题意求出双曲线的顶点坐标和焦点为坐标,进而得到双曲线的实半轴长和虚半轴长,则双曲线的标准方程可求.【解答】解:(1)由已知2a=10,2b=8,解得a=5,b=4,∵椭圆的焦点在y轴上,∴所求椭圆的标准方程为;(2)由c2=a2﹣b2=9,得c=3.因此椭圆的焦点坐标为F1(0,﹣3),F2(0,3),离心率;(3)由已知,所求双曲线的顶点坐标为(0,﹣3),(0,3),焦点为坐标为(0,﹣5),(0,5),∴双曲线的实半轴长a=3,半焦距c=5,则虚半轴长为b=.又双曲线的焦点在y轴上,∴双曲线的标准方程为.【点评】本题考查椭圆及双曲线的简单性质,考查了椭圆及双曲线标准方程的求法,是基础题.11.已知定圆C1:(x+1)2+y2=36及定圆C2:(x﹣1)2+y2=4,动圆P与C1内切,与C2外切,求动圆圆心P的轨迹方程.【分析】由题意分别表示出|PF1|=6﹣r,|PF2|=2+r,|PF1|+|PF2|=8>2,可知P 的轨迹是以F1,F2为焦点,长轴长为8的椭圆,即可求得P的轨迹方程.【解答】解:设所求点P(x,y),F1(﹣1,0),F2(1,0),动圆半径为r,由题易得|PF1|=6﹣r,|PF2|=2+r,∴|PF1|+|PF2|=8>2,由点P到两定点F1,F2距离之和为定长8,且大于|F1F2|=2c=2,满足椭圆定义,∴轨迹方程:.动圆圆心P的轨迹方程.【点评】本题考查轨迹方程的求法,考查椭圆的定义,属于基础题.12.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.【分析】(1)设出椭圆的标准方程,由题意得b=2,再由a、b、c之间的关系及|FB|=2,求出a2=12,从而得到椭圆的方程.(2)假设存在直线l,则点A在线段MN的垂直平分线上,把直线l的方程代入椭圆的方程,转化为关于x的一元二次方程,由题意知判别式大于0,设出M、N的坐标,利用一元二次方程根与系数的关系,用斜率表示MN的中点P的坐标,求出AP的斜率,由AP⊥MN,斜率之积等于﹣1,求出直线l的斜率【解答】解:(1)依题意,设椭圆方程=1 (a>b>0 ),则其右焦点坐标为F(c,0),c=,由|FB|=解得c=2,又∵b=2,∴a2=c2+b2=12,即椭圆方程为.(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,把y=kx﹣2代入椭圆方程.消去y得x2+3(kx﹣2)2=12,即(1+3k2)x2﹣12kx=0由k≠0,得方程的△=(﹣12k)2=144k2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x0=,∴y0=kx0﹣2=,即P(),∵k≠0,∴直线AP的斜率为k1=,由AP⊥MN,得.∴2+2+6k2=6,解得:k=.∴存在直线l满足题意,直线l的方程y=±x﹣2.【点评】本题考查用待定系数法求椭圆的标注方程,直线与圆锥曲线的位置关系,一元二次方程根与系数的关系,两直线垂直的性质,以及直线的倾斜角与斜率的关系,属于压轴题.13.已知椭圆的左、右焦点分别为F1,F2,圆C的方程为(x+k)2+(y﹣2)2=25(k∈R).(1)求椭圆G的焦点坐标与离心率;(2)求△CF1F2的面积.【分析】(1)由椭圆方程,求得a和b,则c2=a2﹣b2,求得c,求得焦点坐标,根据椭圆的离心率公式求得椭圆的离心率;(2)根据圆的方程,求得圆心,根据三角形的面积公式,即可求得△CF1F2的面积.【解答】解:(1)由题意可得:c2=a2﹣b2=16﹣4=12,c=2,…(2分)a=4,所以e==,…(4分)椭圆的焦点F1(﹣2,0),F2(2,0);…(6分)(2)由(1)知丨F1F2丨=4,…(7分)圆C:(x+k)2+(y﹣2)2=25(k∈R)的圆心为点C(﹣k,2),…(8分)∴△CF1F2的面积为×2×丨F1F2丨=4.△CF1F2的面积4.…(10分)【点评】本题考查椭圆的标准方程及简单性质,圆的标准方程,三角形的面积公式,考查计算能力,属于基础题.14.在平面直角坐标系xOy中,椭圆C的方程为+y2=1,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=4.(1)写出直线l的直角坐标方程和曲线C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|x﹣y﹣4|的最小值.【分析】(1)根据直线的参数方程,即可求得直线l的直角坐标公式,由椭圆C 的参数方程即可求得曲线C的参数方程;(2)由(1)可得丨x﹣y﹣4丨=丨2cosφ﹣sinφ﹣4丨,根据辅助角公式及正弦函数的性质,即可求得|x﹣y﹣4|的最小值.【解答】解:(1)由ρcos(θ+)=4,则ρcosθ﹣ρsinθ=4,将x=ρcosθ,y=ρsinθ代入,即直线l的直角坐标方程为x﹣y﹣4=0,由题意可得:椭圆的参数方程(φ为参数),(2)因为点M在椭圆上,则M(2cosφ,sinφ),则丨x﹣y﹣4丨=丨2cosφ﹣sinφ﹣4丨,=丨cos(φ+α)﹣4丨=4﹣cos(φ+α)(tanα=),当cos(φ+α)=1时,|x﹣y﹣4|取最小值,最小值为4﹣,∴|x﹣y﹣4|的最小值为4﹣.【点评】本题考查直线的极坐标方程,椭圆的参数方程,辅助角公式及余弦函数的最值,考查转化思想,属于中档题.15.求适合下列条件的圆锥曲线的标准方程.(1)准线方程为x=﹣1的抛物线;(2)离心率为,准线方程为y=±4的椭圆;(3)焦点在y轴上,一条渐近线方程为,实轴长为12.【分析】(1)利用抛物线的定义求解抛物线方程;(2)利用椭圆的性质列出方程求解a,b,然后得到椭圆方程.(3)利用双曲线的性质,求出双曲线的实半轴与虚半轴的长,得到双曲线方程.【解答】解:(1)准线方程为x=﹣1的抛物线;可得p=2,所求的抛物线方程为:y2=4x.(2)离心率为,准线方程为y=±4的椭圆;可得,解得a=2,c=1,则b=,所求椭圆方程为:.(3)焦点在y轴上,一条渐近线方程为,实轴长为12.可得a=6,,解得b=8,所求的双曲线方程为:.【点评】本题考查椭圆,双曲线,抛物线的简单性质,三种曲线方程的求法,考查计算能力.16.已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.【分析】(1)将点M分别直线方程及椭圆方程,即可求得a和b的值,求得椭圆方程;(2)设直线m的方程,代入椭圆方程,利用韦达定理及直线的斜率公式求得k MA+k MB=0,即可求得△MEF为等腰三角形.【解答】解:(1)由直线l:bx﹣ay=0都经过点,则a=2b,将代入椭圆方程:,解得:b2=4,a2=16,∴椭圆C的方程为;(2)证明:设直线m为:,A(x1,y1),B(x2,y2)联立:,整理得x2+2bx+2b2﹣8=0,∴x1+x2=﹣2b,x1x2=2b2﹣8,设直线MA,MB的斜率为k MA,k MB,要证△MEF为等腰三角形,只需k MA+k MB=0,由,==0,所以△MEF为等腰三角形.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.17.已知椭圆的左右焦点分别为F1,F2,上顶点为M,若直线MF1的斜率为1,且与椭圆的另一个交点为N,△F2MN的周长为.(1)求椭圆的标准方程;(2)过点F1的直线l(直线l的斜率不为1)与椭圆交于P,Q两点,点P在点Q的上方,若,求直线l的斜率.【分析】(1)根据题意,由椭圆的定义分析可得4a=4,又由直线的斜率分析可得b、c的值,将a、b的值代入椭圆方程即可得答案;(2)根据题意,联立直线与椭圆的方程,解可得N的坐标,由分析可得|QF1|=2|PF1|,按直线的斜率存在与否分2种情况讨论,分析求出m的值,综合即可得答案.【解答】解:(1)根据题意,因为△F1MN的周长为,所以,即,由直线MF1的斜率1,得,因为a2=b2+c2,所以b=1,c=1,所以椭圆的标准方程为.(2)由题意可得直线MF1方程为y=x+1,联立得,解得,所以,因为,即,所以|QF1|=2|PF1|,当直线l的斜率为0时,不符合题意,故设直线l的方程为x=my﹣1,P(x1,y1),Q(x2,y2),由点P在点Q的上方,则y2=2y1,联立,所以(m2+2)y2﹣2my﹣1=0,所以,消去y2得,所以,得,又由画图可知不符合题意,所以,故直线l的斜率为.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是求出椭圆的标准方程.18.已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O 的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.【分析】(1)根据中点坐标公式及向量的坐标运算即可求得x02+y02=5,利用两点之间的距离公式即可求得丨AB丨的长.(2)根据题意求得直线AB的方程,根据x02+y02=5,即可求得A点坐标,代入即可求得a和b的值,求得椭圆的方程,要证直线MA,MB与x轴始终围成一个等腰三角形,只需证直线MA,MB的倾斜角互补即可,也即直线MA,MB的斜率互为相反数.可分别用A,B点坐标表示直线MA,MB的斜率,再计算k1+k2,消去参数,看结果是否为0.若是0,则问题得证.【解答】解:(1)由题意可知:2c=2,c=,设F(,0),A(x0,y0),B (﹣x0,﹣y0),则M(,),N(,﹣),由•==,则x02+y02=5,则丨AB丨=2=2,(2)由直线l的斜率k=时,且l′∥l,则l:y=x,设l′:y=x+m,y0=x0,由x02+y02=5,则A(2,1),由c=,代入椭圆方程解得:a=2,c=,∴椭圆的方程:,联立,整理得x2+2mx+2m2﹣4=0,设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2﹣4=0,可得x1+x2=﹣2m,x1x2=2m2﹣4,k1+k2=•=====0.即k1+k2=0.直线AP,AQ与x轴围成一个等腰三角形.【点评】本题考查直线与椭圆的位置关系,考查中点坐标公式及向量的坐标运算,韦达定理及直线斜率公式的应用,考查计算能力,属于中档题.19.若A(x1,x2),B(y1,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.【分析】(1)设AB的中点为M,则M(1,),由,得=0,即可得k AB=﹣,线段AB的垂直平分线的斜率即可;(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①;由A(x1,y1),B(x2,y2)是椭圆E上位于x轴上方两点,∴k<0,m>0…②结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.【解答】解:(1)设AB的中点为M,则M(1,)由,得=0∴⇒即k AB=﹣,∴线段AB的垂直平分线的斜率为.∴线段AB的垂直平分线的方程为y﹣=,即9x﹣2y﹣8=0为所求.(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①∵A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,∴k<0,m >0…②△=(18km)2﹣4(1+9k2)(9m2﹣9)>0⇒9k2﹣m2+1>0…③,结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.此时,k=﹣满足③.∴直线AB在y轴上截距的最小值为.【点评】本题考查了点差法,直线与椭圆的位置关系,考查了计算能力,属于中档题.20.已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.【分析】(1)由题意方程求出右焦点坐标,即抛物线焦点坐标,进一步可得抛物线方程;(2)设出直线方程,与抛物线方程联立,化为关于y的一元二次方程,利用根与系数的关系求得|y1﹣y2|,代入三角形面积公式,利用二次函数求最值;(3)分直线AB的斜率存在与不存在,证明有,可得CA⊥CB,又D为线段AB的中点,则|AB|=2|CD|.【解答】(1)解:由椭圆,得a2=10,b2=9,则c=1.∴椭圆的右焦点,即抛物线Γ:y2=2px的焦点为(1,0),则,p=2,∴Γ的方程为y2=4x;(2)解:设直线l:x=my+2,联立,得y2﹣4my﹣8=0.则y1+y2=4m,y1y2=﹣8.∴==,即△OAB的面积的最小值为;(3)证明:当AB所在直线斜率存在时,设直线方程为y+2=k(x﹣5),即y=kx ﹣5k﹣2.联立,可得ky2﹣4y﹣20k﹣8=0.,.=.===.∵C(1,2),∴,,则=(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1x2﹣(x1+x2)+1+y1y2﹣2(y1+y2)+4=,当AB所在直线斜率不存在时,直线方程为x=5,联立,可得A(5,﹣),B(5,2),,,有,∴CA⊥CB,又D为线段AB的中点,∴|AB|=2|CD|.【点评】本题考查椭圆与抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查向量垂直与数量积间的关系,是中档题.21.已知椭圆.(1)若椭圆C的一个焦点为(1,0),且点在C上,求椭圆C的标准方程;(2)已知椭圆C上有两个动点A(x1,y1),B(x2,y2),O为坐标原点,且OA ⊥OB,求线段|AB|的最小值(用a,b表示).【分析】(1)利用椭圆的定义,即可求得a的值,则b2=a2﹣c2=3,即可求得椭圆的方程;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,求出椭圆的极坐标方程为ρ2(b2cos2θ+a2sin2θ)=a2b2,设A(ρ1,θ),B(ρ2,θ+),运用三角函数的平方关系和诱导公式,以及基本不等式,即可得到.【解答】解:(1)由题意可知:椭圆的左焦点F1(﹣1,0),右焦点F2(1,0),则|PF1|+|PF2|=2a,则+=+=4=2a,则a=2,b2=a2﹣c2=3,∴椭圆C的标准方程为;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,则椭圆的极坐标方程为ρ2(b2cos2θ+a2sin2θ)=a2b2,设A(ρ1,θ),B(ρ2,θ+),则|AB|2=|OA|2+|OB|2=ρ12+ρ22=+=+,=[(b2cos2θ+a2sin2θ)+(b2sin2θ+a2cos2θ)](+)=(2++)≥,∴|AB|的最小值为.【点评】本题考查椭圆的方程的运用,考查椭圆的极坐标方程的应用,考查三角函数的化简及求值,考查基本不等式的运用,考查化简运算能力,属于中档题.22.已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.【分析】(1)根据抛物线y2=4x的焦点为F(1,0),求出c,再根据离心率求出a,再根据b2=a2﹣c2得:b2=4;问题得以解决,(2)求出直线方程,代入椭圆方程,根据韦达定理和弦长公式即可求出.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c∵抛物线y2=4x的焦点为F(1,0),∴c=1,又离心率,则:再由b2=a2﹣c2得:b2=4;所求椭圆标准方程为:,(2)由(1)知,左焦点为F1(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=【点评】本题考查了抛物线与椭圆的标准方程及其性质,弦长公式,直线的点斜式,考查了推理能力和计算能力,属于中档题.23.已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与P2B直线的斜率的和为﹣1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),与椭圆方程联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,得,得出a2=4,b2=1,由此椭圆C的方程为.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,=﹣1解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,…①∵直线P2A与P2B直线的斜率的和为﹣1,∴==…②①代入②得:又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.24.已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【分析】(1)由题意可知:b=4,根据椭圆离心率公式即可求得b的值,求得椭圆方程;(2)由点斜式方程求得直线AB方程,代入椭圆方程,求得A和B点坐标,利用中点坐标公式,即可求得AB的中点坐标.【解答】解:(1)由椭圆C:+=1(a>b>0)过点A(0,4),则b=4,椭圆离心率为e===,则a=5,∴C的方程为+=1;(2)过点(3,0)且斜率为的直线方程为y=(x﹣3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入C的方程,得x2﹣3x﹣8=0,解得:x1=,x2=,∴AB的中点M(x0,y0)坐标x0==,y0==(x1+x1﹣6)=﹣,即中点为(,﹣).【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,中点坐标公式,考查计算能力,属于中档题.25.已知椭圆C的中心在原点,焦点在x轴上,焦距为,离心率为(1)求椭圆C的方程;(2)设直线L经过点M(0,1),且与椭圆C交于A,B两点,若,求直线L的方程.【分析】(1)根据椭圆的焦距为2,离心率为,求出a,b,即可求椭圆C 的方程;(2)设直线l方程为y=kx+1,代入椭圆方程,由若可得x1=﹣2x2,利用韦达定理,化简可得,求出k,即可求直线l的方程.。

高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习(附答案)

高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习(附答案)

高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=3.(2021ꞏ全国ꞏ统考高考真题)设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦4.(2021ꞏ全国ꞏ统考高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.(2020ꞏ山东ꞏ统考高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )A .3B .6C .8D .126.(2019ꞏ全国ꞏ高考真题)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=7.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .148.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 1-9.(2018ꞏ全国ꞏ高考真题)已知椭圆C :2221(0)4x y a a+=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .310.(2018ꞏ全国ꞏ专题练习)(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B .3C 3D .1311.(2019ꞏ北京ꞏ高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b二、多选题12.(2020ꞏ海南ꞏ高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线三、填空题13.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.14.(2019ꞏ全国ꞏ统考高考真题)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.四、解答题15.(2022ꞏ全国ꞏ统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.16.(2022ꞏ北京ꞏ统考高考真题)已知椭圆:2222:1(0)x y E a b a b +=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.17.(2022ꞏ天津ꞏ统考高考真题)椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN18.(2021ꞏ北京ꞏ统考高考真题)已知椭圆2222:1(0)x y E a b a b +=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为 (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点,M N ,当|PM |+|PN |≤15时,求k 的取值范围. 19.(2021ꞏ全国ꞏ统考高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F . (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =20.(2021ꞏ天津ꞏ统考高考真题)已知椭圆()222210x y a b a b +=>>的右焦点为F ,上顶点为B ,且BF = (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.21.(2020ꞏ全国ꞏ统考高考真题)已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.22.(2020ꞏ山东ꞏ统考高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.23.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.24.(2020ꞏ海南ꞏ高考真题)已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.25.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 26.(2019ꞏ全国ꞏ高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.27.(2019ꞏ全国ꞏ高考真题)已知12,F F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2 POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.28.(2019ꞏ北京ꞏ高考真题)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |ꞏ|ON |=2,求证:直线l 经过定点.29.(2019ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.30.(2018ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M均在第四象限.若BPM △的面积是BPQ V 面积的2倍,求k 的值.31.(2018ꞏ天津ꞏ高考真题)设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值.32.(2018ꞏ北京ꞏ高考真题)已知椭圆2222:1(0)x y M a b a b +=>>,焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程; (Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .五、双空题33.(2021ꞏ浙江ꞏ统考高考真题)已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.B【要点分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【答案详解】解:因为离心率13c e a ==,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -, B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B. 3.C【要点分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【答案详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 02e <≤; 当32b b c->-,即22b c <时, 42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .【名师点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值. 4.C【要点分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点睛】 5.B【要点分析】根据椭圆中,,a b c 的关系即可求解. 【答案详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B. 6.B【要点分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解.【答案详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 7.D【答案详解】要点分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 答案详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 名师点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.D【答案详解】要点分析:设2||PF m =,则根据平面几何知识可求121,F F PF ,再结合椭圆定义可求离心率.答案详解:在12F PF ∆中,122190,60F PF PF F ∠=∠=︒设2||PF m =,则1212||2,||c F F m PF ==,又由椭圆定义可知122||||1)a PF PF m =+=+则离心率212c ce a a ====-, 故选D.名师点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 9.C【答案详解】要点分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得a =最后利用椭圆离心率的公式求得结果.答案详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率为e =C. 名师点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中,,a b c 的关系求得结果.10.A【答案详解】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===故选A.【名师名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11.B【要点分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.【答案详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.12.ACD【要点分析】结合选项进行逐项要点分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【答案详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线Cn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【名师点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.13【要点分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE V 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =. 【答案详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率倒数直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴12226461313cDE y y =-=⨯=⨯⨯⨯=, ∴138c =, 得1324a c ==, ∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==. 故答案为:13.14.(【要点分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【答案详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=, 又M 为C 上一点且在第一象限,12MF F △为等腰三角形,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.15.(1)22143y x +=(2)(0,2)-【要点分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. 【答案详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,(1,)3N ,代入AB 方程223y x =-,可得(3,)3T+-,由MT TH=得到(5,3H--.求得HN方程:(22y x=-,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234ky ykk ky yk⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【名师点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.16.(1)2214xy+=(2)4k=-【要点分析】(1)依题意可得22212bcc a b=⎧⎪=⎨⎪=-⎩,即可求出a,从而求出椭圆方程;(2)首先表示出直线方程,设()11,B x y、()22,C x y,联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出M x 、N x ,根据N M MN x x =-得到方程,解得即可; 【答案详解】(1)解:依题意可得1b =,2c =222c a b =-,所以2a =,所以椭圆方程为2214x y +=;(2)解:依题意过点()2,1P -的直线为()12y k x -=+,设()11,B x y 、()22,C x y ,不妨令1222x x -≤<≤,由()221214y k x x y ⎧-=+⎪⎨+=⎪⎩,消去y 整理得()()22221416816160k x k k x k k +++++=, 所以()()()222216841416160k k k k k ∆=+-++>,解得0k <, 所以212216814k k x x k++=-+,2122161614k kx x k +⋅=+, 直线AB 的方程为1111y y x x --=,令0y =,解得111M xx y =-, 直线AC 的方程为2211y y x x --=,令0y =,解得221N xx y =-,所以212111N M x xMN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++()()12212222x x k x x -==++,所以()()122122x x k x x -=++, ()212124k x x x x =+++⎡⎤⎣⎦22221616168241414k k k k k k k ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414kk k k k k k ⎡⎤=+-+++⎣⎦+整理得4k =,解得4k =-17.(1)e =(2)22162x y +=【要点分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由Δ0=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程. 【答案详解】(1)解:()222224332BF a b a a b AB===⇒=+⇒=,离心率为3c e a ==. (2)解:由(1)可知椭圆的方程为2223x y a +=, 易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=, 由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+, 由=OM ON 可得()()222229131m k m k+=+,②由OMN S =可得31213km m k ⋅=+③ 联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=.18.(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【要点分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k的范围,注意判别式的要求.【答案详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=,即a =,故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令=3y -,则112M x x y =-+,同理222N x x y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x >又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.19.(1)2213x y +=;(2)证明见解析.【要点分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN = 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【答案详解】(1)由题意,椭圆半焦距c =ce a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F 三点共线,可设直线(:MN yk x =-即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k=±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x-+=,所以1212324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k =+ 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=-或y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【名师点睛】关键点名师点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.20.(1)2215x y +=;(2)0x y -=.【要点分析】(1)求出a 的值,结合c 的值可得出b 的值,进而可得出椭圆的方程; (2)设点()00,M x y ,要点分析出直线l 的方程为0015x xy y +=,求出点P 的坐标,根据//MP BF 可得出MP BF k k =,求出0x 、0y 的值,即可得出直线l 的方程.【答案详解】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a==2c =,1b =, 因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=, 联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭, 直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭, 因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=, 所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-, 所以,直线l的方程为166x y -+=,即0x y -=. 【名师点睛】结论名师点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b+=在其上一点()00,x y 的切线方程为00221x x y y a b +=,再应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.21.(1)221612525x y +=;(2)52. 【要点分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点P 作x 轴垂线,垂足为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,从而求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.【答案详解】(1) 222:1(05)25x y C m m+=<<∴5a =,b m =,根据离心率c e a ====,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2)[方法一]:通性通法不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,垂足为M ,设直线6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===根据两点间距离公式可得:AQ ==,∴APQ △面积为:15252⨯=; ②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===,根据两点间距离公式可得:AQ ==∴APQ △面积为:1522=,综上所述,APQ △面积为:52. [方法二]【最优解】:由对称性,不妨设P ,Q 在x 轴上方,过P 作PE x ⊥轴,垂足为E .设(6,0)D ,由题知,PEB BDQ ≌.故131p BP PE PEPE x QB BD ==⇒=⇒=±, ①因为(3,1),(5,0),(6,2)P A Q -,如图,所以,52APQAQD PEDQ PEA S S S S =--=.②因为(3,1),(5,0),(6,8)P A Q --,如图,所以52APQAQD PEDQ PEA S S S S =--=.综上有52APQ S =△ [方法三]:由已知可得()5,0B ,直线,BP BQ 的斜率一定存在,设直线BP 的方程为()5y k x =-,由对称性可设0k <,联立方程22(5),161,2525y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22221161601625250k x k x k +-+⨯-=,由韦达定理得221625255116P k x k ⨯-=+,所以22805116P k x k -=+,将其代入直线BP 的方程得210116P ky k -=+,所以22280510,116116k k P k k ⎛⎫-- ⎪++⎝⎭,则||BP == 因为BP BQ ⊥,则直线BQ 的方程为1(5)y x k=--,则16,,||Q BQ k ⎛⎫-== ⎪⎝⎭因为||||BP BQ ==,422566810k k -+=, 即()()22641410k k --=,故2164k =或214k =,即18k =-或12k =-.当18k =-时,点P ,Q 的坐标分别为(3,1),(6,8),||P Q PQ -=直线PQ 的方程为71093y x =+,点A 到直线PQ故APQ △的面积为1522=.当12k =-时,点P ,Q 的坐标分别为(3,1),(6,2),||P Q PQ =直线PQ 的方程为13y x =,点(5,0)A -到直线PQ 的距离为2,故APQ △的面积为15222⨯=.综上所述,APQ △的面积为52.[方法四]:由(1)知椭圆的方程为221612525x y +=,(5,0),(5,0)A B -.不妨设()00,P x y 在x 轴上方,如图.设直线:(5)(0)AP y k x k =+>.因为||||,BP BQ BP BQ =⊥,所以00||1,||5Q y BN y BM x ====-.由点P 在椭圆上得201612525x +=,所以209x =.由点P 在直线AP 上得()015k x =+,所以015k x k -=.所以2159k k -⎛⎫= ⎪⎝⎭,化简得216101k k =-. 所以0110155516k x k k k -⎛⎫-=--== ⎪⎝⎭,即(6,16)Q k . 所以,点Q 到直线AP 的距离d ==.又)0||5AP x k==+=.故115222APQS AP d =⋅== .即APQ △的面积为52.[方法五]:由对称性,不妨设P ,Q 在x 轴上方,过P 作PC x ⊥轴,垂足为C ,设(6,0)D , 由题知PCB BDQ ≌,所以131p BP PC PCPC x QB BD==⇒=⇒=±.(1)(3,1),(5,0),(6,2)P A Q -.则1221115|82111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y ==). (2)(3,1),(5,0),(6,8)P A Q --.同理,1221115|28111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y == ) 综上,APQ △的面积为52. 【整体点评】(2)方法一:根据平面几何知识可求得点P 的坐标,从而得出点Q 的坐标以及直线AQ 的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求APQ △的面积,计算上有简化,是本题的最优解;方法三:通过设直线BP 的方程()5y k x =-与椭圆的方程联立,求出点P 的坐标,再根据题目等量关系求出k 的值,从而得出点Q 的坐标以及直线AQ 的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线AP 的方程:(5)(0)AP y k x k =+>,通过平面知识求出点P 的坐标,表示出点Q ,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.22.(1)22163x y +=;(2)详见解析.【要点分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程. (2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【答案详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以ꞏ0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x k m ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=, 因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由ꞏ0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍). 此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||23DQ AP ==.[方法三]:建立曲线系A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ?-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=. 由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =. 若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=. 令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =. 又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.23.(1)12;(2)221:13627x y C +=,22:12C y x =.【要点分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)[方法四]由(1)可得出1C 的方程为2222143x yc c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【答案详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,。

(完整版)圆锥曲线练习题含标准答案(最新整理)

(完整版)圆锥曲线练习题含标准答案(最新整理)

当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9

0 时,
x2
y2
1,
4
25,
20 ;
4

0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(

圆锥曲线---椭圆(含解析)

圆锥曲线---椭圆(含解析)

圆锥曲线---椭圆一、填空题1. 已知椭圆x24+y2=1的左右焦点分别为F1,F2,过F2作直线交椭圆于A,B两点,若F2为线段AB的中点,则△AF1B的面积为.2. 椭圆x29+y25=1的左右焦点分别为F1,F2,过焦点F1的直线交该椭圆于A,B两点,若△ABF2的内切圆面积为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则▵ABF2的面积S=.二、解答题3. 设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.4.已知椭圆C的中心在原点,对称轴为坐标轴,且经过点(3,0),离心率为√63.求椭圆C的方程.5.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,短轴一个端点到右焦点的距离为3√2.(1)求椭圆C的方程;(2)若直线y=x−1与椭圆C交于不同的两点A、B,求|AB|.6. 椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,√3),离心率为12,左、右焦点分别为F 1(−c,0),F 2(c,0) (1)求椭圆的方程(2)斜率为−12的直线l 与椭圆交于A ,B 两点,当|AB |=√552时,求直线l 的方程7.已知椭圆C :x 26+y 2b2=1(b >0)的左、右焦点分别为F 1(−c,0)和F 2(c,0),P 为椭圆C 上任意一点,三角形PF 1F 2面积的最大值是3. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)的直线l 交椭圆C 于A ,B 两点,且Q(94,0),证明:QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ 为定值.8. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 为圆x 2+y 2+2x =0的圆心,且椭圆上的点到点F 的距离最小值为√2−1. (1)求椭圆方程;(2)已知经过点F 的动直线l 与椭圆交于不同的两点A ,B ,点M (−54,0),证明:MA⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ 为定值.答案和解析1.解:由x 24+y 2=1,得a =2,b =1,c =√3,又因为F 2为线段AB 的中点,则可知AB ⊥x 轴,把x =√3带入椭圆方程可得y =±12, 所以|AB |=1,2c =2√3,所以△AF 1B 面积为S =12×2c ×|AB |=√3故答案为:√3. 2.解:∵椭圆x 29+y 25=1的左右焦点分别为F 1,F 2,a =3,b =√5,c =2,过焦点F 1的直线交椭圆于A(x 1,y 1),B(x 2,y 2)两点, ∵△ABF 2的内切圆的面积为π,∴△ABF 2内切圆半径r =1.即△ABF 2面积S =12×1×(AB +AF 2+BF 2)=2a =6。

高三数学文科圆锥曲线大题训练(20个)(含答案)

高三数学文科圆锥曲线大题训练(20个)(含答案)

高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。

圆锥曲线练习题(附问题详解)

圆锥曲线练习题(附问题详解)

圆锥曲线一、填空题1、对于曲线C ∶1422-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <25 其中所有正确命题的序号为_____________.2、已知椭圆)0(12222>>=+b a by a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满足021=⋅PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为3.若0>m ,点⎪⎭⎫⎝⎛25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 .4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7,cos 18AB BC B ==-.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .7.已知ABC ∆的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率35=e ,一条准线为x =3的椭圆的标准方程是 . 9.抛物线)0(42<=a ax y 的焦点坐标是_____________;10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . 11、抛物线)0(12<=m x my 的焦点坐标是 .12.已知F 1、F 2是椭圆2222)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端点,则△F 1BF 2的面积的最大值是13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60°,则||OA 为 . 14.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .二.解答题15、已知动点P 与平面上两定点(2,0),(2,0)A B -连线的斜率的积为定值12-. (Ⅰ)试求动点P 的轨迹方程C.(Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=324时,求直线l 的方程.16、已知三点P (5,2)、1F (-6,0)、2F (6,0)。

圆锥曲线椭圆

圆锥曲线椭圆

2024年疟疾监测工作计划1. 疟疾监测概述:疟疾是由疟原虫引起的一种寄生虫传染病,全球范围内仍然是一个重要的公共卫生问题。

尽管在过去几十年中,疟疾的发病和死亡率得到了一定程度的降低,但是在某些国家和地区,特别是非洲和亚洲的一些贫困国家,疟疾仍然是一个严重的健康威胁。

因此,加强疟疾监测工作是防控疟疾的关键环节。

2. 监测目标:(1)监测疟疾患病人数和死亡人数的变化趋势,及时发现疫情的变化和趋势。

(2)监测疟原虫对抗药物的抗药性情况,及时发现耐药疟原虫的出现。

(3)监测疟疾传播媒介——按蚊虫的密度、种类及其感染率等情况。

(4)监测疟疾的流行区域,及时采取针对性措施减少传播。

(5)监测疟疾疫苗的研发和应用,推动疟疾疫苗的使用。

3. 监测方法和手段:(1)建立疟疾监测系统,整合各级医疗机构、疾病预防控制中心、实验室等信息来源。

(2)通过建立疟疾报告制度,及时获取疟疾病例信息,包括患者的基本信息、就诊情况等。

(3)加强对疟疾病例的流行病学调查,包括病例来源、传播途径、感染情况等。

(4)建立疟原虫耐药性监测网,在重点地区收集疟原虫的样本进行药物抗性监测。

(5)加强对疟疾传播媒介按蚊虫的监测,包括采集蚊虫样本、鉴定感染率等。

(6)利用遥感技术和GIS技术对疟疾的空间分布进行监测和分析,预测疟疾流行的趋势和风险区域。

(7)加强对疟疾疫苗研发和应用的监测,包括疫苗研发的进展情况、疫苗接种情况等。

4. 监测内容和频率:(1)疟疾病例报告:每个月各级医疗机构向疾病预防控制中心报告疟疾病例,每周疾病预防控制中心向上级报告疟疾疫情。

(2)病例流行病学调查:对每个疟疾病例进行详细的流行病学调查,包括病例来源、传播途径、感染情况等。

每个病例调查结束后及时整理和上报结果。

(3)药物抗性监测:每年在重点地区进行药物抗性监测,收集疟原虫样本进行药物敏感性测试,每季度整理和上报结果。

(4)蚊虫监测:每年进行蚊虫监测工作,包括采集蚊虫样本、鉴定感染率等,每个月汇总结果并上报。

(完整版)圆锥曲线大题综合测试(含详细答案)

(完整版)圆锥曲线大题综合测试(含详细答案)

圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。

专题2.8 圆锥曲线-椭圆(解析版)-2021年高考数学解答题挑战满分专项训练(新高考地区专用)

专题2.8 圆锥曲线-椭圆(解析版)-2021年高考数学解答题挑战满分专项训练(新高考地区专用)

专题2.8 圆锥曲线-椭圆1.利用根与系数关系法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出根与系数关系;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入根与系数关系求解. 2.直线与圆锥曲线的综合问题的求解策略对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解.1.已知点N 为圆1C :()22116x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点M 、P 分别是线段1C N ,2C N 上的点,且20MP C N ⋅=,222C N C P =. (1)求点M 的轨迹方程;(2)过点()2,0A -且斜率为()0k k >的直线与点M 的轨迹交于A ,G 两点,点H 在点M的轨迹上,GA HA ⊥,当2AG AH =2k <<. 【试题来源】广东省茂名市2021届高三下学期第二次综合测试【答案】(1)22143x y +=;(2)证明见解析 【分析】(1)由已知可得214MC MC +=,可判断点M 在以12,C C 为交点的椭圆上,即可求出方程;(2)将直线方程代入椭圆,利用弦长公式可求出AG =,同理可得AH =3246380k k k -+-=,利用导数结合零点存在性定理即可证明. 【解析】(1)222C N C P =,P ∴是2C N 的中点,20MP C N ⋅=,2MP C N ∴⊥,∴点M 在2C N 的垂直平分线上,2||MN MC ∴=,121||42MN MC MC MC +=+=>,∴点M 在以12,C C 为交点的椭圆上,且2,1a c ==,则b =故点M 的轨迹方程为22143x y +=;(2)可得直线AG 的方程为(2)(0)y k x k =+>, 与椭圆方程联立可得()2222341616120kxk x k +++-=,设()11,G x y ,则2121612(2)34k x k -⋅-=+,可得()21223434k x k-=+,则12AG =+= 由题可得,直线AH 的方程为1(2)y x k=-+,故同理可得21243AH k=+由2AG AH =可得2223443kk k=++,即3246380k k k -+-=, 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,则()f t 在()0,∞+单调递增,又260,(2)60f f =<=>,因此()f t 在()0,∞+有唯一零点,且零点k 在)22k <<.【名师点睛】本题考查椭圆的轨迹方程,解题的关键是利用椭圆定义得出M 的轨迹为椭圆;考查参数范围的证明,解题的关键是利用弦长公式求出弦长,利用已知得出3246380k k k -+-=,再利用导数证明.2.已知椭圆2222C:1(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,过2F 的直线与椭圆C 交于A ,B 两点,若1F AB 的周长为8.(1)求椭圆C 的标准方程;(2)设P 为椭圆C 上的动点,过原点作直线与椭圆C 分别交于点M 、N (点P 不在直线MN 上),求PMN 面积的最大值. 【试题来源】湖南省长郡十五校2021届高三下学期第二次联考【答案】(1)22143x y +=;(2) 【分析】(1)根据周长可求a ,再根据离心率可求c ,求出b 后可求椭圆的方程. (2)当直线MN x ⊥轴时,计算可得PMN的面积的最大值为直线MN 不垂直x 轴时,可设:MN y kx =,联立直线方程和椭圆方程可求MN ,设与MN 平行且与椭圆C 相切的直线为y kx m =+,结合椭圆方程可求,k m 的关系,从而求出该直线到直线MN 的距离,从而可求PMN的面积的最大值为【解析】(1)由椭圆的定义可知,1F AB 的周长为4a , 所以48a =,2a =,又离心率为12,所以1c =, 23b =, 所以椭圆方程为22143x y +=.(2)当直线MN x ⊥轴时,()max 122PMN S=⨯= 当直线MN 不垂直x 轴时,设:MN y kx =,22221234143y kx x x y k =⎧⎪⇒=⎨++=⎪⎩,2221234k y k =+,所以||MN = 设与MN 平行且与椭圆C 相切的直线为y kx m =+,()222223484120143y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 因为()()2222644344120k m km∆=-+-=,所以2234m k =+, 所以P 距MN的最大距离为maxd ==, 所以()max max11||22PMN SMN d =⋅⋅=⨯= 综上,PMN面积的最大值为【名师点睛】求椭圆的标准方程,关键是基本量的确定,而面积的最值的计算,则可以转化为与已知直线平行且与椭圆相切的直线与已知直线的距离来计算,此类转化为面积最值计算过程的常规转化.3.已知椭圆C 的方程为22221(0)x y a b a b+=>>,31,2P ⎛⎫ ⎪⎝⎭在椭圆上,离心率12e =,左、右焦点分别为1F 、2F . (1)求椭圆C 的方程;(2)直线(0)y kx k =>与椭圆C 交于A ,B 两点,连接11,AF BF 并延长交椭圆C 于D 、E 两点,连接DE ,求DEk k的值. 【试题来源】湖北省恩施高中、龙泉中学、宜昌一中2021届高三下学期4月联考【答案】(1)22143x y +=;(2)53DE k k =. 【分析】(1)由P 在椭圆上,得到221914a b +=,再根据12e =和222a b c =+,求得,,a b c 的值,即可求解;(2)设()00,A x y ,得到直线001:1x AD x y y +=-,联立方程组,结合2200143x y +=,求得010325y y x -=+,01111x x y y +=-,同理求得020352y y x =-,022011x x y y -=-,结合斜率公式,化简005533DE y k k x =⋅=,即可求解.【解析】(1)由31,2P ⎛⎫ ⎪⎝⎭在椭圆上22221x y a b+=,可得221914a b +=,又由离心率12e =,可得2a c =,且222a b c =+,解得2,1a b c ===,所以椭圆C 的方程为22143x y +=.(2)设()00,A x y ,则()00,B x y --,直线001:1x AD x y y +=-, 代入22:143x y C +=,得()()2222000003146190x y y x y y y ⎡⎤++-+-=⎣⎦, 因为2200143x y +=,代入化简得()()220000252130x y x y y y +-+-=,设()11,D x y ,()22,E x y ,则2010325y y y x -=+,所以010325y y x -=+,011011x x y y +=-, 直线BE :0011x x y y -=-,同理可得()()2222000003146190x y y x y y y ⎡⎤-+---=⎣⎦,化简得()()220000522130x y x y y y ----=,故2020352y y y x --=-,即020352y y x =-,022011x x y y -=-, 所以()12121200012012121212000000121111DE y y y y y y k x x x y y x y y x x y y y y y y y y y y y y ---====+-++---++⋅- 又001200000120033225523352552y y y y x x x y y y y x x -+++-==----+-,00000015512335DEy k k x x x y y ==⋅=⎛⎫+⋅- ⎪⎝⎭所以53DE k k =. 4.已知圆222:O x y b +=经过椭圆()2222:10x y C a b a b+=>>的右焦点2F ,且经过点2F 作圆O 的切线被椭圆C(1)求椭圆C 的方程;(2)若点A ,B 是椭圆C 上异于短轴端点的两点,点M 满足OM OA OB =+,且226OM AB +=,试确定直线OA ,OB 斜率之积是否为定值,若是,求出这个定值;若不是,说明理由.【试题来源】甘肃省2021届第二次高考诊断【答案】(1)2212x y +=;(2)是定值,定值为12±.【分析】(1)由b c =以及点b ⎛ ⎝⎭在椭圆上列方程可求出椭圆C 的方程;(2)设()11,A x y ,()22,B x y ,则()1212,M x x y y ++,根据226OM AB +=可得222211223x y x y +++=,再根据点A ,B 在椭圆上,可得222212124x x y y ⋅=,从而121212OA OB y y k k x x ⋅==±. 【解析】(1)因为圆222:O x y b +=经过椭圆C 的右焦点2F ,所以b c =,a =,因为经过点2F 作圆O 的切线被椭圆C所以点,2b ⎛⎫⎪ ⎪⎝⎭在椭圆上,即()222112b b+=,解得1b =,故a = 所以椭圆C 的方程为2212x y +=.(2)直线OA ,OB 斜率之积是定值,证明如下:设()11,A x y ,()22,B x y ,由OM OA OB =+,得()1212,M x x y y ++.故()()()()()222222222212121212112226OM AB x x y y x x y y x y x y +=++++-+-=+++=.又点A ,B 在椭圆上,所以221122x y +=,222222x y +=,联立解得22122x x +=,22121y y +=.由221122x y =-,222222x y =-,得()()()2222222222121212121222224444x x y y yy y y y y ⋅=--=-++=,从而121212OA OB y y k k x x ⋅==±,即直线OA ,OB 斜率之积是定值12±.【名师点睛】将226OM AB +=化为222211223x y x y +++=,再结合221122x y +=,222222x y +=求解是解题关键.5.已知圆222:O x y b +=经过椭圆()2222:10x y C a b a b+=>>的右焦点2F ,且经过点2F 作圆O 的切线被椭圆C(1)求椭圆C 的方程;(2)若直线l 经过椭圆C 的右焦点2F 与椭圆交于A ,B 两点,且0OA OB ⋅=,求直线l 的方程.【试题来源】甘肃省2021届第二次高考诊断【答案】(1)2212x y +=;(2)220x +-=或220x -=.【分析】(1)根据圆的性质,结合椭圆,,a b c 之间的关系,利用代入法进行求解即可;(2)根据平面向量数量积的坐标表示公式,结合一元二次方程根与系数的关系进行求解即可. 【解析】(1)因为圆222:O x y b +=经过椭圆C 的右焦点2F , 所以b c =,a ,且过点2F 作圆O 的切线被椭圆C,所以,2b ⎛ ⎝⎭在椭圆上,即()222112b b+=, 所以1b =,a =C 的方程为2212x y +=.(2)当直线l 的斜率为零或不存在时,显然不满足题意. 设直线l 方程为1x my =+,联立22121x y x my ⎧+=⎪⎨⎪=+⎩,化简整理,得()222210m y my ++-=.设交点A ,B 的坐标为(),A A A x y ,(),B B B x y ,则222A B my y m +=-+,212A By y m ⋅=-+,故有()()()2111A B A B A B A B x x my my m y y m y y ⋅=++=+++2222222221222m m m m m m -+=--+=+++ 由0OA OB ⋅=,得0A B A B x x y y +=,即有222221022m m m -+-=++,解得m =,所以直线l 的方程为220x +-=或220x --=.【名师点睛】由平面向量数量积的坐标表示公式得到222221022m m m -+-=++是解题的关键. 6.已知抛物线2:16C x y =的焦点为F ,准线为l ,椭圆2222:1(0)y x E a b a b+=>>的上焦点1F 到l 的距离为5,过1F 的直线1l 与E 交于M ,N 两点,当MN y ⊥轴时,3MN =. (1)求椭圆E 的方程;(2)直线FM 与x 轴交于A 点,直线FN 与x 轴交于B 点,求证:FA FB =. 【试题来源】2021年普通高等学校招生全国统一考试(全国2卷)冲刺卷(一)【答案】(1)22143y x +=;(2)证明见解析. 【分析】(1)由已知求得,,a b c ,可得椭圆E 的方程.(2)分当1l 与y 轴重合时,由题意知FA FO FB ==;当1l 与y 轴不重合时,设1l 的方程为1y kx =+,()11,M x y ,()22,N x y .与椭圆的方程联立,根据根与系数的关系表示FA FB k k ,,可得证.【解析】(1)设1(0,)F c ,由题意知:4l y =-,所以45c +=,解得1c =.在22221y x a b +=中令y c =,得2b x a =,因为3MN =,所以223b a =,232a b =.因为222312a a b a -=-=,得2a =,b =E 的方程为22143y x +=. (2)证明:(解法1)由题意知(0,4)F ,1(0,1)F ,当1l 与y 轴重合时,由题意知FA FO FB ==;当1l 与y 轴不重合时,设1l 的方程为1y kx =+,()11,M x y ,()22,N x y . 则10x ≠,20x ≠,直线FA ,FB 的斜率之和为121244FA FB y y k k x x --+=+, 由111y kx =+,221y kx =+得,()()12121212122332FA FB kx x x x x x k k k x x x x -+++==-.将1y kx =+代入22143y x +=得,()2234690k x kx ++-=,()2223636341441440k k k ∆=++=+>,所以122634k x x k +=-+,122934x x k =-+. 则()2121221833422220934kx x k k k k k x x k -++-=-=-=-+, 从而0FA FB k k +=,故直线FA ,FB 的倾斜角互补,所以OAF OBF ∠=∠,因此FA FB =.综上,FA FB =. (解法2)当1l 与y 轴重合时,由题意知FA FO FB ==; 当1l 与y 轴不重合时,设1l 的方程为1y kx =+,()11,M x y ,()22,N x y ,()3,0A x ,()4,0B x ,则10x ≠,20x ≠,将1y kx =+代入22143y x +=得()2234690k x kx ++-=,()2223636341441440k k k ∆=++=+>,所以122634k x x k +=-+,122934x x k =-+. 设114:4y FA y x x -=+,224:4y FB y x x -=+,易知14y ≠,24y ≠,在1144y y x x -=+中,令0y =得13144x x y =--, 在2244y y x x -=+中,令0y =得24244x x y =--, 于是()()()1221121234121244444444x y x y x x x x x x y y y y ⎡⎤+-++=--=-⎢⎥----⎣⎦. 由111y kx =+,221y kx =+得,()()()1212341223444kx x x x x x y y ⎡⎤-++=-⎢⎥--⎣⎦,由于22962303434k k k k ⎛⎫⎛⎫⋅--⋅-= ⎪ ⎪++⎝⎭⎝⎭,因此340x x +=, 所以点A 与点B 关于原点O 对称,而点F 在y 轴上,因此FA FB =. 综上,FA FB =.【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系;(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.有时若直线过x 轴上的一点,可将直线设成横截式.7.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,过F的直线0x -+=与椭圆在第一象限交于M 点,O 为坐标原点,三角形MFO的面积为4. (1)求椭圆的方程;(2)若ABC 的三个顶点A ,B ,C 都在椭圆上,且O 为ABC 的重心,判断ABC 的面积是否为定值,并说明理由.【试题来源】江苏省高考第二次适应性考试【答案】(1)2214x y +=;(2,理由见解析. 【分析】(1)由直线过左焦点写出左焦点坐标,得参数c、右焦点坐标,又由三角形面积1||24OMFM SOF y =⋅=,求M 坐标,即可确定△FMF '为直角三角形,进而求||,||MF MF ',根据椭圆定义求参数a ,写出椭圆方程即可.(2)讨论直线BC 的斜率:当不存在时,设直线BC :1x x =,()11,B x y ,()11,C x y -,由重心坐标的性质求A 坐标,由A 在椭圆上求2211,x y ,求ABCS;当存在时,设直线BC :y kx m =+,()11,B x y ,()22,C x y ,联立直线与抛物线方程结合根与系数关系求12x x +,12x x ,即得12y y +,由重心坐标的性质确定A 的坐标,由A 在椭圆上得22441m k =+,结弦长公式、点线距离公式求||BC 、A 到直线BC 的距离d ,求ABCS,即可判断是否为定值.【解析】(1)直线0x -+=过左焦点F,则有(F ,所以c =F ',又12OMF M S y ==△,得12My =,代入直线方程有M x =所以12M ⎫⎪⎭.所以△FMF '为直角三角形且90MF F '∠=︒,由椭圆定义,知12||||42a MF MF '=+==,即2a =, 所以椭圆的方程为2214x y +=.(2)当直线BC 的斜率不存在时,设直线BC 的方程为1x x =,若()11,B x y ,则()11,C x y -, 因为O 为ABC 的重心,可知()12,0A x -,代入椭圆方程,得221131,4x y ==,即有1||2||BC y =,A 到BC 的距离为3d =,所以11||3222ABCSBC d =⋅==, 当直线BC 的斜率存在时,设直线BC 的方程为y kx m =+,设()11,B x y ,()22,C x y ,由2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得()222148440k x kmx m +++-=,显然0∆>,所以122841km x x k -+=+,21224441m x x k -=+,则()121222241m y y k x x m k +=++=+, 因为O 为ABC 的重心,可知2282,4141kmm A k k -⎛⎫⎪++⎝⎭, 由A 在椭圆上,得2222182144141km m k k -⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭,化简得22441m k =+,所以12||||BC x x =-===,由重心的性质知A 到直线BC 的距离d 等于O 到直线BC距离的3倍,即d =,所以1||22ABCSBC d =⋅=,综上得,ABC . 【名师点睛】第二问,若三角形顶点坐标分别为112233(,),(,),(,)x y x y x y ,则其重心坐标为123123(,)33x x x y y y ++++求A 点坐标,再根据A 在椭圆上,求相关参数值或确定参数关系.8.已知1A ,2A 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,B 为椭圆C 的上顶点,点2A 到直线1A B 的距离为7,椭圆C过点3⎛ ⎝. (1)求椭圆C 的标准方程;(2)设直线l 过点1A ,且与x 轴垂直,P ,Q 为直线l 上关于x 轴对称的两点,直线2A P 与椭圆C 相交于异于2A 的点D ,直线DQ 与x 轴的交点为E ,当2PA Q △与PEQ 的面积之差取得最大值时,求直线2A P 的方程.【试题来源】普通高等学校招生全国统一考试数学预测卷(四)【答案】(1)22143x y +=;(2)360x-=或360x -=. 【分析】(1)由点到直线的距离得一个,a b 的关系式,已知点的坐标代入又得一个关系式,,两者联立解得,a b ,得椭圆方程;(2)设直线2A P 的方程为2(0)x my m =+≠,依次求得P 点,Q 点,D 点,E 点坐标,然后计算面积之差222PA Q PEQ PA E S S S -=△△△,再结合基本不等式求得最大值.由此可得直线方程.【解析】(1)由题意知2(,0)A a ,1(,0)A a -,(0,)B b ,则直线1A B 的方程为by x b a=+,即0bx ay ab -+=,所以点2A 到直线1A B的距离7d ==,即2234b a =.① 又椭圆C过点⎝,所以224213a b +=.② 联立①②,解得24a =,23b =,故椭圆C 的标准方程为22143x y +=.(2)由(1)知2(2,0)A ,直线l 的方程为2x =-. 由题意知直线2A P 的斜率存在且不为0, 设直线2A P 的方程为2(0)x my m =+≠,联立2,2,x x my =-⎧⎨=+⎩解得2,4,x y m =-⎧⎪⎨=-⎪⎩即42,P m ⎛⎫-- ⎪⎝⎭,42,Q m ⎛⎫- ⎪⎝⎭.联立222(0),1,43x my m x y =+≠⎧⎪⎨+=⎪⎩消去x 整理得()2234120m y my ++=,解得0y =或21234my m -=+.由点D 异于点2A 可得2226812,3434m m D m m ⎛⎫-+- ⎪++⎝⎭, 所以直线DQ 的方程为222124684(2)203434m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 令0y =,得226432E m x m -+=+,所以22222641223232m m A E m m -+=-=++, 所以2PA Q △与PEQ 的面积之差为222PA Q PEQ PA E S S S -=△△△. (利用点的对称关系,将面积差问题转化为求2PA E S △)因为2222112448||48222232323||||PA Em m S m m m m m -=⨯⋅⋅==≤+++△当且仅当m =时取等号.故当2PA Q △与PEQ 的面积之差取得最大值时, 直线2A P的方程为360x +-=或360x --=.【名师点睛】本题考查求椭圆方程,考查直线与椭圆相交问题,解题方法是解析几何的基本方法:设直线2AP 方程为2(0)x my m =+≠,直线与直线相交得交点坐标,直线与椭圆相交得交点坐标,然后求得三角形面积(之差),再结合基本不等式求得最大值,得出结论. 9.已知椭圆E :()222210x y a b a b +=>>过点⎛ ⎝⎭,其右顶点为A ,下顶点为B,且AB 若作与y 轴不重合且不平行的直线l 交椭圆E 于P ,Q 两点,交y 轴于点C (异于点B ),直线BP ,BQ 分别与x 轴交于M ,N 两点.(1)求椭圆E 的方程;(2)当M ,N 的横坐标的乘积是43时,试探究直线l 是否过定点?若过定点,请求出定点;若不过,请说明理由.【试题来源】2021届新高考同一套题信息原创卷(五)【答案】(1)2214x y +=;(2)直线l 过定点,定点为()0,2. 【分析】(1)将⎛ ⎝⎭代入椭圆方程,并结合AB =得到关于2a ,2b 的方程组,解方程组即可求得椭圆方程;(2)设直线PQ 的方程为y kx m =+,()11,P x y 及()22,Q x y ,将直线PQ 的方程代入椭圆方程得12x x +,12x x ,然后由直线BP 的方程,得点M的横坐标,由直线BQ 的方程得点N 的横坐标,结合43M N x x ⋅=,得到关于m 的方程,解方程求出m 的值,进而求解.【解析】(1)由已知,A ,B 的坐标分别是(),0A a ,()0,B b -,将⎛ ⎝⎭代入椭圆方程,得221314a b +=,结合225a b +=,解得221,4b a ⎧=⎨=⎩或2215,45.4b a ⎧=⎪⎪⎨⎪=⎪⎩因为22a b >,所以24a =,21b =,所以椭圆方程为2214x y +=.(2)设直线PQ 的方程y kx m =+,P ,Q 的坐标分别为()11,P x y ,()22,Q x y , 则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+. 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N xx y =+, 所以()()121211M N x x x x y y ⋅=++()()121211x x kx m kx m =++++()()()1222121211x x k x x k m x x m =+++++,把直线y kx m =+代入椭圆2214x y +=得()222418440k x kmx m +++-=,由根与系数关系得122841km x x k +=-+,21224441m x x k -=+, 所以22222224441(44)(1)8(1)4141M N m k x x k m k m km m k k -+⋅=-+⋅-++++4(1)1m m -=+,又由43M N x x ⋅=,得()41413m m -=+,解得2m =.所以直线l 过定点()0,2. 【名师点睛】由直线BP 的方程,得点M 的横坐标,由直线BQ 的方程得点N 的横坐标,结合43M N x x ⋅=,得到关于m 的方程,解方程求出m 的值是解题关键. 10.已知A 、B 分别为椭圆222:1(1)x E y a a+=>的左顶点和下顶点,P 为直线3x =上的动点,AP BP ⋅的最小值为594. (1)求E 的方程;(2)设PA 与E 的另一交点为D ,PB 与E 的另一交点为C ,问:是否存在点P ,使得四边形ABCD 为梯形,若存在,求P 点坐标;若不存在,请说明理由. 【试题来源】河北省唐山市2021届高三下学期第二次模拟【答案】(1)2214x y +=;(2)存在;33,2P ⎛⎫ ⎪⎝⎭. 【分析】(1)设(3,)P t ,求出AP BP ⋅取得最小值3534a +,,由3559344a +=求出2a =,从而可得E 的方程;(2)假设存在点(3,)P t 满足题设,设()11,C x y ,()22,D x y .联立直线PA 与椭圆方程,求出2x ,联立直线PB 与椭圆方程求出1x ,利用||||||||AD BC AP BP =得到21253x x +=,代入12,x x ,可求出t 即可得解. 【解析】(1)由题设得(,0)A a -,(0,1)B -.设(3,)P t , 则(3,)AP a t =+,(3,1)BP t =+.所以293AP BP a t t ⋅=+++2135324t a ⎫⎛=+++ ⎪⎝⎭,于是当12t =-时,AP BP ⋅取得最小值3534a +,所以3559344a +=,解得2a =.所以E 的方程为2214x y +=.(2)假设存在点(3,)P t 满足题设,设()11,C x y ,()22,D x y .所以直线PA 的方程为(2)5t y x =+,直线PB 的方程为113t y x +=-. 将(2)5ty x =+代入E 得()222242516161000t x t x t +++-=, 可得22216100(2)425t x t -⨯-=+,所以222508425t x t -=+. 将113t y x +=-代入E 得()22481324(1)0t t x t x ++-+=,可得1224(1)4813t x t t +=++. 若四边形ABCD 为梯形,则//AB CD ,所以||||||||AD BC AP BP =, 因为22(2)2||||3(2)5x x AD AP --+==--,110||||303x x BC BP -==-, 所以21253x x +=,所以22250824(1)3(2)54254813t t t t t -++=⨯+++, 所以22208(1)4254813t t t t +=+++,整理可得3281210150t t t -+-=, 即()2(23)450t t -+=,解得32t =.故当33,2P ⎛⎫ ⎪⎝⎭时,四边形ABCD 为梯形. 【名师点睛】分别联立直线PA 、PB 与椭圆方程求出,D C 的横坐标,再将梯形转化为,D C 的横坐标进行求解是解题关键.11.已知点P 是离心率为12的椭圆C :22221x y a b+=(0a b >>)上位于第一象限内的点,过点P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N 两点,交直线by x a=-于Q ,R两点,记OMQ 与ONR 的面积分别为1S ,2S ,且12S S += (1)求椭圆的方程;(2)设椭圆C 的上、下顶点分别为1B ,2B ,过点()0,1D 的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程. 【试题来源】2021届新高考同一套题信息原创卷(二)【答案】(1)22143x y +=;(2)证明见解析,直线3y =. 【分析】(1)设(),P x y,利用12S S +=2ab =12c a =,222a b c =+,可得椭圆的方程;(2)分类讨论:当直线EF 斜率存在时,设方程为1y kx =+,联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得()2234880k x kx ++-=,利用根的系数关系得1212kx x x x =+,直线2EB1x x =,直线1FB2xx =,联立消去x 得3y =,当直线EF 的斜率不存在时,直线2EB ,1FB 与y 轴重合,过点()0,3,即可得到结论. 【解析】(1)设(),P x y ,//PM x 轴,//PN y 轴,()0,M y ∴,(),0N x ,,a Q y y b ⎛⎫-⎪⎝⎭,,b R x x a ⎛⎫- ⎪⎝⎭,211122a ay S y y b b ∴=⋅=⋅,221122b bx S x x a a=⋅=⋅, 221212ay bx S S b a ⎛⎫∴+=+ ⎪⎝⎭222222ab x y ab a b ⎛⎫=+=⎪⎝⎭,2ab ∴=12c a =,222a b c =+, 解得2a =,b =22143x y +=.(2)①当直线EF 斜率存在时,设其方程为1y kx =+,设()11,E x y ,()22,F x y ,联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得()2234880k x kx ++-=,()226432340k k ∆=++>, 由根与系数关系得122834kx x k -+=+,122834x x k -=+,1212kx x x x ∴=+.因为(1B,(20,B ,所以直线2EB1x x =,直线1FB2xx =.联立消去x=,整理得3x y x y x x y++-=113x kx x kx x x ++++-⎤=23kx x x x x x+++-=33x x x x --+==,所以直线2EB ,1FB 的交点G 一定在直线3y =上;②当直线EF 的斜率不存在时,直线2EB ,1FB 与y 轴重合,过点()0,3, 由①②知直线2EB ,1FB 的交点G 在直线3y =上. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.12.已知椭圆2222:1(0)x y C ab a b+=>>过点(2,0)D -,且焦距为(1)求椭圆C 的方程;(2)过点(4,0)A -的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得||||(||||)AD DH AD DH λ⋅=-成立,若存在,求出λ的值;若不存在,说明理由. 【试题来源】北京市东城区2021届高三一模【答案】(1)2214x y +=(2)存在, 2λ=【分析】(1)根据椭圆的几何性质求出,a b 可得结果;(2)设11(,)P x y ,22(,)Q x y ,则22(,)T x y -,设直线:l (4)y k x =+,代入2214x y +=,得到12x x +和12x x ,利用直线PT的方程求出H 的坐标,求出||AD 、||DH ,则可得λ的值.【解析】(1)因为椭圆2222:1(0)x y C a b a b+=>>过点(2,0)D -,所以2a =,又2c =c =222431b a c =-=-=,所以椭圆C 的方程为2214x y +=.(2)显然直线l 的斜率存在且不为0,设直线:l (4)y k x =+,联立22(4)14y k x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得2222(14)326440k x k x k +++-=, 2222(32)4(14)(644)k k k ∆=-+-0>,得21012k <<, 设11(,)P x y ,22(,)Q x y ,则22(,)T x y -,所以21223214k x x k +=-+,212264414k x x k-=+, 直线PT :121112()y y y y x x x x +-=--,令0y =,得112112()y x x x x y y -=-+,所以112112()(,0)y x x H x y y --+,又||||(||||)AD DH AD DH λ⋅=-,所以1||||11||||||||AD DH AD DH DH AD λ-==-⋅,因为(2,0),(4,0)D A --,112112()(,0)y x x H x y y --+,所以||2AD =,112112()||2y x x DH x y y -=-++112112(4)()2(4)(4)k x x x x k x k x +-=-++++112112(4)()2()8k x x x x k x x k +-=-+++112111212()8(4)()2()8kx x x kx k x x x k x x k++-+-=+++221121111212128442()8kx kx x k x kx kx x kx kx k x x k++-+-+=+++1212124()22()8k x x kx x k x x k ++=+++22222232644421414232814k k k k k k k k k k --⋅+⋅++=+-⋅++12=-+1=,所以11112λ=-,解得λ=2.所以存在常数2λ=,使得||||2(||||)AD DH AD DH ⋅=-成立.【名师点睛】用,P Q 的坐标表示H 的坐标,再根据根与系数关系算||DH 的值是解题关键.13.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为2,且过点.(1)求椭圆G 的方程;(2)过点(0,1)M 斜率为(0)k k ≠的直线l 交椭圆G 于A ,B 两点,在y 轴上是否存在点N 使得ANM BNM ∠=∠(点N 与点M 不重合),若存在,求出点N 的坐标,若不存在,请说明理由.【试题来源】北京市顺义区2021届高三二模【答案】(1)22184x y +=;(2)()0,4N ,证明详见解析. 【分析】(1)由条件列式,利用待定系数法求解椭圆方程;(2)首先直线方程():1,0l y kx k =+≠与椭圆方程联立,得根与系数的关系,将条件转化为0AN BN k k +=,代入坐标,利用根与系数的关系化简求定点.【解析】(1)由条件可知22222421c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得28a =,224b c ==,所以椭圆G 的方程是22184x y +=;(2)设直线():1,0l y kx k =+≠,()11,A x y ,()22,B x y ,()00,N y ,联立221184y kx x y =+⎧⎪⎨+=⎪⎩ ,得()2212460k x kx ++-=, 122412kx x x k +=-+,122612x x k -=+, ANM BNM ∠=∠,0AN BN k k ∴+=,即1020212012101212y y y y x y x y x y x y x x x x ---+-+= ()()()211201212110x kx x kx y x x x x +++-+==,即()()12012210kx x y x x +-+=,()022*********k y k k k---=++,得04y =, 即存在定点()0,4N .14.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,过点1F 的直线l 与椭圆C 交于M ,N 两点(点M 位于x 轴上方),2MNF ,12MF F △的周长分别为8,6. (1)求椭圆C 的方程; (2)若1||MF m MN =,且2334m ≤<,设直线l 的倾斜角为θ,求sin θ的取值范围. 【试题来源】2021届普通高中教育教学质量监测考试全国I 卷【答案】(1)22143x y +=;(2)⎛ ⎝⎦. 【分析】(1)根据椭圆的定义可得2MNF ,12MF F △的周长分别为4,22a a c +,结合222a b c =+可得答案.(2)根据题意设出直线l 的方程与椭圆方程联立,写出根与系数关系,由1||MF m MN =,得出11MF F N,得出,M N 的纵坐标12,y y 的关系,从而可求出答案.【解析】(1)设椭圆C 的半焦距为c ,因为2MNF ,12MF F △的周长分别为8,6,所以根据椭圆的定义得22248226a a c a b c =⎧⎪+=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=.(2)由条件1||MF m MN =,且2334m ≤<,则12MF MF >,所以直线l 的斜率存在. 根据题意,可设直线l 的方程为(1)(0).y k x k =+>.联立22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去x ,得()22234690k y ky k +--=,则()2214410k k ∆=+>,设()11,M x y ,()22,N x y ,则122634k y y k +=+①,2122934k y y k-=+②, 又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-. 设1mmλ=-,[2,3)λ∈,则11MF F N λ=,所以12y y λ③,把③代入①得()226(1)34k y k λ=-+,()126(1)34ky k λλ-=-+,并结合②可得()2212222236934(1)34k k y y k k λλ--==+-+, 则22(1)434kλλ-=+,即214234k λλ+-=+, 因为12λλ+-在[2,3)λ∈上单调递增,所以114223λλ≤+-<,即21442343k ≤<+,且0k >,解得0k <≤,即0tan θ<≤0sin θ<≤.故sin θ的取值范围是3⎛ ⎝⎦. 【名师点睛】本题考查求椭圆方程和直线与椭圆的位置关系,解答本题的关键是由122634k y y k +=+,2122934k y y k -=+,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF mF Nm=∈-,得出关系求解,属于中档题. 15.已知椭圆()2222:10x y C a b a b +=>>经过点()0,3M.(1)求C 的方程;(2)直线:1l y kx =-与椭圆C 交于,A B 两点. ①判断AMB ∠是否是定值并给出证明; ②求MA MB ⋅的最大值.【试题来源】湖北省华中师范大学第一附属中学2021届高三下学期四月综合测试【答案】(1)221189x y +=;(2)①是定值,证明见解析;②32. 【分析】(1)将M 坐标代入椭圆,结合离心率可构造方程组求得,a b ,从而得到椭圆方程; (2)①将直线方程与椭圆方程联立,得到根与系数关系的形式,根据向量的线性运算,结合根与系数关系可整理得到0MA MB ⋅=,由此确定90AMB ∠=;②由90AMB ∠=可知MA MB AB d ⋅=⋅,其中d 为点M 到直线l 的距离,利用点到直线距离公式和弦长公式将其表示成关于k 的函数的形式,利用换元法,结合二次函数性质可求得所求的最大值.【解析】(1)由已知得2222229112bc a b aa ⎧=⎪⎪⎨-⎪==⎪⎩,解得a =,3b =, ∴椭圆C 的方程为221189x y +=. (2)①由2211891x y y kx ⎧+=⎪⎨⎪=-⎩得()22214160k x kx +--=,设()11,A x y ,()22,B x y ,则122421kx x k +=+,1221621x x k -=+ ()()()()121212123344MA MB x x y y x x kx kx ⋅=+--=+--()()()221212221614141641602121k kk x x k x x k k k -+=+-++=-⨯+=++, MA MB ∴⊥,即90AMB ∠=,为定值;②设d 为点M 到直线l 的距离,故MA MB AB d ⋅=⋅.又d =AB ===MA MB ∴⋅=,设2211k t +=≥,则MA MB ⋅=(]10,1t∈,32MA MB ∴⋅≤(当11t =,即0k =时等号成立),MA MB ∴⋅的最大值为32.16.已知椭圆(222:12x y C a a +=>的右焦点为F ,A 、B 分别为椭圆的左顶点和上顶点,ABF 1. (1)求椭圆C 的标准方程;(2)过点F 的直线l 与椭圆C 交于P 、Q两点,直线AP 、AQ 分别与直线x =点M 、N .证明:FM FN ⊥.【试题来源】东北三省四市教研联合体2021届高考模拟考试(二)试题【答案】(1)22142x y +=;(2)证明见解析. 【分析】(1)根据已知条件可得出关于a 、c 的方程,解出a 、c 的值,即可得出椭圆C 的标准方程;(2)设直线l 的方程为x my =+()11,P x y 、()22,Q x y ,将直线l 与椭圆C 的方程联立,列出根与系数关系,求出点M 、N 的坐标,计算得出0FM FN ⋅=,由此可证得结论成立.【解析】(1)由题意可知,AF ac =+,b =()112ABF S a c =+=△,所以,22222a c a c b a ⎧+=+⎪-==⎨⎪>⎩,解得2a c =⎧⎪⎨=⎪⎩C 的标准方程为22142x y +=;(2)若直线l 与x 轴重合,则M 、N 重合,不合乎题意.椭圆C的右焦点为)F,设直线l的方程为x my =设点()11,P x y 、()22,Q x y ,联立2224x my x y ⎧=⎪⎨+=⎪⎩x 并整理得()22220m y ++-=, ()()2228821610m m m ∆=++=+>恒成立,由根与系数关系可得1222y y m +=-+,12222y y m =-+, 直线AP的斜率为112AP y k x ==+, 直线AP的方程为)2y x =+,在直线AP 的方程中,令x =可得12y y +=,即点12y M ⎛⎫+ ⎝,同理可知,点22y N ⎛⎫+ ⎝,所以,122,y FM ⎛⎫+= ⎝,222,y FN ⎛⎫+= ⎝,所以,21222yy FM FN +⋅=+(()()()2122212122222y ym y y m y y +=+++++()()()()22222222812223212m m+-==--+++()22820222m m=-=+-, 因此,FM FN ⊥.。

圆锥曲线专题40大题练习(含答案)

圆锥曲线专题40大题练习(含答案)

圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。

〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。

〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。

的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。

圆锥曲线[椭圆]专项训练[含答案解析]

圆锥曲线[椭圆]专项训练[含答案解析]

圆锥曲线 椭圆 专项训练【例题精选】:例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; (2)一个焦点为(0,1)长轴和短轴的长度之比为t ;(3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。

(4)e c ==08216.,.例2 已知椭圆的焦点为2),1,0()1,0(21=-a F F ,。

(1)求椭圆的标准方程;(2)设点P 在这个椭圆上,且||||PF PF 121-=,求:tg F PF ∠12的值。

例3 已知椭圆上横坐标等于焦点横坐标的点,其纵坐标的长等于短半轴长的23。

求:椭圆的离心率。

小结:离心率是椭圆中的一个重要内容,要给予重视。

例4 已知椭圆x y 2291+=,过左焦点F 1倾斜角为π6的直线交椭圆于A B 、两点。

求:弦AB 的长,左焦点F 1到AB 中点M 的长。

小结:由此可以看到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。

例5 过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。

小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。

例6 已知C y x B A 的两个顶点,是椭圆、12516)5,0()0,4(22=+是椭圆在第一象限内部分上的一点,求∆ABC 面积的最大值。

小结:已知椭圆的方程求最值或求范围,要用不等式的均值定理,或判别式来求解。

(圆中用直径性质或弦心距)。

要有耐心,处理好复杂运算。

【专项训练】: 一、 选择题:1.椭圆63222=+y x 的焦距是 ( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A. 22B. 2C. 2D. 16. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴7.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右焦点的距离是534,则点P 到左焦点的距离是 ( )A .516B .566C .875D .8778.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ∆的面积是( )A. 2B. 1C.23D. 219.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x10.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是 ( )A .3B .11C .22D .10二、 填空题:11.椭圆2214x y m+=的离心率为12,则m = 。

专题1.8 圆锥曲线-椭圆(解析版)

专题1.8 圆锥曲线-椭圆(解析版)

专题1.8 圆锥曲线-椭圆(1)解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.多考查直线与圆或抛物线的位置关系,但也要注意对椭圆、双曲线知识的考查,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.(2)求椭圆的标准方程,关键是基本量的确定,方法有待定系数方法或定义法; (3)与焦点三角形有关的计算问题,足以利用椭圆的定义、焦半径公式等来简化计算. (4)直线与圆锥曲线的弦长问题有三种解法:①过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.②将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.③它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(5)解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.1.如图,已知椭圆22221x y E a b +=:12(F F 为椭圆的左、右焦点,P 为椭圆上一动点,Q 为12PF F △的内心,连接P ,Q 延长交x 轴于点M .(1)求椭圆E 的方程;(2)设1FQM ,2F QP 的面积分别为1S ,2S ,求12S S 的取值范围. 【试题来源】浙江省百校2021届高三下学期3月模拟联考【答案】(1)2214x E y +=:;(2)6)-.【解析】(1c a =因为12(F F 为椭圆的左右焦点,故2,1c a b ==,所以椭圆22:14x E y +=;(2)因为Q 为12PF F △的内心,故Q 为12PF F △各内角角平分线交点, 故根据角平分线定理可知,11PQ PF QMF M=,22PQ PF QM F M=,1212121222PQ PF PF PF PF a a QM F M F M F M F M c c +∴======+ 设12,F QM F QP 以,PQ QM 为底边的高分别为12,h h ,1111222212122QM h QM h S h S PQ h h PQ h ⋅⋅===⋅⋅⋅,211212F MPF h h F M PF == , 设00(,)P x y ,1020,PF a ex PF a ex ∴=+=- ,0012224(1222x xSS+-++∴===-+,P为椭圆上一动点,且构成三角形,故0(2,2)x∈-,12(1(6,6)222SS∴=⋅-+∈-+.2.已知椭圆C过点1,2⎛⎝⎭,且与曲线2212x y-=有共同的焦点.(1)求椭圆C的标准方程;(2)过椭圆的右焦点2F作直线l与椭圆C交于,A B两点,设2F A =2F Bλ,若[]2,1λ∈--,点()2,0T,求TA TB+的取值范围.【试题来源】湖南师范大学附属中学2021届高三下学期月考(六)【答案】(1)2212xy+=;(2)2,8⎡⎢⎣⎦.【解析】(1)设椭圆的焦距为2c,由题意得1c=,设椭圆C的标准方程为22221(0)x ya ba b+=>>,则221121a b+=,又221a b=+,解得21b=或21(2b=-舍去),所认221 2.a b=+=故椭圆C的标准方程为22 1.2xy+=(2)由题意设直线l的方程为 1.x my=+将直线l的方程代入2212xy+=中,得()222210m y my++-=设()()112212,,,,0,A x yB x y y y≠可得12222my ym+=-+,①12212y ym=-+,②将上面两式①式平方除以②式,得21222142.2y y my y m++=-+因为22,F A F Bλ=所以12,yyλ=且0.λ<则2212222141422,22y y m m y y m m λλ++=-⇒++=-++ 由[]225111142,12200,2222m m λλλλλ∈--⇒-≤+≤-⇒-≤++≤⇒-≤-≤+所以2207m ≤≤,因为()()11222,,2,,TA x y TB x y =-=- 所以()12124,TA TB x x y y +=+-+,又12222m y y m +=-+,所以()()21212241422m x x m y y m ++-=+-=-+,故()()2221212||4TA TB x x y y +=+-++()()()()()()()222222222222222161162282842881622222m m m mm mmmm ++-++=+==-++++++, 令212t m =+,因为2207m ≤≤,所以27111622m ≤≤+,即71,162t ⎡⎤∈⎢⎥⎣⎦, 所以222717||82816842TA TB t t t ⎛⎫+=-+=--⎪⎝⎭.而71,,162t ⎡⎤∈⎢⎥⎣⎦所以2169||4,.32TA TB ⎡⎤+∈⎢⎥⎣⎦所以2,8TA TB ⎡+∈⎢⎣⎦【名师点睛】本题考查了待定系数法求椭圆方程、直线与椭圆的位置关系,解题的关键是设直线l 的方程为1x my =+,利用根与系数关系得出221422m m λλ++=-+,求出2m 的取值范围,考查了运算求解能力.3.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为()12,0F -,点(在椭圆E 上.(1)求椭圆E 的方程;(2)如图,O 为坐标原点,点A 为椭圆E 上一动点(非长轴端点),直线2AF 、AO 分别与椭圆E 交于点B 、C ,求ABC 面积的最大值.【试题来源】江苏省南京市第一中学2020-2021学年高三上学期1月阶段性检测【答案】(1)22184x y +=;(2)ABC面积的最大值为. 【分析】(1)由题意可得2c =,将点代入椭圆方程,结合222a b c =+即可求解. (2)设直线2AF :2x ky =+,将直线与椭圆联立,利用根与系数关系以及弦长公式求出AB ,利用点到直线的距离公式求出点O 到直线2AF 的距离为d ,2ABCAOBSSd AB ==⋅利用基本不等式即可求解.【解析】(1)因为椭圆经过点(,,且左焦点为()12,0F -,则222224212a b c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩,解得228,4a b ==,所以椭圆E 的方程为22184x y +=.(2)由题意可设直线2AF :2x ky =+,221842x y x ky ⎧+=⎪⎨⎪=+⎩,整理可得()222440k y ky ++-=, 设()()1122,,,A x y B x y ,则12242k y y k +=-+,12242y y k =-+,12y y ∴-==()212212k AB y y k +=-=+,设O 到直线2AF 的距离为d ,则d =,由对称性可知OC OA =,则()22122ABCAOBk SSd AB k +==⋅==+12=≤==,即0k =时取等号,所以ABC 面积的最大值为【名师点睛】本题考查了直线与椭圆的位置关系,解题的关键是求出弦长以及根据对称性得出2ABCAOBSSd AB ==⋅,考查了分析能力、运算求解能力.4.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(0)a b >>过点⎛ ⎝⎭,其左顶点为A ,上顶点为B .直线l :2y x t =-+()t ∈R 与x ,y 轴分别交于点M ,N ,直线AN ,BM 分别与椭圆C 交于点P ,Q .(P 异于点A ,Q 异于点B ) (1)求椭圆C 的方程;(2)若AP BQ =,求直线l 的方程.【试题来源】辽宁省名校联盟2020-2021学年高三3月份联合考试【答案】(1)2214x y +=;(2)2y x =- 【分析】(1)由离心率及所过点的坐标结合222a b c =+列关于,,a b c 方程组解之可得; (2)求出直线,AN BM k k 知AN BM ⊥,设AN k k =,直线AN 方程为(2)y k x =+,直线BM 方程11y x k=-+,直线AN 方程与椭圆方程联立后求得P 点横坐标,由直线上弦长公式求得AP ,同理得BQ ,然后由AP BQ =求得k ,即得t 值,从而得到直线l 的方程.【解析】(1)由题意可知,2c a =,因为椭圆C 过点⎛ ⎝⎭,所以221314a b +=, 因为222a b c =+,解得2a =,1b =,所以椭圆C 的方程为2214x y +=;(2)由(1)可知,(2,0)A -,(0,1)B ,且,02t M ⎛⎫⎪⎝⎭,(0,)N t , 则2ANt k =,122BM k t t -==-,所以1AN BM k k ⋅=-,设AN 的斜率为k ,则AN :(2)y k x =+,BM :11y x k=-+, 将直线AN 与椭圆C 的方程联立,22(2)14y k x x y =+⎧⎪⎨+=⎪⎩, 消去y ,整理得()222241161640k x k x k +++-=,因为2A x =-,且2216441A P k x x k -⋅=+,所以228241P k x k -+=+,则P AP x =+=, 将直线BM 与椭圆C 的方程联立221114y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y ,整理得()22480k x kx +-=,因为0B x =,且284B Q kx x k +=+,所以284Q k x k =+,则BQ x ==7k =±, 因为2t k =,所以t =,则直线l的方程为2y x =- 【名师点睛】本题考查由离心率求椭圆方程,考查直线与椭圆相交问题.本题在直线与椭圆相交问题中采取的方法是解析几何的基本方法,设直线斜率为k ,写出直线方程,与椭圆方程联立求出交点坐标,然后计算弦长,由弦长相等求得斜率k ,最终求得参数t .5.某城市决定在夹角为30的两条道路EB 、EF 之间建造一个半椭圆形状的主题公园,如图所示,2AB =千米,O 为AB 的中点,OD 为椭圆的长半轴,在半椭圆形区域内再建造一个三角形游乐区域OMN ,其中M ,N 在椭圆上,且MN 的倾斜角为45︒,交OD 于G .(1)若3OE =千米,为了不破坏道路EF ,求椭圆长半轴长的最大值; (2)若椭圆的离心率为2,当线段OG 长为何值时,游乐区域OMN 的面积最大? 【试题来源】湖南省永州市2021届高三下学期二模 【答案】(1)3;(2)当线段OG长为2千米,游乐区域MNP △的面积最大.【分析】(1)由题可设椭圆方程为2221x y a+=,可得出直线EF的方程为3y =+,根据题意可得直线EF 与椭圆至多只有一个交点,联立方程利用0∆≤可求出a 的范围;(2)由题可得椭圆方程为221(0)4x y x +=≥,设(),0G m ,将直线MN 的方程()02x y m m =+<<代入椭圆,利用根与系数关系表示出三角形面积可求出最值.【解析】(1)以点O 为坐标原点,OD 所在直线为x 轴建立如图所示的平面直角坐标系,设椭圆方程为()222210x y a b a b+=>>,因为3OE =,则()0,3E ,又EB 、EF 夹角为30,所以直线EF的方程为3y =+.因为2AB =,则1b =,则椭圆方程为2221x y a+=,为了不破坏道路EF ,则直线EF 与椭圆至多只有一个交点,联立方程组22213x y a y ⎧+=⎪⎨⎪=+⎩,得()22221380a x x a +-+=,由于直线EF 与半椭圆至多只有一个交点, 则()422271380a aa-+⋅≤,又0a >,得0a <≤当3a =时半椭圆形主题公园与道路直线EF相切,所以max 3a =.(2)设椭圆焦距为2c,由椭圆的离心率2c a =,1b =,222a b c =+,解得24a =,所以,椭圆的方程为221(0)4x y x +=≥.设(),0G m ,又MN 倾斜角为45︒,且交OD 于G , 所以直线MN 的方程为()02x y m m =+<<,由2214x y x y m ⎧+=⎪⎨⎪=+⎩得225240y my m ++-=, 设()11,M x y ,()22,N x y ,则1225y y m +=-,21245m y y -=,12y y -===,则1211122OMN S OG y y m =⨯⨯-==≤△,当且仅当m =OMN 的面积最大. 所以当线段OGMNP △的面积最大. 【名师点睛】解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出根与系数关系;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入根与系数关系求解.6.已知椭圆()22122:10x y C a b a b+=>>的左右焦点分别为12,FF .点12A ⎫⎪⎭在椭圆上;直线1AF 交y 轴于点B .且22AF OB =-.其中O 为坐标原点. (1)求椭圆1C 的方程;(2)直线l 斜率存在,与椭圆1C 交于,D E 两点,且与椭圆()22222:01x y C a bλλ+=<<有公共点,求DOE ∆面积的最大值.【试题来源】山东省菏泽市2021届高三下学期3月一模【答案】(1)2214x y +=;(2)()max 1211,12DOE S λλ∆⎧<<⎪⎪=⎨⎪≤<⎪⎩.【分析】(1)由22AF OB =-可得c =12A ⎫⎪⎭代入方程化简即可求得方程;(2)设直线l 的方程,y kx m =+代入椭圆方程,结合根与系数关系求得弦长DE ,由点到直线距离公式与三角形面积公式求得面积表达式,通过化简整理即可得结果.【解析】()1 ()()12,0,,0F c F c -设由22AF OB =-可得()120,2B c y ⎛⎫--=- ⎪⎝⎭,得0c -=即c =12A ⎫⎪⎭在椭圆上,因此223114a b +=, 即()22311,43a a +=-解得24a =或294a =(舍去),故椭圆1C 的方程2214x y +=. ()2设直线l 的方程为,y kx m =+原点到直线l的距离为d =联立方程组2244,x y y kx m⎧+=⎨=+⎩并化简得()222148440k x kmx m +++-=,设()()1122,,,D x y E x y ,则:2121222844,1414km m x x x x k k--+==++,DE ==,故1122DOES d DE ∆=⋅====2244,x y y kx m λ⎧+=⎨=+⎩可得()222148440,kxkmx m λ+++-=则()()()2228414440,km k m λ-+-≥即2214m kλ≥+,故①当102λ<<时,则221142m k λ≤<+,故221142m k λ=<+, 即直线与椭圆22222:x y C a b λ+=相切时面积最大为②当121λ≤<时,易知221142m k =+时,DOE △面积最大为1. 综上可得()max1211,12DOE S λλ∆⎧<<⎪⎪=⎨⎪≤<⎪⎩. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7.已知椭圆C 的方程为22213x y a +=,斜率为(0)k k ≠的直线与C 相交于,M N 两点.(1)若G 为MN 的中点,且34OG k k=-,求椭圆C 的方程; (2)在(1)的条件下,若Р是椭圆C 的左顶点,1,4PM PN k k F ⋅=-是椭圆的左焦点,要使F 在以MN 为直径的圆内,求k 的取值范围.【试题来源】辽宁省沈阳市2020-2021学年高三下学期质量监测数学卷(一)【答案】(1)22143x y +=;(2),00,77k ⎛⎫⎛⎫∈-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)设()()()112200,,,,,M x y N x y G x y 利用点差法求出直线MN 的斜率01221203x y y k x x a y -==-⨯-,将0034OG y k k x =-=代入可得a 的值,进而可得椭圆C 的方程;(2)设MN 方程为y kx m =+与椭圆方程联立,利用根与系数的关系求出12x x +、12x x 、12y y +、12y y ,由14PM PN k k ⋅=-可得m 与k 之间的关系,再代入()()11221212121,1,10FM FN x y x y x x x x y y ⋅=++=++++<⋅即可求解.【解析】()1设,M N 两点坐标分别为()()()112200,,,,,M x y N x y G x y 带入椭圆方程得()()22112222221,131,23x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩,()()12-得()()()()12121212203x x x x y y y y a +⋅-+⋅-+= 可得00121222212120023332MN x xy y x x k k x x a y y a y a y -+==-⨯=-⨯=-⨯=-+,因为0034OG y k k x =-=,所以2343k k a ⎛⎫-⨯-= ⎪⎝⎭, 所以24a =,椭圆C 的方程为22143x y +=.()2设MN 方程为y kx m =+,则223412x y y kx m⎧+=⎨=+⎩, ()2223484120k x kmx m +++-=,122834km x x k -+=+,212241234m x x k -=+,()12122286223434km m y y k x x m k m k k -⎛⎫+=++=⨯+= ⎪++⎝⎭, ()()()2212121212y y kx m kx m k x x km x x m ⋅=+⋅+=+++222222224128312343434m km m k k km m k k k ---⎛⎫=⋅++= ⎪+++⎝⎭()()()12121212121212222224PM PN y y y y y y k k x x x x x x x x ⋅⋅⋅=⨯==+++⋅+⋅+++ 22223121416164m k m km k -==--+,解得2m k =(舍),或,m k =- 若F 在以MN 为直径的圆内,则0FM FN ⋅<,即()()11221212121,1,10FM FN x y x y x x x x y y ⋅=++=++++<⋅,222222412831210343434m km m k k k k---++=+++即222224128312340k k k k k -++-++=即2790k -<,且0k ≠,解得77k -<<且0k ≠,所以k 的取值范围为0,77⎛⎫⎛-⋃ ⎪ ⎪ ⎝⎭⎝⎭【名师点睛】解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.8.以原点O 为中心的椭圆C 的焦点在x 轴上,G 为C 的上顶点,且C 的长轴长和短轴长为方程28120x x -+=的两个实数根. (1)求C 的方程与离心率;(2)若点N 在C 上,点M 在直线2y =上,2GN GM =,且GN GM ⊥,求点N 的坐标.【试题来源】云南西南名校2021届高三下学期联考【答案】(1)C 的方程为2219x y +=,离心率为3;(2)2,3⎛ ⎝⎭或2,3⎛- ⎝⎭或2,3⎛- ⎝⎭或2,3⎛-- ⎝⎭. 【分析】(1)由根与系数关系得26a =,22b =,即可写出C 的方程及其离心率; (2)由GN GM ⊥知1GN GM k k =-⋅,令(),2M M x 且0M x ≠,(),N N N x y ,结合2GN GM =且N 在C 上,即可求N 的坐标.【解析】(1)由题意可设C 的方程为()222210x y a b a b+=>>,因为28120x x -+=的两根为12x =,26x =,所以26a =,22b =,则3a =,1b =,即C 的方程为2219x y +=,所以离心率3c e a ==. (2)由(1)知()0,1G ,设(),2M M x 且0M x ≠,(),N N N x y ,则211GM M Mk x x -==, 由GN GM ⊥,得1GN M GMk x k =-=-.由2GN GM =0N x -=2N x =.由2219N N x y +=,得3N y =,故N 的坐标为⎛ ⎝⎭或2,⎛ ⎝⎭或⎛- ⎝⎭或2,⎛- ⎝⎭.【名师点睛】(1)应用根与系数关系求椭圆参数值,进而写出椭圆方程及其离心率即可. (2)由直线垂直关系有1GN GM k k =-⋅,结合已知条件即可求N 的坐标.9.如图,已知点12,A A 分别是椭圆221:14x C y +=的左、右顶点,点P 是椭圆1C 与抛物线22:2(0)C y px p =>的交点,直线12,A P A P 分别与抛物线2C 交于,M N 两点(,M N 不同于P ).(1)求证:直线MN 垂直x 轴;(2)设坐标原点为O ,分别记,OPM OMN 的面积为21,S S ,当2OPA ∠为钝角时,求12S S 的最大值.【试题来源】浙江省超级全能生2021届高三下学期3月联考 【答案】(1)证明见解析;(2)最大值18. 【分析】(1)设()()()001122,,,,,P x y M x y N x y ,写出1A P 方程与抛物线方程联立求出1x ,同理求得2x ,可证结论;(2)首先有220014x y +=且2002y px =,求出12,S S ,作比值12S S ,化为0x 的函数,由2OPA ∠为钝角时,即20PO PA ⋅<得0x 的范围,在此范围可得最大值. 【解析】(1)证明:由题可得点12(2,0),(2,0)A A -. 设()()()001122,,,,,P x y M x y N x y ,则直线0102:2x A P x y y +=-, 与抛物线2C 的方程联立,消去x 得()022240p x y y p y +-+=.由根与系数关系得104y y p ⋅=,所以220111200448,22p y y p p y x y p p y ⎛⎫ ⎪⎝⎭====.又直线0202:2x A P x y y -=+,同理可得220222200448,22p y y p p y x y p p y ⎛⎫- ⎪⎝⎭=-===,所以12x x =,所以直线MN 垂直x 轴.(2)因为点()00,P x y 是椭圆1C 与抛物线2C 的交点,所以220014x y +=且2002y px =.因为111OPMOA MOA PS SSS==-11101122OA y OA y =⋅-⋅2004p y y -=,22113013222OMNp S Sx y y ==⋅=, 所以2222200010224132244p y y y S y S p p p ⎛⎫-=⋅=-+ ⎪⎝⎭20084x x =-+. 因为2OPA ∠为钝角,所以20OP A P ⋅<,即2200020x x y -+<.把2214x y =-代入上式,解得0223x <<,易知当01x =时,12S S 取到最大值18.【名师点睛】本题考查直线与抛物线相交问题,解题方法是解析几何的基本思想与方法,设公共点00(,)P x y ,求出直线12,A P A P 方程与抛物线方程联立求得交点.M N 的坐标,由横坐标相等证明MN 与x 轴垂直,求最值时也是由点,M N 坐标求出面积比12S S ,由已知条件求得坐标0x 的取值范围,然后可得最大值.10.已知椭圆2222:1(0)x y C a b a b+=>>的离心率是12,椭圆C 过点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)已知12,F F 是椭圆C 的左、右焦点,过点2F 的直线l (不过坐标原点)与椭圆C 交于,A B 两点,求11F A F B ⋅ 的取值范围.【试题来源】东北三省三校(哈师大附中 东北师大附中 辽宁省实验中学 )2020-2021学年高三下学期第一次联合模拟考试【答案】(1)22143x y +=;(2)73,4⎛⎤- ⎥⎝⎦. 【分析】(1)由离心率及点的坐标列出关于,a b 的方程组,解之可得椭圆标准方程;(2)设()()1122,,,A x y B x y ,设直线l 的方程为1x my =+,代入椭圆方程后应用根与系数关系得1212,y y y y +,代入11F A F B ⋅,利用不等式的性质可得取值范围.【解析】(1)由条件知22222141914a b a a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得2243a b ⎧=⎨=⎩,, 因此椭圆C 的方程为22143x y +=.(2)设()()1122,,,A x y B x y ,则()()1111221,,1,F A x y F B x y =+=+, 设直线l 的方程为1x my =+,代入椭圆C 的方程消去x ,得()2234690m y my ++-=, 由根与系数关系得12122269,3434m y y y y m m --+==++, ()()()()11121212121122F A F B x x y y my my y y ⋅=+++=+++()()21212124m y y m y y =++++()222222969719124334343434m m m m m m m m ---+=+++==-+++++ 2344m +≥,219190344m ∴<≤+, 219733344m ∴-<-+≤+,所以1173,4F A F B ⎛⎤⋅∈- ⎥⎝⎦. 【名师点睛】本题考查由离心率求椭圆标准方程,考查直线与椭圆相交中的范围问题,解题方法是设而不求的思想方法:设交点坐标坐标为1122(,),(,)x y x y ,设直线方程为y kx t =+,代入椭圆方程消元后(可以消去x )应用根与系数关系得得1212,x x x x +(1212,y y y y +),代入所求的量化简变形后利用不等式的知识可得取值范围.11.已知椭圆1C :22221x y a b +=(0a b >>)的离心率为22,1C的长轴是圆2C :222x y +=的直径.(1)求椭圆的标准方程;(2)过椭圆1C 的左焦点F 作两条相互垂直的直线1l ,2l ,其中1l 交椭圆1C 于P ,Q 两点,2l 交圆2C 于M ,N 两点,求四边形PMQN 面积的最小值.【试题来源】广东省肇庆市2021届高三二模【答案】(1)2212x y +=;(2)2.【分析】(1)根据1C 的长轴是圆2C :222x y +=的直径,可得a ,再由离心率c e a ==,求得b 即可.(2)由(1)可得()1,0F -,分过点F 的直线1l 的斜率不存在,斜率为0,F 的直线1l 的斜率存在且不为0时,分别求得弦长PQ ,MN ,根据两直线垂直,由12PMQN S MN PQ =求解. 【解析】(1)由2a =,得a =由2c e a ==,得1c =,所以1b =.所以椭圆的方程为2212x y +=.(2)由(1)可得()1,0F -.①当过点F 的直线1l的斜率不存在时,MN =PQ =这时11222PMQN S MN PQ ==⨯=. ②当过点F 的直线1l 的斜率为0时,2MN =,PQ =,这时11222PMQN S MN PQ ==⨯⨯= ③当过点F 的直线1l 的斜率存在且不为0时,设直线1l 的方程为1x my =-,()11,P x y ,()22,Q x y .由22112x my x y =-⎧⎪⎨+=⎪⎩,整理可得()222210m y my +--=. 12222m y y m +=+,12212y y m -=+.所以)212212m y m PQ +=-==+.直线2l 的方程为0mx y m ++=,坐标原点O 到2l的距离d =,所以MN ==所以12PMQNS MN PQ === 由222m +>,得2>,即(2,PMQN S ∈. 综上所述,四边形PMQN 的面积的最小值为2.【名师点睛】圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.12.已知椭圆()22122:10x y C a b a b+=>>的左右焦点分别为12,F F ,离心率为12,过椭圆右焦点的直线交椭圆于,A B 两点,1AF B △的周长为8,O 为坐标原点, (1)求椭圆的方程;(2)求面积AOB 的最大值.【试题来源】吉林省长春市2021届高三质量监测(二)【答案】(1)22143x y +=;(2)32. 【分析】(1)利用题意定义可求出2a =,再根据离心率可得答案;(2)设出直线方程与椭圆方程联立,利用根与系数关系可表示出OAB 的面积,再利用函数的性质可得答案. 【解析】(1)设椭圆半焦距为,c 由题意可知48,2a a ==,由离心率有21,3c b ==,所以椭圆方程为22143x y +=,(2)设直线:1AB x ty =+,联立方程组221431x y x ty ⎧+=⎪⎨⎪=+⎩, 消去x 得()2243690t yty ++-=,设()()1122,,,A x y B x y ,有12122269,4343t y y y y t t --+==++,由21OF =, 所以OAB的面积2121612S OF y y =⋅-==⨯,函数1()3f x x x =+[)1,x ∈+∞,令121x x >≥, 则()1212121212123111()()33x x f x f x x x x x x x x x ⎛⎫⎛⎫--=+-+=- ⎪ ⎪⎝⎭⎝⎭, 因为121x x >≥,所以()121212310x x x x x x -->,12())0(f x f x ->.所以()f x 在[)1,x ∈+∞1≥,所以4≥,当且仅当0t =时取等号,所以6312S =≤,所以OAB 面积的最大值为32. 【名师点睛】本题考查了椭圆的方程、椭圆与直线的位置关系,解题的关键点是利用根与系数关系表示出三角形的面积,考查了学生分析问题、解决问题的能力及计算能力. 13.在平面直角坐标系中,O 为坐标原点,动点G到()1F,)2F 两点的距离之和为4.(1)试判断动点G 的轨迹是什么曲线,并求其轨迹方程C ; (2)已知直线L:(y k x =与圆F:(2214x y +=交于M 、N 两点,与曲线C 交于P 、Q 两点,其中M 、P 在第一象限.d 为原点O 到直线l 的距离,是否存在实数k ,使得()2T NQ MP d =-⋅取得最大值,若存在,求出k ;不存在,说明理由. 【试题来源】山东省日照市2021届高三下学期一模【答案】(1)椭圆,2214x y +=;(2)存在,2k =±. 【分析】(1)根据椭圆定义得方程;(2)分析可知1NQ MP PQ -=-,再代入消元,用根与系数关系及弦长公式得到T 的函数关系式,再求最值.【解析】(1)由题意知,124GF GF +=,又4>G 的轨迹是椭圆.由椭圆的定义可知,c =2a =,因为222a c b -=所以21b =,故G 的轨迹方程2214x y +=.(2)由题设可知,M 、N 一个椭圆外,一个在椭圆内;P 、Q 一个在2F 内,一个在2F 外,在直线l 上的四点满足:()()1NQ MP NQ NP MP NP PQ MN PQ -=+-+=-=-由(2214x y y k x ⎧+=⎪⎨⎪=⎩消去y 得()2222141240k x x k +-+-=,0∆>恒成立. 设()11,P x y ,()22,Q x y,由根与系数关系得212214x x k+=+,212212414k x x k -=+,224441k PQ k +==+. 所以23141NQ MP PQ k -=-=+,O 到l距离,d =()()()222222299451411k k T NQ MP d k k k k =-⋅==++++2291145k k=≤=++,当且仅当2214kk =,即k=时等号成立.验证可知k =满足题意. 【名师点睛】把两条动线段的长度差转换为一条动线段与定值差的关系,从而转换为求动弦长的表达式(常规问题).14.已知椭圆()2222:10x y C a b a b +=>>的离心率为12,且经过点2A ⎫⎪⎪⎭.设椭圆C 的左、右焦点分别为1F 、2F ,P 是椭圆C 上的一个动点(异于椭圆C 的左、右端点). (1)求椭圆C 的方程;(2)过点P 作椭圆C 的切线l ,过点1F 作l 的垂线,垂足为Q ,求12QF F 面积的最大值. 【试题来源】广东省揭阳市2021届高三下学期教学质量测试【答案】(1)22143x y +=;(2)2. 【分析】(1)根据已知条件可得出224a c =,223b c =,再将点A 的坐标代入椭圆C 的方程,求出c 的值,即可得出椭圆C 的方程;(2)设直线:l y kx m =+,联立直线l 与椭圆C 的方程,由0∆=可得出2243m k =+,求出点Q 的坐标,可计算得出点Q 的轨迹方程,进而可求得12QF F 面积的最大值.【解析】(1)由椭圆C 的离心率12c a =,可得2214c a =,即有224a c =.再结合a 、b 、c 三者的关系可得223b c =.椭圆C 的方程可化为2222143x yc c+=,将点A ⎭代入上述椭圆方程可得2211122c c +=. 求解得21c =,所以1c =,2a =,b =C 的方程为22143x y +=;(2)设直线:l y kx m =+,联立直线l 与椭圆C 的方程可得()2224384120k x kmx m +++-=.若直线l 与椭圆C 相切,可得上述方程只有一个解,即有()()()22284434120km k m ∆=-+-=,化简可得2243m k =+,(*).设点Q 的坐标为(),x y ,过点1F 作l 的垂线为()11:1l y x k=-+, 联立1l 与l 求得211km x k --=+,21k my k -+=+.由上式可得()()()()2222222222221111km m k k k m y m x k k ++-++++==++,将(*)代入上式可得224x y +=,故可知点Q 的轨迹为以原点为圆心,以2为半径的圆.P 是椭圆C 上的异于端点的动点,故该轨迹应去掉点()2,0±.12QF F 的面积为1212122QF F Q Q S F F y y =⋅⋅=≤△,即12QF F 面积的最大值为2.【名师点睛】圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.15.已知椭圆()2222:10x y E a b a b +=>>(1)求椭圆E 的方程;(2)直线11:l y k x =交E 于A 、C 两点,直线22:l y k x =交E 于B 、D 两点,若1212k k ⋅=-.求四边形ABCD 的面积.【试题来源】陕西省西安中学2021届高三下学期第二次模拟考试【答案】(1)2212x y +=;(2)【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,解出这三个量的值,由此可得出椭圆E 的方程;(2)求出AC 以及点B 到直线AC 的距离d ,可得出四边形ABCD 的面积关于1k 、2k 的表达式,将2112k k =-代入四边形ABCD 的面积的表达式,化简即可得解.【解析】(1)由已知得2c a a b ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,因此,椭圆E 的方程为2212x y +=;(2)设()11,A x y 、()22,B x y ,则()11,C x y --、()22,D x y --, 联立12221222222y k x x k x x y =⎧⇒+=⎨+=⎩,则2121212x k =+, ()111AC x x ∴=--==,同理可得2222212x k =+, 且B 到直线1l的距离d ===所以2ABC ABCD S S AC d ==⋅==△四边形又12211122k k k k =-⇒=-所以ABCD S =====四边形. 【名师点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.16.已知椭圆22:16x C y +=.(1)求椭圆C 的离心率;(2)经过原点的直线与椭圆C 交于P 、Q 两点,直线PM 与直线PQ 垂直,且与椭圆C 的另一个交点为M .①当点M 为椭圆C 的右顶点时,求证:PQM 为等腰三角形; ②当点P 不是椭圆C 的顶点时,求直线PQ 和直线QM 的斜率之比. 【试题来源】北京市2021届高三年级数学学科综合能力测试试题 【答案】(1(2)①证明见解析;②6. 【分析】(1)由椭圆方程得出a 、c 的值,即可得出椭圆C 的离心率的值;(2)①设点()00,P x y ,则点()00,Q x y --,由已知得出0QP MP ⋅=,可求得0x 、20y 的值,利用两点间的距离公式得出MP QP =,进而可证得结论成立; ②设点()11,M x y ,利用点差法计算得出16PM QM k k ⋅=-,由PM PQ ⊥得出1PM PQ k k ⋅=-,由此可得出PQ PQ PM QMQM PMk k k k k k ⋅=⋅,即可得解.【解析】(1)在椭圆22:16x C y +=中,a =1b =,则c ==因此,椭圆C的离心率为6c e a ===; (2)①设点()00,P x y ,则点()00,Q x y --,220016x y +=,可得220016x y =-,当点M 为椭圆C的右顶点时,)M,()00MP x y =,()002,2QP x y =,(2000220MP QP x x y ⋅=+=,即220106x x +-=,整理可得200560x -+=,即(0050x x =,由题意可知,点P 不与点M重合,则0x =202425y =,2QP x ==,(MP x ==MP QP =, 因此,PMQ 为等腰三角形; ②设点()11,M x y ,则1010PMy y k x x -=-,1010QM y y k x x +=+,则22102210PM QM y y k k x x -⋅=-, 由已知得221122001616x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2222101006x x y y -+-=,可得2210221016PM QM y y k k x x -⋅==--, PM PQ ⊥,1PM PQ k k ∴⋅=-,所以,1616PQPQ PM QMQM PMk k k kk k ⋅-===⋅-.【名师点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.17.已知椭圆2222:1(0)x y C a b a b+=>>,直线:l y kx a =+,直线l 与椭圆C 交于M ,N两点,与y 轴交于点P ,O 为坐标原点.(1)若1k =,且N 为线段MP 的中点,求椭圆C 的离心率; (2)若椭圆长轴的一个端点为()2,0Q ,直线,QM QN 与y 轴分别交于,A B 两点,当1PA PB ⋅=时,求椭圆C 的方程.【试题来源】河南省2021届普通高中毕业班高考适应性测试【答案】(1)e ;(2)22143x y +=【分析】(1)由直线:l y x a =+,(),0M a -,()0,P a ,利用中点坐标公式知,22a a N ⎛⎫-⎪⎝⎭,代入椭圆得2213b a =,利用离心率公式即可求解;(2)由题意得2a =,联立222142x yb y kx ⎧+=⎪⎨⎪=+⎩,整理得()22224161640kb x kx b +++-=,利用根与系数关系得2222216164,44M N M N k b x x x x k b k b-+=-=++,设直线QM 方程,求出A 坐标,进而求出PA ,同理求出PB ,再利用1PA PB ⋅=,求得23b =,可得椭圆方程.【解析】(1)若1k =,则直线:l y x a =+,可知直线l 与x 轴交与点(),0a -,与y 轴交与点()0,a ,∴点M 为椭圆C 的左顶点,即(),0M a -,()0,P a由中点坐标知,22a a N ⎛⎫- ⎪⎝⎭,代入椭圆221:144a C b +=,得2213b a =,22222213c b e a a ==-=,即椭圆C的离心率e .(2)由题意得2a =,知()0,2P ,椭圆222:14x y C b +=.联立222142x y b y kx ⎧+=⎪⎨⎪=+⎩,消去y ,整理得()22224161640k b x kx b +++-=.设(),M M M x y ,(),N N N x y ,()22216440bkb ∆=+->由根与系数关系得2222216164,44M N M N k b x x x x k b k b-+=-=++ 可知直线:(2)2M M y QM y x x =--,20,2M M y A x ⎛⎫-∴ ⎪-⎝⎭()2242242(1)0,0,0,2222M M M M MM M M kx x y x k x PA x x x +-⎛⎫⎛⎫⎛⎫+-+∴=== ⎪ ⎪ ⎪---⎝⎭⎝⎝+⎭⎭. 同理可求得2(1)0,2N Nk x PB x ⎛⎫+= ⎪-⎝⎭, ()222222222221644(1)4(1)44116416242444M N M N M N b k k x x k b PA PB b b k x x x x k b k b -+++∴⋅===-=--++⎛⎫--+ ⎪++⎝⎭⨯, 23b ∴=.∴椭圆C 的标准方程为22143x y+=. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.18.已知点(1,0)A ,点B 是圆221:(1)16O x y ++=上的动点,线段AB 的垂直平分线与1BO 相交于点C ,点C 的轨迹为曲线E . (1)求E 的方程(2)过点1O 作倾斜角互补的两条直线12,l l ,若直线1l 与曲线E 交于,M N 两点,直线2l 与圆1O 交于,P Q 两点,当,,,M N P Q 四点构成四边形,且四边形 MPNQ的面积为求直线1l 的方程.【试题来源】广东省广州市2021届高三一模【答案】(1)22143x y +=;(2)y x =或y x =-【解析】(1)C 在线段AB 的垂直平分线上,CA CB ∴=,又C 在1BO 上,1114O B O C CB O C CA ∴=+=+=, 则可得点C 的轨迹是以1,O A 为焦点的椭圆,则24a =,即2a =,1c =,2223b a c =-=,故E 的方程为22143x y +=;(2)若1l x ⊥轴时,如图,此时8PQ =,132MO =,则38122MPNQ S =⨯=,不符合题意;若2l x ⊥轴时,如图,此时4MN =,4OP =,则4416MPNQ S =⨯=,不符合题意;当12,l l 都不与坐标轴垂直时,如图,设1l 斜率分别为k ,由于12,l l 倾斜角互补,则2l 斜率为k -, 则直线1l 方程为()1y k x =+,直线2l 方程为()1y k x =-+,联立直线1l 与椭圆()221143y k x x y ⎧=+⎪⎨+=⎪⎩,可得()22223484120k x k x k +++-=,设()()1122,,,M x y N x y ,则2122834k x x k +=-+,212241234k x x k -=+,则点M 到直线2l的距离为1d ===,同理可得点N 到直线2l的距离为2d =,则()1211822MPNQ S PQ d d =+=⨯⨯)121218112x x x =⨯+++=-==29634k k ==+2k =±, 故直线1l的方程为22y x=+或22y x =--.【名师点睛】解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出根与系数关系;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入根与系数关系求解.19.设O 是坐标原点,以1F 、2F 为焦点的椭圆()2222:10x y C a b a b+=>>的长轴长为以12F F 为直径的圆和C 恰好有两个交点. (1)求C 的方程;(2)P 是C 外的一点,过P 的直线1l 、2l 均与C 相切,且1l 、2l 的斜率之积为112m m ⎛⎫-≤≤- ⎪⎝⎭,记u 为PO 的最小值,求u 的取值范围.【试题来源】广东省深圳市2021届高三一模【答案】(1)2212x y +=;(2). 【分析】(1)根据已知条件求出a 、b 、c 的值,由此可得出椭圆C 的方程;(2)设过()00,P x y 的切线方程为()00:l y y k x x -=-,将直线l 的方程与椭圆C 的方程联立,消去y 可得出关于x 的一元二次方程,由直线l 与椭圆C 相切可得出0∆=,可得出关于k 的二次方程,结合根与系数关系得出220012y mx m =+-,进而可得出PO 的表达式,根据二次函数的基本性质得出u =m 的取值范围可得结果.【解析】(1)由题意可得2a =,a ∴=因为以12F F 为直径的圆和C 恰好有两个交点,则b c =,222222b c b a +===,可得1b c ==,因此,椭圆C 的方程为2212x y +=;(2)由题意可知,直线1l 、2l 的斜率存在且不为零, 设过点()00,P x y 的切线()00:l y y k x x -=-,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由(Ⅰ)知 或 ,故没有符合题意的常数 .
20、[解析]:设 ,由OP ⊥ OQ x1x2+ y1y2= 0
又将

代入①化简得 .
(2) 又由(1)知
,∴长轴2a∈[ ].
【专项训练】:
一、选择题:
1.椭圆 的焦距是( )
A.2B. C. D.
2.F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是( )
A.椭圆B.直线C.线段D.圆
3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点 ,则椭圆方程是( )
A. B. C. D.
(I)求 的取值围;
(II)设椭圆与 轴正半轴、 轴正半轴的交点分别为 ,是否存在常数 ,使得向量 与 共线?如果存在,求 值;如果不存在,请说明理由.
20.椭圆 > > 与直线 交于 、 两点,且 ,其中 为坐标原点.
(1)求 的值;(2)若椭圆的离心率 满足 ≤ ≤ ,求椭圆长轴的取值围.
圆锥曲线椭圆专项训练参考答案
10.椭圆 上的点到直线 的最大距离是( )
A.3B. C. D.
二、填空题:
11.椭圆 的离心率为 ,则 。
12.设 是椭圆 上的一点, 是椭圆的两个焦点,则 的最大值为;最小值为。
13.直线y=x- 被椭圆x2+4y2=4截得的弦长为。
14、椭圆 上有一点P到两个焦点的连线互相垂直,则P点的坐标是
小结:已知椭圆的方程求最值或求围,要用不等式的均值定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。
【专项训练】:
一、选择题:ACD DABB BBD
填空题 11、3或 12、 4 1 13、 14
15、
16、解:(1)当为长轴端点时,,,椭圆的标准方程为:;
(2)当为短轴端点时,,,椭圆的标准方程为:;
7.已知 是椭圆 上的一点,若 到椭圆右焦点的距离是 ,则点 到左焦点的距离是( )
A. B. C. D.
8.若点 在椭圆 上, 、 分别是椭圆的两焦点,且 ,则 的面积是( )
A.2B.1C. D.
9.椭圆 有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为( )
A. B.
C. D.
圆锥曲线椭圆专项训练
【例题精选】:
例1求下列椭圆的标准方程:
(1)与椭圆 有相同焦点,过点 ;
(2)一个焦点为(0,1)长轴和短轴的长度之比为t;
(3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为 。
(4)
例2已知椭圆的焦点为 。
(1)求椭圆的标准方程;
(2)设点P在这个椭圆上,且 ,求: 的值。
三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.)
15.已知三角形 的两顶点为 ,它的周长为 ,求顶点 轨迹方程.
16、椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
17、中心在原点,一焦点为F1(0,5 )的椭圆被直线y=3x-2截得的弦的中点横坐标是 ,求此椭圆的方程。
例5过椭圆 一点M(2,1)引一条弦,使弦被M平分,求此弦所在直线方程。
小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。
例6已知 是椭圆在第一象限部分上的一点,求 面积的最大值。
小结:已知椭圆的方程求最值或求围,要用不等式的均值定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。
联立
∴ , 由
, ,得 .①
又 为锐角 ,
∴ 又

∴ .②
综①②可知 ,∴ 的取值围是
19.解:(Ⅰ)由已知条件,直线 的方程为 ,
代入椭圆方程得 .整理得 ①
直线 与椭圆有两个不同的交点 和 等价于 ,
解得 或 .即 的取值围为 .
(Ⅱ)设 ,则 ,
由方程①, .②又 .③
而 .
所以 与 共线等价于 ,将②③代入上式,解得 .
例3已知椭圆上横坐标等于焦点横坐标的点,其纵坐标的长等于短半轴长的
求:椭圆的离心率。
小结:离心率是椭圆中的一个重要容,要给予重视。
例4已知椭圆 ,过左焦点F1倾斜角为 的直线交椭圆于 两点。
求:弦AB的长,左焦点F1到AB中点M的长。
小结:由此可以看到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。
18.求F1、F2分别是椭圆 的左、右焦点.
(Ⅰ)若r是第一象限该数轴上的一点, ,求点P的坐标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠AoB为锐角(其中O为作标原点),求直线 的斜率 的取值围.
19.在平面直角坐标系 中,经过点 且斜率为 的直线 与椭圆 有两个不同的交点 和 .
【例题精选】:
例1(1) (2) (3)
(4) (5)
例2(1) (2
例3
例4已知椭圆 ,过左焦点F1倾斜角为 的直线交椭圆于 两点。
求:弦AB的长,左焦点F1到AB中点M的长。
解:
小结:由此可以看到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。
例5 x+2y-4=0
例6解:
过A、B的直线方程是
4.方程 表示焦点在y轴上的椭圆,则k的取值围是( )
A. B.(0,2)C.(1,+∞)D.(0,1)
5.过椭圆 的一个焦点 的直线与椭圆交于 、 两点,则 、 与椭圆的另一焦点 构成 ,那么 的周长是( )
A. B.2C. D.1
6.已知 <4,则曲线 和 有( )
A.相同的准线B.相同的焦点C.相同的离心率D.相同的长轴
17、设椭圆: (a>b>0),则a2+b2=50…①
又设A(x1,y1),B(x2,y2),弦AB中点(x0,y0)
∵x0= ,∴y0= -2=-
由 …②
解①,②得:a2=75,b2=25,椭圆为: =1
18、 (Ⅰ)易知 , , .
∴ , .设 .则
,又 ,
联立 ,解得 , .(Ⅱ)显然 不满足题条件.可设 的方程为 ,设 , .
相关文档
最新文档