第2章 LS-DYNA初始条件、边界条件和约束.概要
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA 的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic A nalysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LS-DYNA(ANSYS)中文培训教程_2
就当前所选的节点使用 CM 命令创建节点组元 Page 6
加载,定义边界条件及刚体
...一般加载过程
最好给创建的集合定义一个意义明确的名字,这样可以避免将载荷加 到错误的结构上。
定义数组参数 :
在 ANSYS/LS-DYNA中,所有载荷都是按特定时间间隔施加 ,并成 组地定义时间数组参数及相应的载荷数组参数 (*DIM and *SET):
最后,你要指定分析阶段,默认值是瞬态阶段 “Transient only” ,如 果你的载荷是应用于动力松驰分析(用来模拟隐式静态求解),选 “Dynamic relax”。如果包括两种分析,请选 “Trans and Dynam” 。
Page 11
加载,定义边界条件及刚体
...一般加载过程
两种类型均需考虑(继续): 实际温度载荷=用户施加的温度-TREF
TREF 默认值为0
PLANE162, SHELL163, and SOLID164 单元支持
PLANE162 不支持 “drelax” 文件(参见第4-3章), 只有瞬态热载荷或 冲击热载荷适于单元 PLANE162 设置ALPX=0 ,仅定义与温度相关的机械力学性能(EX, PRXY, …) ,使 瞬态热-显式分析稳定。
使用EDLOAD命令加载:
完成组元(component)或Part和参数数组定义后可以使用 EDLOAD 命令来加载:
Solution > Loading Options > Specify Loads
先选择载荷选项中的(Add Loads). 这一选项同时也可以列出载荷 (listing Loads) 和删除载荷( deleting load).
Page 5
2-ANSYS LS-DYNA基本分析流程
Thank You
© 2014 Pera Corporation Ltd. All rights reserved.
结果后处理
应力结果查看
© 2014 Pera Corporation Ltd. All rights reserved.
结果后处理
能量结果查看
© 2014 Pera Corporation Ltd. All rights reserved.
结果后处理
动画查看
© 2014 Pera Corporation Ltd. All rights reserved.
B
© 2014 Pera Corporation Lt网格的划分
指定相关的网格划分方法, 设置对应的网格尺寸
© 2014 Pera Corporation Ltd. All rights reserved.
初始条件的设定
B
定义小球下落的初始速度
A C 选择小球
© 2014 Pera Corporation Ltd. All rights reserved.
材料的定义
双击进入Model,将选择的材料赋予 对应的几何部件
© 2014 Pera Corporation Ltd. All rights reserved.
材料的定义
A
可以把小球设为刚体,减少计算时间
© 2014 Pera Corporation Ltd. All rights reserved.
材料的定义
双击进入Engineering Data,定义相关 的材料参数
© 2014 Pera Corporation Ltd. All rights reserved.
材料的定义
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA 的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
lsdyna使用的有限元方法
lsdyna使用的有限元方法有限元方法是一种数值计算方法,广泛应用于工程领域中的结构分析、流体力学、热传导等问题的求解。
lsdyna是一款常用的有限元分析软件,它能够模拟各种复杂的物理现象,并对结构的强度、刚度、振动等性能进行分析。
在lsdyna中,有限元方法的基本思想是将复杂的结构分解成许多小的有限元单元,通过建立节点和单元之间的关系来近似描述结构的行为。
使用有限元方法可以通过求解节点的位移和应变来推导出整个结构的应力和变形。
在lsdyna中,有限元方法的应用是通过以下几个步骤实现的:1. 几何建模:首先需要对待分析的结构进行几何建模,可以使用lsdyna提供的建模工具或者导入CAD模型进行建模。
在建模过程中,需要注意几何形状的准确性和合理性,以确保模型的可靠性。
2. 材料属性定义:在lsdyna中,需要为结构的各个部分定义材料的力学性质,包括弹性模量、泊松比、密度等。
这些材料属性将影响到结构的应力和变形分析结果。
3. 网格划分:将结构划分为许多小的有限元单元,并为每个节点分配自由度。
网格划分的精度和密度将直接影响到分析结果的准确性和计算效率。
4. 边界条件和加载:在lsdyna中,需要定义结构的边界条件和加载情况。
边界条件包括约束和支撑条件,加载包括施加在结构上的外部力、热源等。
这些条件将影响到结构的响应和行为。
5. 求解和后处理:在设置完边界条件和加载后,可以通过lsdyna 进行求解。
求解过程中,lsdyna将根据有限元方法对结构进行离散化,并通过迭代计算节点的位移和应变。
求解完毕后,可以进行后处理分析,包括应力分布、变形分布、振动分析等。
通过lsdyna使用的有限元方法,可以对不同类型的结构进行分析和优化。
例如,在汽车工程中,可以使用有限元方法对车身的强度和刚度进行分析,优化车身的结构设计;在航空航天工程中,可以使用有限元方法对飞机的疲劳寿命和振动特性进行分析,确保飞机的安全性和可靠性。
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA 的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic A nalysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
lsdyna使用方法2
第1章ANSYS/LS-DYNA基石出知识有限元2009-05-12 20:06:17 阅读62 评论0 字号:大中小订阅近年来,非线性结构动力仿真分析方面的研究工作和工程应用取得了很大的发展。
20世纪90年代中后期,著名的通用显式动力分析程序LS-DYNA被引入中国,在相关的工程领域中迅速得到广泛的应用,已成为国内科研人员开展数值实验的有力上具。
LS-DYNA的显式算法特别适合于分析各种非线性结构冲击动力学问题,如爆炸,结构碰撞、金属加工成形等高度非线性的问题,同时还可以求解传热、流体以及流固耦合问题。
LSTC公司和ANSYS公司合作推出的ANSYS/LS-DYNA软件,结合了LS-DYNA强大的显式动力分析方法与ANSYS的前后处理功能。
对于曾经接触过ANSYS结构分析的读者而言,谊程序无疑是最理想的辅助动力分析工具。
本章的目的在于全面介绍ANSYS/LS-DYNA的基础知识,包括下面的几个主题:+ LS-DYNA计算程序的发展过程☆LS-DYNA的分析功能与应用范围+ ANSYS/LS-DYNA的工作环境+ ANSYS/LS-DYNA的一般分析过程+ ANSYS~S-DYNA的程序组织和丈件系统+ LS-DYNA显式动力分析的基本概念1.1 LS—DYNA计算程序的发展过程1976年,美国LawrenceLivermore国家实验室J.O.Hallquist博士主持开发完成了DYNA程序系列,主要目的是为武器设计提供分析工具。
1986年部分DYNA源程序在Public Domain(北约局域网)发布,从此在研究和教育机构广泛传播,被公认为是显式有限元程序的先导,是目前所有显式求解程序的基础代码。
1988年,J.O.Hallquist创建LSTC公司(LivermoreSoftwarenchnolOWCorporation),推出LS-DYNA 程序系列,主要包括显式LS-DYNA2D、LS-DYNA3D,隐式LS-NIKE2D、LS-NIKE3D、热分析LS-TOPAZ2D、LS-TOPAZ3D,前后处理LS-MAZE、LS-ORION、LS-INGRID、LS-TAURUS等商用程序,逐步规范和完善程序的分析功能,陆续推出930版(1993年)和936版(1995年),同时增加了汽车安全性分析、金属板的冲压成形以及流固耦合(ALE算法和Eluer算法),使得LS-DYNA程序系统的应用范围不断扩大,并建立起完备的软件质量保证体系。
lsdyna使用方法2
第1章ANSYS/LS-DYNA基石出知识有限元2009-05-12 20:06:17 阅读62 评论0 字号:大中小订阅近年来,非线性结构动力仿真分析方面的研究工作和工程应用取得了很大的发展。
20世纪90年代中后期,著名的通用显式动力分析程序LS-DYNA被引入中国,在相关的工程领域中迅速得到广泛的应用,已成为国内科研人员开展数值实验的有力上具。
LS-DYNA的显式算法特别适合于分析各种非线性结构冲击动力学问题,如爆炸,结构碰撞、金属加工成形等高度非线性的问题,同时还可以求解传热、流体以及流固耦合问题。
LSTC公司和ANSYS公司合作推出的ANSYS/LS-DYNA软件,结合了LS-DYNA强大的显式动力分析方法与ANSYS的前后处理功能。
对于曾经接触过ANSYS结构分析的读者而言,谊程序无疑是最理想的辅助动力分析工具。
本章的目的在于全面介绍ANSYS/LS-DYNA的基础知识,包括下面的几个主题:+ LS-DYNA计算程序的发展过程☆LS-DYNA的分析功能与应用范围+ ANSYS/LS-DYNA的工作环境+ ANSYS/LS-DYNA的一般分析过程+ ANSYS~S-DYNA的程序组织和丈件系统+ LS-DYNA显式动力分析的基本概念1.1 LS—DYNA计算程序的发展过程1976年,美国LawrenceLivermore国家实验室J.O.Hallquist博士主持开发完成了DYNA程序系列,主要目的是为武器设计提供分析工具。
1986年部分DYNA源程序在Public Domain(北约局域网)发布,从此在研究和教育机构广泛传播,被公认为是显式有限元程序的先导,是目前所有显式求解程序的基础代码。
1988年,J.O.Hallquist创建LSTC公司(LivermoreSoftwarenchnolOWCorporation),推出LS-DYNA 程序系列,主要包括显式LS-DYNA2D、LS-DYNA3D,隐式LS-NIKE2D、LS-NIKE3D、热分析LS-TOPAZ2D、LS-TOPAZ3D,前后处理LS-MAZE、LS-ORION、LS-INGRID、LS-TAURUS等商用程序,逐步规范和完善程序的分析功能,陆续推出930版(1993年)和936版(1995年),同时增加了汽车安全性分析、金属板的冲压成形以及流固耦合(ALE算法和Eluer算法),使得LS-DYNA程序系统的应用范围不断扩大,并建立起完备的软件质量保证体系。
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA 的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic A nalysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
ANSYS_LSDYNA
LS-DYNA 程序采用动力松弛技术,可以进行动力分析前的预应力计算或者进行静力分析。
LS-DYNA3D 程序的算法基础: (1)控制方程1.动量方程:i i j j x f ..,i ρρσ=+ij σ为柯西应力 i f 为单位质量体积力 ..x 为加速度2.质量守恒:0ρρJ =ρ为当前质量密度 0ρ为初始质量密度 J 为体积变化率3.能量方程V )(VS E ij ij q p +-=。
ε………………………………………………………….(2.5)用于状态方程计算 和 总的能量平衡。
式中,V 为现时构形的体积;ij 。
ε为应变率张量;q 为体积粘性阻力 偏应力ij ij ij q p S σσ)(++= 压力q p kk --=σ31力分量的边界值就等于对应的面力分量,如下式表示))(t t n i j ij =σ在1S 面力边界上式中:j n ,j=1,2,3为现时构形边界1S 的外法线方向余弦;i t ,i=1,2,3为面力载荷b.位移边界条件(在位移边界问题中,物体在全部或部分边界u s 上的位移分量都是已知函数,即在边界上有:)()(s u u s = )()(s v v s = )()(s w w s =,其中s u )(、s v )(、s w )(是位移函数在边界上的值,)(s u 、)(s v 、)(s w 表示边界上的已知位移分量,例如对于完全固定边界0===w v u ,有0)(=s u ,0)(=s v ,0)(=s w ))(),(t K t X x i j i =在2S 位移边界上式中,)(t K i ,i=1,2,3是给定位移函数 c.滑动接触面间断处的跳跃条件单元内某一点的自然坐标表示成e x N t x }]{[)},,,({=ςηξ式中,单元内任意点在t 时刻的坐标矢量Tt x )},,,({ςηξ=[1x 2x 3x ]单元节点坐标矢量],,,...,,[}{838281131211x x x x x x x eT =插值矩阵2438181810 (0000) (0000)...00)],,([⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=φφφφφφςηξNLS-DYNA3D 程序将单元质量矩阵⎰=mV TNdV N m ρ的同一行矩阵元素都合并到对角元素项,形成集中质量矩阵。
LS-DYNA使用指南
·幂律塑性
·应变率相关塑性
·复合材料破坏
·混凝土破坏
·地表材料
·分段线性塑性
·Honeycomb蜂窝材料
·Mooney-Rivlin橡胶
·Barlat各向异性塑性
·弹塑性流体动力
·闭合多孔泡沫
·低密度泡沫
·粘性泡沫
·可压缩泡沫
·应变率相关幂律塑性
·Johnson-Cook塑性
·空材料
EDWELD:定义无质量焊点或一般焊点
EDWRITE:将显式动态输入写成LS-DYNA输入文件
PARTSEL:选择部件集合
RIMPORT:把一个显式分析得到的初始应力输入到ANSYS
REXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNA
UPGEOM:相加以前分析得到的位移,更新几何模型为变形构型
除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。因此,实体单元和壳体单元的缺省算法采用单点积分。当然,这两种单元也可以采用全积分算法。详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。
belytschkotsay薄膜keyopt15速度快建议在大多数薄膜分析中使用缩减单点积分很好地用于关心起皱的纺织品例如大的平面压缩应力破坏较薄的纤维单元全积分belytschkotsay薄膜keyopt19明显的比通用薄膜单元慢keyopt15面内有四个积分点无沙漏三角型薄壳keyopt14单元基于mindlinreissner平板理论该构型相当僵硬因此不建议用它来整体划分网格使用单点积分bciz三角型薄壳keyopt13单元基于kirchhoff平板理论三角型薄壳单元慢使用单点积分ansyslsdyna用户手册中有关shell163的描述对可用的壳单元算法作了完整的介绍
ls-dyna命令帮助手册(中文)[整理版]
Fini(退出四大模块,回到BEGIN层)/cle (清空内存,开始新的计算)1.定义参数、数组,并赋值.2./prep7(进入前处理)定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号。
设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通用后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语言8.理论手册Fini(退出四大模块,回到BEGIN层)/cle (清空内存,开始新的计算)1 定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时)2 /prep7(进入前处理)2.1 定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔坐标系1 柱坐标2 球4 工作平面5 柱坐标系(以Y轴为轴心)n 已定义的局部坐标系u numstr, label, value设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0” 如果附有节点及单元,则一起拷贝。
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic A nalysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
Ls-dyna使用指南中文版本剖析
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LS-DYNA 简介
LS-DYNA 简介LS-DYNA 是世界上最著名的通用显式动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。
在工程应用领域被广泛认可为最佳的分析软件包。
与实验的无数次对比证实了其计算的可靠性。
由J.O.Hallquist主持开发完成的DYNA程序系列被公认为是显式有限元程序的鼻祖和理论先导,是目前所有显式求解程序(包括显式板成型程序)的基础代码。
1988年J.O.Hallquist创建LSTC公司,推出LS-DYNA程序系列,并于1997年将LS-DYNA2D、LS-DYNA3D、LS-TOPAZ2D、LS-TOPAZ3D等程序合成一个软件包,称为LS-DYNA。
PC版的前后处理采用ETA公司的FEMB,新开发的后处理为LS-POST。
LS-DYNA的最新版本是2001年5月推出的960版。
LS-DYNA功能特点LS-DYNA程序960版是功能齐全的几何非线性(大位移、大转动和大应变)、材料非线性(140多种材料动态模型)和接触非线性(50多种)程序。
它以Lagrange算法为主,兼有ALE和Euler算法;以显式求解为主,兼有隐式求解功能;以结构分析为主,兼有热分析、流体-结构耦合功能;以非线性动力分析为主,兼有静力分析功能(如动力分析前的预应力计算和薄板冲压成型后的回弹计算);军用和民用相结合的通用结构分析非线性有限元程序。
------------------------------------------------------------------------------LS-DYNA功能特点1.分析能力:¨非线性动力学分析¨多刚体动力学分析¨准静态分析(钣金成型等)¨热分析¨结构-热耦合分析¨流体分析:欧拉方式任意拉格郎日-欧拉(ALE)流体-结构相互作用不可压缩流体CFD分析¨有限元-多刚体动力学耦合分析(MADYMO,CAL3D)¨水下冲击¨失效分析¨裂纹扩展分析¨实时声场分析¨设计优化¨隐式回弹¨多物理场耦合分析¨自适应网格重划¨并行处理(SMP和MPP)2.材料模式库(140多种)¨金属¨塑料¨玻璃¨泡沫¨编制品¨橡胶(人造橡胶)¨蜂窝材料¨复合材料¨混凝土和土壤¨炸药¨推进剂¨粘性流体¨用户自定义材料3.单元库¨体单元¨薄/厚壳单元¨梁单元¨焊接单元¨离散单元¨束和索单元¨安全带单元¨节点质量单元¨ SPH单元4.接触方式(50多种)¨柔体对柔体接触¨柔体对刚体接触¨刚体对刚体接触¨边-边接触¨侵蚀接触¨充气模型¨约束面¨刚墙面¨拉延筋5.汽车行业的专门功能¨安全带¨滑环¨预紧器¨牵引器¨传感器¨加速计¨气囊¨混合III型假人模型6.初始条件、载荷和约束功能¨初始速度、初应力、初应变、初始动量(模拟脉冲载荷);¨高能炸药起爆;¨节点载荷、压力载荷、体力载荷、热载荷、重力载荷;¨循环约束、对称约束(带失效)、无反射边界;¨给定节点运动(速度、加速度或位移)、节点约束;¨铆接、焊接(点焊、对焊、角焊);¨二个刚性体之间的连接-球形连接、旋转连接、柱形连接、平面连接、万向连接、平移连接;¨位移/转动之间的线性约束、壳单元边与固体单元之间的固连;¨带失效的节点固连。
LSDYNA使用指南中文版本
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
» 力 vs 变形
» 速度vs 时间
边界条件
局部坐标系的定义: *DEFINE_COORDINATE 定义一局部坐标系
指定坐标系ID号(CID)
*DEFINE_COORDINATE_NODES » 3节点: 局部坐标系原点,沿x轴, 局部 x-y 平面内
*DEFINE_COORDINATE_SYSTEM
第二章
概要 初始条件 例子:爆炸球 边界条件 载荷:例子:对称失效/加载 刚墙 约束 横截面分析
概述
• 若FEA模型已具有节点,单元,材料特性和 parts等。则可以: »施加:初始条件、边界条件、载荷和约束 »必须具有:boxes,曲线,sets,矢量等 • 当parts间发生碰撞,或与其它问题撞击时: » 刚墙 » 接触 (第三章) • 怎样测定载荷/动量 »接触力 »横截面分析
初始条件
*SET – 节点 定义节点组 » set ID号(SID) » 节点的ID号 (NID’s) *SET_NODE_LIST
*DEFINE_BOX 定义一个BOX形状的体, BOX内 的任何事物都可以作为输入 BOX的ID号 (BOXID) 定义BOX的范围: » Xmin - Xmax » Ymin - Ymax » Zmin - Zmax
»三点 的x, y, z 坐标(与 NODES方式一样) *DEFINE_COORDINATE_VECTOR
» 2 个矢量: 局部 x轴, 局部x-y平面内矢量
载荷
• 目的:定义施加的“力 ” »梁 »体 » 爆炸效果 » 热,温度 » 节点和刚体 » 壳(压力) • 避免单点集中载荷 » 物理上无意义
$$ Units: unknown - possibly gm, cm, micros, 1E7N, Mbar, 1E7Ncm
$
爆炸球的例子
爆炸球的例子
爆炸球的例子
爆炸球的例子
爆炸球的例子
爆炸球的例子
边界条件
*BOUNDARY_OPTION 目的:定义施加在边界节点上的运动 » 对流、通量、辐射和温度 » 循环对称 » 无反射边界、滑动边界和具有失效准则的 对称 (固体) » 强制运动载荷 » SPC约束
*BOUNDARY_CYCLIC
• 旋转对称
• 旋转轴矢量
» x, y 和z 轴矢量 » 矢量必须是全局的 • 2条边界线 (使用节点sets)
*DEFINE_VECTOR 定义一个矢量
»矢量ID号 (VID)
»确定尾 (xt, yt, zt) 和头 (xh, yh, zh)坐标
边界条件
仅对体单元 *BOUNDARY_NON_REFLECTING
» 防止沙漏模式
• 避免阶跃载荷 • 要求一载荷曲线
• 载荷能缩放
载荷
*LOAD_BEAM *LOAD_BODY
• 沿梁单元局部轴(r,s,t)定义牵
引载荷 • 梁单元或系列梁单元 • 每单速指定的坐标系,所以 ,施加在模型上的惯性载荷是反方向 的 – 因重力产生的预应力,与动力松弛 结合 » 角速度 • 自由度: X, Y, Z, RX, RY, RZ 所有的节点或系列 parts
»系列节点外的节点
» 定义的box中的所有节点 *INITIAL_VELOCITY_NODE
» 单个的节点
爆炸球的例子 *KEYWORD 400000000
*TITLE
an exploding sphere $ $$$$$$ An explosive material is placed inside of a sphere. $$$$$$ The explosive is lit, expands, and impacts the sphere. $$$$$$ The sphere expands, reaches yield, seam lines fail and fragments $$$$$$ fly apart. $$ John D. Reid 6/4/98
载荷
*LOAD_NODE 和*LOAD_RIGID_BODY 施加一载荷于一节点,系列节点或刚体上 x, y, or z 力 x, y, or z 力矩 Follower 力 或力矩 »力作用方向为平面的法向 坐标系可为总体坐标或局部坐标
» 边界处的应力梯度为零
» 边界随冲击波移动 *BOUNDARY_SLIDING_PLANE
» 约束一系列节点在一任意方位的平面或 矢量上移动 *BOUNDARY_SYMMETRY_FAILURE
» 约束节点于一定义的平面上 » 当周围的单元达到定义的拉应力时节点 成为自由节点
边界条件
*BOUNDARY_PRESCRIBED_MOTION 对节点、系列节点或刚体施加节点运动(平动或转动) • 可适用的自由度运动: » 位移 »速度 »加速度 • 载荷曲线描述的运动 • 起始和结束的时间
初始条件
• 起爆点和动量
• 初始应力/应变 • 初始温度
• 初始速度
缺省状态下初始应力、温度和速度为零 边界条件高于初始条件
初始条件
*INITIAL _DETONATION 和*INITIAL_MOMENTUM 用于模拟施加在体单元上的一种脉冲载荷 起爆点:引爆炸药材料(parts)
»
动量: 单元上施加一个初始动量
» 每行定义8个节点
*SET_NODE_COLUMN »每行定义1个节点
初始条件
*INITIAL_VELOCITY 对节点和体施加一个初始的平 动和转动速度 » 系列节点
*INITIAL_VELOCITY_GENERATION »对于平动和转动的体 – parts – 系列 parts – 系列节点 » 与前两个初始速度的施加方法不能同 时使用
边界条件
*DEFINE_CURVE 定义一(载荷)曲线 *BOUNDARY_SPC 单点约束
载荷曲线ID号 (CLID)
定义曲线上的点 »横坐标 (x) –纵坐标 (y)
•约束一节点的一个或更多的自由度
• 单个的节点或系列节点 » *BOUNDARY_SPC_NODE
缩放因子
偏移 例子
» *BOUNDARY_SPC_SET