小学奥数知识名师点拨 例题精讲 数阵图(一).教师版

合集下载

四年级奥数:数阵图

四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。

本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。

也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。

同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。

经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。

例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。

又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。

所以,这八个图本质上是相同的,可以看作是一种填法。

例1中的数阵图,我国古代称为“纵横图”、“九宫算”。

一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。

五年级奥数第13次课:数阵图(一)(教师版)

五年级奥数第13次课:数阵图(一)(教师版)

戴氏教育中高考名校冲刺教育中心【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

第三讲 数阵图(一)doc

第三讲  数阵图(一)doc

第三讲 数阵图(一)教室 姓名 学号【知识要点】数阵图是将一些数按照一定的要求排列而成的某种图形。

数阵图根据图形的形状特点,可以分为辐射型数阵图和封闭型数阵图。

辐射型:(1)仔细观察图形,找出关键位置。

关键位置通常是重叠数,也可叫做中间数;(2)把题目中提供的数字和所要填的空格和图形关系联系起来看,注意倍数关系;(3)计算方法:已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数。

封闭型:(1)仔细观察图形,找出关键数(即重叠数)。

在封闭型数阵图中,关键数往往有几个;(2)把题目提供的数字和所要填的空格和图形联系起来看,注意总和的倍数关系;(3)计算方法:已知各数之和+重叠数之和=每边各数之和×边数;【经典例题】★例1:将1——5这五个数分别填入图中的空格内,使两条直线上的三个数之和相等,若中间数为5,该怎么填?★例2:将1——5这五个数分别填入图中的空格内,使横行、竖列三个数之和都等于9.★例3:将1——6分别填在图中,使每条边上三个圆圈内的数的和等于9.★★例4:把1——7填入下图中,使每条线段上的三个○内的数的和相等。

★★例5:将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.★★★例6:在下图中填入合适的数,使三行、三列和两条对角线上的三个数的和都相等。

【池中戏水】★1、将1~9这九个数分别填入图中○内,使每条线段五个数的和等于23.★2、将1——5这五个数分别填入图中的圆圈内,使三角形每条边上的数之和都相等。

★3、把1~8个数分别填入○中,使每条边上三个数的和相等.★4、把1~11填入图中,使每条线上三个数的和相等.★5、把1~10填入图中,【江中畅游】★★1、将1——11这11个数分别填入图中的空格内,使横行、竖行、斜排上的几个数之和都等于14.★★2、在下图的空格内填上适当的数,使任意四个相邻格中的数的和等于22.【海中冲浪】★★★1、把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.【温馨提示】下节课我们将学习鸡兔同笼(一),请作好预习。

奥数精编训练-数阵图(一)

奥数精编训练-数阵图(一)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

例题精讲知识点拨教学目标5-1-3-1.数阵图【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C的和为18,则三个顶点上的三个数的和是 。

CBA【例 4】 将1至6这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是 .789fedcba 789【例 5】 将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是______.BA【例 6】如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。

BA【例 7】把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22的正方形中的4个数之和相等.那么,这个和数的最小值是多少?11109 8765432【例 8】下图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?861102912311457【例 9】如图,大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形的四个顶点上.⑴能不能使8个三角形顶点上数字之和都相等?⑵能不能使8个三角形顶点上数字之和各不相同?如果能,请画图填上满足要求的数;如果不能,请说明理由.246824688642【例 10】 将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.【例 11】 一个3 3的方格表中,除中间一格无棋子外,其余梅格都有4枚一样的棋子,这样每边三个格子中都有12枚棋子,去掉4枚棋子,请你适当调整一下,使每边三格中任有12枚棋子,并且4个角上的棋子数仍然相等(画图表示)。

小三奥数 数阵图(一)doc

小三奥数  数阵图(一)doc

第三讲 数阵图(一)教室 姓名 学号【知识要点】数阵图是将一些数按照一定的要求排列而成的某种图形。

数阵图根据图形的形状特点,可以分为辐射型数阵图和封闭型数阵图。

辐射型:(1)仔细观察图形,找出关键位置。

关键位置通常是重叠数,也可叫做中间数;(2)把题目中提供的数字和所要填的空格和图形关系联系起来看,注意倍数关系;(3)计算方法:已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数。

封闭型:(1)仔细观察图形,找出关键数(即重叠数)。

在封闭型数阵图中,关键数往往有几个;(2)把题目提供的数字和所要填的空格和图形联系起来看,注意总和的倍数关系;(3)计算方法:已知各数之和+重叠数之和=每边各数之和×边数;【例题精讲】★例1:将1——5这五个数分别填入图中的空格内,使两条直线上的三个数之和相等,若中间数为5,该怎么填?★例2:将1——5这五个数分别填入图中的空格内,使横行、竖列三个数之和都等于9.★例3:将1——6分别填在图中,使每条边上三个圆圈内的数的和等于9.★★例4:把1——7填入下图中,使每条线段上的三个○内的数的和相等。

★★例5:将1~8个数分别填入图中,使每个圆圈上五个数和分别为20.【为了掌握】★1、将1~9这九个数分别填入图中○内,使每条线段五个数的和等于23.★2、将1——5这五个数分别填入图中的圆圈内,使三角形每条边上的数之和都相等。

★3、把1——11填入图中,使每条线上三个数的和相等.★4、把1~10填入图中,使五条边上三个○内的数的和相等.【为了优秀】★★1、将1——9这九个数分别填入下图中的空格内,使横行、竖行上的几个数的和都等于13.★ ★2、在下图的空格内填上适当的数,使任意四个相邻格中的数的和等于22.★★3、把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.【为了竞赛】★★★1、把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.【温馨提示】下节课我们将学习鸡兔同笼(一),请作好预习。

一起学奥数有趣的数阵图资料讲解

一起学奥数有趣的数阵图资料讲解

因为1-12是一个等差数列,确定1-4为四个顶角,且按逆时针方向排列后,可以把剩下 的分成5-8,9-12两组,分别填在直线上对应的位置。
最后一步的规律必须让学生领会。可以把和都为22的条件去掉做讲解
例4、把1~7这七个数分别填入下图中的各个圆圈内,使每条线段上三个 ○内的数的和相等。
7
2
1
4 5
上两题相比较,图形特征与数字特征存在雷同性,但每条线上 三个数字和受限制。因此需要确定公共圆圈的值。
五条线段上的数字和相加为: 22×5=110 11个圆圈内的数字和为: 11×12÷2=66 则公共圆圈的数字为: (110-66)÷(5-1)=11
剩余圆圈上的填法,与之前题目相同。对剩下的10个数首尾取 数即可。
而 A+B+C+D+E+F+G+H+I=45
F
C
对上面等式进行简化,则: (D+E+F)-(G+H+I)=18
对1~9这9个数进行分析,最大三个数的和为: 7+8+9=24;最小为: 1+2+3=6 两者差为18。所以D+E+F=18
试试枚举法解这个题目(对枚举法也可以做初步分析)
例:将1~10这十个数填入下图的圆圈内,使每个正方形的四个数字之 和都等于23,应怎样填?
接着从这八个数中找出4个和为34的数的组合,放在正方形中。(1、4、13、16)、 (2、4、12、16)
没有条件四个数之和为34,是否可以解答本题?
例:把数字1~9分别填入下图的9个圈内,要求三角形ABC和三角形 DEF的每条边上三个圈内数字之和都等于18.下图中D、E、F的三个圈 中所填数之和为什么?

小学奥数专题-数阵图(一).教师版

小学奥数专题-数阵图(一).教师版

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图【难度】2星【题型】填空【解析】为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)hg f edcbaa+b+c=14(1)c+d+e=14 (2)e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h)-(d+h)=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8,又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h与b+f只能有2+6和3+5两种填法.又由对称性,不妨设b=2,f=6,d=3,h=5.a,c,e,g可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

小学思维数学讲义:数阵图(一)-含答案解析

小学思维数学讲义:数阵图(一)-含答案解析

数阵图(一)1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】87654321【答案】例题精讲知识点拨教学目标87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

(完整版)小学三年级奥数--数阵图

(完整版)小学三年级奥数--数阵图

数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。

重叠数求出来了,其余各数就好填了(见右上图)。

试一试:练习与思考第1 题。

例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。

三年级奥数1-数阵图

三年级奥数1-数阵图

课题之羊若含玉创作数阵图教授教养目的1:懂得两种类型数阵图概念;2:能依照题中具体要求填数阵图重点填图三步调:1、算出1个(或几个)重叠数的值(或和)2、通过重叠数的值(或和)找出重叠数3、把数阵图填写完整难点通过找到重叠数填数阵图专题1:数阵图在神奇的数学王国中,有一类异常有趣的数学问题,它变更多端,引人入胜,奇妙无穷.它就是数阵,一座真正的数字迷宫,它对喜欢探究数字纪律的人有着极大的吸引力,以至有些人留连其中,用一生的精神来研究它的变更,就连大数学家欧拉对它都有着浓重的兴趣.那么,到底什么是数阵呢?我们先不雅察下面两个图:上面两个图就是数阵图.准确地说,数阵图是将一些数依照一定要求分列而成的某种图形,有时简称数阵.一、辐射型数阵图先从几个简略的例子开端.把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等.1.2 把1~5这五个数分离填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9.练一练:将1~9这九个数分离填入右上图中的○里(其中9已填好),使每条直线上的三个数之和都相等.还有其他填法吗?例2将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10.如果把例2中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么模仿例1,重叠数可能等于几?怎样填?练一练:将 10~20填入左下图的○内,使得每条边上的三个数字之和都相等.二、关闭性数阵例3将1~8这八个数分离填入右图的○中,使两个大圆上的五个数之和都等于21.练一练:把1~8填入下页左上图的八个○里,使每个圆圈上的五个数之和都等于20.例4 将1~6这六个自然数分离填入右图的六个○内,使得三角形每条边上的三个数之和都等于11.将2~9这八个数分离填入右图的○里,使每条边上的三个数之和都等于18.附加:把1~7分离填入左下图中的七个空块里,使每个圆圈里的四个数之和都等于13.你学会了吗1.将3~9这七个数分离填入下图的○里,使每条直线上的三个数之和等于20.2.将1~11这十一个数分离填入图的○里,使每条直线上的三个数之和相等,并且尽可能大.3、把5、6、7、8、9、10、11、12、12、14填入下图,使每个大圆圈中六个数的和是554.将1~8填入左下图的八个○中,使得每条边上的三个数之和都等于15.作业:1、将1~9这九个数分离填入右图的小方格里,使横行和竖列上五个数之和相等.(有若干种填法?)2、把1~6这六个数填入右上图的○里,使每个圆圈上的四个数之和都相等.3、将4、5、6、7、8、9六个数填在下图,使每条边上得三个数之和都相等,并且和为最大,和为最小呢?4、把1——7这7个数,分离填入途中,使直线和大圆上的数之和相等生活趣题:小猫要把15条鱼分成数量不相等的4堆,问最多的一堆中最多可放几条鱼?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-1-3-1.数阵图
教学目标
1.了解数阵图的种类
2.学会一些解决数阵图的解题方法
能够解决和数论相关的数阵图问题
一、数阵图定义及分类:
模块一、封闭型数阵图
【例 1】把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

1,
【答案】
【题型】填空
【解析】为了叙述方便,将圆圈内先填上字母,如图(2)所示:
7+14+b+d=34,11+8+f+h=34解:共有三个解(见图).
【答案】
【难度】4星【题型】填空
年级,初赛
++++++++根据题目给的数字计算所有的数字和为:95611914910【答案】
解:共得到三个解:如下图.
2为辐射型数阵图,填辐射型数阵图的关键在于确定中心数a和每条直线上几个圆圈内数的和
【答案】
知其中任何个连续方格中的数相加起来都为
3
【考点】复合型数阵图【难度】2星【题型】填空。

相关文档
最新文档