5.3.2平行线的性质(第2课时)教案 【新人教版七年级下册数学】
人教版七年级数学下册 5-3-2 命题、定理、证明 教案
教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计
平行线的性质(第2课时)教学目标1.能够灵活应用平行线的性质解决问题.2.加深对平行线的三条性质的理解,提高分析问题、解决问题的能力.教学重点掌握平行线的性质.教学难点应用平行线的性质解决问题.教学过程知识回顾平行线的性质1:两直线平行,同位角相等.平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.本节课,我们针对平行线的性质的应用,展开学习.【设计意图】对上节课所学习的平行线的性质进行复习回顾,为本节课题目的讲解提供理论依据.新知探究一、探究学习【问题】1.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG 的度数是().A.70°B.20°C.35°D.40°【师生活动】学生独立分析题目,得到过程如下:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.【答案】C【归纳】(1)在确定两角之间数量关系或求角度的问题中,如果有平行线,那么先考虑平行线的性质;(2)利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.【问题】2.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,∠1=∠2,∠3=62°,求∠BCA的度数.【师生活动】教师引导学生对图形进行分析,找到角与角之间的对应关系,进行等量替换,通过平行线的性质与判定综合应用来解答本题.【答案】解:∵CD⊥AB,FE⊥AB,∴∠BEF=∠BDC=90°.∴FE∥CD.∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD.∴DG∥BC.∴∠BCA=∠3=62°.【归纳】遇到平行线的条件时就要联想到角的相等或互补;遇到角的相等或互补时就要联想到两直线平行;遇到垂直的条件时就要联想到垂直的性质.【问题】3.如图,AD是∠BAC的平分线,∠2=∠3,试说明∠3=∠G.【答案】解:∵AD平分∠BAC,∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴GE∥AD(内错角相等,两直线平行).∴∠2=∠G(两直线平行,同位角相等).∴∠3=∠G.【归纳】平行线的性质与判定的选择:(1)由角的关系得到平行,用的是平行线的判定.(2)由两直线平行得到角的关系,用的是平行线的性质.【问题】4.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1与∠2之间有什么数量关系?说明理由.【答案】解:∠1+∠2=90°.理由如下:∵BE平分∠ABC,CE平分∠BCD,∴∠1=12∠ABC,∠2=12∠BCD.∵AB∥CD,∴∠ABC+∠BCD=180°.∴∠1+∠2=12∠ABC+12∠BCD=12(∠ABC+∠BCD)=12×180°=90°.【归纳】要确定两个角之间的数量关系,关键是看这两个角属于哪一类角,当角不是由两平行线被第三条直线所截而形成的同位角、内错角或同旁内角时,一般要考虑这两个角与这三类角之间有无倍、分关系.【设计意图】前面几道题目涉及到应用平行线的性质进行相关角度的计算,在解决该类问题时,一般要综合应用平行线的判定和性质,灵活求解.【问题】5.如图,已知BE∥CF,∠1=∠2,请判断直线AB与CD是否平行,并说明理由.【师生活动】学生以组为单位,对图形进行分析,写出解题过程并组内纠错.【答案】解:∵BE∥CF,根据“两直线平行,内错角相等”,得∠EBC=∠BCF.又∵∠1=∠2,∴∠1+∠EBC=∠2+∠BCF.即∠ABC=∠BCD.根据“内错角相等,两直线平行”,得AB∥CD.【问题】6.如图,已知AD∥BC,∠A=∠C,试说明AB和CD的位置关系.【答案】解:AB∥CD.理由如下:∵AD∥BC,∴∠C=∠CDE.∵∠A=∠C,∴∠A=∠CDE.∴AB∥CD(同位角相等,两直线平行).【归纳】在利用平行线的性质或判定时,一定要看清楚直线与角的位置关系,分清同位角、内错角、同旁内角是由哪两条直线被哪条直线所截而成的.【设计意图】问题5和问题6主要应用平行线的性质判断边的位置关系,在解决该类问题时,要分清截线和被截线.【问题】7.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?【师生活动】教师引导学生从梯形的特征去分析,知道两边平行就可以应用平行线的相关知识解决问题.【答案】解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.【问题】8.如图,MN,EF表示两面互相平行的镜子,一束光线AB照射到镜面MN 上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,并说明理由.【答案】解:AB∥CD.理由如下:∵MN∥EF,∴∠2=∠3(两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4.∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°,∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).【归纳】实际问题一般要转化为数学问题解决,解决此类问题的关键是利用平行线的性质求有关角的度数.【设计意图】问题7和问题8两题涉及到平行线的性质在实际生活中的应用,解决这类问题的关键是找出平行线,利用平行线的性质求出角的度数.课堂小结板书设计一、应用平行线的性质计算角的度数二、应用平行线的性质判断边的位置关系三、平行线的性质在实际生活中的应用课后任务完成教材第20页练习第2题.。
人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案
-在实际问题中识别和应用所学的命题、定理和证明方法。
举例:针对命题真假判断的难点,设计一些具有迷惑性的命题,让学生分析讨论,如“如果一个角的补角是直角,那么这个角是锐角”这一命题的真假。对于证明方法,通过具体例题展示反证法的步骤,解释反设的意义,并指导学生如何寻找矛盾点。在应用难点方面,给出一些综合性的问题,如“证明一个四边形是平行四边形”,引导学生结合所学定理和证明方法,逐步解决问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的判断和定理的证明这两个重点。对于难点部分,如反证法,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠纸片来验证平行线的性质。
此外,课堂上的实践活动和小组讨论环节,学生们表现得非常积极,这说明他们对于参与到课堂活动中有着很高的热情。但在这一过程中,我也注意到有些学生过于依赖同伴,自己思考得不够深入。因此,我需要在活动中更好地引导他们独立思考,培养他们自主解决问题的能力。
还有一个值得注意的问题是,在新课讲授过程中,我是否把重点和难点讲解得足够清晰。从学生的反馈来看,有些地方还需要我进一步讲解和强调。在今后的教学中,我会更加关注学生的接受程度,及时调整教学方法和节奏,确保他们能够更好地掌握核心知识。
3.成果分享:每个小组将选择一名代表来分享他都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、定理的重要性以及证明的方法。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2024年最全面新人教版七年级数学下册教案全册精华版
2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
新人教版初中7七年级数学下册全册完整教案(最新)
新人教版七年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组5.2 平行线及其判定 8.2 消元——解二元一次方程组5.3 平行线的性质 8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系 10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图10.3 课题学习从数据谈节水12课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
人教版数学七年级下册5-3-2命理、定理、证明(第2课时) 课件
①BC平分∠ABE; ②∠BCE+∠D=90°; ③AC∥BE; ④∠DBF=2∠ABC. 其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
12.若a=b,则a2=b2是____真_____命题(选填“真”或“假”), 其中“a=b”是_题__设_______,“a2=b2”是_结__论________.
7.如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1 =∠2,则图中互相平行的直线是__E_F_∥__C_D__,__B_C_∥__D_E___________.
8.如图,给出下面的推理,其中正确的是____①__②__④________. ①因为∠B=∠BEF,所以AB∥EF; ②因为∠B=∠CDE,所以AB∥CD; ③因为∠B+∠BEC=180°,所以AB∥EF; ④因为AB∥CD,CD∥EF,所以AB∥EF.
9.如图,AC⊥BC,垂足为点C,∠BCD是∠B的余角.求证: ∠ACD=∠B.
证明:∵AC⊥BC(已知), ∴∠ACB=90°(______垂__直__的__定__义________), ∴∠BCD是∠ACD的余角. ∵∠BCD是∠B的余角(已知), ∴∠ACD=∠B(____同__角__的__余__角__相__等______).
c
2
a
证明的一般步骤: 1.分清命题的题设和结论,如果与图形有关,应先根 据题意,画出图形,并在图形上标出有关字母与符号; 2.根据题设、结论,结合图形,写出已知、求证; 3.经过分析,找出由已知推出结论的途径,有条理地 写出证明过程.
如何判定一个命题是假命题呢?
只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
歌德的话蕴含了什么数学道理?
合作探究
5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2
新人教版七年级数学下册《五章 相交线与平行线 5.3 平行线的性质 探索两条直线的位置关系》教案_21
初中数学高效课堂案例——平行线的性质一、实施背景本节课是2010-2011学年度第二学期开学第二周本人在贺集中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、主题分析与设计本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、教学目标1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、过程与方法:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、教学重、难点1、重点:对平行线性质的掌握与应用2、难点:对平行线性质1的探究五、教学用具1、教具:多媒体平台及多媒体课件2、学具:三角尺、量角器、剪刀六、教学过程(一)创设情境,设疑激思1、播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:5.3平行线的性质(板书)(二)数形结合,探究性质1、画图探究,归纳猜想教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c 与这两条平行线相交,标出8个角。
2024年新版人教版七年级数学下册教案全册
2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。
2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。
3. 能够运用所学知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。
平面直角坐标系的建立和点的坐标表示。
2. 教学重点:理解并运用相交线与平行线的性质。
掌握平面直角坐标系的概念和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。
提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。
讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。
3. 例题讲解解答第五章相交线与平行线的相关例题。
解答第六章平面直角坐标系的相关例题。
4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。
学生完成第六章平面直角坐标系的随堂练习题。
5. 知识巩固学生互相讨论,加深对知识的理解。
六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。
2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。
3. 中间部分:例题解答、随堂练习题。
七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。
第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。
答案:见教材课后习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。
七年级数学下册 5.3.1 平行线的性质(第2课时)教案 (新
平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB .(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE 平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°. 方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD 和∠ACE 是同位角,只要证得同位角相等,则CE ∥BD .由平行线的性质结合已知条件,稍作转化即可得到∠ABD =∠C .解:CE ∥BD .理由如下:∵DF ∥AC ,∴∠D =∠ABD .∵∠C =∠D ,∴∠ABD =∠C ,∴CE ∥BD . 方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE =32∠BAF+32∠CDF=32(∠BAF+∠CDF)=32∠AFD,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补判定性质两直线平行本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质。
人教版七年级下5.3平行线的性质教学设计(3课时)
第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?BCA DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略. 问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB . 变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.FBDCEAEDCB A小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。
(完整版)七年级数学下册平行线的性质教案新人教版
平行线的性质一、教学目标知识与技能:探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
过程与方法:在学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
情感态度、价值观:从思考的问题引入激发学生的学习兴趣;使学生通过自己探究得到结论,新情境引入新问题,使学生的探究欲望得到激发。
二、教学重点平行线的性质以及推导过程。
三、教学难点1.平行线的三个性质和怎样区分平行线的性质和判定。
2. 学会写标准的证明推理过程。
四、教学过程问题引入:如图,图1是一块梯形铁片的剩余局部,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?D C 引入课题:平行线的性质A B新课教授:请同学们用直尺和三角尺画两条平行线a//b,然后,画一条截线c与这两条平行线相交,度量所形成的8个角的度数,把结果填入下表:角∠1∠2∠3∠4度数角∠5∠6∠7∠8度数∠1~∠8中,那些是同位角?它们的度数之间有什么关系?由此猜想两条平行线被第三条直线所截得的同位角有什么关系?同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8关系:同位角相等两条平行线被第三条直线所截得的同位角相等。
再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?一般地,平行线具有性质: 性质1两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.板书:性质1:两直线平行,同位角相等.∵直线a//b,∴∠1=∠2〔两直线平行,同位角相等〕.我们得到了两直线平行,同位角相等.大家能不能推导出:两直线平行,内错角相等呢?请大家分组讨论在纸上进行请推理说明,然后我再请一组派出代表答复?直线a//b,求证:∠3=∠5.证明:∵a//b,∴∠1=∠5.〔两直线平行,同位角相等〕又∵∠1=∠3〔对顶角相等〕∴∠3=∠5〔等量代换〕得证。
最新版人教版七年级数学下册全册书教案教学设计
七年级数学下册教学设计第五章相交线与平行线 (2)5.1 相交线 (2)5.2 平行线及其判定 (12)5.3 平行线的性质 (15)5.4 平移 (21)第六章实数 (23)6.1 平方根 (23)6.2 立方根 (34)6.3 实数 (37)第七章平面直角坐标系 (45)7.1 平面直角坐标系 (45)7.2 坐标方法的简单应用 (52)第八章二元一次方程组 (57)8.1 二元一次方程组 (57)8.2 消元-解二元一次方程组 (60)8.3 实际问题与二元一次方程组 (66)8.4 三元一次方程组的解法 (69)第九章不等式与不等式组 (74)9.1 不等式 (74)9.2 一元一次不等式 (79)9.3 一元一次不等式组 (86)第十章数据的收集、整理与描述 (92)10.1 统计调查 (92)10.2 直方图 (97)10.3 课题学习从数据谈节水 (102)第五章相交线与平行线5.1 相交线5.1.1 相交线【教学目标】1. 理解对顶角和邻补角的概念,能在图形中辨认.2. 掌握对顶角相等的性质和它的推证过程.3. 通过在图形中辨认对顶角和邻补角,培养学生的识图能力.【教学重点】在较复杂的图形中准确辨认对顶角和邻补角.【教学难点】在较复杂的图形中准确辨认对顶角和邻补角.【新课导入】先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.【教学过程】1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
5.3.2命题、定理、证明教学设计+2022-2023学年人教版数学七年级下册
《5.3.2 命题、定理、证明》教学设计教材分析对于命题的相关知识,教材是分散安排的,本课时主要是命题的概念、命题的构成、真假命题的判断、什么是定理、初步感知证明过程,大部分内容是要求学生有一个初步的了解,不必探究,主要培养学生不同几何语言的转化,是后续学习的基础.备课素材一、新知导入【质疑导入】以下7个句子,有什么不同,你能对它们进行分类吗?如果你能分类,分类的依据是什么?①爸爸你去哪儿呢?②如果两条直线都和第三条直线平行,内错角相等;③邱波是喀山世锦赛十米跳台的冠军;④你不是调皮捣蛋的孩子;⑤奔跑吧兄弟!⑥舌尖上的中国;⑦对顶角相等.指出像②③④⑦这样判断一件事情的语句,叫做命题.【说明与建议】说明:将不同类型的句子放在一起,通过学生的分类、比较,理解命题与非命题的区别.建议:学生分类的标准可能不同,只要自己能讲出道理即可,不必强求统一,而后教师引导.【复习导入】由学生叙述平行线的判定方法及平行线的性质、等式的性质、对顶角的性质,指出它们都是命题.【说明与建议】说明:既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题他们已接触过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.建议:选择的复习内容要既能体现命题的不同表现形式,又能让学生认识命题的叙述形式的多样性.二、命题热点命题角度1 命题的定义和结构1.下列句子中,属于命题的是(A)A.垂线段最短 B.延长线段AB到点CC.过点O作直线a∥b D.锐角都相等吗2.命题“钝角的补角是锐角”的题设为一个角是钝角的补角,结论为这个角是锐角.命题角度2 确定命题的真假3.下列命题中:①相等的角是对顶角;②两直线平行,同旁内角相等;③不相交的两条线段一定平行;④直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离.其中真命题有(A)A.0个 B.1个 C.2个 D.3个命题角度3 定理与证明4.对于命题“若x2=25,则x=5”,小江举了一个反例来证明它是假命题,则小江举的反例是(D)A.x=25 B.x=5 C.x=10 D.x=-5 5.如图,已知∠1与∠α互余,∠2与∠α互余.求证:∠1=∠2.证明:∵∠1与∠α互余(已知),∴∠1+∠α=90°(余角的定义),∴∠1=90°-∠α(等式的性质).又∵∠2与∠α互余(已知),∴∠2+∠α=90°(余角的定义).∴∠2=90°-∠α(等式的性质).∴∠1=∠2(等量代换).教学设计课题 5.3.2命题、定理、证明授课人教学目标1.掌握命题、定理的概念,并能分清命题的组成.2.了解证明的意义,知道要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.3.通过讨论、探究、交流等形式,让学生在辩论中获得知识体验.4.在学习过程中培养学生敢于怀疑、大胆探究的品质.教学重点掌握命题、定理的概念,了解证明的意义.教学难点1.分清命题的组成,说出一个命题是真命题还是假命题.2.掌握推理的方法和步骤.授课类型新授课课时教学活动教学步骤师生活动设计意图活动一:创设情境、导入新课【课堂引入】同学们,我们初次见面,为了让我们这堂课更加生动有趣,今天我给大家做个简单自我介绍,请同学们认真聆听,并判断每句话的对错.我是廖某某,我的年龄是28岁,身高是160 cm,今天我穿的是白色的上衣,我是你们这节课的数学老师.共同特点:都是对一件事的判断.以自身为例子来引入本节课的新概念,让学生增加好奇心,产生学习兴趣.活动二:【探究新知】 1.通过各类型的语句实践探究、交流新知【探究1】命题的概念下列句子中,哪些是命题?①正数都大于0;②如果∠1+∠2=180°,那么∠1与∠2互补;③太阳不是行星;④对顶角相等吗?⑤作一个角等于已知角.分析:①②是命题,它们都对事情做出了肯定判断;③是命题,它对事情做出了否定判断;④不是命题,只表示疑问,并未做出判断;⑤不是命题,只是描述了一个作图的过程,没有做出判断.解:①②③是命题,④⑤不是命题.师生共同总结判断命题的依据:对一件事做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述有标准形式:“如果……那么……”,另外还有“若……则……”等.一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是真命题还是假命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)(4)(5)(6)是命题.(3)题设是两条直线被第三条直线所截,内错角相等,结论是这两条直线平探究命题的概念.2.师生通过例题共同探究命题的题设和结论的确定方法.3.引导学生区分命题与定理的关系,且体会证明数学命题的必要性.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题.有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的题设和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的题设之前还有题设,那么这两个题设合起来作为命题的题设,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”.题设是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.如图,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.解:(1)一共能组成3个命题,它们是:题设①②,结论③;题设①③,结论②;题设②③,结论①.(2)情况一:题设①②,结论③.证明∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C.情况二:题设①③,结论②.证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:几何证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论.2.证明过程中引用的根据(理由)与“定理的证明相同”.3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由.4.要防止利用未学过的定理来证明学过的命题,避免循环论证.活动三:开放训练、体现应用【典型例题】例1将下列各命题改写成“如果……那么……”的形式,并指出各命题的题设和结论.(1)同旁内角互补,两直线平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)邻补角是互补的角;(4)平行于同一直线的两直线平行.解:(1)如果同旁内角互补,那么两直线平行.题设:同旁内角互补,结论:两直线平行.(2)如果两条平行线被第三条直线所截,那么同旁内角互补.题设:两条平行线被第三条直线所截,结论:同旁内角互补.(3)如果两个角是邻补角,那么这两个角互补.题设:两个角是邻补角,结论:这两个角互补.1.利用新知解决问题,根据相关性质进行演绎推理.2.通过变式训练巩固证明过程,训练学生推理证明的能力.(4)如果两条直线平行于同一条直线,那么这两条直线平行.题设:两条直线平行于同一条直线,结论:这两条直线平行.例2请根据题目中的逻辑关系填空:已知:如图,∠1+∠AFE=180°,∠A=∠2.求证:∠A=∠C+∠AFC.证明:∵∠1+∠AFE=180°,∴CD∥EF(同旁内角互补,两直线平行).∵∠A=∠2,∴AB∥CD(同位角相等,两直线平行).∴AB∥CD∥EF.∴∠A=∠AFE,∠C=∠CFE(两直线平行,内错角相等).∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC(等量代换).【变式训练】如图,已知BC与DE相交于点O,给出下面三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请以其中的两个论断为条件,填入“题设”栏中;剩下的论断为结论,填入“结论”栏中,使之成为一个真命题,并加以证明.题设:如图,已知BC与DE相交于点O,②,③(填序号).结论:①(填序号).证明:∵AB∥DE,∴∠B=∠COD.又∵BC∥EF,∴∠E=∠COD.∴∠B=∠E.(本题答案不唯一)师生活动:学生独立思考,举手回答,师生交流心得和方法.活动四:【课堂检测】通过设置课堂检测,课堂检测 1.下列语句中,不是命题的是(D)A.如果a>b,那么a2>b2B.内错角相等C.两点之间线段最短D.过点P作PO⊥AB于点O2.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的邻补角相等;④同一平面内,垂直于同一直线的两条直线互相平行.其中真命题的个数为(B)A.1 B.2 C.3 D.43.下列命题中,是假命题的是(B)A.对顶角相等 B.同旁内角互补C.两点确定一条直线 D.若|-x|=-x,则x≤04.将下列命题改写成“如果……那么……”的形式,并判断命题的真假,是假命题的举出反例.(1)等角的补角相等;(2)对顶角互补.解:(1)如果两个角分别是两个相等角的补角,那么这两个角相等.真命题.(2)如果两个角是对顶角,那么这两个角互补.假命题,举反例略.5.请把下面证明过程补充完整.如图,已知AD⊥BC于点D,点E在BA的延长线上,EG⊥BC于点C,交AC于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直的定义).∴AD∥EG(同位角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等).∵∠E=∠1(已知),及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.∴∠2=∠3(等量代换).∴AD平分∠BAC(角平分线的定义).6.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)请选择其中一个真命题加以证明.解:(1)由①②得③;由①③得②;由②③得①.(2)由①②得③,证明过程如下:∵AB∥CD,∴∠EAB=∠C.又∵∠B=∠C,∴∠EAB=∠B.∴CE∥BF.∴∠E=∠F.(本题答案不唯一)师生活动:学生进行课堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结:(1)通过本节课的探究学习,你有什么新的收获和体验?(2)本节课还有哪些疑惑?2.布置作业:教材第23~25页习题5.3第6,12,13题.通过课堂小结的形式,让学生能够对本课时所学知识进行整理,同时明确学习重点.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
《平行线的性质和判定及其综合运用》教案
板书设计
5.3.1 平行线的性质(2)
错误!两直线平行
教学设计流程 图
导入新课
明确目标
研读课文
知识体验
基础训练
强化训练
归纳小结
课堂检测
教学反思
本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“ ∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻 辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容 的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于 学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别 和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已 知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平 行,得出角的关系,就是平行线的性质
教学目标 教学重难点
1.分清平行线的性质和判定.
2.已知平行用性质,要证平行用判定.
3.能够综合运用平行线性质和判定解题.
重点
平行线性质和判定综合应用
难点
平行线性质和判定灵活运用
本节课我的设计理念是:重组教材,恰当的创设情境,激发学生对教学内容
教学策略与
设计说明
的好奇心和 求知欲,通过独立思考,不断发问和提出问题,让学生在探究
授权书
本人对执教课例《初中数学
人教版
5.3.1平行线的性质
第2课时》拥有全部著作权,同意授权北京继教网教育科技发展有限公司永久使用。使用范
围:北京继教网教育科技发展有限公司所有经营范围(包括但不限于:其他专家主讲课程 中作为课例使用,在资源平台中展示等)。
本授权书自本人签字之日起生效。 授权人(签字): 2018 年 4 月 26 日
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它们的长度相等吗? ②学生实践操作,得出结论:线段 B1C1,B2C2……,B5C5 同时垂直于两条平行直线 A1B5 和 A2C5,并且它们的长度相等. ③师生给两条平行线的距离下定义. 学生分清线段 B1C1 的特征:第一点线段 B1C1 两端点分别在两条平行线上,即它是夹在这 两条平行线间的线段,第二点线段 B1C1 同时垂直这两条平行线. 教师板书定义: (像线段 B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这 两条平行线的距离. ④利用点到直线的距离来定义两条平行线的距离.
5.3.2 平行线的性质(第 2 课时)
平行线的性质(二)
教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能
力.
2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.
3.能够综合运用平行线性质和判定解题.
重点、难点
重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.
A C
O'
21 43
O
D
B
2.如图,已知 B、E 分别是 AC、DF 上的点,∠1=∠2∠C=∠D. (1)∠ABD 与∠C 相等吗?为什么. (2)∠A 与∠F 相等吗?请说明理由. 3.如图,已知 EAB 是直线,AD∥BC,AD 平分∠EAC,试判定
∠B 与∠C 的大小关系,并说明理由.
D
EF
∠A=______,∠CBE=________.
4.a⊥b,c⊥b,那么 a 与 c 的位置关系如何?为什么?
b
ac
二、进行新课 1.例 1 已知:如上图,a∥c,a⊥b,直线 b 与 c 垂直吗?为什么? 学生容易判断出直线 b 与 c 垂直.鉴于这一点,教师应引导学生思考: (1)要说明 b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是 90°,是哪一个角?通过什么途径得来? (2)已知 a⊥b,这个“形”通过哪个“数”来说理,即哪个角是 90°. (3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定 它们吗? 让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究
(1)下列各图中,已知 AB∥EF,点 C 任意选取(在 AB、EF 之间,又在 BF 的左侧).请测量各图中
∠B、∠C、∠F 的度数并填入表格.
∠B
∠F ∠C ∠B 与∠F 度数之和
图(1)
图(2)
通过上述实践,试猜想∠B、∠F、∠C 之间的关系,写出这种关系,试加以说明.
A C
BA
B
C
E
F
E
F
A.60° B.80° C.100° D.120°
A B
C
E
D
4.两条直线被第三条直线所截,则一组同位角的平分线的位置关系是( )
A.互相平行
B.互相垂直; C.相交但不垂直 D.平行或相交
三、解答题.
1.已知,如图 1,∠AOB 纸片沿 CD 折叠,若 O′C∥BD,那么 O′D 与 AC 平行吗?请说明理由.
难点:平行线性质和判定灵活运用.
教学过程 一、复习引入
D
C
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外
还有平行公理的推论)
2.平行线的性质有哪些. 3.完成下面填空.
A
B
E
已 知 :如 图 ,BE 是 AB 的 延 长 线 ,AD∥BC,AB∥CD,若 ∠D=100°,则 ∠C=_____,
所以∠F=∠FCD(两直线平行,内错角相等).因为 CD∥AB. 所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本 P23 探究的图(图 5.3-4)及文字. ①学生读题思考:线段 B1C1,B2C2……B5C5 都与两条平行线的横线 A1B5 和 A2C5 垂直吗?
命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分 是结论.
有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题 判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.
师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是 结论。 第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。 三、巩固练习 1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么? 2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补, 那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确. 解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”. 2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互 补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类: 第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够;第二类命题是 在命题的题设下,结论不正确。
能创造条件,应用平行线性质,学生自然想到过点 C 作 CD∥AB,这样就能用上平行线的性质,得
到∠B=∠BCD.
③如果要说明∠F=∠FCD,只要说明 CD 与 EF 平行,你能做到这一点吗?
以上分析后,学生先推理说明, 师生交流,教师给出说理过程.
A
B
C
D
E
F
作 CD∥AB,因为 AB∥EF,CD∥AB,所以 CD∥EF(两条直线都与第三条直线平行, 这两条直 线也互相平行).
四、作业
1.课本 P25.5,7,8,11,12.
2.补充作业:
一、填空题.
1.用式子表示下列句子:用∠1 与∠2 互为余角,又∠2 与∠3 互为余角,根据“同角的余角相等”,所
以∠1 和∠3 相等_________________.
2.把命题“直角都相等”改写成“如果……,那么……”形式___________.
3.命题“邻补角的平分线互相垂直”的题设是_____________, 结论是____________.
4.两 条 平 行 线 被 第 三 条 直 线 所 截 ,同 旁 内 角 的 度 数 的 比 为 2:7, 则 这 两 个 角 分 别 是
____________度.
二、选择题.
1.设 a、b、c 为同一平面内的三条直线,下列判断不正确的是( )
2 1
AB
C
4.如(图 4),DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°. (1)∠A 的度数; (2)∠A+∠B+∠C 的度数.
E
A
D
B
C
A
F
E
B
D
C
评价与反思 本节课学习的任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、 假命题。因此就内容来看,可能会较为枯燥、单调,因此在教学设计时,根据不同的学习任 务进行了不同的教学设计。 在命题的概念的教学中,与以往直接告知学生概念的不同,采用了让学生对两组语句进行比 较、区别,然后在学生充分讨论的感性认识的基础上,再提出命题的概念,能有效促进学生 对命题概念的理解,然后再通过学生举例来加强巩固概念。 在命题的构成的这一环节中,通过对一个问题的思考与探讨,让学生了解到命题是由题 设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生 对知识的认识更加透彻。 对于真、假命题的认识,是通过几个具体的命题让学生认识命题有正确和错误之分,从 而得出真、假命题的概念,并通过举例让学生知道如何说明一个命题是假命题。 整个教学过程充满了探究,充满了研讨。
C
E
D
A
F
B
教师画 AB∥CD,在 CD 上任取一点 E,作 EF⊥AB,垂足为 F. 学生思考:EF 是否垂直直线 CD?垂线段 EF 的长度 d 是平行线 AB、CD 的距离吗? 这两个问题学生不难回答,教师归纳: 两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距 离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成. (1)教师给出下列语句,学生分析语句的特点. ①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等; ④如果两条直线不平行,那么同位角不相等. 这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义. 判断一件事情的语句,叫做命题. 教师指出上述四个语句都是命题,而语句“画 AB∥CD”没有判断成分,不是命题.教师让学 生举例说明是命题和不是命题的语句. (3)命题的组成. ①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.(1)ຫໍສະໝຸດ (2)教师投影题目:
学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.
在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一
步引导:
①虽然 AB∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之
间关系.
②∠B 与∠C 是直线 AB、CF 被直线 BC 所截而成的内错角,但是 AB 与 CF 不平行.能不
A.设 a⊥c,b⊥c,则 a⊥b B.若 a∥c,b∥c,则 a∥b
C.若 a∥b,b⊥c,则 a⊥c D.若 a⊥b,b⊥c,则 a⊥c
2.若两条平行线被第三条直线所截,则互补的角但非邻补角的对数有( )
A.6 对 B.8 对 C.10 对
D.12 对
3.如图,已知 AB∥DE,∠A=135°,∠C=105°,则∠D 的度数为( )