福鼎市一中2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于()A .第一象限B .第二象限C .第三象限D .第四象限2. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( )①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④3. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 4. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .5. 如图框内的输出结果是()A .2401B .2500C .2601D .27046. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16B .﹣16C .8D .﹣87. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点8. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=()A .1B .2C .3D .4 9. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是()A .{a|3≤a ≤4}B .{a|3<a ≤4}C .{a|3<a <4}D .∅11.已知平面向量,,若与垂直,则实数值为( )(12)=,a (32)=-,b k +a b a k A . B . C . D .15-1191119【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.12.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的()A .①④B .①⑤C .②⑤D .③⑤二、填空题13.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .14.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .15.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.用“<”或“>”号填空:30.8 30.7.18.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .三、解答题19.如图,⊙O 的半径为6,线段AB 与⊙相交于点C 、D ,AC=4,∠BOD=∠A ,OB 与⊙O 相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .20.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.21.在平面直角坐标系xOy中,圆C:x2+y2=4,A(,0),A1(﹣,0),点P为平面内一动点,以PA 为直径的圆与圆C相切.(Ⅰ)求证:|PA1|+|PA|为定值,并求出点P的轨迹方程C1;(Ⅱ)若直线PA与曲线C1的另一交点为Q,求△POQ面积的最大值.22.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.23.(本小题满分10分)选修4—4:坐标系与参数方程x C r以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数).],0[πθ∈l 2t cos 2sin x y t a aì=+ïí=+ïît (I )点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C D C C D +2=0x y +D 的参数方程;(II )设直线与曲线有两个不同的交点,求直线的斜率的取值范围.l C l 24.已知椭圆:,离心率为,焦点F 1(0,﹣c ),F 2(0,c )过F 1的直线交椭圆于M ,N 两点,且△F 2MN 的周长为4.(Ⅰ)求椭圆方程;(Ⅱ) 直线l 与y 轴交于点P (0,m )(m ≠0),与椭圆C 交于相异两点A ,B 且.若,求m 的取值范围.福鼎市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B A B C B B B A B A题号1112答案A D二、填空题13. 16 .14. .15.120o16. 6 17. > 18. 3x﹣y﹣11=0 .三、解答题19.20.21.22.23.24.。
福鼎市第一中学2018-2019学年上学期高三数学10月月考试题
6
12
D. x
6
+ ,则 x、y 的值分别
6. 已知正方体 ABCD﹣A1B1C1D1 中,点 E 为上底面 A1C1 的中心,若 为(
A.x=1,y=1 B.x=1,y= C.x= ,y=
D.x= ,y=1
2
7. 已知角 的终边经过点 (sin15 , cos15 ) ,则 cos A.
6 , PB PC ,求直线 PA 与平面 PBC 所成角的大小.
P
D
C
A
B
20.已知双曲线过点 P(﹣3 (1)求双曲线的标准方程;
,4),它的渐近线方程为 y=± x.
(2)设 F1 和 F2 为该双曲线的左、右焦点,点 P 在此双曲线上,且|PF1||PF2|=41,求∠F1PF2 的余弦值.
C.y=﹣x|x|
4. 集合 M x | x 4k 2, k Z , N x | x 2k , k Z , P x | x 4k 2, k Z ,则 M ,
N , P 的关系(
A. M P N 5. 已知函数 f ( x)
B. 物线 C 的准线交于点 N ,则 | MN |:| FN | 的值是( A. ( 5 2) : 5 B. 2 : 5 ) C. 1: 2 5 D. 5 : (1 5)
11 2
二、填空题
13.已知 tanβ= ,tan(α﹣β)= ,其中 α,β 均为锐角,则 α= . 14.阅读如图所示的程序框图,则输出结果 S 的值为 .
的值为(
) C.
1 3 2 4
B.
1 3 2 4
3 4
福安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
福安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A.B.C .2D .32. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( ) A .1 B.C .e ﹣1D .e+13. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A.B.C.D.4. 若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直5. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( ) A .10B .9C .8D .56. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )A .20B .25C .22.5D .22.757. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)8. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 39. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .120°B .60°C .45°D .30°10.已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (111.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°二、填空题13.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .14.不等式的解为 .15.已知一个空间几何体的三视图如图所示,其三视图均为边长为1的正方形,则这个几何体的表面积为 .16.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .17.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 .18.已知函数f (x )=,若f (f (0))=4a ,则实数a= .三、解答题19.已知椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为.(1)求椭圆C 的方程;(2)直线l 1,l 2是椭圆的任意两条切线,且l 1∥l 2,试探究在x 轴上是否存在定点B ,点B 到l 1,l 2的距离之积恒为1?若存在,求出点B 的坐标;若不存在,请说明理由.20.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .21.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x 年后游艇的盈利为y 万元. (1)写出y 与x 之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?22.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.23.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)14 12 8 6用电量(度)22 26 34 38(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.24.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.福安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b 2﹣8b ﹣3=0,∴解得:b=3或﹣(舍去). 故选:D .2. 【答案】C【解析】解:当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,可得: =1+ln (x 2﹣m ),x 2﹣x 1≥e ,∴0<1+ln (x 2﹣m )≤,∴.∵lnx ≤x ﹣1(x ≥1),考虑x 2﹣m ≥1时.∴1+ln (x 2﹣m )≤x 2﹣m ,令x 2﹣m ≤,化为m ≥x ﹣e x ﹣e,x >m+.令f (x )=x ﹣e x ﹣e,则f ′(x )=1﹣e x ﹣e ,可得x=e 时,f (x )取得最大值.∴m ≥e ﹣1.故选:C .3. 【答案】B【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11.又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B .4. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥, 因此l ⊥α.5.【答案】D【解析】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选D6.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.7.【答案】B【解析】解:函数的定义域为(0,+∞)求导函数可得f′(x)=lnx+2,令f′(x)>0,可得x>e﹣2,∴函数f(x)的单调增区间是(e﹣2,+∞)故选B.8.【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S1==2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=28×20=560m3.【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.9.【答案】A【解析】解:根据余弦定理可知cosA=∵a2=b2+bc+c2,∴bc=﹣(b2+c2﹣a2)∴cosA=﹣∴A=120°故选A10.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.11.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x 的不等式f (2x ﹣1)﹣f (x+1)>0得到关于x 的不等式f (2x ﹣1)>f (x+1),∴|2x ﹣1﹣2|<|x+1﹣2|即|2x ﹣3|<|x ﹣1|,化简为3x 2﹣1x+8<0,解得x ∈(,2);故选:B .12.【答案】B【解析】解:y=x 2的导数为y ′=2x ,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tan α=1, 解得α=45°. 故选:B .【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.二、填空题13.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 14.【答案】 {x|x >1或x <0} .【解析】解:即即x (x ﹣1)>0 解得x >1或x <0故答案为{x|x >1或x <0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出15.【答案】3+.【解析】解:由三视图可知几何体为边长为1正方体ABCD﹣A'B'C'D'截去三棱锥D﹣ACD'和三棱锥B﹣ACB'得到的,作出直观图如图所示:该几何体由前,后,左,右,下和两个斜面组成.其中前后左右四个面均为直角边为1的等腰直角三角形,底面为边长为1的正方形,两个斜面为边长为的等边三角形,∴S=+1+×()2×2=3+.故答案为.【点评】本题考查了不规则几何体的三视图及面积计算,将不规则几何体转化到正方体中是解题关键.16.【答案】y=cosx.【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.17.【答案】(﹣2,0)∪(2,+∞).【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g (﹣x )====g (x ),∴函数g (x )为定义域上的偶函数, ∴x <0时,函数g (x )是减函数,又∵g (﹣2)==0=g (2),∴x >0时,由f (x )>0,得:g (x )>g (2),解得:x >2, x <0时,由f (x )>0,得:g (x )<g (﹣2),解得:x >﹣2, ∴f (x )>0成立的x 的取值范围是:(﹣2,0)∪(2,+∞). 故答案为:(﹣2,0)∪(2,+∞).18.【答案】 2 .【解析】解:∵f (0)=2, ∴f (f (0))=f (2)=4+2a=4a , 所以a=2 故答案为:2.三、解答题19.【答案】【解析】解:(1)∵椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为,∴=,解得,∴椭圆C 的方程为.…(2)①当l 1,l 2的斜率存在时,设l 1:y=kx+m ,l 2:y=kx+n (m ≠n ),△=0,m 2=1+2k 2,同理n 2=1+2k 2m 2=n 2,m=﹣n ,设存在,又m 2=1+2k 2,则|k 2(2﹣t 2)+1|=1+k 2,k 2(1﹣t 2)=0或k 2(t 2﹣3)=2(不恒成立,舍去) ∴t 2﹣1=0,t=±1,点B (±1,0),②当l 1,l 2的斜率不存在时,点B (±1,0)到l 1,l 2的距离之积为1. 综上,存在B (1,0)或(﹣1,0).…20.【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)推导出BC AC ⊥,1CC AC ⊥,从而⊥AC 平面11B BCC ,连接11,NA CA ,则N A B ,,1三点共线,推导出MN CN BA CN ⊥⊥,1,由线面垂直的判定定理得⊥CN 平面BNM ;(2)连接1AC 交1CA 于点H ,推导出1BA AH ⊥,1BA HQ ⊥,则AQH ∠是二面角C BA A --1的平面角.由此能求出二面角1B BN C --的余弦值.试题解析:(1)如图,取CE 的中点G ,连接BG FG ,. ∵F 为CD 的中点,∴DE GF //且DE GF 21=. ∵⊥AB 平面ACD ,⊥DE 平面ACD , ∴DE AB //, ∴AB GF //.又DE AB 21=,∴AB GF =. ∴四边形GFAB 为平行四边形,则BG AF //. (4分) ∵⊄AF 平面BCE ,⊂BG 平面BCE , ∴//AF 平面BCE (6分)考点:直线与平面平行和垂直的判定. 21.【答案】 【解析】解:(1)(x ∈N *) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.22.【答案】 【解析】解:(1)∵=,∴数列{b n}是以为首项,3为公差的等差数列.(2)由(1)可知,∴①②①﹣②得:,∴.【点评】本题主要考查数列通项公式和前n项和的求解,利用定义法和错位相减法是解决本题的关键.23.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.24.【答案】【解析】解:(1)∵四边形AA1C1C为平行四边形,∴AC=A1C1,∵AC=AA1,∴AA1=A1C1,∵∠AA1C1=60°,∴△AA1C1为等边三角形,同理△ABC1是等边三角形,∵D为AC1的中点,∴BD⊥AC1,∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,∴BD⊥平面AA1C1C.(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,,则,所以平面ABC的一个法向量为=(,1,1),∴cosθ=.即二面角C1﹣AB﹣C的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.。
福鼎市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.2.函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .133. 已知集合,则A0或 B0或3C1或D1或34. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A5. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点6. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15C .10,10,30D .10,20,207. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( ) 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.2B.1-C.1-或2D.1-或108.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有()A.34种B.35种C.120种D.140种9.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是()A.B.C.D.10.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()A.7 B.9 C.11 D.1311.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3二、填空题13.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .14.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.16.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .17.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .18.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .三、解答题19.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).20.已知角α的终边在直线y=x 上,求sin α,cos α,tan α的值.21.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系; (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值.22.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.23.已知集合A={x|>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.(Ⅰ)当m=3时,求;A ∩(∁R B );(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.福鼎市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.2. 【答案】D【解析】解:∵函数y=cos (x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k 的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.3. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
福建省2018届高三上学期11月模拟数学试卷(文科)Word版含解析
福建省2018届高三上学期11月模拟试卷(文科数学)一、选择题1.设集合P={1,2,3,4},Q={x|x≤2},则P∩Q=()A.{1,2} B.{3,4} C.{1} D.{﹣2,﹣1,0,1,2}2.复数的虚部是()A.﹣1 B.﹣i C.1 D.i3.函数f(x)=e x﹣x﹣2的零点所在的区间为()A.(﹣1,0)B.(1,2)C.(0,1)D.(2,3)4.若定义在(﹣1,0)内的函数f(x)=log2a(x+1)>0,则a的取值范围是()A.B.C.D.(0,+∞)5.在△ABC中,若sin2A=sin2B+sin2C+sinBsinC,则角A的值为()A.B.C.D.6.若三点共线则m的值为()A.B.C.﹣2 D.27.设{an }(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为Sn的最大值8.二次不等式ax2+bx+c<0的解集是R的条件是()A. B. C. D.9.若椭圆+=1与双曲线﹣=1有相同的焦点,则a的值是()A.1 B.﹣1 C.±1 D.210.点P(tan549°,cos549°)位于()A.第一象限B.第二象限C.第三象限D.第四象限11.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.112.若方程x3﹣3x+m=0在[0,2]上只有一个解,则实数m的取值范围是()A.[﹣2,2] B.(0,2] C.[﹣2,0)∪{2} D.(﹣∞,﹣2)∪(2,+∞)二.填空题13.已知cos(π+α)=﹣,则sin(﹣α)的值为.14.向量=(2,3),=(﹣1,2),若m+与﹣2平行,则m等于.(x﹣2)+1的图象经过定点.15.函数f(x)=loga16.△ABC的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinB=,cosB=,则a+c的值为.三.解答题17.已知椭圆4x2+y2=1及l:y=x+m.(1)当m为何值时,直线l与椭圆有公共点?(2)若直线l被椭圆截得的弦长为,求直线l方程.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.19.已知等差数列{an }满足:a5=5,a2+a6=8.(1)求{an}的通项公式;(2)若bn =an+2an,求数列{bn}的前n项和Sn.20.已知四棱锥P﹣ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q 在侧棱PC上.(I)求证:AD⊥平面PBE;(II)若Q是PC的中点,求证PA∥平面BDQ.21.已知函数f(x)=x3﹣ax2,a∈R.(1)求y=f(x)的单调区间;(2)若曲线y=f(x)与直线y=x﹣1只有一个交点,求实数a的取值范围.福建省2018届高三上学期11月模拟试卷(文科数学)参考答案与试题解析一、选择题1.设集合P={1,2,3,4},Q={x|x≤2},则P∩Q=()A.{1,2} B.{3,4} C.{1} D.{﹣2,﹣1,0,1,2}【考点】交集及其运算.【分析】由P与Q,求出两集合的交集即可.【解答】解:∵P={1,2,3,4},Q={x|x≤2},∴P∩Q={1,2},故选:A.2.复数的虚部是()A.﹣1 B.﹣i C.1 D.i【考点】复数代数形式的乘除运算;复数的基本概念.【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,即可得到复数的虚部.【解答】解:∵===﹣i.∴复数的虚部是:﹣1故选A.3.函数f(x)=e x﹣x﹣2的零点所在的区间为()A.(﹣1,0)B.(1,2)C.(0,1)D.(2,3)【考点】函数零点的判定定理.【分析】将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f(1)=e﹣3<0,f(2)=e2﹣e﹣2>0,所以零点在区间(1,2)上,故选:B.4.若定义在(﹣1,0)内的函数f(x)=log(x+1)>0,则a的取值范围是()2aA.B.C.D.(0,+∞)【考点】对数函数的定义.【分析】由x的范围求出对数真数的范围,再根据对数值的符号,判断出底数的范围,列出不等式进行求解.【解答】解:当x∈(﹣1,0)时,则x+1∈(0,1),因为函数f(x)=log(x+1)>02a故0<2a<1,即.故选A.5.在△ABC中,若sin2A=sin2B+sin2C+sinBsinC,则角A的值为()A.B.C.D.【考点】解三角形.【分析】利用正弦定理化简已知的等式,再由余弦定理表示出cosA,将化简后的等式变形后代入cosA中,约分后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵==,∴化简得:a2=b2+c2+bc,即b2+c2﹣a2=﹣bc,∴由余弦定理得:cosA==﹣,又A为三角形的内角,则角A 的值为.故选A6.若三点共线 则m 的值为( )A .B .C .﹣2D .2【考点】向量的共线定理.【分析】利用向量坐标公式求出两个向量的坐标,据三点共线得两个向量共线,利用向量共线的坐标形式的充要条件列出方程求出m【解答】解:,∵三点共线∴共线∴5(m ﹣3)=﹣解得m= 故选项为A7.设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值 【考点】等差数列的前n 项和.【分析】利用结论:n ≥2时,a n =s n ﹣s n ﹣1,易推出a 6>0,a 7=0,a 8<0,然后逐一分析各选项,排除错误答案.【解答】解:由S 5<S 6得a 1+a 2+a 3+…+a 5<a 1+a 2++a 5+a 6,即a 6>0, 又∵S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7, ∴a 7=0,故B 正确; 同理由S 7>S 8,得a 8<0,∵d=a7﹣a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为Sn的最大值,故D正确;故选C.8.二次不等式ax2+bx+c<0的解集是R的条件是()A. B. C. D.【考点】一元二次不等式的解法.【分析】由题意可知二次不等式ax2+bx+c<0对应的函数开口向下,解集是R,所以△<0.【解答】解:由题意可知二次不等式ax2+bx+c<0,对应的二次函数y=ax2+bx+c开口向下,所以a<0二次不等式ax2+bx+c<0的解集是R,所以△<0.故选D.9.若椭圆+=1与双曲线﹣=1有相同的焦点,则a的值是()A.1 B.﹣1 C.±1 D.2【考点】圆锥曲线的共同特征.【分析】求出双曲线的两焦点坐标,即为椭圆的焦点坐标,即可得到m,b的值,然后根据椭圆的定义得到a,最后利用a,b,c的关系即可求出b的值,得到椭圆及双曲线的方程.【解答】解:由题意可知椭圆的半焦距c的平方为:c2=4﹣a2双曲线的半焦距c的平方为:c2=a+2;∴4﹣a2=a+2,解得:a=1.(负值舍去)故选A.10.点P(tan549°,cos549°)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】运用诱导公式化简求值.【分析】通过诱导公式化简P的坐标,判断P的横坐标与纵坐标的符号,即可判断P所在象限.【解答】解:tan549°=tan189°>0,cos549°=cos189°<0,所以P的横坐标为正、纵坐标为负数,所以P在第四象限.故选D.11.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【考点】简单线性规划.【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.12.若方程x3﹣3x+m=0在[0,2]上只有一个解,则实数m的取值范围是()A.[﹣2,2] B.(0,2] C.[﹣2,0)∪{2} D.(﹣∞,﹣2)∪(2,+∞)【考点】二分法求方程的近似解.【分析】令f(x)=x3﹣3x+m,则由题意可得函数f(x)在[0,2]只有一个零点,故有f(0)•f(2)≤0,并验证其结论,问题得以解决.【解答】解:设f(x)=x3﹣3x+m,f′(x)=3x2﹣3=0,可得x=1或x=﹣1是函数的极值点,故函数的减区间为[0,1],增区间为(1,2],根据f(x)在区间[0,2]上只有一个解,f(0)=m,f(1)=m﹣2,f(2)=2﹣m,当f(1)=m﹣2=0时满足条件,即m=2,满足条件,当f(0)f(2)≤0时,解得﹣2≤m≤0时,当m=0时,方程x3﹣3x=0.解得x=0,x=1,不满足条件,故要求的m的取值范围为[﹣2,0)∪{2}.故选:C.二.填空题13.已知cos(π+α)=﹣,则sin(﹣α)的值为﹣.【考点】运用诱导公式化简求值.【分析】利用诱导公式化简已知的等式求出cosα的值,将所求式子利用诱导公式变形后,把cosα的值代入即可求出值.【解答】解:∵cos(π+α)=﹣cosα=﹣,∴cosα=,则sin(﹣α)=﹣cosα=﹣.故答案为:﹣14.向量=(2,3),=(﹣1,2),若m+与﹣2平行,则m等于.【考点】平面向量共线(平行)的坐标表示.【分析】由已知向量的坐标求得m+与﹣2的坐标,再由向量平行的坐标表示列式求得m的值.【解答】解:∵=(2,3),=(﹣1,2),∴m+=m(2,3)+(﹣1,2)=(2m﹣1,3m+2),﹣2=(2,3)﹣2(﹣1,2)=(4,﹣1).又m+与﹣2平行,∴(2m﹣1)•(﹣1)﹣4(3m+2)=0,解得:m=﹣.故答案为:.(x﹣2)+1的图象经过定点(3,1).15.函数f(x)=loga【考点】对数函数的单调性与特殊点.(x﹣2)的真数值为1,求得自变量x的值即可求得答案.【分析】令y=loga【解答】解:令x﹣2=1,得x=3,(3﹣2)+1=1,∵f(3)=loga∴函数f(x)=log(x﹣2)+1的图象经过定点(3,1).a故答案为:(3,1).16.△ABC的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinB=,cosB=,则a+c的值为3.【考点】余弦定理.【分析】由a,b,c成等比数列,可得b2=ac,由sinB=,cosB=,可解得ac=13,再由余弦定理求得a2+c2=37,从而求得(a+c)2的值,即可得解.【解答】解:∵a,b,c成等比数列,∴b2=ac,∵sinB=,cosB=,∴可得=1﹣,解得:ac=13,∵由余弦定理:b2=a2+c2﹣2accosB=ac=a2+c2﹣ac×,解得:a2+c2=37.∴(a+c)2=a2+c2+2ac=37+2×13=63,故解得a+c=3.故答案为:3.三.解答题17.已知椭圆4x2+y2=1及l:y=x+m.(1)当m为何值时,直线l与椭圆有公共点?(2)若直线l被椭圆截得的弦长为,求直线l方程.【考点】椭圆的简单性质.【分析】(1)把直线y=x+m代入4x2+y2=1得5x2+2mx+m2﹣1=0,利用△≥0,即可得出.(2)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,利用根与系数的关系可得弦长,就看得出.【解答】解:(1)把直线y=x+m代入4x2+y2=1得5x2+2mx+m2﹣1=0,①∴△=4m2﹣20(m2﹣1)=﹣16m2+20≥0,.(2)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,由①得,∴,∴,解得.∴所求直线方程为.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.【考点】正弦定理;余弦定理.【分析】(Ⅰ)由正弦定理得: sinAcosC﹣sinCsinA=0,即可解得tanC=,从而求得C的值;(Ⅱ)由面积公式可得S△ABC==6,从而求得得a的值,由余弦定理即可求c 的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得: sinAcosC﹣sinCsinA=0.…因为0<A<π,所以sinA>0,从而cosC=sinC,又cosC≠0,…所以tanC=,所以C=.…(Ⅱ)在△ABC中,S△ABC==6,得a=6,…由余弦定理得:c2=62+42﹣2×=28,所以c=2.…19.已知等差数列{an }满足:a5=5,a2+a6=8.(1)求{an}的通项公式;(2)若bn =an+2an,求数列{bn}的前n项和Sn.【考点】数列的求和.【分析】(1)直接根据已知条件建立方程组求得首项和公差,进一步求得通项公式.(2)利用(1)的结论,根据等差和等比数列的前n项和公式求的结果.【解答】解:(1)由条件a5=5,a2+a6=8.得知:,解得:,故{an }的通项公式为:an=n.(2),故Sn =b1+b2+…+bn,.20.已知四棱锥P﹣ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q 在侧棱PC上.(I)求证:AD⊥平面PBE;(II)若Q是PC的中点,求证PA∥平面BDQ.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)利用线面垂直的判定证明,关键是证明AD⊥PE,AD⊥BE;(Ⅱ)连接AC交BD于点O,连接OQ,证明OQ∥PA,即可得到结论.【解答】证明:(Ⅰ)由E是AD的中点,PA=PD,所以AD⊥PE…又底面ABCD是菱形,∠BAD=60°,所以AB=BD,又因为E是AD的中点,所以AD⊥BE…又PE∩BE=E…所以AD⊥平面P BE…(Ⅱ)连接AC交BD于点O,连接OQ…因为O是AC的中点,Q是PC的中点,所以OQ∥PA…又PA⊄平面BDQ…OQ⊂平面BDQ…所以PA∥平面BDQ…21.已知函数f(x)=x3﹣ax2,a∈R.(1)求y=f(x)的单调区间;(2)若曲线y=f(x)与直线y=x﹣1只有一个交点,求实数a的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)求出函数的导数,通过讨论a的范围,得到函数的单调区间即可;(2)把曲线y=f(x)与直线y=x﹣1只有一个交点转化为关于x的方程ax2=x3﹣x+1只有一个实根,进一步转化为方程a=x﹣+只有一个实根.构造函数g(x)=x﹣+,利用导数分析其单调性,并画出其图象大致形状,数形结合可得方程a=x﹣+只有一个实根时的实数a的取值范围.【解答】解:(1)f′(x)=3x2﹣2ax=x(3x﹣2a)当a=0时,R上y=f(x)单调递增;当a>0时,(﹣∞,0),为y=f(x)增区间,为y=f(x)减区间;当a<0,,(0,+∞)为y=f(x)增区间,为y=f(x)减区间;(2)曲线y=f(x)与直线y=x﹣1只有一个交点,等价于关于x的方程ax2=x3﹣x+1只有一个实根.显然x≠0,∴方程a=x﹣+只有一个实根.设函数g(x)=x﹣+,则g′(x)=1+﹣=.设h(x)=x3+x﹣2,h′(x)=3x2+1>0,h(x)为增函数,又h(1)=0.∴当x<0时,g′(x)>0,g(x)为增函数;当0<x<1时,g′(x)<0,g(x)为减函数;当x>1时,g′(x)>0,g(x)为增函数;∴g(x)在x=1时取极小值1.又当x趋向于0时,g(x)趋向于正无穷;当x趋向于负无穷时,g(x)趋向于负无穷;又当x趋向于正无穷时,g(x)趋向于正无穷.∴g(x)图象大致如图所示:∴方程a=x﹣+只有一个实根时,实数a的取值范围为(﹣∞,1).。
福鼎市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 22. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是()A .a ≥1B .a ≤1C .a ≥﹣1D .a ≤﹣33. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)4. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.5. 由两个1,两个2,两个3组成的6位数的个数为( )A .45B .90C .120D .3606. 下列哪组中的两个函数是相等函数( )A .B .()()4f x x =g ()()24=,22x f x g x x x -=-+C .D .()()1,01,1,0x f x g x x >⎧==⎨<⎩()()=f x x x =,g 7. 设函数f (x )=,则f (1)=()A .0B .1C .2D .38. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣29. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.11015C. D.3102510.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是()A .(1,1)B .(0,3)C .(,2)D .(,0)11.由直线与曲线所围成的封闭图形的面积为( )A班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________B1C D12.已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .2二、填空题13.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 . 14.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .15.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线上xC y e :=一点,直线经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.20l x y c :++=16.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤17.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)18.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.三、解答题19.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).20.已知函数().()()xf x x k e =-k R ∈(1)求的单调区间和极值;()f x(2)求在上的最小值.()f x []1,2x ∈(3)设,若对及有恒成立,求实数的取值范围.()()'()g x f x f x =+35,22k ⎡⎤∀∈⎢⎥⎣⎦[]0,1x ∀∈()g x λ≥λ21.已知在四棱锥P ﹣ABCD 中,底面ABCD 是边长为4的正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,E 、F 、G 分别是PA 、PB 、BC 的中点.(I )求证:EF ⊥平面PAD ;(II )求平面EFG 与平面ABCD 所成锐二面角的大小.22.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .23.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ)求A,B;(Ⅱ)若A∪B=B,求实数a的取值范围.24.已知,其中e是自然常数,a∈R (Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.福鼎市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2,所以S 球=4πR 2=6πa 2.故选B 2. 【答案】A【解析】解:由|x+1|≤2得﹣3≤x ≤1,即p :﹣3≤x ≤1,若p 是q 的充分不必要条件,则a ≥1,故选:A .【点评】本题主要考查充分条件和必要条件的判断,比较基础. 3. 【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k ≥﹣1.∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题. 4. 【答案】C【解析】根据分层抽样的要求可知在社区抽取户数为.C 2492108180270360180108=⨯=++⨯5. 【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C 62C 42C 22=90个不同的六位数,故选:B .【点评】本题考查了分步计数原理,关键是转化,属于中档题. 6. 【答案】D111]【解析】考点:相等函数的概念.7. 【答案】D 【解析】解:∵f (x )=,f (1)=f[f (7)]=f (5)=3.故选:D . 8. 【答案】D【解析】: 解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D .9. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =.31010.【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距,故由图象可知,使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x 上但不在阴影区域内,故不成立;故选D .【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题. 11.【答案】D【解析】由定积分知识可得,故选D。
福鼎市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数,若存在常数使得方程有两个不等的实根211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12,x x (),那么的取值范围为( )12x x <12()x f x ∙A .B .C .D .3[,1)41[831[,1623[,3)82. 已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A . B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð3. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .4. 已知集合,,则满足条件的集合的2{320,}A x x x x R =-+=∈{05,}B x x x N =<<∈A C B ⊆⊆C 个数为 A 、B 、C 、D 、2345. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4846. 设集合,,则( ){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B =I A.B.C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.7. 双曲线E 与椭圆C :+=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积x 29y 23为π,则E 的方程为( )A.-=1 B.-=1x 23y 23x 24y 22C.-y 2=1D.-=1x 25x 22y 248. 已知集合,则下列式子表示正确的有(){}2|10A x x =-=①;②;③;④.1A ∈{}1A -∈A ∅⊆{}1,1A -⊆A .1个 B .2个C .3个D .4个9. 不等式组在坐标平面内表示的图形的面积等于( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.函数y=(x2﹣5x+6)的单调减区间为()A.(,+∞)B.(3,+∞)C.(﹣∞,)D.(﹣∞,2)11.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()4π5π2π+A. B. C. D.【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.12.在数列{a n}中,a1=3,a n+1a n+2=2a n+1+2a n(n∈N+),则该数列的前2015项的和是()A.7049B.7052C.14098D.14101二、填空题13.曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是 .14.当时,4x<log a x,则a的取值范围 .15.已知函数,若∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是 .16.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为 . 17.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________.18.椭圆+=1上的点到直线l:x﹣2y﹣12=0的最大距离为 .三、解答题19.在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为θ=,曲线C 的参数方程为.(1)写出直线l 与曲线C 的直角坐标方程;(2)过点M 平行于直线l 1的直线与曲线C 交于A 、B 两点,若|MA|•|MB|=,求点M 轨迹的直角坐标方程. 20.已知等比数列{a n }的前n 项和为S n ,a n >0,a 1=,且﹣,,成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{b n }满足b n •log 3(1﹣S n+1)=1,求适合方程b 1b 2+b 2b 3+…+b n b n+1=的正整数n 的值.21.(本小题满分10分)选修4-5:不等式选讲已知函数.()|21|f x x =-(1)若不等式的解集为,求实数的值;1()21(0)2f x m m +≤+>(][),22,-∞-+∞U m (2)若不等式,对任意的实数恒成立,求实数的最小值.()2|23|2yy af x x ≤+++,x y R ∈a 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.22.(理)设函数f (x )=(x+1)ln (x+1).(1)求f (x )的单调区间;(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.23.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f(x)的导函数为f′(x),求证:f′(x0)<0.24.选修4﹣4:坐标系与参数方程极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为,(t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ.(Ⅰ)求C的直角坐标方程;(Ⅱ)设直线l与曲线C交于A、B两点,求弦长|AB|.福鼎市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得()f x t =314t <<1324x +=,由,可得(负舍),即有,则14x =213x =x =12111,422x x ≤<≤≤221143x ≤≤.故本题答案选C.()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.2. 【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 3. 【答案】B 【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力. 4. 【答案】D【解析】, .{|(1)(2)0,}{1,2}A x x x x =--=∈=R {}{}|05,1,2,3,4=<<∈=N B x x x∵,∴可以为,,,.⊆⊆A C B C {}1,2{}1,2,3{}1,2,4{}1,2,3,45. 【答案】 C 【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C .【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.6. 【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.||2x ≤22x -≤≤{}|22A x x =-≤≤{}1,2A B =I 7. 【答案】【解析】选C.可设双曲线E 的方程为-=1,x 2a 2y 2b 2渐近线方程为y =±x ,即bx ±ay =0,b a由题意得E 的一个焦点坐标为(,0),圆的半径为1,6∴焦点到渐近线的距离为1.即=1,|6b |b 2+a 2又a 2+b 2=6,∴b =1,a =,5∴E 的方程为-y 2=1,故选C.x 258. 【答案】C 【解析】试题分析:,所以①③④正确.故选C.{}1,1A =-考点:元素与集合关系,集合与集合关系.9. 【答案】B【解析】解:作出不等式组对应的平面区域,则对应的平面区域为矩形OABC ,则B (3,0),由,解得,即C (,),∴矩形OABC 的面积S=2S △0BC =2×=,故选:B【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键.10.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.11.【答案】B12.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.二、填空题13.【答案】 ②③④ .【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|∴|PA|+|PB|≥2=2k,③正确;对于④,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.14.【答案】 .【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1)15.【答案】 (﹣∞,2)∪(3,5) .【解析】解:由题意,或∴a<2或3<a<5故答案为:(﹣∞,2)∪(3,5).【点评】本题考查分类讨论的数学思想,考查学生的计算能力,属于基础题.16.【答案】 .【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.17.【答案】【解析】(2a+b)·a=(2,-2+t)·(1,-1)=2×1+(-2+t)·(-1)=4-t=2,∴t=2.答案:218.【答案】 4 .【解析】解:由题意,设P(4cosθ,2sinθ)则P到直线的距离为d==,当sin(θ﹣)=1时,d取得最大值为4,故答案为:4.三、解答题19.【答案】【解析】解:(1)直线l的极坐标方程为θ=,所以直线斜率为1,直线l:y=x;曲线C的参数方程为.消去参数θ,可得曲线…(2)设点M(x0,y0)及过点M的直线为由直线l1与曲线C相交可得:,即:,x2+2y2=6表示一椭圆…取y=x+m代入得:3x2+4mx+2m2﹣2=0由△≥0得故点M的轨迹是椭圆x2+2y2=6夹在平行直线之间的两段弧…【点评】本题以直线与椭圆的参数方程为载体,考查直线与椭圆的综合应用,轨迹方程的求法,注意轨迹的范围的求解,是易错点.20.【答案】【解析】解:(Ⅰ)设数列{a n}的公比q,由﹣,,,成等差数列,得,解得或q=﹣1(舍去),∴;(Ⅱ)∵,∴=﹣n﹣1,∴,,==,解得:n=100.【点评】本题考查等比数列和等差数列的概念与性质,以及等比数列的前n 项和公式和裂项相消法求和,属于中档题.21.【答案】【解析】(1)由题意,知不等式解集为.|2|21(0)x m m ≤+>(][),22,-∞-+∞U 由,得,……………………2分|2|21x m ≤+1122m x m --≤≤+所以,由,解得.……………………4分122m +=32m =(2)不等式等价于,()2|23|2y y a f x x ≤+++|21||23|22y y a x x --+≤+由题意知.……………………6分max (|21||23|)22y y a x x --+≤+22.【答案】【解析】解:(1)由f'(x )=ln (x+1)+1≥0得,∴f (x )的增区间为,减区间为.(2)令g (x )=(x+1)ln (x+1)﹣ax .“不等式f (x )≥ax 在x ≥0时恒成立”⇔“g (x )≥g (0)在x ≥0时恒成立.”g'(x )=ln (x+1)+1﹣a=0⇒x=e a ﹣1﹣1.当x ∈(﹣1,e a ﹣1﹣1)时,g'(x )<0,g (x )为减函数.当x ∈(e a ﹣1﹣1,+∞)时,g'(x )>0,g (x )为增函数.“g (x )≥0在x ≥0时恒成立”⇔“e a ﹣1﹣1≤0”,即e a ﹣1≤e 0,即a ﹣1≤0,即a ≤1.故a 的取值范围是(﹣∞,1]. 【解析】解:(1),令f'(x)>0,则;令f'(x)<0,则.∴f(x)在x=a时取得最大值,即①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f(x)→﹣∞∴f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;②当,即a=1时,f(x)有1个零点;③当,即a>1时f(x)没有零点;(2)由得(0<x1<x2),=,令,设,t∈(0,1)且h(1)=0则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0即,又,∴f'(x0)=<0.【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.【解析】解:(I)由曲线C的极坐标方程为ρsin2θ=8cosθ,得ρ2sin2θ=8ρcosθ.∴y2=8x即为C的直角坐标方程;(II)把直线l的参数方程,(t为参数),代入抛物线C的方程,整理为3t2﹣16t﹣64=0,∴,.∴|AB|=|t1﹣t2|==.【点评】熟练掌握极坐标与直角坐标的互化公式、直线与抛物线相交问题转化为方程联立得到根与系数的关系、直线参数方程的参数的几何意义等是解题的关键.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(3)
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15. .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。
福安市实验中学2018-2019学年高三上学期11月月考数学试卷含答案
A. 0, 2016
B.0, 2015
C. 1, 2016
)
D.1, 2017
5. 命题“∃x0∈R,x02+2x0+2≤0”的否定是(
)
A.∀x∈R,x2+2x+2>0 B.∀x∈R,x2+2x+2≥0
C.∃x0∈R,x02+2x0+2<0 D.∃x∈R,x02+2x0+2>0
6. 若圆心坐标为 2, 1 的圆在直线 x y 1 0 上截得的弦长为 2 2 ,则这个圆的方程是( )
【解析】解:几何体为底面为正方形的长方体,底面对角线为 4,高为 3,∴长方体底面边长为 2 .
则长方体外接球半径为 r,则 2r=
=5.∴r= .∴长方体外接球的表面积
S=4πr2=25π.
故选 C.
【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题. 10.【答案】B
【解析】解:y=cos2x﹣cos4x=cos2x(1﹣cos2x)=cos2x•sin2x= sin22x=
第 9 页,共 14 页
【解析】由题意可得,选取的这 6 个个体分别为 18,07,17,16,09,19,故选出的第 6 个个体编号为 19.
16.【答案】
.
【解析】解:作出不等式组对应的平面区域, 直线 y=k(x+2)过定点 D(﹣2,0), 由图象可知当直线 l 经过点 A 时,直线斜率最大,当经过点 B 时,直线斜率最小,
+120×0.02×20+140×0.01×20 =114.
故选:B.
第 6 页,共 14 页
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目. 3. 【答案】A
福安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
福安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( )A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β2. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A. B .483C.D .1632033. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm3A .πB .2πC .3πD .4π4. 已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A . B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=5. 阅读如下所示的程序框图,若运行相应的程序,则输出的的值是()S A .39B .21C .81D .102班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 在ABC ∆中,若60A ∠=o,45B ∠=o,BC =,则AC =()A .B . C.D 7. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)8. 已知为的三个角所对的边,若,则,,a b c ABC ∆,,A B C 3cos (13cos )b C c B =-sin :sin C A =()A .2︰3B .4︰3C .3︰1D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.9. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种10.数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )A .﹣B .C .﹣1D .111.连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .12.已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .二、填空题13.已知i是虚数单位,复数的模为 .14.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.x﹣1045f(x)1221下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .15.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i,j)有4种不同取值;④当x=﹣1时,(i,j)有2种不同取值;⑤M中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)16.(﹣)0+[(﹣2)3]= .17.已知直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),则ab的最大值是 .18.在(1+2x)10的展开式中,x2项的系数为 (结果用数值表示).三、解答题19.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.20.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.21.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.22.已知、、是三个平面,且,,,且.求证:、αβc αβ=I a βγ=I b αγ=I a b O =I 、三线共点.23.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.24.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;(2)求直线BC1到平面D1AC的距离.福安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误;在B 选项中,可能有n ⊂α,故B 错误;在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. 2. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.132033. 【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B . 4. 【答案】A 【解析】试题分析:圆心,由(0,0),C r =1(1),10y k x kx y k -=+∴-++=,所以切线方程为,故选A.,1d r k =∴=20x y -+=考点:直线与圆的位置关系.5. 【答案】]【解析】试题分析:第一次循环:;第二次循环:;第三次循环:.结束循环,2,3==n S 3,21==n S 4,102==n S 输出.故选D. 1102=S考点:算法初步.6. 【答案】B 【解析】考点:正弦定理的应用.7. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5].∴当x=3时,f (x )min =﹣2.当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2].故选:C . 8. 【答案】C【解析】由已知等式,得,由正弦定理,得,则3cos 3cos c b C c B =+sin 3(sin cos sin cos )C B C C B =+,所以,故选C .sin 3sin()3sin C B C A =+=sin :sin 3:1C A =9. 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A .【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想. 10.【答案】D【解析】解:∵a 1=3,a n ﹣a n •a n+1=1,∴,得,,a 4=3,…∴数列{a n }是以3为周期的周期数列,且a 1a 2a 3=﹣1,∵2016=3×672,∴A 2016 =(﹣1)672=1.故选:D . 11.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.12.【答案】B【解析】解:f(x)=2x,则f'(x)=2x ln2,故选:B.【点评】本题考查了导数运算法则,属于基础题.二、填空题13.【答案】 .【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.14.【答案】 ①②⑤ .【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.15.【答案】 ①③⑤ 【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.16.【答案】 .【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:.17.【答案】 .【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.18.【答案】 180 【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r可知r=2,所以系数为C102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.三、解答题19.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.20.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k1==2﹣,k2==﹣2此时k1+k2=0,猜想λ=1时成立.证明如下:k1+k2=+=2+m=2﹣2=0当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.21.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.22.【答案】证明见解析.【解析】考点:平面的基本性质与推论.23.【答案】【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…所以所求的圆C的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…24.【答案】【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,故直线BC1平行于平面DA1C;(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)以△ABC为底面的三棱锥D1﹣ABC的体积V,可得而△AD1C中,,故所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积,即直线BC1到平面D1AC的距离为.【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题. 。
福安市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
;⑥
;⑦y=log2x2+2 最小值为 2 的函数是 (只填序号)
16.抛物线 y2=6x,过点 P(4,1)引一条弦,使它恰好被 P 点平分,则该弦所在的直线方程为 .
17.(﹣ )0+[(﹣2)3]
= .
18.一个正四棱台,其上、下底面均为正方形,边长分别为 2cm 和 4cm ,侧棱长为 2cm ,则其 表面积为__________ cm2 .
福安市高级中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案
一、选择题
1. 在 ABC 中, sin2 A sin2 B sin2 C sin B sin C ,则 A 的取值范围是( )1111]
A. (0, ]
6
B. [
,
)
6
C. (0, ]
3
D. [
,
)
3
2. 已知全集U 1, 2,3, 4,5, 6, 7 , A 2, 4, 6 , B 1,3,5, 7 ,则 A I (ðU B) ( )
A.2, 4, 6
B. 1, 3, 5
C.2, 4,5
D. 2, 5
3. 设集合 A={x|x2+x﹣6≤0},集合 B 为函数
A.4
B.5
C.6
D.7
9. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置 C
对隧道底 AB 的张角 θ 最大时采集效果最好,则采集效果最好时位置 C 到 AB 的距离是( )
第 1 页,共 5 页
A.2
m B.2
m C.4 m D.6 m
10.已知集合 A {2, 1, 0,1, 2,3} , B {y | y | x | 3, x A},则 A I B ( )
福鼎市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°2. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .53. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等. 4. 已知椭圆C:+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B两点,若△AF 1B 的周长为4,则C 的方程为( )A.+=1B.+y 2=1C.+=1D.+=15. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.6. 设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]7. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( )A .(﹣1,0)B .(﹣1,1)C .(0,1)D .(1,3)8. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆ 10.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 11.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >12.设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,二、填空题13.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .14.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .16.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .17.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .18.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.三、解答题19.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.20.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;(Ⅱ)若EF •FC=,求正方形ABCD 的面积.21.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一 次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指 数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留幸福感强 幸福感弱 总计 留守儿童 非留守儿童 总计1111](2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20()P K k ≥ 0.050 0.010 0k3.8416.63522.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.23.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.24.已知集合A={x|>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.(Ⅰ)当m=3时,求;A ∩(∁R B );(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.福鼎市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30° 故选D .【点评】本题主要考查正弦定理的应用.属基础题.2. 【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]3. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.4. 【答案】A【解析】解:∵△AF1B 的周长为4,∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a+2a=4a ,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.5. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .6. 【答案】D【解析】解:A={x|2x≤4}={x|x ≤2}, 由x ﹣1>0得x >1∴B={x|y=lg (x ﹣1)}={x|x >1} ∴A ∩B={x|1<x ≤2}故选D .7. 【答案】C【解析】解:∵集合M={x|x 2﹣2x ﹣3<0}={x|﹣1<x <3}, N={x|log 2x <0}={x|0<x <1}, ∴M ∩N={x|0<x <1}=(0,1).故选:C .【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.8. 【答案】C 【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象. 9. 【答案】D 【解析】试题分析:空集是任意集合的子集。
福鼎市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.2. 若复数z 满足i 1i z =--,则在复平面内,z 所对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( ) A .1B.C.D.4. 十进制数25对应的二进制数是( ) A .11001 B .10011C .10101D .100015. 方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆 6. 如图所示,程序执行后的输出结果为()A .﹣1B .0C .1D .2 7. 下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 58. 下列命题的说法错误的是( ) A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 9. 某几何体的三视图如图所示,该几何体的体积是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C. D.10.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()A.(11,12)B.(12,13)C.(13,14)D.(13,12)11.双曲线的渐近线方程是()A.B.C.D.12.“a>b,c>0”是“ac>bc”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题13.在三棱柱ABC﹣A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是.14.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.15.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是.16.已知,a b为常数,若()()224+3a1024f x x x f x b x x=++=++,,则5a b-=_________.17.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .18.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则=+)10()4(f f .三、解答题19.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.20.选修4﹣4:坐标系与参数方程极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为,(t 为参数),曲线C 的极坐标方程为ρsin 2θ=8cos θ.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于A 、B 两点,求弦长|AB|.21.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1.22.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.23.化简:(1).(2)+.24.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.福鼎市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.2.【答案】B【解析】3.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.4.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.5.【答案】A【解析】试题分析:由方程1x-=,即22x-=,两边平方得221-++=,所(1)(1)1x y以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.6.【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s<15,s=5,n=4满足条件s<15,s=9,n=3满足条件s<15,s=12,n=2满足条件s<15,s=14,n=1满足条件s<15,s=15,n=0不满足条件s<15,退出循环,输出n的值为0.故选:B.【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.7.【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(﹣x)=﹣f(x),是奇函数,对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,对于D,满足f(﹣x)=﹣f(x),是奇函数,故选:C.【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.8.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.9.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.10.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.12.【答案】A【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0,故选:A.【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题二、填空题13.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.14.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题15.【答案】(﹣3,21).【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.16.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 17.【答案】.【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F , 过F斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D , ∴直线AB 的方程为y=(x﹣),l 的方程为x=﹣,联立,解得A(﹣,P ),B(,﹣)∴直线OA 的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.18.【答案】2【解析】直线1=x 和2=x 是曲线)(x f y =的对称轴, ∴(2)()f x f x -=,(4)()f x f x -=,∴(2)(4)f x f x -=-,∴)(x f y =的周期2T =. ∴(4)(10)(0)(0)2f f f f +=+=.三、解答题19.【答案】(1)2212x y +=;(2)证明见解析. 【解析】试题解析:(1)22PF QO =,∴212PF F F ⊥,∴1c =, 2222221121,1a b c b a b +==+=+, ∴221,2b a ==,即2212x y +=; (2)设AB 方程为y kx b =+代入椭圆方程22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22221,1122A B A B kb b x x x x k k --+==++,11,A B MA MB A B y y k k x x --==,∴()112A B A B A B A B MA MB A BA By x x y x x y y k k x x x x +-+--+=+==,∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.20.【答案】【解析】解:(I )由曲线C 的极坐标方程为ρsin 2θ=8cos θ,得ρ2sin 2θ=8ρcos θ.∴y2=8x 即为C 的直角坐标方程;(II )把直线l 的参数方程,(t为参数),代入抛物线C 的方程,整理为3t 2﹣16t ﹣64=0,∴,.∴|AB|=|t 1﹣t 2|==.【点评】熟练掌握极坐标与直角坐标的互化公式、直线与抛物线相交问题转化为方程联立得到根与系数的关系、直线参数方程的参数的几何意义等是解题的关键.21.【答案】【解析】证明:(Ⅰ)∵数列{a n }满足a 1=,a n+1=a n +(n ∈N *),∴a n >0,an+1=a n +>0(n∈N*),a n+1﹣a n =>0,∴, ∴对一切n ∈N *,<.(Ⅱ)由(Ⅰ)知,对一切k ∈N *,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.22.【答案】【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).23.【答案】【解析】解(1)原式=======﹣1.(2)∵tan(﹣α)=﹣tanα,sin(﹣α)=cosα,cos(α﹣π)=cos(π﹣α)=﹣sinα,tan(π+α)=tanα,∴原式=+=+==﹣=﹣1.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力.24.【答案】【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立.…记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.所以甲按AB顺序获得奖品价值的数学期望.…记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,所以甲按BA顺序获得奖品价值的数学期望.…因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.。
福鼎市一中2018-2019学年高二上学期第二次月考试卷数学
福鼎市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A .2B.C .3 D.2. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( ) A.B.﹣ C .4D.3. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( ) A.B.﹣ C .3D .﹣34. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心 5. 已知函数,,若,则( )A1 B2 C3 D-16. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1) D .[﹣9,1)7. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞8. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A9. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)810.i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i11.函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0)D .(0,1)12.已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.二、填空题13.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________14.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .15.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .17.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .18.设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.三、解答题19.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.20.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.21.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.22.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.23.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);Ⅱ10n(单位:元),求X的分布列及数学期望.24.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α福鼎市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),渐近线方程为y=±bx,由题意可得=,解得b=1,c==,即有离心率e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.2.【答案】B【解析】解:∵f(x)是定义在R上周期为2的奇函数,∴f(log35)=f(log35﹣2)=f(log3),∵x∈(0,1)时,f(x)=3x﹣1∴f(log3)═﹣故选:B3.【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.故选A.4.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
福鼎市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若a >b ,则下列不等式正确的是( )A.B .a 3>b 3C .a 2>b 2D .a >|b|2. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .30 3.以的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C. D.4. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.5. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.6. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)7. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -= C .(1)2n n n a += D .21n a n =+ 8. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( ) A .﹣3≤a <0 B .﹣3≤a ≤﹣2 C .a ≤﹣2D .a <0班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( ) A .2 B .4C .1D .﹣110.在等比数列{a n }中,已知a 1=9,q=﹣,a n=,则n=( )A .4B .5C .6D .711.图1是由哪个平面图形旋转得到的( )A .B .C .D .12.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.二、填空题13.已知f (x )=,则f[f (0)]= .14.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)15.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________. 16.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .17.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .18.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.设△ABC的内角A,B,C所对应的边长分别是a,b,c且cosB=,b=2(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.20.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.21.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.22.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.等差数列{a n} 中,a1=1,前n项和S n满足条件,(Ⅰ)求数列{a n} 的通项公式和S n;(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.福鼎市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:∵a >b ,令 a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1, =﹣,显然A 不正确. a 3=﹣1,b 3=﹣6,显然 B 正确. a 2 =1,b 2=4,显然C 不正确. a=﹣1,|b|=2,显然D 不正确.故选 B .【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.2. 【答案】D 【解析】试题分析:分段间隔为50301500=,故选D. 考点:系统抽样 3. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.4. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.5. 【答案】B6. 【答案】C【解析】解: =﹣=﹣f ′(x 0),故选C .7. 【答案】C 【解析】试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)2n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 8. 【答案】B【解析】解:∵函数是R 上的增函数设g (x )=﹣x 2﹣ax ﹣5(x ≤1),h (x )=(x >1)由分段函数的性质可知,函数g (x )=﹣x 2﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )=在(1,+∞)单调递增,且g (1)≤h (1)∴∴解可得,﹣3≤a ≤﹣2 故选B9. 【答案】 A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P (x ,y ),记F 1(﹣3,0),F 2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.10.【答案】B【解析】解:由等比数列的性质可知,∴∴n=5故选B【点评】本题主要考查了等比数列的通项公式的应用,属于基础试题11.【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念. 12.【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC=-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D , 二、填空题13.【答案】 1 .【解析】解:f (0)=0﹣1=﹣1, f[f (0)]=f (﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.14.【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y ,∴焦点坐标为(0,2).故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.15.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:216.【答案】.【解析】解:依题意可知|BP|+|PF|=2,|PB|=|PA| ∴|AP|+|PF|=2根据椭圆的定义可知,点P 的轨迹为以A ,F 为焦点的椭圆,a=1,c=,则有b=故点P 的轨迹方程为故答案为【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.17.【答案】(﹣4,).【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.∴抛物线的焦点为F(﹣2,0),准线为x=2.设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题..18.【答案】[3,6]【解析】三、解答题19.【答案】【解析】解:(Ⅰ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S△ABC===3,∴ac=.由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,∴(a+c)2=+4=28,故:a+c=2.20.【答案】【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=.…(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…P(X=0)==;P(X=1)==;P(X=2)==;P(X=3)==;P(X=4)==.…XEX=0×+1×+2×+3×+4×=.…【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.21.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.22.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …23.【答案】【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin(2x﹣),∴函数的周期为T==π,由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.24.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.。
福鼎市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
福鼎市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .2. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( )A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假3. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A .B .C .D .π4. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心5. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( )A .1或﹣3B .﹣1或3C .1或3D .﹣1或﹣36. 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111]P ABC A .2对B .3对C .4对D .6对7. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )A .kB .﹣kC .1﹣kD .2﹣k8. “”是“”的( )24x ππ-<≤tan 1x ≤A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.9. 已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是()A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q10.已知命题且是单调增函数;命题,.:()(0xp f x a a =>1)a ≠5:(,44q x ππ∀∈sin cos x x >则下列命题为真命题的是( )A .B .C. D .p q ∧p q ∨⌝p q ⌝∧⌝p q⌝∧11.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .3512.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为()A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C.(,1)∪(2,+∞)D .(0,)∪(2,+∞) 二、填空题13.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.{x +y -5≤02x -y -1≥0x -2y +1≤0)14.已知向量若,则( )(1,),(1,1),ax b x ==- (2)a b a -⊥ |2|a b -=A .B .C .2D 23【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.16.在平面直角坐标系中,,,记,其中为坐标原点,(1,1)=-a (1,2)=b {}(,)|M OM λμλμΩ==+a b O 给出结论如下:①若,则;(1,4)(,)λμ-∈Ω1λμ==②对平面任意一点,都存在使得;M ,λμ(,)M λμ∈Ω③若,则表示一条直线;1λ=(,)λμΩ④;{}(1,)(,2)(1,5)μλΩΩ= ⑤若,,且,则表示的一条线段且长度为0λ≥0μ≥2λμ+=(,)λμΩ其中所有正确结论的序号是.17.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .18.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
福鼎市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若a >b ,则下列不等式正确的是( )A .B .a 3>b 3C .a 2>b 2D .a >|b|2. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A . B .C .D .105120303. 以的焦点为顶点,顶点为焦点的椭圆方程为()A .B .C .D .4. 设集合,,则( ){}|22A x R x =∈-≤≤{}|10B x x =-≥()R A B =I ðA.B.C.D. {}|12x x <≤{}|21x x -≤<{}|21x x -≤≤{}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.5. 在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.6. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)7. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+8. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <0班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S()A .2B .4C .1D .﹣110.在等比数列{a n }中,已知a 1=9,q=﹣,a n =,则n=( )A .4B .5C .6D .711.图1是由哪个平面图形旋转得到的()A .B .C .D .12.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为()O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.二、填空题13.已知f (x )=,则f[f (0)]= .14.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)15.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.16.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF于P ,则动点P 的轨迹方程为 . 17.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .18.设,实数,满足,若,则实数的取值范围是___________.R m ∈x y 23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩182≤+y x m【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.设△ABC的内角A,B,C所对应的边长分别是a,b,c且cosB=,b=2(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.20.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.21.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.22.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.等差数列{a n} 中,a1=1,前n项和S n满足条件,(Ⅰ)求数列{a n} 的通项公式和S n;(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.福鼎市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:∵a >b ,令 a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1, =﹣,显然A 不正确.a 3=﹣1,b 3=﹣6,显然 B 正确. a 2 =1,b 2=4,显然C 不正确.a=﹣1,|b|=2,显然D 不正确.故选 B .【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法. 2. 【答案】D 【解析】试题分析:分段间隔为,故选D.50301500=考点:系统抽样3. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质. 4. 【答案】B【解析】易知,所以,故选B.{}{}|10|1B x x x x =-≥=≥()R A B =I ð{}|21x x -≤<5. 【答案】B6. 【答案】C【解析】解: =﹣=﹣f ′(x 0),故选C . 7. 【答案】C 【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C .1n =2n =(1)2n n n a +=121,3a a ==考点:数列的通项公式.8. 【答案】B【解析】解:∵函数是R 上的增函数设g (x )=﹣x 2﹣ax ﹣5(x ≤1),h (x )=(x >1)由分段函数的性质可知,函数g (x )=﹣x 2﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )=在(1,+∞)单调递增,且g (1)≤h (1)∴∴解可得,﹣3≤a ≤﹣2故选B 9. 【答案】 A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P (x ,y ),记F 1(﹣3,0),F 2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.10.【答案】B【解析】解:由等比数列的性质可知,∴∴n=5故选B【点评】本题主要考查了等比数列的通项公式的应用,属于基础试题11.【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.12.【答案】D【解析】由切线性质知,所以,则由,得,PQ CQ ⊥222PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,2222(3)(4)4x y x y -++-=+68210x y --=P 二、填空题13.【答案】 1 .【解析】解:f (0)=0﹣1=﹣1,f[f (0)]=f (﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用. 14.【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y ,∴焦点坐标为(0,2).故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键. 15.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1)=2×1+(-2+t )·(-1)=4-t =2,∴t =2.答案:216.【答案】 .【解析】解:依题意可知|BP|+|PF|=2,|PB|=|PA|∴|AP|+|PF|=2根据椭圆的定义可知,点P 的轨迹为以A ,F 为焦点的椭圆,a=1,c=,则有b=故点P 的轨迹方程为故答案为【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力. 17.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2.设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题. 18.【答案】.[3,6] 【解析】三、解答题19.【答案】【解析】解:(Ⅰ)∵cosB=,B ∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S△ABC===3,∴ac=.由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,∴(a+c)2=+4=28,故:a+c=2.20.【答案】【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=.…(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…P(X=0)==;P(X=1)==;P(X=2)==;P(X=3)==;P(X=4)==.…故X的分布列为X01234PEX=0×+1×+2×+3×+4×=.…【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.21.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.22.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …23.【答案】【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin(2x﹣),∴函数的周期为T==π,由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.24.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.。
福鼎市二中2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A .甲B .乙C .甲乙相等D .无法确定2. 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =21V V A .B .C .D .不是定值,随点的变化而变化413121M 3. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 24. 已知函数,关于的方程()有3个相异的实数根,则的()x e f x x=x 2()2()10f x af x a -+-=a R Îa 取值范围是()A .B .C .D .21(,)21e e -+¥-21(,)21e e --¥-21(0,21e e --2121e e ìü-ïïí-ïïîþ【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.5. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα-+D .2sin cos 1αα-+6. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④7. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .8. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C .D .(ln y x =+2y x =tan y x =xy e=9. 已知点M 的球坐标为(1,,),则它的直角坐标为()A .(1,,)B .(,,)C .(,,)D .(,,)10.设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .211.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A .1372B .2024C .3136D .449512.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个二、填空题13.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 . 14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+15.求函数在区间[]上的最大值 .16.已知双曲线的一条渐近线方程为y=x ,则实数m 等于 .17.,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=u u u r u u u u r若,则该双曲线的离心率为______________.12PF F ∆【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.18.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .三、解答题19.已知椭圆C :+=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.21.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.22.等差数列{a n}的前n项和为S n.a3=2,S8=22.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.23.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.24.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.福鼎市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故选:A.【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础. 2.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.3.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B4.【答案】D第Ⅱ卷(共90分)5. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.6. 【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ),又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x ),图象③对应函数g (x ).故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题. 7. 【答案】A【解析】解:因为抛物线y 2=8x ,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A .【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题. 8. 【答案】A 【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x 奇非偶函数,故选A.考点:函数的单调性与奇偶性.9. 【答案】B【解析】解:设点M 的直角坐标为(x ,y ,z ),∵点M 的球坐标为(1,,),∴x=sincos=,y=sinsin=,z=cos=∴M 的直角坐标为(,,).故选:B .【点评】假设P (x ,y ,z )为空间内一点,则点P 也可用这样三个有次序的数r ,φ,θ来确定,其中r 为原点O 与点P 间的距离,θ为有向线段OP 与z 轴正向的夹角,φ为从正z 轴来看自x 轴按逆时针方向转到OM 所转过的角,这里M 为点P 在xOy 面上的投影.这样的三个数r ,φ,θ叫做点P 的球面坐标,显然,这里r ,φ,θ的变化范围为r ∈[0,+∞),φ∈[0,2π],θ∈[0,π], 10.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.11.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.12.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.二、填空题13.【答案】 .【解析】解:∵F 是抛物线y 2=4x 的焦点,∴F (1,0),准线方程x=﹣1,设M (x 1,y 1),N (x 2,y 2),∴|MF|+|NF|=x 1+1+x 2+1=6,解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF 的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离. 14.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈ ⎝'⎛ ⎝15.【答案】 .【解析】解:∵f (x )=sin 2x+sinxcosx=+sin2x=sin (2x ﹣)+.又x ∈[,],∴2x ﹣∈[,],∴sin (2x ﹣)∈[,1],∴sin (2x ﹣)+∈[1,].即f (x )∈[1,].故f (x )在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.16.【答案】 4 .【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.17.1【解析】18.【答案】 1 .【解析】解:∵x为实数,[x]表示不超过x的最大整数,∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.结合图象得到函数f(x)=x﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用. 三、解答题19.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.20.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z .函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.21.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.22.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a3=2,S8=22.∴,解得,∴{a n}的通项公式为a n=1+(n﹣1)=.(2)∵b n===﹣,∴T n=2+…+=2=.23.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;24.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.。
福安市一中2018-2019学年高三上学期11月月考数学试卷含答案
福安市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图所示程序框图中,输出S=( )A .45B .﹣55C .﹣66D .662. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0< B .0 C .0 D .3. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .04. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为( )A .p ∧qB .p ∨qC .¬p ∨qD .p ∧¬q5. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 6. 设i是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i7. 在复平面内,复数Z=+i 2015对应的点位于( )A .第四象限B .第三象限C .第二象限D .第一象限班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.函数y=x+xlnx的单调递增区间是()A.(0,e﹣2)B.(e﹣2,+∞)C.(﹣∞,e﹣2)D.(e﹣2,+∞)9.三个数60.5,0.56,log0.56的大小顺序为()A.log0.56<0.56<60.5B.log0.56<60.5<0.56C.0.56<60.5<log0.56 D.0.56<log0.56<60.510.设a,b为实数,若复数,则a﹣b=()A.﹣2 B.﹣1 C.1 D.211.若直线y=kx﹣k交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=()A.12 B.10 C.8 D.612.为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位二、填空题13.已知数列{a n}中,2a n,a n+1是方程x2﹣3x+b n=0的两根,a1=2,则b5=.14.过抛物线y2=4x的焦点作一条直线交抛物线于A,B两点,若线段AB的中点M的横坐标为2,则|AB|等于.15.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.16.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a>0且a≠1),+=.若数列{}的前n项和大于62,则n的最小值为.17.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为.18.(本小题满分12分)点M(2pt,2pt2)(t为常数,且t≠0)是拋物线C:x2=2py(p>0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为-2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值.三、解答题19.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.20.已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.(Ⅰ)求直线l的方程;(Ⅱ)求点P(2,2)到直线l的距离.21.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.22.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.23.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.24.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.福安市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.﹣1054.14.6.15.y=cosx.16.1.17..18.三、解答题19.20.21.22.23.24.。
福鼎市实验中学2018-2019学年高三上学期11月月考数学试卷含答案
福鼎市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.若f(x)=﹣x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是()A.(﹣∞,1] B.[0,1]C.(﹣2,﹣1)∪(﹣1,1] D.(﹣∞,﹣2)∪(﹣1,1]2.执行如图的程序框图,若输出i的值为12,则①、②处可填入的条件分别为()A.S384,2i i≥=+C.S3840,2i i≥=+3.个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.C.D.4.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是()A.2+B.1+C.D.5.把“二进制”数101101(2)化为“八进制”数是()A.40(8)B.45(8)C.50(8)D.55(8)6.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.7.在10201511xx⎛⎫++⎪⎝⎭的展开式中,含2x项的系数为()(A)10(B )30(C)45(D)1208.棱长都是1的三棱锥的表面积为()A.B. C. D.9.已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为()A.﹣i B.i C.1 D.﹣110.若当Rx∈时,函数||)(x axf=(0>a且1≠a)始终满足1)(≥xf,则函数3||logxxy a=的图象大致是()班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 11.随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2C .3D .412.已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2 B.C.D .13二、填空题13.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .14.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.15.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.16.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.17.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.18.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .三、解答题19.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.20.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.21.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程. (2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.22.已知等比数列{a n }中,a 1=,公比q=. (Ⅰ)S n 为{a n }的前n 项和,证明:S n=(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.ACDPF23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.福鼎市实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,∴单调间区间为[a,+∞)又∵f(x)在区间[1,2]上是减函数,∴a≤1∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,∵g(x)=在区间[1,2]上是减函数,∴﹣a>2,或﹣a<1,即a<﹣2,或a>﹣1,综上得a∈(﹣∞,﹣2)∪(﹣1,1],故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.2.【答案】Di i=+,【解析】如果②处填入2S=⨯⨯⨯⨯⨯=,故选D.则124681038403.【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:当x=时,sin(2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:D.【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.4.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.5. 【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故答案选D .6. 【答案】A【解析】解:∵ =(1,2),=(1,1),∴=+k =(1+k ,2+k )∵,∴ =0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.7. 【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 8. 【答案】A【解析】解:因为四个面是全等的正三角形,则.故选A9. 【答案】D【解析】解:由zi=1+i ,得,∴z 的虚部为﹣1. 故选:D .【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.【答案】C【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3||log x x y a =是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0||log 3<=x x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 11.【答案】C【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.12.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.二、填空题13.【答案】9 【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 14.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.15.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且5,,6AB VA h AC ===,所以三棱锥的体积为115652032V h h =⨯⨯⨯==,解得4h =.考点:几何体的三视图与体积. 16.【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点, 即有ln xa x=有且只有一个实根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福鼎市一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx C .f (x )
=
D .f (x )=x 2|x|
2. 已知函数f (x )
=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞) 3. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在
x=处取最小值﹣2,则ω的一个可能取值是( )
A .2
B .3
C .7
D .9
4. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
5. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r
,则,类比这个结论可
知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,
则r=( ) A
. B
. C
.
D
.
6. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<< 7. 直线x ﹣2y+2=0
经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )
A
.
B
. C
.
D
.
8. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,
=
﹣
(2x n +1
)(其中,{x n }是首项为1的正项数列),则x 5等于
( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .65
B .63
C .33
D .31
9. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )
A .①②
B .①
C .③④
D .①②③④ 10
.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,
则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:1
11.已知函数f (x )
=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B
(x 2,x 22),记圆(x+1)2+y 2
=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )
A .[0,2]
B .[0,3]
C .[0
,) D .[0
,)
12
.双曲线:的渐近线方程和离心率分别是( ) A
.
B
.
C
.
D
.
二、填空题
13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .
14.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.
【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.
16.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫
⎨
⎬⎩⎭
项中 的最大值为_________.
1818 0792 4544 1716 5809 7983 8619
6206 7650 0310 5523 6405 0526 6238
17.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
18.设p :∃x ∈
使函数
有意义,若¬p 为假命题,则t 的取值范围为 .
三、解答题
19.(本小题满分12分)1111]
已知函数()()1
ln 0f x a x a a x
=+≠∈R ,.
(1)若1a =,求函数()f x 的极值和单调区间;
(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.
20.在数列中,,
,其中
,
.
(Ⅰ)当
时,求
的值;
(Ⅱ)是否存在实数,使
构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在
,使得
.
21.已知函数f(x)=,求不等式f(x)<4的解集.
22.已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=2cos(θ﹣),以极点为坐标
原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求曲线C2的直角坐标方程;
(2)求曲线C2上的动点M到直线C1的距离的最大值.
23.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
24.在等比数列{a n}中,a1a2a3=27,a2+a4=30试求:(1)a1和公比q;
(2)前6项的和S6.
福鼎市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
13.
.
14.2016-
15.19 16. 17.B
18. .
三、解答题
19.(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛
⎫∈-∞-+∞ ⎪
⎝
⎭,,.
20. 21. 22.
23. 24.。