函数的定义域值域,解析式具体解法

合集下载

04 函数的概念、定义域及解析式(考点+解析)

04 函数的概念、定义域及解析式(考点+解析)

1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。

记作:y =f (x ),x ∈A 。

注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。

2.构成函数的三要素:定义域、对应关系和值域3.两个函数的相等:定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f :A →B ”。

6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系) A .f (x )=ln x 2,g (x )=2ln x B .f (x )=x ,g (x )=x 2C .f (x )=1-x 2,g (x )=1-|x |,x ∈【-1,1】D .f (x )=log a a x (a >0且a ≠1),g (x )=3x 3【分析】 对于两个函数y =f (x )和y =g (x ),当且仅当它们的定义域、值域、对应法则都相同时,y =f (x )和y =g (x )才表示同一函数.若两个函数表示同一函数,则它们的图象完全相同,反之亦然.【解析】 A 定义域不同,B 值域不同,C 对应法则不同,故选D.【拓展练习】1.下列各组函数是同一函数的是( )①32)(x x f -=与x x x g 2)(-=, ②x x f =)(与2)(x x g =,③0)(x x f =与1)(=x g ,④12)(2--=x x x f 与12)(2--=t t t g A.①② B.①③ C.②④ D.①④ 【解析】:①定义域不同 ③定义域不同0)(x x f = k 中0≠x ②④中两个函数定义域,解析式,值域相同,是相同函数 答案:C【例2】(RJA1第22页题改编)以下给出的对应是不是从集合A 到集合B 的映射?(1)A =R ,B =R ,f :x →y =11+x ;(2)A ={x |x ≥0},B =R ,f :x →y 2=x ; (3)A ={α|0°≤α≤180°},B ={x |0≤x ≤1}.f :求余弦;(4)A ={平面α内的矩形},B ={平面α内的圆},f :作矩形的外接圆.【分析】 应该这样思考,什么是映射?映射这个概念应满足什么要求?然后作出判断.【解析】 (1)当x =-1时,y 值不存在,所以不是映射.(2)不是映射,如A 中元素x =1时,在f 作用下,B 中有两个元素±1,不具备惟一性.(3)不是映射,例如当α=180°时,在B 中没有元素与之对应.(4)由于平面内每一个矩形只有一个外接要点 梳 理 考点剖析相同函数判断问题 判断是否是映射问题 第4讲函数的概念、定义域及解析式圆与之对应,所以这个对应是从集合A 到B 的一个映射. 【点评】 欲判断对应f :A →B 是否是从A 到B 的映射,必须做两点工作: ①明确A 、B 中的元素.②根据对应判断A 中的每个元素是否在B 中能找到惟一确定的对应元素. 【拓展练习】2.已知A ={1,-1},映射f :A →A ,则对于x ∈A ,下列关系中一定错误的是( )A .f (x )=xB .f (x )=-1C .f (x )=x 2D .f (x )=x +2【解析】 对于对应法则:f (x )=x +2,当x =1时,x +2=3∉A ={1,-1};而对应法则f (x )=x ,f (x )=-1,f (x )=x 2能使“若x ∈A ,则f (x )∈A ”成立,故选D.【例3】(2015全国1文12)设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【解析】设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a=--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.【考点】函数对称;对数的定义与运算【名师点睛】对已知两个函数的关系及其中一个函数关系式解另一个函数问题,常用相关点转移法求解,即再所求函数上任取一点,根据题中条件找出该点的相关点,代入已知函数解析式,即可得出所求函数的解析式.【拓展练习】3.(2015全国1文10)已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74- (B )54- (C )34- (D )14-【解析】∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立,当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A.【名师点睛】对分段函数求值问题,先根据题中条件确定自变量的范围,确定代入得函数解析式,再代入求解,若不能确定,则需要分类讨论;若是已知函数值求自变量,先根据函数值确定自变量所在的区间,若不能确定,则分类讨论,化为混合组求解. 4.(2016·山东文9)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x ),当x >12时,f 12x ⎛⎫+ ⎪⎝⎭=f 12x ⎛⎫- ⎪⎝⎭.则f (6)=( )A.-2B.-1C.0D.2【解析】 当x >12时,f 12x ⎛⎫+ ⎪⎝⎭=f 12x ⎛⎫- ⎪⎝⎭.,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1)-[(-1)3-1]=2,故选D.【例4】(2015湖北文6)函数256()4||lg3x x f x x x -+--的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得44≤≤-x ,2>x 且3≠x ,即函数()f x 的定义域为(2,3)(3,4],故应选C .【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性. 【拓展练习】 5.(2014·山东文3) 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)【解析】 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2. C求函数解析式 函数的定义域6.(2014山东理)函数f (x )=1log 122-)(x 的定义域为( )A.⎪⎭⎫⎝⎛210, B .(2,+∞) C.⎪⎭⎫ ⎝⎛210,∪(2,+∞) D.⎥⎦⎤⎝⎛210,∪[2,+∞)【解析】 (log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求的定义域是⎪⎭⎫⎝⎛210,∪(2,+∞). 7.(2016全国2文10). 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是(A )y =x (B )y =lg x (C )y =2x (D)y =【解析】lg 10x y x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .8.(2014江西理) 函数f (x )=ln(x 2-x )的定义域为( )A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)【解析】由题意可得x 2-x >0,解得x >1或x <0,所以所求函数的定义域为(-∞,0)∪(1,+∞). 9.(2015重庆文3)函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1)(C)(,3][1,)-∞-+∞(D) (,3)(1,)-∞-+∞ 【解析】由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ,故选D.【考点定位】函数的定义域与二次不等式. 【名师点睛】本题考查对数函数的定义域与一元二次不等式式的解法,由对数的真数大于零得不等式求解.本题属于基础题,注意不等式只能是大于零不能等于零..【例】已知221)1(xx x x f +=+ ,求)1(-x f .【错解】 由已知得 2)1()1(2-+=+xx x x f , ∴2)(2-=x x f∴122)1()1(22--=--=-x x x x f . 【错解分析】 在使用直接配凑法或换元法求函数解析式时,没有考虑定义域的变化而致错.也就是说在采用换元法求函数解析式时一定要保持等价变换【正解】 由已知得2)1()1(2-+=+x x x x f ,但xx 1+≥2,则2)(2-=x x f (|x |≥2),从而122)1()1(22--=--=-x x x x f (x ≥3或x ≤-1).1.(2013·安徽文14)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.【解析】当-1≤x ≤0时,0≤x +1≤1,由已知f (x )=12f (x +1)=-12x (x +1).【点评】本题主要考查函数解析式的求法,意在考查考生对函数解析式的理解,以及对抽象函数的化归与转化能力.2.a 、b 为实数,集合M ={ba ,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1【解析】 ∵f (x )=x ,∴f (1)=1=a ,若f (ba )=1,则有ba =1,与集合元素的互异性矛盾,∴f (ba )=0,∴b =0,∴a +b =1.3.(2013·安徽文11) 函数y =1ln(1+)x+________.【解析】 实数x 满足11+x>0且21x -≥0.不等式11+x >0,即1x x+>0,解得x >0或x <-1;不等式21x -≥0的解为-1≤x ≤1.故所求函数的定义域是(0,1].4.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =___; 【解析】:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()5(5)11(1)(12)5f f f f f =-=-==--+。

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。

定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。

在解析式中,定义域和值域可以通过不同的方法进行求解。

下面是常见的函数解析式定义域和值域求解方法总结。

一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。

2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。

3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。

4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。

5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。

6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。

7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。

二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。

2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。

例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。

3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。

4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。

5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。

函数解析式、定义域、值域

函数解析式、定义域、值域
解:当m=0时,函数的定义域为R; 当m≠0时,mx2-6mx+8+m≥0是二次不等式,其对一切实数x都成立
的充要条件是
m 0



(6m)2

4m(m

8)

0
0
m
1
综上可知0≤m≤1。 注:不少同学容易忽略m=0的情况,希望通过此例解决问
题。
例4 已知函数 f (x) kx 7 kx 2 4kx 3
三:换元法
• 通过代数换元法或者三角函数换元法, 把无 理函数化为代数函数来求函数值域的方法 (关注新元的取值范围).
• 例3 求函数 y=x- x-1 的值域:
注:换元法是一种非常重工的数学解题方法, 它可以使复杂问题简单化,但是在解题的 过程中一定要注意换元后新元的取值范围。
3、求下列函数的值:
是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。 例2 已知f(2x+1)的定义域为[1,2],求f(x)的定义域。
解:因为1≤x≤2, 2≤2x≤4,
3≤2x+1≤5. 即函数f(x)的定义域是{x|3≤x≤5}。
(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。 解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.
所以函数f(3x)的定义域是-1≤3x≤1即 {x|-1/3≤x≤1/3}。
例3 已知函数 y mx 2 6mx m 8
的定义域为R求实数m的取值范围。
分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R 都成立,由x2项的系数是m,所以应分m=0或m≠0进行讨论。
不小于零。 4.零的零次幂没有意义,即f(x)=x0,x≠0。

2.1函数的解析式及定义域与值域

2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

高一数学函数解析式、定义域、值域解题方法含答案

高一数学函数解析式、定义域、值域解题方法含答案

逐步推出所求函数的值域,有时还需要结合函数的图象进展分析。

【模拟试题】(答题时间:30分钟)一. 选择题1、函数y =f 〔x 〕的值域是[-2,2],那么函数y =f 〔x +1〕的值域是〔 〕 A. [-1,3] B. [-3,1] C. [-2,2] D. [-1,1]解∵函数y=f 〔x 〕的值域是[-2,2],∴y=f 〔x 〕的最大值为2,最小值为-2又∵函数y=f 〔x+1〕的图象是由y=f 〔x 〕向左平移1个单位而得∴函数y=f 〔x+1〕最大值是2,最小值是-2所以函数y=f 〔x+1〕的值域仍是[-2,2]应选C2、函数f 〔x 〕=x 2-2x ,那么函数f 〔x 〕在区间[-2,2]上的最大值为〔 〕 A. 2 B. 4 C. 6 D. 8 解答:二次函数求最值3、一等腰三角形的周长为20,底边长y 是关于腰长x 的函数,那么其解析式和定义域是〔 〕 A. y =20-2x 〔x ≤10〕 B.y =20-2x 〔x<10〕C.y =20-2x 〔4≤x<10〕D.y =20-2x 〔5<x<10〕解:Y=20-2X Y>0,即20-2X>0,X<10, 两边之和大于第三边, 2X>Y , 即2X>20-2X 4X>20 X>5。

此题定义域较难,很容易忽略X>5。

∴5 4、二次函数y =x 2-4x +4的定义域为[a ,b ]〔a<b 〕,值域也是[a ,b ],那么区间[a ,b ]是〔 〕 A. [0,4] B. [1,4] C. [1,3] D. [3,4]解: a ,由于对称轴为x=2,当x=0或x=4时有最大值y=4,x=2时有最小值y=05、函数y =f 〔x +2〕的定义域是[3,4],那么函数y =f 〔x +5〕的定义域是〔 〕 A. [0,1] B. [3,4] C. [5,6] D. [6,7] 解: y =f 〔x +2〕的定义域是[3,4],即 3≤x ≤4 那么3+2 ≤x+2≤4+2,所以5≤x+2≤6 所以 y=f(x)的定义域为[5,6] 那么5≤x+5≤6,那么0≤x ≤1 所以y =f 〔x +5〕的定义域为[0,1]6、函数22234x y x x +=+的值域是〔 〕 317317317317.[,].,4444317317317317.(,][,).(,)(,)4444A B C D ⎛⎫---+---+ ⎪ ⎪⎝⎭---+---+-∞⋃+∞-∞⋃+∞解:判别式法 7、〔2007〕图中的图像所表示的函数的解析式是〔 〕。

2.1函数的定义域、值域、解析式

2.1函数的定义域、值域、解析式

函数的定义域、值域、解析式一、知识点1、定义域的概念和求法2、值域的概念和求法3、映射、对应法则 区间概念设,a b R ∈且a b <(,a b 称为端点,在数轴上注意实心空心的区分) 满足a x b ≤≤的全体实数x 的集合,叫做闭区间,记作[,]a b 满足a x b <<的全体实数x 的集合,叫做开区间,记作(,)a b满足a x b ≤<或a x b <≤的全体实数x 的集合,叫做半开半闭区间,记作[,)a b 或(,]a b 分别满足,,,x a x a x a x a ≥>≤<的全体实数的集合分别记作[,),(,),(,],(,)a a a a +∞+∞-∞-∞一、定义域1、定义域的概念设集合A 是一个非空实数集,对A 内任意实数x ,按照确定的法则f ,都有唯一确定的实数值y 与它对应,则这种对应关系叫做集合A 上的一个函数,记做(),y f x x A =∈。

x 叫做自变量,自变量取值的范围所组成的集合叫做函数的定义域。

函数的定义域和值域一定表示成集合或区间的形式。

(易错点)2、函数定义域的求法(方法对接):(1)分式中的分母不为零; (2)偶次方根下的数(或式)大于或等于零; (3)a 的零次方没有意义; (后续课程会涉及的定义域:指数式的底数,对数式的底数和真数,正余切函数和反三角函数的定义域)例1、求下列函数的定义域(分母和偶次方根)1()1f x x =+ 221533x x y x --=+-练习、求下列函数的定义域:1()5f x x =- ()13f x x x =-++ ()f x x x =+- 262x y x -=+ 021(21)4111y x x x =+-+-+- 211()1x y x -=-+(选讲)复合函数的定义域:函数()f x 的定义域为(,)a b ,函数()g x 的定义域为(,)m n ,则函数[]()f g x 的定义域为()(,)(,)g x a b x m n ∈⎧⎨∈⎩,解不等式,最后结果才是。

函数的概念、定义域、解析式

函数的概念、定义域、解析式

函数的概念、定义域、函数相等、解析式求法一、函数概念1.设A 、B 是非空集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(。

其中x 叫作自变量,自变量的取值范围(数集A )叫作定义域。

与x 对应的y 叫作因变量,}|)({A x x f y ∈=叫作函数的值域。

2.一个函数的构成要素为:定义域、对应关系、值域。

如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等。

3.函数三种表示方法:解析法、图像法、列表法。

具体函数定义域的求法:(1)分母不能为零。

(2)偶次方根的被开方数不小于零。

(3)零次方时底数不能为零。

(4)对数函数真数大于零。

4.抽象函数定义域的求法:(1)定义域指的是x 的取值范围。

(2)括号内的范围相同。

①已知)(x f 的定义域,求复合函数)]([x g f 的定义域。

若)(x f 的定义域为),(b a x ∈,求出)]([x g f 中b x g a <<)(的x 的范围,即为)]([x g f 的定义域。

②已知复合函数)]([x g f 的定义域,求)(x f 的定义域。

若)]([x g f 的定义域为),(b a x ∈,则由b x a <<确定)(x g 的值域,即为)(x f 的定义域。

③已知复合函数)]([x g f 的定义域,求)]([x h f 的定义域。

可由)]([x g f 的定义域(x 所对应的范围)求得)(x g 的值域,再由)(x g 的值域就是)(x h 的值域,从而求得)(x h 中x 所对应的范围,即为)]([x h f 的定义域。

5.函数解析式的求法(1)直接代入法 (2)换元法(配凑法)(3)待定系数法 (4)方程组法题型一 求具体函数的定义域例题1 求下列函数的定义域,并用区间表示。

函数解析式,定义域,值域的求法

函数解析式,定义域,值域的求法

函 数1:设,A B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记做2:对于函数(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做 ;与x 的值相对应的y 值叫做 ,函数值的集合{}()|f x x A ∈叫做函数的 3:函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。

4:函数的表示法有 、 、 .5:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫 ,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。

函数解析式的四种求法:(1):换元法 (2):配凑法(3):待定系数法 (4):构造方程组法1:确定下列函数的解析式(1) 已知1)(2+=x x f ,求)1(+x f(2) 已知11)1(2++=+)(x x f ,求)(x f(3)(换元法,配凑法)已知23)1(2++=+x x x f ,求()f x(4)(配凑法):已知2211()f x x x x+=+,求()f x (5) (待定系数法)设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f(6)(构造方程组法)已知12()()f f x x x+=,求()f x2:求下列函数的定义域1:21()3f x x =- 2:y = 3:y = 4:()f x =5:()01()x f x x x +=- 6:2(0)()2(01)(14)x x f x x x x ⎧-<⎪=≤<⎨⎪-≤≤⎩ 7: 1122---=x x y1.函数值域的求法:①直接法:利用常见函数的值域来求.②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想⑤利用某些函数的有界性:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如)0(>+=k x k x y ,利用均值不等式公式或单调性来求值域;⑦数形结合:根据函数的几何图形,利用数型结合的方法来求值域. 2.确定函数的值域的原则:定义域优先原则3:求下列函数的值域:1: )322R x x x y ∈-+=( 2:]2,1[,322∈-+=x x x y 3 113+-=x x y 4:1222+-=x x y 5: 5212+-=x x y 6: 542++-=x x y7: x x y 21--= 8:()212log 45y x x =-+9:2sin 3sin 4y x x =-+ 10: 1sin 21sin 2-+=x x y11: sin 1cos 2x y x +=+ 12:1y x x =+(0)x >两个函数相等的条件:定义域和对应法则相同4:判断下列各组中的两个函数是否是同一函数1.3)5)(3(1+-+=x x x y 52-=x y 2。

函数的定义域值域,解析式具体解法

函数的定义域值域,解析式具体解法

函数定义域,值域,解析式教学目标:掌握不同函数定义域和值域的求解方法,并且能够熟练使用。

重点、难点:不同类型函数定义域,值域的求解方法。

考点及考试要求:函数的考纲要求教学内容:常见函数的定义域,值域,解析式的求解方法:记作D x x f y ∈=),(,x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做定义域,和x 值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域.定义域的解法:1.求函数的定义域时,一般要转化为解不等式或不等式组的问题,但应注意逻辑连结词的运用;2.求定义域时最常见的有:分母不为零,偶次根号下的被开方数大于等于零,零次幂底数不为零等。

3.定义域是一个集合,其结果必须用集合或区间来表示 值域的解法:1. 分析法,即由定义域和对应法则直接分析出值域 2. 配方法,对于二次三项式函数3. 判别式法,分式的分子与分母中有一个一元二次式,可采用判别式法,但因考虑二次项系数是否为零只有二次项系数不为零时,才能运用判别式4. 换元法,适合形如y ax b =+此外还可以用反函数法等求函数的值域,数形结合法,有界性法等求函数的值域 函数解析式的求法: 1. 换元法 2. 解方程组法 3. 待定系数法 4.特殊值法求函数的定义域一、 基本类型:1、 求下列函数的定义域。

(1)12)(-+=x x x f (2)xx x x f -+=0)1()((3) 111--=x y (4)()f x =二、复合函数的定义域1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2)()1f xg x x =-的定义域2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是求函数的值域一、二次函数法(1)求二次函数232y x x =-+的值域(2)求函数225,[1,2]y x x x =-+∈-的值域.二、换元法:(1) 求函数y x =+三.部分分式法求21+-=x x y 的值域。

高中数学 函数定义域,值域,解析式的求法及最值

高中数学 函数定义域,值域,解析式的求法及最值

课题函数教学目标函数的定义域、值域、最值以及解析式的求法重点、难点函数的最值以及解析式的求法考点及考试要求函数的最值以及解析式的求法教学内容(一)函数值域的概念:函数的值域就是我们通常说的y的范围,它是一个集合{y︱y=2x+1} 值域一定要与函数的定义域联系起来。

(二)函数的值域与最值的联系:注意:(三)常见函数的值域:考题8例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3. 例2(1)求函数f (x )=229)2(1x x x g --的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域. 解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x )的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤2. ∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f (log 2x )的定义域为[2,4]1.(1)已知f (12+x)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t , ∴f (t )=lg 12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞). (2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x1)=3x ,①把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1. 2. 求下列函数的定义域: (1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x ).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,25,1120120432x ,x x x x x 得∴定义域为(-21,0)∪(0,25).例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[+∞). (2)设f (x )=ax 2+bx +c(a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3. 例2(1)求函数f (x )=229)2(1xx xg --的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域. 解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x )的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤2. ∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f (log 2x )的定义域为[2,4]例4 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x(1)画出函数的图象;(2)求f (1),f (-1),f [f (-1)]的值. 解 (1)分别作出f (x )在x >0,x =0, x <0段上 的图象,如图所示,作法略. (2)f (1)=12=1,f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t , ∴f (t )=lg 12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞). (2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x1)=3x①把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1. 2. 求下列函数的定义域:(1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x ).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,25,1120120432x ,x x x x x 得∴定义域为(-21,0)∪(0,25). 一、填空题1.设函数f 1(x )=x 21,f 2(x )=x -1,f 3(x )=x 2,则[]))0072((123f f f = .答案 007212.(2008·安徽文,13)函数f (x )=)1(log 1|21|2---x 的定义域为 .答案 []+∞,3 3.若f (x )=⎩⎨⎧≥<+)6(log )6()3(2x xx x f ,则f (-1)的值为 .答案 3 4.已知f (2211)11xx x x +-=+-,则f(x )的解析式为 . 答案 f (x )=212x x +5.函数f (x )=xx -132 +lg(3x +1)的定义域是 .答案 (-31,1) 6.(2008·陕西理,11)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=则f (-3)= . 答案 68.已知函数ϕ (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且ϕ(=16, ϕ (1)=8,则ϕ(x )= .答案 3x +x 5二、解答题9.求函数f (x )=21)|lg(|x x x --的定义域.解 由,11010||2⎩⎨⎧<<-<⎪⎩⎪⎨⎧>->-x x x x x ,得 ∴-1<x <0. ∴函数f (x )=21)|lg(|xx x --的定义域为(-1,0).10.(1)设f (x )是定义在实数集R 上的函数,满足f (0)=1,且对任意实数a 、,f (a -b )=f (a )-b (2a -b +1),求f (x );(2)函数f (x ) (x ∈(-1,1))满足2f (x )-f (-x )=lg(x +1),求f (x ). 解 (1)依题意令a =b =x ,则 f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有 ①2f (-x )-f (x )=lg(1-x ) ②2f (x )-f (-x )=lg(1+x )两式联立消去f (-x )得 3f (x )=lg(1-x )+2lg(1+x ),∴f (x )=31lg(1+x -x 2-x 3)(-1<x <1).。

函数及其表示、定义域、解析式、值域的求法

函数及其表示、定义域、解析式、值域的求法
2、 f ( x 4)定义域为[-1, 0),求函数f(x)的定义域。
小结:已知f[g(x)]的定义域是B,求f(x)的 定义域.其实质是已知f[g(x)]中的x取值范围 是B.求出g(x)的值域,此范围就是f(x)的定 义域。
求函数值域常用方法
(一)观察法:当函数结构不复杂时,通过简
单变形和观察,利用熟知函数值域来求。
2
由 f ( x 2) f ( x 2)
得 4a b 0
x1 x2 2 2 b2 4ac 8a2 a
又 c 1
1 解得 a , b 2, c 1 2 1 2 f ( x) x 2 x 1 2
• 解法二、 由 f ( x 2) f ( x 2) 得 y f ( x) 的对称轴为
函数解析式的常用方法有: 待定系数法 换元法 凑配法 解函数方程组法 代入法
(一)、待定系数法
例1 设二次函数 f ( x) 满足 f ( x 2) f ( x 2) y 且图象在 轴上的截距为1,在 x 轴截
得的线段长为 2 2 ,求
f ( x)
的解析式。
• 解法一、 设 f ( x) ax bx c(a 0)
9.已知 F(x)=f(x)-g(x), 其中 f(x)=loga(x-b), 当且仅当点 (x0, y0) 在 f(x) 的图象上时, 点 (2x0, 2y0) 在 y=g(x) 的图象上(b>1, a>0 且 a≠1), (1)求 y=g(x) 的解析式; (2)当 F(x)≥0 时, 求 x 的范围. y0=loga(x0-b), g(x)=2loga( x -b). 解: (1) 由已知 2y =g(2x ) 2 0 0 x (2) 由(1) 知: F(x)=f(x)-g(x)=loga(x-b)-2loga( 2 -b). 故由 F(x)≥0 可得: loga(x-b)≥2loga( x -b). 2 x-b≥( x -b)2, 2 当 a>1 时, x 解得: 2b<x≤2b+2+2 b+1 . 2 -b>0, x-b≤( x -b)2, 2 解得: x≥2b+2+2 b+1 . 当 0<a<1 时, x -b>0, 2 综上所述: 当 a>1 时, 2b<x≤2b+2+2 b+1 ; 当 0<a<1 时, x≥2b+2+ 2 b+1.

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

函数的定义域与值域(含解析)

函数的定义域与值域(含解析)

函数的定义域和值域1.知函数解析式求定义域的基本依据: (1)分式的分母 ;(2)偶次根式的被开方数 ; (3)对数函数的真数必须 ;(4)指数函数和对数函数的底 ; (5)正切函数的角的终边 ; (6)零次幂的底数 。

2.求复合函数定义域方法:(1)已知()y f x =的定义域是A ,求[]()yf x ϕ=的定义域的方法:解不等式 ,求出x 的范围,再将所得范围写成集合或区间形式,即得所求[]()y f x ϕ=的定义域。

(2)已知[]()yf x ϕ=的定义域是A ,求()y f x =的定义域的方法:求出 时,()x ϕ的范围,再将所得范围写成集合或区间形式,即得所求()y f x =的定义域。

3.反函数的定义域是原函数的 。

4.函数的值域:(1)值域是函数值组成的集合,它是由 和 确定的,因此求值域时一定要看 。

(2)函数的最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (I )对任意的x I ∈,都有 ;(II )存在0x I ∈使得 ,那么,我们称M 是函数()y f x =的最大值。

5.函数的最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数N 满足: (1)对任意的x I ∈,都有 ;(2)存在0x I ∈使得 ,那么,我们称N 是函数()y f x =的最小值。

6.常见基本初等函数的值域: (1)一次函数(0)ykx b k =+≠的值域是R 。

(2)二次函数2(0)y axbx c a =++≠,当0a >时,值域是 , 当0a <时,值域是 。

(3)反比例函数(0)ky k x=≠的值域是 。

(4)指数函数(0,1)xy a a a =>≠的值域是 。

(5)对数函数log (0,1)a yx a a =>≠的值域是 。

7.求函数值域及最值的基本类型及方法: (1)形如2(0)y ax bx c a =++≠的函数,用 求值域,要特别注意定义域。

函数的定义域、值域及解析式

函数的定义域、值域及解析式

§2.2 函数的定义域、值域及解析式知识点: 1. 函数的定义域(1)函数的定义域是指使函数有意义的自变量的取值范围. (2)求定义域的步骤①写出使函数式有意义的不等式(组); ②解不等式组;③写出函数定义域.(注意用区间或集合的形式写出) (3)常见基本初等函数的定义域 ①分式函数中分母不等于零.②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为R .④y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . ⑤y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .⑥函数f (x )=x 0的定义域为{x |x ∈R 且x ≠0}. 2. 函数的值域(1)在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.(2)基本初等函数的值域 ①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞;当a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a .③y =kx (k ≠0)的值域是{y |y ∈R 且y ≠0}.④y =a x (a >0且a ≠1)的值域是(0,+∞). ⑤y =log a x (a >0且a ≠1)的值域是R . ⑥y =sin x ,y =cos x 的值域是[-1,1]. ⑦y =tan x 的值域是R . 3. 函数解析式的求法(1)换元法;(2)待定系数法;(3)消去法:若所给解析式中含有f (x )、f ⎝⎛⎭⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式. [难点]1. 函数的定义域是研究函数问题的先决条件,它会直接影响函数的性质,所以要树立定义域优先的意识.2. (1)如果函数f (x )的定义域为A ,则f (g (x ))的定义域是使函数g (x )∈A 的x 的取值范围.(2)如果f (g (x ))的定义域为A ,则函数f (x )的定义域是函数g (x )的值域. (3)f [g (x )]与f [h (x )]联系的纽带是g (x )与h (x )的值域相同. 自测:1. (2012·山东改编)函数f (x )=1ln (x +1)+4-x 2的定义域为____________.答案 (-1,0)∪(0,2] 解析 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0得-1<x ≤2,且x ≠0.2. 设g (x )=2x +3,g (x +2)=f (x ),则f (x )=________.答案 2x +7解析 由g (x )=2x +3,知f (x )=g (x +2)=2(x +2)+3=2x +7.3. 若f (x )满足f (x +y )=f (x )+f (y ),则可写出满足条件的一个函数解析式f (x )=2x .类比可以得到:若定义在R 上的函数g (x ),满足(1)g (x 1+x 2)=g (x 1)g (x 2);(2)g (1)=3;(3)∀x 1<x 2,g (x 1)<g (x 2),则可以写出满足以上性质的一个函数解析式为__________. 答案 g (x )=3x解析 由①知g (x )应该是指数函数模型,结合②③知g (x )=3x .抽象离不开具体,对于一些常见的恒等式,其对应的函数模型应该熟悉.如:一、指数函数模型,对应的性质为:f (m +n )=f (m )·f (n )或f (m -n )=f (m )f (n );二、对数函数型,对应的性质为:f (mn )=f (m )+f (n )或f (mn )=f (m )-f (n );三、正比例函数模型,对应的性质为:f (m +n )=f (m )+f (n );四、余弦函数型,对应的性质为:f (m +n )+f (m -n )=2f (m )f (n ). 4.函数f (x )=log 2(3x +1)的值域为___________________.答案 (0,+∞)解析 由3x >0知3x +1>1.又f (x )在(0,+∞)为增函数且f (1)=0, ∴f (x )=log 2(3x +1)>0.5. 已知f ⎝⎛⎭⎫1x =1+x21-x 2,则f (x )=__________.答案 x 2+1x 2-1(x ≠0)解析 令1x =t ,则x =1t 且t ≠0,∴f (t )=1+⎝⎛⎭⎫1t 21-⎝⎛⎭⎫1t 2=t 2+1t 2-1,即f (x )=x 2+1x 2-1(x ≠0).题型一 求函数的定义域 例1 (1)函数y =ln (x +1)-x 2-3x +4的定义域为______________.(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是____________.思维启迪:函数的定义域是使解析式有意义的自变量的取值集合;抽象函数的定义域要注意自变量的取值和各个字母的位置. 答案 (1)(-1,1) (2)[0,1)解析 (1)由⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,得-1<x <1.(2)依已知有⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解之得0≤x <1,定义域为[0,1).探究提高 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].(1)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________.答案 ⎣⎡⎭⎫0,34解析 f (x )的定义域为R ,即mx 2+4mx +3≠0恒成立. ①当m =0时,符合条件.②当m ≠0时,Δ=(4m )2-4×m ×3<0, 即m (4m -3)<0,∴0<m <34.综上所述,m 的取值范围是⎣⎡⎭⎫0,34. (2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________. 答案 [1,3]解析 由⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 题型二 求函数的值域 例2 求下列函数的值域:(1)y =x 2+2x (x ∈[0,3]); (2)y =x -3x +1;(3)y =x -1-2x ; (4)y =log 3x +log x 3-1.思维启迪:根据各个函数解析式的特点,考虑用不同的方法求解.(1)配方法;(2)分离常数法;(3)换元法或单调性法;(4)基本不等式法. 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15, 即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}. (3)方法一 (换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(4)(基本不等式法)函数定义域为{x |x ∈R ,x >0,且x ≠1}. 当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是 y =log 3x +1log 3x -1=-⎣⎡⎦⎤(-log 3x )+⎝⎛⎭⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).探究提高 (1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.求下列函数的值域:(1)y =x 2-xx 2-x +1; (2)y =2x -1-13-4x .解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈∅,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, 解得-13≤y ≤1.综上得-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法)设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数, 所以g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法) 函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小, 所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数, 所以当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112, 故原函数的值域是⎝⎛⎦⎤-∞,112. 题型三 求函数的解析式例3 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式;(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. 思维启迪:求函数的解析式,要在理解函数概念的基础上,寻求变量之间的关系. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1. (3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).探究提高 函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)消去法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1, ∴f (x )=x 2-x +3.函数问题首先要考虑定义域典例:(14分)已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域.审题视角 (1)f (x )的定义域;(2)y =[f (x )]2+f (x 2)的定义域与f (x )的定义域不同;(3)如何求y=[f(x)]2+f(x2)的定义域.规范解答解∵f(x)=2+log3x的定义域为[1,9],要使[f(x)]2+f(x2)有意义,必有1≤x≤9且1≤x2≤9,∴1≤x≤3,[4分]∴y=[f(x)]2+f(x2)的定义域为[1,3].又y=(2+log3x)2+2+log3x2=(log3x+3)2-3.[8分]∵x∈[1,3],∴log3x∈[0,1],∴y max=(1+3)2-3=13,y min=(0+3)2-3=6.[12分]∴函数y=[f(x)]2+f(x2)的值域为[6,13].[14分]温馨提醒(1)本题考查了函数的定义域、值域的概念及求法,是函数的重点知识.(2)本题易错原因是忽略对定义域的研究,致使函数y=[f(x)]2+f(x2)的讨论范围扩大.(3)解答有关函数的问题要规范,研究函数问题,首先研究其定义域,这是解答的规范,也是思维的规范.方法与技巧1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先意识.求函数的定义域关键在于列全限制条件和准确求解方程或不等式(组);对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义.2.函数值域的几何意义是对应函数图象上点的纵坐标的变化范围.利用函数几何意义,数形结合可求某些函数的值域.3.函数的值域与最值有密切关系,某些连续函数可借助函数的最值求值域,利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.失误与防范1.求函数的值域,不但要重视对应法则的作用,而且还要特别注意定义域对值域的制约作用.函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.特别要重视实际问题中的最值的求法.2.对于定义域、值域的应用问题,首先要用“定义域优先”的原则,同时结合不等式的性质.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分) 1. 若f (x )=1log 12(2x +1),则f (x )的定义域为____________.答案 ⎝⎛⎭⎫-12,0 解析 要使f (x )有意义,需log 12(2x +1)>0=log 121,∴0<2x +1<1,∴-12<x <0.2. (2012·福建改编)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为________. 答案 0解析 根据题设条件,∵π是无理数,∴g (π)=0, ∴f (g (π))=f (0)=0.3. 已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.答案 6解析 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧12+p +q =022+2p +q =0,∴⎩⎪⎨⎪⎧p =-3q =2,∴f (x )=x 2-3x +2. ∴f (-1)=(-1)2+3+2=6.4. 已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为____________. 答案 f (x )=2x1+x 2(x ≠-1)解析 令t =1-x 1+x (t ≠-1),由此得x =1-t 1+t ,所以f (t )=1-⎝⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t1+t 2,从而f (x )的解析式为f (x )=2x1+x 2(x ≠-1). 5. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.6. 若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是__________.答案 ⎣⎡⎦⎤12,2解析 由-1≤log 2x ≤1得log 212≤log 2x ≤log 22,由y =log 2x 在(0,+∞)上递增,得12≤x ≤2.7. 若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是__________.答案 [-5,-1]解析 ∵1≤f (x )≤3,∴1≤f (x +3)≤3, ∴-6≤-2f (x +3)≤-2,∴-5≤F (x )≤-1. 二、解答题(共27分)8. (13分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N . 解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32,N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或x <1};(2)M ∩N ={x |x ≥3},M ∪N ={x |x <1或x >32}.9. (14分)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.(1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx .又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1a +b =1,解得⎩⎨⎧ a =12b =12.∴f (x )=12x 2+12x . (2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2) =12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18. ∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组 专项能力提升(时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1. (2012·江苏)函数f (x )=1-2log 6x 的定义域为________.答案 (0,6]解析 要使函数f (x )=1-2log 6x 有意义,则⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0. 解得0<x ≤ 6.2. 设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是____________.答案 [0,+∞)解析 f (x )的图象如图.g (x )是二次函数,且f (g (x ))的值域是[0,+∞),∴g (x )的值域是[0,+∞).3. 设函数f (x )=⎩⎪⎨⎪⎧2x +a ,x >2,x +a 2,x ≤2,若f (x )的值域为R ,则常数a 的取 值范围是______________.答案 a ≥2或a ≤-1解析 易知两段函数都是增函数,当x >2时,y >4+a ;当x ≤2时,y ≤2+a 2,要使f (x )的值域为R ,则4+a ≤2+a 2,解得a ≥2或a ≤-1.4. 已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=________. 答案 11解析 ∵f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, ∴f (x )=x 2+2,∴f (3)=32+2=11.5. 设函数g (x )=x 2-2 (x ∈R ),f (x )=⎩⎪⎨⎪⎧ g (x )+x +4,x <g (x )g (x )-x , x ≥g (x ), 则f (x )的值域是________________.答案 ⎣⎡⎦⎤-94,0∪(2,+∞) 解析 由x <g (x )可得x <-1或x >2,由x ≥g (x )可得-1≤x ≤2;∴f (x )=⎩⎪⎨⎪⎧x 2+x +2, x <-1或x >2,x 2-x -2, -1≤x ≤2. 由f (x )的图象可得:当x <-1或x >2时,f (x )>f (-1)=2,当-1≤x ≤2时,f ⎝⎛⎭⎫12≤f (x )≤f (2),即-94≤f (x )≤0,∴f (x )值域为⎣⎡⎭⎫-94,0∪(2,+∞). 6. 设x ≥2,则函数y =(x +5)(x +2)x +1的最小值是________. 答案 283解析 y =[(x +1)+4][(x +1)+1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t =t +4t +5,在 区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 二、解答题(共28分)7. (14分)已知函数f (x )=x 2-4ax +2a +6 (a ∈R ).(1)若函数的值域为[0,+∞),求a 的值;(2)若函数的值域为非负数,求函数g (a )=2-a |a +3|的值域.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32. (2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0, ∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减, ∴g ⎝⎛⎭⎫32≤g (a )≤g (-1).即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4. 8. (14分)已知定义在[0,6]上的连续函数f (x ),在[0,3]上为正比例函数,在[3,6]上为二次函数,并且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.解 由题意,当x ∈[3,6]时,可设f (x )=a (x -5)2+3 (a <0).∵f (6)=2,∴a (6-5)2+3=2,解得a =-1,∴f (x )=-(x -5)2+3=-x 2+10x -22.当x ∈[0,3]时,设f (x )=kx (k ≠0).∵x =3时,f (x )=-(3-5)2+3=-1,∴-1=3k ,k =-13,∴f (x )=-13x . 故f (x )=⎩⎪⎨⎪⎧ -13x (0≤x <3),-x 2+10x -22 (3≤x ≤6).。

函数定义域、值域与解析式

函数定义域、值域与解析式

函数定义域、值域与解析式(一)知识梳理1、求函数解析式的常用方法 方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; (3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f ;(4)若已知函数关于某点或者某条直线的对称函数时,一般用代入法。

2、函数的定义域方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦ 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。

3、求值域的几种常用方法 方法总结:(1)直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)(2)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域 (3)函数的单调性法:(4)配方法:对于(可化为)“二次函数型”的函数常用配方法, (5)基本不等式法 : 如对勾函数y=x+m x,(m>0),m<0就是单调函数了 (6)数形结合法:其题型是函数解析式具有明显的某种几何意义,如两点的距离公式、直线斜率等等(7)判别式法:通过对二次方程的实根的判别求值域。

如求函数22122+-+=x x x y 的值域(8)换元法:通过等价转化换成常见函数模型(如二次函数),如y ax b cx d =+±+(a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

(9)分离常数法:常用来求“分式型”函数的值域。

如求函数3243x y x +=-的值域(10)函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域,值域,解析式 教学目标:掌握不同函数定义域和值域的求解方法,并且能够熟练使用。

重点、难点:不同类型函数定义域,值域的求解方法。

考点及考试要求:函数的考纲要求
教学内容:常见函数的定义域,值域,解析式的求解方法:
记作D x x f y ∈=),(,x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做定义域,和x 值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域.
定义域的解法:
1.求函数的定义域时,一般要转化为解不等式或不等式组的问题,但应注意逻辑连结词的运用;
2.求定义域时最常见的有:分母不为零,偶次根号下的被开方数大于等于零,零次幂底数不为零等。

3.定义域是一个集合,其结果必须用集合或区间来表示
值域的解法:
1. 分析法,即由定义域和对应法则直接分析出值域
2. 配方法,对于二次三项式函数
3. 判别式法,分式的分子与分母中有一个一元二次式,可采用判别式法,但因考虑二次项系数是否为零只
有二次项系数不为零时,才能运用判别式
4. 换元法,适合形如y ax b =+此外还可以用反函数法等求函数的值域,数形结合法,有界性法等求函数的值域
函数解析式的求法:
1. 换元法
2. 解方程组法
3. 待定系数法
4.特殊值法
求函数的定义域
一、 基本类型:
1、 求下列函数的定义域。

(1)12)(-+=x x x f (2)x
x x x f -+=0)1()(
(3) 111
--=x y (4)()28
x f x =- 二、复合函数的定义域
1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域
2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2)()1
f x
g x x =
-的定义域 2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域
3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是 求函数的值域
一、二次函数法
(1)求二次函数2
32y x x =-+的值域
(2)求函数225,[1,2]y x x x =-+∈-的值域.
二、换元法:
(1) 求函数y x =+
三. 部分分式法 求21
+-=x x y 的值域。

解:(反解x 法)
四、判别式法
(1)求函数2222
1x x y x x -+=++;的值域
2)已知函数21ax b
y x +=+的值域为[-1,4],求常数b a ,的值。

五:有界性法:
(1)求函数1e 1
e y x x +-=的值域
六、数形结合法---扩展到n 个相加
(1)|1||4|y x x =-++(中间为减号的情况?)
求解析式
换元法
已知23,f x =- 求 f (x ).
解方程组法
设函数f (x )满足f (x )+2 f (x 1
)= x (x ≠0),求f (x )函数解析式.
一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数,x y ,总有
2
()()(21),f x f x y x y y +=+++求()f x 。

令x=0,y=2x
待定系数法
设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).
课堂练习:
1.函数121
1)(22+-+++=x x x x x f 的定义域为
2.函数()f x =的定义域为
3.已知)2(x f 的定义域为[0,8],则(3)f x 的定义域为
4.求函数542+-=x x y ,]4,1(∈x 的值域
5.求函数)(x f =x x
213+-(x ≥0)的值域
6.求函数322
322-++-=x x x x y 的值域
7已知f (x +1)= x+2x ,求f (x )的解析式.
8已知 2f (x )+f (-x )=10x , 求 f (x ).
9已知 f {f [f (x )]}=27x +13, 且 f (x ) 是一次式, 求 f (x ).
三、回家作业:
1.求函数y =(
)022x x -+
要求:选择题要在旁边写出具体过程。

2.下列函数中,与函数y x =相同的函数是 ( C )
3.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( C )
A .]1,25
[-- B .[-1,2] C .[-1,5] D .]2,21
[
4,设函数⎩⎨⎧<≥-=)1(1)1(1)(x x x x f ,则)))2(((f
f f =( B )
A .0
B .1
C .2
D .2
5.下面各组函数中为相同函数的是( D )
A .1)(,)1()(2-=-=x x g x x f
B .11)(,1)(2-+=-=x x x g x x f
C .22)1()(,)1()(-=-=x x g x x f
D .21
)(,21)(22+-=+-=x x x g x x x f
6.若函数)(},4|{}0|{11
3)(x f y y y y x x x f 则的值域是≥⋃≤--=的定义域是( B )
A .]3,31
[ B .]3,1()1,31
[⋃ C .),3[]31
,(+∞-∞或 D .[3,+∞)
7.若函数341
2++-=mx mx mx y 的定义域为R ,则实数m 的取值范围是( C )
A .]43
,0( B .)43
,0( C .]43,0[ D .)43
,0[
8、已知函数322+-=x x y 在区间[0,m]上有最大值3,最小值2,则m 的取值范围是(
D ) A 、[ 1,+∞) B 、[0,2] C 、(-∞,2] D 、[1,2]
9.已知函数的值域12
79
,4322+--=-+=x x x y x x y 分别是集合P 、Q ,则( C )
A .p ⊂Q
B .P=Q
C .P ⊃Q
D .以上答案都不对
10.求下列函数的值域:
①)1(3553>-+=x x x y ②y=|x+5|+|x-6| ③242++--=x x y ④x x y 21-+= ⑤4
22+-=x x x y 11、已知函数)0(1
2)(22<+++=b x c bx x x f 的值域为]3,1[,求实数c b ,的值。

12.已知f (x
x 1+)= x x x 1122++,求f (x )的解析式. 13.若 3f (x -1)+2f (1-x )=2x , 求 f (x ).
14.设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 家庭作业答案:
1.4(,)(0,2)(2,)3
-∞-+∞ 2.—9:C,C,B,D,B,D,C
10. 3{|}5y y ≠,[11,)+∞,5[,4]2,[1,)+∞,11[,]62
- 11.c=2,b=-1 12. 2()1f x x x =-+ 13. 17()55f x x =+
14. 2()1f x x x =++。

相关文档
最新文档