小学数学定义新运算典型例题(精选.)
定义新运算(三种典型例题及补充练习
练习 二
1,对于两个数a与b,规定: a⊕b=a×b-(a+b)。 (1)求3⊕5, 5⊕3 。 (2)求12⊕ (3⊕4), (12⊕ 3)⊕4 。
练习 二
2,对于两个数A与B,规定: A○ B=A×B÷2。试算6 ○ 6。 - -4,4 ○ -
3,对于两个数a与b,规定:
a⊕b= a×b+a+b。如果5⊕x=29,求x。
定义新运算?定义新运算是一种人为的临时性的运算形式它使用的是一些特殊的运算符号如
定义新运算
定义新运算是一种人为的、临时性的运算 形式,它使用的是一些特殊的运算符号, 如:*、△、⊙等,这是与四则运算中的“+、 -、×、÷”不同的。 新定义的算式中有括号的,要先算括号里 面的。但它在没有转化前,是不适合于各 种运算定律的。 .
减去b的2倍,即:a△b = a×3-b×2。 (1)求5△6;6△5。 (2)求(17△6) △2 ;17 △( 6△2)。 (3)这个运算△有交换律和结合律吗? (4)如果已知4 △ b=2,求b。
练习 一
1,设a、b都表示数,规定: a○b=6×a-2×b。试计算3○4。
练习 一
2,设a、b都表示数,规定: a*b=3×a+2×b。试计算: (1)(5*6)*7 (2)5*(6*7)
3,有两个整数是A、B,A▽B表示A与B
的平均数。已知A▽6=17,求A。
例2:
对于两个数a与b,规定a⊕b=a×b+a+b。 (1)求6 ⊕ 2;2 ⊕ 6。 (2)求(17 ⊕ 6) ⊕ 2 ;17 ⊕ ( 6 ⊕ 2)。 (3)这个运算⊕有交换律和结合律吗? (4)如果5 ⊕ x=17,求x。
假设a*b=(a+b)+(a-b),求13*5和13* (5*4)。 解:13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10 =(13+10)+(13-10)=26
定义新运算 小学数学 练习题
一、选择题1. 如果a※b=a2+ab+b2,那么5※6=()A.30 B.91 C.121 D.1002. 已知,,,则下面排序正确的是()。
A.B.C.D.3. 若※是新规定的运算符号,设,则在中,的值()A.-8 B.6 C.8 D.-64. 当A>B时,A@B=3A+2B,当A<B时,A@B=2A+3B,若@2=7,则是()A.2 B.1C.D.5. 规定a※b=(a+b)×1.5,那么2※10※10=()。
A.20 B.42 C.30 D.33二、填空题6. 若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)=_______.7. 定义:m n=m×m—n×n,则24—46—68—810—……—98100=________________.8. 已知、满足,;其中表示不大于的最大整数,表示的小数部分,即,那么________.9. 规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+ A△3)=96,且A、B均为大于0的自然数,A×B的所有取值为_______________________ .10. 规定:△3=××,△4=×××,则:△4 + △3=( )三、解答题11. 规定“”为一种新运算,对于任意两个数和都有,如果,已知,求的值。
12. 已知n是正整数,规定,令,则整数m除以2008的余数为多少?13. 定义新运算为a△b=(a+1)÷b,求值:6△(3△4).14. 对于两个数a与b,规定aθb=a×b+a+b。
(1)求6θ2;2θ6;(2)求(17θ6)θ2;17θ(6θ2);(3)这个运算θ有交换律和结合律吗?。
小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)
定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
第十一讲-定义新运算四年级
第十一讲定义新运算第一部分:定义新运算典型例题例【1】若A*B表示(A+3B)×(A+B),求5*7的值。
例【2】定义新运算为a△b=(a+1)÷b,求的值。
6△(3△4)例【3】对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
例【4】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
计算下式:[(7◎6)&5]×[ 5◎(3 & 9)]例【5】如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333计算:(3※2)×5。
第二部分:巩固练习一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。
二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。
十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。
小学数学《重新定义数学运算》练习题
小学数学《重新定义数学运算》练习题
一、选择题
1. 加法运算规则是:
A. 变大
B. 变小
C. 不变
2. 减法运算规则是:
A. 变大
B. 变小
C. 不变
3. 乘法运算规则是:
A. 变大
B. 变小
C. 不变
4. 除法运算规则是:
A. 变大
B. 变小
C. 不变
二、填空题
1. 7 + 3 = __
2. 9 - 4 = __
3. 5 × 2 = __
4. 20 ÷ 5 = __
三、计算题
1. 某班级有20个学生,每个学生都有2个苹果,共有多少个苹果?
2. 一个篮子里有30个橙子,小明拿走了5个,剩下多少个橙子?
3. 一块土地上有4个小花园,每个小花园里有9朵花,共有多少朵花?
4. 苏珊有20个糖果,她要平均分给她的4个朋友,每个朋友分几个糖果?
四、应用题
1. 芳芳身上有40元,她买了一本书花了10元,还买了一只铅笔花了5元,她还剩下多少钱?
2. 小明有8个鸡蛋,他送给了他的3个朋友,每个朋友得到几个鸡蛋?
3. 一辆公交车上有36个座位,已经有28个乘客上车了,还有几个座位空着?
4. 几个朋友一起吃饭,共付了60元,每个人平分应付多少钱?
以上是小学数学《重新定义数学运算》练习题,请根据题目要
求进行填空或计算。
祝你好运!。
小学数学定义新运算练习题
小学数学定义新运算练习题一、加法和减法练习题1. 计算下列数的和:a) 16 + 23b) 35 + 17c) 42 + 19d) 28 + 372. 计算下列数的差:a) 52 - 29b) 73 - 48c) 86 - 21d) 47 - 153. 同学们在学校的午餐时间一共吃了45片披萨,其中有22片是蔬菜口味的,其他的都是肉类口味的。
问同学们一共吃了多少片肉类口味的披萨?4. 小明有36个糖果,他吃了14个后还剩下多少个?二、乘法和除法练习题1. 计算下列数的积:a) 5 × 6b) 8 × 9c) 3 × 12d) 7 × 112. 计算下列数的商:a) 24 ÷ 3b) 63 ÷ 7c) 99 ÷ 11d) 56 ÷ 83. 小明用14块巧克力糖块制作了4个巧克力棒,每个巧克力棒上有几块巧克力糖块?4. 一箱苹果有36个,每个篮子可以装6个苹果。
那么一共需要多少个篮子才能将所有苹果装满?三、混合运算练习题1. 小红共有40元,她买了一本20元的书和一个15元的玩具,她还剩下多少钱?2. 一个小组有8名学生,每名学生需要12张试卷。
老师一共准备了多少张试卷?3. 小亮每天花费40分钟做作业,一周有7天,请问他一共花费了多少时间做作业?4. 一辆汽车每小时行驶80公里,开了3个半小时后,汽车行驶了多少公里?以上是关于小学数学定义新运算的练习题,希望同学们能够认真思考并得出正确答案。
不断练习运算,可以提高自己的数学能力,并且在日常生活中更灵活地运用数学知识。
祝你们取得优秀的成绩!。
小学奥数定义新运算
小学奥数——定义新运算1、设a,b都表示数,规定a△b=3×a-2×b。
①求4△3,3△4。
②求(17△6)△2, 17△(6△2)。
③如果已知5△b=5,求b。
2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③如果3※(5※x)=3,求x.3、4、如果4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。
5、设a▽b=a×b+a-b,求5▽8。
6、规定:a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。
(1)求1△100的值;(2)已知x△10=75,求x。
7. 设ba,表示两个不同的数,规定baba43+=∆.求6)78(∆∆.8. 定义运算⊖为a⊖b=5×)(baba+-⨯. 求11⊖12.9. ba,表示两个数,记为:a※b=2×bba41-⨯.求8※(4※16).10. 设yx,为两个不同的数,规定x□y4)(÷+=yx.求a□16=10中a的值.11. 规定a ba ba b +⨯=.求2 10 10的值.12. Q P ,表示两个数,P ※Q =2QP +,如3※4=243+=3.5.求4※(6※8);如果x ※(6※8)=6,那么=x ?13. 定义新运算x ⊕yx y 1+=.求3⊕(2⊕4)的值.14. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?15. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值.16. y x ,表示两个数,规定新运算“ ”及“△”如下:x y x y 56+=,x △xy y 3=.求(2 3)△4的值..【读一读】 狼&羊羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
小学数学《定义新运算》练习题(含答案)
小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】 (★★)定义运算“⊕”如下:()2a b a b ⊕=+÷(1) 计算2007⊕2009,2006⊕2008(2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(1)2007⊕2009=(2007+2009)÷2=2008;2006⊕2008=(2006+2008)÷2=2007(2)1⊕5⊕9=(1+5)÷2⊕9=3⊕9=(3+9)÷2=61⊕(5⊕9)=1⊕(5+9)÷2=1⊕7=(1+7)÷2=4;【例2】 (★★★)n*b 表示n 的3倍减去b 的2倍,例如3*2=3×3-2×2=5.根据以上的规定,10*6应等于_____.分析:根据新运算“*”的规定:10*6=10×3-6×2=18.[巩固] 设a △b =a ×a -2×b ,那么,5△6=______,5△2=_____.分析:(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=21【例3】 (★★★)我们规定:a c b d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45 610的值.分析:45 610=4×10-5×6=40-30=10[前铺]如果用|A,B|表示A 与B 中较大数与较小数之差,求:(1)|2+3,2×3|;(2)||3,5|,3|分析:(1)|2+3,2×3|=|5,6|=6-5=1(2)||3,5|,3|=|5-3,3|=|2,3|=3-2=1【例4】 (★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)设m 、n 是两个数,规定:m*n =4×n-(m +n)÷2,这里“×,+,一,÷”是通常的四则运算符号,括号的作用也是通常的含义,“*”是新的运算符号. 计算:3*(4*6)= _____.分析:4*6=4×6-(4+6)÷2=19,3*19=4×19-(3+19)÷2=65.[巩固] 规定:a ▽b =(a +b )÷2+2×a ,则3▽(6▽8)是多少?.分析:6▽8=(6+8)÷2+2×6=19,3▽19=(3+19)÷2+2×3=17,所以3▽(6▽8)=17.【例5】 (★★★★奥数网题库)定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =(a+b)÷2,如果a +b 是奇数,则a ☆b =(a+b-1)÷2.求:(1)(1 999☆2 000)☆(2 001☆2 002);(2)1 998☆(2 000☆2 002)☆2 004.分析:(1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数, 所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以 1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001[巩固] 定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =(a+b)÷3,如果a +b 除以3余数为1,则a*b =(a+b-1)÷3,如果a +b 除以3余数为2,则a*b =(a+b-2)÷3.求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891【例6】 (★★★北京市第十一届“迎春杯”赛)如果 3*2=3+33=362*3=2+22+222=2461*4=1+11+111+1111=1234那么4*5=( ).分析:4*5=4+44+444+4444+44444=49380[巩固]规定: 6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234.求7*5.分析:7*5=7+77+777+7777+77777=86415【例7】 (★★★★奥数网题库)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(1) 求3!,4!,5!;(2) 证明:3×(6!)+24×(5!)=7!分析:(1)3!=3×2×1=6;4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!)=7×(6!)=7![拓展] 对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120.(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结] 这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二)反求未知数【例8】 (★★★★奥数网题库)假设A*B 表示A 的3倍减去B 的2倍,即A*B =3A -2B.已知w*(4*1)=7,求w*4的值.分析:4*1=3×4-2×1=10,所以w*(4*1)=w*10=3×w -10×2=7,所以w =9.那么w*4= 9*4=3×9-4×2=19.[前铺]对于数 a , b , c , d ,规定〈a , b , c ,d 〉=2ab-c +d.已知〈1,3,5,x 〉=7,求x 的值.分析:<1,3, 5,x >=2×1×3-5+x =1+x=7,x=6【例9】(★★★★奥数网题库)对于两个数a、b,a△b表示a+b-1.计算:(1)(7△8)△6(2)(6△A)△A=84,求A.分析:(1)7△8=7+8-1=14,14△6=14+6-1=19;(2)6△A=6+A-1=5+A,(5+A)△A=5+A+A-1=2×A+4=84,所以A=40.[拓展]如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?分析:(a△2)△3=[(a-2)×2]△3=(2a-4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=5【例10】(★★★★第八届“祖冲之杯”数学邀请赛)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.分析:2A+4A-4÷2=28,即 6A=30,A=5[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)小明来到红毛族探险,看到下面几个红毛族的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.老师告诉他,红毛族算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同. 请你按红毛族的算术规则,完成下面算式:89×57=______ .分析: 由红毛族算式“8×8=8 ”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=11【例12】(★★★第九届“祖冲之杯”数学邀请赛)下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A 值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A×B=C ,所以当输入A值是2008,输入B值是4时,C=A×B=2008×4=8032[拓展]如果运算器输出的是下面的规律,“?”应填什么呢?分析:通过观察,15÷3=5=4+1,28÷7=4=3+1,60÷15=4=3+1,所以,第四列的?处应填(7+1)×8=64,第五列的?处应填:52÷13-1=4-1=31.(例1)a、b是自然数,规定:a△b=a×5+b÷3,求8△9的值.分析:8△9=8×5+9÷3=432.a*b表示a的3倍减去b的一半,例如,1*2=1×3-2÷2=2,根据这个规定,计算:(1)10*6 (2)7*(2*4).分析:10*6=10×3-6÷2=27,7*(2*4)=7*(2×3-4÷2)=7*4=7×3-4÷2=193.(例5)定:A※B=B×B+A,计算(2※3)※(4※1)的值.分析:2※3=3×3+2=11,4※1=1×1+4=5,11※5=5×5+11=36,所以最后结果(2※3)※(4※1)=36.4.(例4)如果a◇b=a×b-(a+b),已知(3◇4)◇x=19,求x的值.分析:3◇4=3×4-(3+4)=5,5◇x=19,5×x-(5+x)=19,4x-5=19,4x=24,x=6.5.(例12)右下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A÷B×2=C ,所以当输入A值是2008,输入B值是4时,C=A÷B=2008÷4×2=1004。
小学六年级数学专题思维训练—定义新运算
小学六年级数学专题思维训练—定义新运算1.规定:如果A大于B,则【A-B】=A-B,如果A等于B,则【A-B】=0,如果A小于B,则【A-B】=B-A,根据上述规律计算:【4.1-1.3】+【2.3-5.6】+【3.2-2.3】=【答案】 6.2【分析】原式=(4.2-1.3)+(5.6-2.3)=6.22,对于正整数 A与B,规定A*B=A×(A+1)×(A+2)×……×(A+B+1)。
如果(X*3)*2=3660,那么X=【答案】3【分析】方法一:由题中所给的定义可知,B为多少,则有多少个乘数。
3660=60×61,即:60*2=3660,则X*3=60;60=3×4×5,即3*3=60,所以X=3方法二:可以将(X*3)看作一个整体Y,那么就是Y*2=3660,Y*2=Y(Y+1)=3660=60×61,所以Y=60,那么就有X*3=60,60=3×4×5,即3*3=60,所以X=3。
3.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用,核检码可以根据前面9个数字按照一定的顺序算得。
如某书的书号是ISBN 7-107-17543-2,它的核检验码的计算顺序是①7×10+1×9+0×8+7×7+1×6+7×5+5×4+4×3+3×2=207②207÷11=18 (9)③11-9=2,这里的2就是该书号的检验码。
依照上面的顺序,求书号ISBN7-303-07618-□的检验码。
【答案】2【分析】7×10+3×9+0×8+3×7+0×6+7×5+6×4+1×3+8×2=196;196除以11=17……9;11-9=2.4.若A 、B 、C 为任意正整数,定义: [A,B,C]=(A ×B+C,D);(D,E )-(F ,G )=(D ×G-E ×F )则[11,2,5]-[3,1,7]=( , ) 【答案】(289,35)【分析】[11,2,5]-[3,1,7]=(11×5+2.5)-(3×7+1.7)=(57,5)-(22,7)=(289,35)5.有ABCD 四种计算机装置,装置A ;将输入的数乘以5;装置B 将输入的数加上3;装置C 将输入的数除以4,装置D 将输入的数减去6,这些装置可以连接,如装置A 后面连接装置B ,就写成A*B ,输入4,结果就是23,输入装置B 后面连接A ,就写成B*A ,输入4,其结果是35①装置A*C*D 连接,输入19,结果是多少?②装置D*C*B*A 连接,输入什么数,结果是96?【答案】①471②5354 【分析】①19×5÷4-6=471 ② 设输入的数为X ,有[(X-6)÷4+3]×5=96,解得X=3354 6.规定A@B===+⨯++⨯2010@2009322@1)111,求,已知)((X B A B A 【答案】404009924040099220111-2009120111-2010120101-20091120101200912010200912010@2009132221112112@1==+=+⨯++⨯===+⨯++⨯=)()(,解得)()(分析:由运算规则,X7.用A*B 表示A 和B 中较大的数除以较小的数所得的余数。
小学数学《定义新运算》练习题(含答案)(1)
小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】 (★★奥数网题库)定义运算“⊕”如下:2a b a b +⊕=. (1) 计算2006⊕2008(2) 计算3⊕7⊕11,3⊕(7⊕11)(3) a b b a ⊕=⊕是否成立?(4) ()a b c a b c ⊕⊕=⊕⊕是否成立?分析:(教师先告诉学生2a b +表示(a+b )÷2) (1)2006⊕2008=200620082+=2007; (2)3⊕7⊕11=372+⊕11=5⊕11=5112+=8 3⊕(7⊕11)=3⊕7112+=3⊕9=392+=6; (3)因为2a b a b +⊕=,2b a b a +⊕=,又因为22a b b a ++=,所以a b b a ⊕=⊕成立; (4)由(2)的结论,3⊕7⊕11=8,3⊕(7⊕11)=6,因为8≠6,所以,()a b c a b c ⊕⊕=⊕⊕不成立.(强调“举反例”时只要有一个就能说明证明不成立)[拓展]两个整数a 和b ,a 除以b 的余数记为ab.例如,135=3.根据这样定义的运算,计算: (1)(269) 4等于多少? (2)108(200819)分析:(1)因为:26÷9=2……8,8÷4=2,所以 (269)4=84=0(2)因为:2008÷19=105……13,108÷13=8……4,所以 108(200819)=10813=4【例2】 (★★奥数网题库)规定:符号“△”为选择两数中较大的数的运算,“ ☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].分析:因为(70☆3)△5=3△5=5,5☆(3△7)=5☆7=5,所以[(70☆3)△5]×[ 5☆(3△7)]=5×5=25[拓展]定义符号“\”表示求两个自然数相除所得的商的运算,例如:9\2=4,10\3\=3(1) 求:29\8,2008\4,(1320×500)\250;(2) 适用符号“\”和已经学过的运算符号来表示“求两个自然数相除所得余数”的运算.分析:(1)因为29÷8=3…5,所以29\8=3,同理,2008\4=502,(1320×500)\250=2640(2)因为被除数÷除数=商…余数,所以余数=被除数-除数×商,所以,a 除以b 的余数为a-b ×(a\b )【例3】 (★★★奥数网题库)我们规定:a c b d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45 610的值.分析:45 610=4×10-5×6=40-30=10[前铺]如果用|A,B|表示A 与B 中较大数与较小数之差,求:(1)|2+3,2×3|;(2)||3,5|,3|分析:(1)|2+3,2×3|=|5,6|=6-5=1(2)||3,5|,3|=|5-3,3|=|2,3|=3-2=1【例4】 (★★★奥数网题库)定义新的运算a b a b a b ⊕=⨯++,求:(1)62⊕,26⊕(2)(12)3⊕⊕,1(23)⊕⊕(3)这个运算有交换律吗?分析:(1)62⊕=6×2+6+2=20;26⊕=2×6+2+6=20(2)(12)3⊕⊕=(1×2+1+2)⊕3=5⊕3=5×3+5+3=23;1(23)⊕⊕=1⊕(2×3+2+3)=1⊕11=1×11+1+11=23(3)由于a b a b a b ⊕=⨯++=×b a b a ++(普通加法、乘法交换律),所以a b b a ⊕=⊕,即满足交换律.[拓展]定义运算※为a ※b =a ×b -(a +b ),(1) 求5※7,7※5;(2) 求12※(3※4),(12※3)※4;(3) 这个运算“※”有交换律、结合律吗?分析:(1)5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.(2)要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.(3)由于a ※b =a ×b -(a +b );b ※a =b ×a -(b +a )=a ×b -(a +b )(普通加法、乘法交换律), 所以有a ※b =b ※a ,因此“※”有交换律.由(2)的例子可知,运算“※”没有结合律.【例5】 (★★★★奥数网题库)定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =a b 2+,如果a +b 是奇数,则a ☆b =a b 12+-. 求:(1)(1 999☆2 000)☆(2 001☆2 002);(2)1 998☆(2 000☆2 002)☆2 004.分析:(先告诉学生a b 2+是一种运算,表示(a+b )÷2,a b 12+-就表示(a+b-1)÷2) (1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数, 所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (2)因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以 1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001.[巩固] 定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b 3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b =a b-23+. 求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891【例6】 (★★★★奥数网题库)对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[前铺]定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.求3!,4!,5!;证明:3×(6!)+24×(5!)=7!分析:(1)3!=3×2×1=6;4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!)=7×(6!)=7![总结]这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二)反求未知数【例7】 (★★★★奥数网题库)如果a △b 表示(a-2)×b ,例如3△4=(3-2)×4=4,那么当( a △2)△3=12时, a 等于几?分析:(a △2)△3=[(a -2)×2]△3=(2a -4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=5[前铺]对于两个数a 、b ,a △b 表示a +b -1.计算:(1)(7△8)△6(2)(6△A )△A =84,求A .分析:(1)7△8=7+8-1=14,14△6=14+6-1=19;(2)6△A =6+A -1=5+A ,(5+A )△A =5+A +A -1=2×A +4=84,所以A =40.【例8】 (★★★★奥数网题库)定义新运算“※”如下:对任意自然数a ,b ,a ※b=5×a-3×b ,能否找到一个自然数n ,使得5※6※n=5※(6※n )?如果存在,求出自然数n ;如果不存在,说明理由.分析:5※6※n=(5×5-3×6)※n=7※n=5×7-3×n ;5※(6※n )=5※(5×6-3×n )=5※(30-3×n )=5×5-3×(30-3×n )=9×n-65,因为5※6※n=5※(6※n ),所以有35-3×n=9×n-65,即12×n=100,所以没有满意的自然数n ,使得5※6※n=5※(6※n )【例9】 (★★★★奥数网题库)规定:a △b=a +(a +1)+(a +2)+…+(a +b-1),其中a 、b 表示自然数.(1)求1△100的值;(2)已知x △10=75,求x.分析:(1)1△100=1+2+3+……+100=5050(2)x △10=x +x +1+x +2+……+x +9=10×x +45=75,10×x=30,所以x=3[拓展] 对于任意的整数x 与y 定义新运算“△”:x △y=y mx y x 26+⋅⋅ (其中m 是一个确定的整数).如果1△2=2,则2△9=?分析:已知1△2=2,根据定义得 1△2=6121221224m m ⨯⨯==⨯+⨯+,于是有2×(m +4)=12,解出m=2.所以 6295429==222911⨯⨯⨯+⨯[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)计算机程序语言【例10】 (★★★第九届“祖冲之杯”数学邀请赛)下图是一个运算器的示意图,A 、B 是输入的两上数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是2008,输入B 值是4时,运算器输出的C 值是_____.分析:运算器输入的A 是被除数,B 是除数,输出的是商减去1,2008÷4=502,502-1=501,所以C =501.【例11】 (★★★★奥数网题库)有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数.装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3.这些装置可以连接,如装置A 后面连接装置B 就写成A·B,输入1后,经过A·B,输出3.那么输入9,经过A·B·C·D,输出几?分析:输入9经过A 装置以后结果是9+5=14,再经过B 装置以后结果是14÷2=7,经过C 装置以后结果成为7-4=3,最后经过D 装置以后,最终输出结果等于3×3=9.[拓展]有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数.装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3.这些装置可以连接,如装置A 后面连接装置B 就写成A ·B ,输入1后,经过A ·B ,输出3.经过B ·D ·A ·C ,输出的是100,输入的是几?分析:(方法一)假设输入的是w,那么经过B·D·A·C,变为:w÷2×3+5-4=100,w=66 (方法二)将100反过来经过C之前为:100+4=104,经过C·A之前为104-5=99,经过C·A·D 之前为:99÷3=33,经过C·A·D·B之前为:33×2=66(四)其他常见类型【例12】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)印第安人的古老部落里有这样一些式子:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.这些算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同.请你按印第安人的算术规则,完成下面算式:89×57=______ .分析: 由印第安人的算式“8×8=8”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.继而可推得“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=111.(例2)规定:a▽b=(a+b)÷2+2×a,则3▽(6▽8)是多少?.分析:6▽8=(6+8)÷2+2×6=19,3▽19=(3+19)÷2+2×3=17,所以3▽(6▽8)=17.2.(例6)如果 3*2=3+33=362*3=2+22+222=2461*4=1+11+111+1111=1234那么4*5=( ).分析:4*5=4+44+444+4444+44444=493803.(例7)对于数 a, b, c, d,规定〈a, b, c,d〉=2ab-c+d.已知〈1,3,5,x〉=7,求x 的值.分析:<1,3, 5,x>=2×1×3-5+x=1+x=7,x=64.(例9)如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?分析:(a△2)△3=[(a-2)×2]△3=(2a-4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=55.(例10)右下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,10÷5=2,48÷8=6,121÷11=11,5=2+3,9=6+3,14=11+3,所以(A-3)×B=C ,所以当输入A值是2008,输入B值是4时,C=(A-3)×B=2005×4=8020。
★★★有理数中的新定义运算
有理数中的“新定义运算”例1 如果用四则运算的加法和除法定义一种新运算,对任意有理数、,⊕,试计算⊕⊕⊕的值。
解:∵⊕,即指“⊕”的定义为计算出前后两个数的平均数,所以⊕,⊕,∴原式⊕。
例2 观察下列等式(式子中的“!”是一种数学运算符号),如1!,2!,3!,4!,……,请计算: 。
解析:通过已经给出的几例可以观察到,“!”是指连续的自然数的乘积,从1乘到此数为止,则。
8.x,y表示两个数,规定新运算“*”及“△”如下:x*y=6×x+5×y,x△y=3×x×y,那么(-2*3)△(-4)=_______9. 设,例如,那么由此我们可以解答出 。
10.定义运算※为a※b=a×b-(a+b)①求5※7②求(-12)※(3※)练习二1. 用“”定义新运算:对于任意的有理数、,都有,例如:,那么 ,当代表任意一个数时,试求 。
2、 在有理数的原有运算法则中我们补充定义新运算“”如下:当时,,当时,,则当时,的值为 。
(“”和“-”仍为运算中的乘4、对于有理数a、b定义运算※,a※b=,例如4>2,4※2=4²-4×2=8,则(-3)※(-2)= .5、对于正数x,规定f(x)= ,例如:f(4)= ,f( )= = ,则f(2012)+f(2011)+…+f(2)+f(1)+f( 1 2 )+…+f( 1/ 2011 )+f( 1/2012)=______.6、已知、满足,;其中表示不大于的最大整数,表示的小数部分,即,那么。
7.对于数x,y规定运算“○”为x○y=(x+4)×(y-3).求8○9的值.8.已知:1※6=1×2×3×4×5×6,6※5=6×7×8×9×10,按此规定,计算(2※5)+(6※4)9.如果有一种运算符号“△”:猫△猫=猫,狗△狗=狗,猫△狗=狗,狗△猫=狗;另有一种运算符号“□”:猫□猫=猫,狗□狗=狗,猫□狗=猫,狗□猫=猫。
小学数学《定义新运算》练习题
小学数学《定义新运算》练习题(一)直接运算型【例1】(★★★奥数网题库)两个整数a和b,a除以b的余数记为a b.例如,135=3.根据这样定义的运算,计算:(1)(269) 4等于多少?(2)108(200819)【例2】(★★★奥数网题库)定义运算※为a※b=a×b-(a+b),(1)求5※7,7※5;(2)求12※(3※4),(12※3)※4;(3)这个运算“※”有交换律、结合律吗?【例3】(★★★奥数网题库)我们规定:a cb d=ad+bc,求25164021的值.分析:25164021=25×21+40×16=525+640=1165【例4】(★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)规定:符号“△”为选择两数中较大的数的运算,“☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].【例5】 (★★★★奥数网题库)定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b=a b-23+. 求:(2005*2006)*(2007*2008)【例6】 (★★★★奥数网题库)对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1);[(1)(1)][(1)1]m m mn m nn n n m m m CP P =÷=⨯-⨯⨯-+÷⨯-⨯⨯.求:123456666666,,,,,C C C C C C(二) 反求未知数【例7】 (★★★★奥数网题库)定义新运算“※”如下:对任意自然数a ,b ,a ※b=5×a-3×b ,能否找到一个自然数n ,使得5※6※n=5※(6※n )?如果存在,求出自然数n ;如果不存在,说明理由.【例8】 (★★★★奥数网题库)对于任意的整数x 与y 定义新运算“△”:x △y=y mx yx 26+⋅⋅ (其中m 是一个确定的整数).如果1△2=2,则2△9=?(三)计算机程序语言【例9】(★★★第九届“祖冲之杯”数学邀请赛)如下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是1999,输入B值是9时,运算器输出的C值是_____.【例10】(★★★★奥数网题库)有A,B,C,D四种装置,将一个数输入一种装置后会输出另一个数.装置A∶将输入的数加上5;装置B∶将输入的数除以2;装置C∶将输入的数减去4;装置D∶将输入的数乘以3.这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3.(1)输入9,经过A·B·C·D,输出几?(2)经过B·D·A·C,输出的是100,输入的是几?(四)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)王歌暑假去非洲旅游,到了一个古老部落,看到下面几个部落的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.导游告诉他,部落算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同.请你按古老部落的算术规则,完成下面算式:89×57=______ .【例12】 (★★★★★奥数网题库)先阅读下面材料,再解答后面各题.现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q 、W 、E 、…N 、M 这26个字母依次对应1、2、3、…、25、26这26个整数(见下表):Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526'(1263)32'17(12631)31'8(12632)3xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是正整数,,被整除是正整数,,被除余是正整数,,被除余 将明文转换成密文,如:,即R 变为L ; ,即A 变为S .按上述方法将明文HAK 译为密文.1.(例2)规定:A ※B =B ×B +A , (1)计算(2※3)※(4※1), (2)这个运算有交换律吗? 2.(例6)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(2)证明:3×(6!)+24×(5!)=7!3.(例7)“⊙”表示一种新的运算符号,已知:2⊙3=2+3+4;7⊙2=7+8;3⊙5=3+4+5+6+7,按此规则,如果n⊙8=68,那么n的值是多少?4.(例8)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.5.(例10)有A、B、C、D四种计算装置,装置A:将输入的数乘以5;装置B:将输入的数加3;装置c:将输入的数除以4;装置D:将输入的数减6.这些装置可以连结,如装置A后面连结装置B,写成A·B,输入4,结果是23;装置B后面连结装置A就写成B·A,输入4,结果是35.装置A·C·D连结,输入8,结果是多少?。
五年级数学培优:定义新运算
五年级数学培优:定义新运算
1、t 是自然数,规定t ◇=3t ,试求9◇的值。
2、h 是一个自然数,如果规定⊙h =100-2h ,那么,⊙21的值是多少?
3、对于自然数x ,规定x △=2x -3,试求3△、7△的值。
4、对于自然数b ,规定○b =5+3b ,试求○3、○7的值。
5、d 是一个自然数,规定d ★=12+3d ,求9★的值。
6、b 和c 都是自然数,规定b →c =2b÷c ,试求11→8的值。
7、设A △B=
A B B A ,求(5△3)+15
11。
8、对于自然数m、n,规定m*n=4(m+n)(m-n),试求8*6的值。
9、A、B是任意两个整数,规定A◇B=A2+B2,请求出7◇6的值。
10、如果a#b=4a-5b,求5#4。
11、如果A*B表示(A+B)÷2,那么(3*5)*8是多少?
12、规定E⊙F表示从E开始的F个连续自然数的和,那么14⊙5的值是多少?
13、如果定义a*b=(a+b)×2。
已知x*24=320,求x。
14、如果规定m□n表示从m开始的n个连续自然数的乘积,例如7□5=7×8×9×10×11,
求6□4,5□3的值。
15、规定“☆”表示运算m☆n=3m-2n,解方程:
x☆(12☆x)=5
16、如果a◎b表示ab+a,那么当x◎5比5◎x大100时,x是多少?。
小学数学《定义新运算》练习题(含答案)
小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】(★★★奥数网题库)两个整数a 和b ,a 除以b 的余数记为ab.例如,135=3.根据这样定义的运算,计算: (1)(269)4等于多少?(2)108(200819)分析:(1)因为:26÷9=2……8,8÷4=2,所以 (269)4=84=0 (2)因为:2008÷19=105……13,108÷13=8……2,所以 108(200819)=10813=4[前铺]定义运算“⊙”如下:2a ba b +⊕=. (1) 计算2007⊕2009,2006⊕2008 (2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(教师先告诉学生2a b+表示(a+b )÷2) (1)2007⊕2009=200720092+=2008;2006⊕2008=200620082+=2007(2)1⊕5⊕9=152+⊕9=3⊕9=392+=6 1⊕(5⊕9)=1⊕592+=1⊕7=172+=4;【例2】 (★★★奥数网题库)定义运算※为a ※b =a ×b -(a +b ), (1) 求5※7,7※5; (2) 求12※(3※4),(12※3)※4;(3) 这个运算“※”有交换律、结合律吗?分析:(1)5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.(2)要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.(3)由于a ※b =a ×b -(a +b );b ※a =b ×a -(b +a )=a ×b -(a +b )(普通加法、乘法交换律), 所以有a ※b =b ※a ,因此“※”有交换律.由(2)的例子可知,运算“※”没有结合律.[巩固]定义新的运算a b a b a b ⊕=⨯++,求: (1)62⊕,26⊕(2)(12)3⊕⊕,1(23)⊕⊕(3)这个运算有交换律吗?分析:(1)62⊕=6×2+6+2=20;26⊕=2×6+2+6=20(2)(12)3⊕⊕=(1×2+1+2)⊕3=5⊕3=5×3+5+3=23; 1(23)⊕⊕=1⊕(2×3+2+3)=1⊕11=1×11+1+11=23(3)由于a b a b a b ⊕=⨯++=×b a b a ++(普通加法、乘法交换律),所以a b b a ⊕=⊕,即满足交换律.[拓展]如果a 、b 、c 是三个整数,则他们满足加法交换律和结合律,即a +b =b +a ,(a +b )+c =a +(b +c ).现在规定一种运算“*”,它对于整数a 、b 、c 、d 满足:(a ,b )*(c ,d )=(a ×c +b ×d ,a ×c -b ×d ).例如:(4,3)*(7,5)=(4×7+3×5,4×7-3×5)=(43,13).请你举例说明:“*”运算是否满足交换律和结合律.分析:(7,5)*(4,3)=(4×7+3×5,4×7-3×5)=(43,13),所以“*”运算满足加法交换律, (2,1)*(3,2)*(3,4)=(2×3+1×2,2×3-1×2)*(3,4)=(8,4)*(3,4)=(3×8+4×4,3×8-4×4)=(40,8) ;(2,1)*[(3,2)*(3,4)]=(2,1)*[3×3+2×4,3×3-2×4]=(2,1)*[17,1]=(2×17+1×1,2×17-1×1)=(35,33).所以,(2,1)*(3,2)*(3,4)≠ (2,1)*[(3,2)*(3,4)],因此 “*”不满足结合律. 【例3】 (★★★奥数网题库)我们规定:a cb d =ad+bc ,求2516 4021的值. 分析:2516 4021=25×21+40×16=525+640=1165[巩固]我们规定:a cb d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45610的值.分析:45610=4×10-5×6=40-30=10【例4】 (★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)规定:符号“△”为选择两数中较大的数的运算,“ ☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].分析:因为(70☆3)△5=3△5=5,5☆(3△7)=5☆7=5,所以[(70☆3)△5]×[ 5☆(3△7)]=5×5=25[巩固] 定义两种运算“⊕”“⊗”,对于任意两个整数a 、b ,a ⊕b=a+b-1,a ⊗b=a ×b-1,计算:4[]⊗⊕⊕⊕(68)(35)分析:⊕68=6+8-1=13,⊕35=3+5-1=7,137⊕=13+7-1=19,4⊗19=4×19-1=754[]⊗⊕⊕⊕(68)(35)=75【例5】 (★★★★奥数网题库)定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b=a b-23+. 求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891[巩固]定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =a b2+,如果a +b 是奇数,则a ☆b =a b 12+-. 求:(1)(1 999☆2 000)☆(2 001☆2 002); (2)1 998☆(2 000☆2 002)☆2 004.分析: (教师先告诉学生2a b+表示(a+b )÷2) (1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数,所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001【例6】 (★★★★奥数网题库)对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1);[(1)(1)][(1)1]m m mn m nn n n m m m CP P =÷=⨯-⨯⨯-+÷⨯-⨯⨯.求:123456666666,,,,,C C C C C C分析:16C=(16P)÷(11P)=6÷1=6;26C=(6×5)÷(2×1)=15;36C=(6×5×4)÷(3×2×1)=20;46C=(6×5×4×3)÷(4×3×2×1)=15;56C=(6×5×4×3×2)÷(5×4×3×2×1)=6;66C=(66P)÷(66P)=1[前铺]对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结]这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二) 反求未知数【例7】 (★★★★奥数网题库)定义新运算“※”如下:对任意自然数a ,b ,a ※b=5×a-3×b ,能否找到一个自然数n ,使得5※6※n=5※(6※n )?如果存在,求出自然数n ;如果不存在,说明理由.分析:5※6※n=(5×5-3×6)※n=7※n=5×7-3×n ;5※(6※n )=5※(5×6-3×n )=5※(30-3×n )=5×5-3×(30-3×n )=9×n-65,因为5※6※n=5※(6※n ),所以有35-3×n=9×n-65,即12×n=100,所以没有满意的自然数n ,使得5※6※n=5※(6※n )【例8】(★★★★奥数网题库)对于任意的整数x 与y 定义新运算“△”:x △y=ymx yx 26+⋅⋅ (其中m 是一个确定的整数).如果1△2=2,则2△9=?分析:已知1△2=2,根据定义得 1△2=6121221224m m ⨯⨯==⨯+⨯+,于是有2×(m +4)=12,解出m=2.所以6295429==222911⨯⨯⨯+⨯[拓展]x 、y 表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k=64,k 不是自然数, 所以m=l ,n=2,k=2. (1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)计算机程序语言【例9】 (★★★第九届“祖冲之杯”数学邀请赛)如下图是一个运算器的示意图,A 、B 是输入的两上数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C 值是_____.分析:观察表格可得:运算器输入的A 是被除数,B 是除数,输出的是余数因为1999÷9=222……1,所以C =1.[前铺]下图是一个运算器的示意图,A 、B 是输入的两上数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是2008,输入B 值是4时,运算器输出的C 值是_____.分析:运算器输入的A是被除数,B是除数,输出的是商减去1,2008÷4=502,502-1=501,所以C=501.【例10】(★★★★奥数网题库)有A,B,C,D四种装置,将一个数输入一种装置后会输出另一个数.装置A∶将输入的数加上5;装置B∶将输入的数除以2;装置C∶将输入的数减去4;装置D∶将输入的数乘以3.这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3.(1)输入9,经过A·B·C·D,输出几?(2)经过B·D·A·C,输出的是100,输入的是几?分析:(1)输入9经过A装置以后结果是9+5=14,再经过B装置以后结果是14÷2=7,经过C装置以后结果成为7-4=3,最后经过D装置以后,最终输出结果等于3×3=9.(2)最后经过装置C后结果是100,那么输入装置C的数字是100+4=104,那么输入A的数字是104-5=99,输入D的数是99÷3=33,输入B的数是33×2=66.所以最开始输入的数是66.[拓展]例题中的装置,输入7,输出的还是7,用尽量少的装置应怎样连接?分析:C·D·A·B(四)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)王歌暑假去非洲旅游,到了一个古老部落,看到下面几个部落的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.导游告诉他,部落算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同.请你按古老部落的算术规则,完成下面算式:89×57=______ .分析: 由部落算式“8×8=8”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.继而可推得“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=11【例12】(★★★★★奥数网题库)先阅读下面材料,再解答后面各题.现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…N、M这26个字母依次对应1、2、3、…、25、26这26个整数(见下表):'(1263)32'17(12631)31'8(12632)3xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是正整数,,被整除是正整数,,被除余是正整数,,被除余 将明文转换成密文,如:,即R 变为L ; ,即A 变为S .按上述方法将明文HAK 译为密文.分析:这是一道非常有意思的题目.明文HAK 对应16、11、18;16217233++=,即H 变为V ;1118123++=,即A 变为S ;1863=,即K 变为Y ,所以将明文HAK 译为VSY . 1.(例2)规定:A ※B =B ×B +A , (1)计算(2※3)※(4※1), (2)这个运算有交换律吗?分析:(1)2※3=3×3+2=11,4※1=1×1+4=5,11※5=5×5+11=36,所以最后结果(2※3)※(4※1)=36.(2)因为B ※A =A ×A +B ≠ B ×B +A ,所以 这个运算不符合交换律 2.(例6)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(1) 求3!,4!,5!; (2) 证明:3×(6!)+24×(5!)=7! 分析:(1)3!=3×2×1=6; 4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!) =7×(6!) =7!3.(例7)“⊙”表示一种新的运算符号,已知:2⊙3=2+3+4;7⊙2=7+8;3⊙5=3+4+5+6+7,按此规则,如果n ⊙8=68,那么n 的值是多少?分析:观察条件可知⊙前面一个数表示相加的开始一个数,⊙后面一个数表示连续相加的个数,所以n⊙8=n+(n+1)+(n+2)+…+(n+7)=8×n+1+2+3+4+5+6+7=8×n+28=68,所以n=5.4.(例8)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.分析:2A+4A-4÷2=28,即 6A=30,所以A=55.(例10)有A、B、C、D四种计算装置,装置A:将输入的数乘以5;装置B:将输入的数加3;装置c:将输入的数除以4;装置D:将输入的数减6.这些装置可以连结,如装置A后面连结装置B,写成A·B,输入4,结果是23;装置B后面连结装置A就写成B·A,输入4,结果是35.装置A·C·D连结,输入8,结果是多少?分析:输入8经过A装置以后,结果为8×5=40,经过C装置以后,结果为40÷4=10,经过D装置以后,结果成为10-6=4.所以最终结果为4.。
五年级数学思维《定义新运算》专题训练
五年级数学思维《定义新运算》专题训练一、填空题(每小题6分,共60分)1 规定:a*b=(b+a)×b ,那么(2*3)*5= .2 规定:6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234,那么:7*5= .3 规定:a △b =a+(a+1)+(a+2)+…+(a+b-1)(其中a 、b 均为自然数,b >a)如果x △10=65,那么x = .4 “*”表示一种运符符号,它的含义是:x ∗y =1xy +1(x+1)(y+A),已知2*1=23,则1998*1999= .5 设a⋀b =[a,b]+(a,b),其中[a,b]表示a 与b 的最小公倍数(a,b)表示a 与b 的最大公约数,(1)14⋀4= ;(2)已知6⋀x =33,则x = .6 定义运算“⊙”:{a ⊙1=a,a ⊙n =2×[a ⊙(n −1)]+a,n >1.已知m ⊙4=30.(1)m= ;(2)m ⊙8= .7 定义运算“*”为a*b=a+aa +aaa +…+aaa …a ⏟ b 个a ,这里a 、b 都是自然数,记号aaa …a ⏟ m 个a表示m 个a 写在一起形成的数,又若1*x =123456789,则x = .8 如果a*b 表示a ×b+a ,当x *5比5*x 大100时,x = .9 规定:符号○表示选择两数中较大数的运算,符号△表示选择两数中较小数的运算,那么(0.6Ο1726)+(0.625△2333)(0.3△3499)+(237106Ο2.25)= .10 对于任意的自然数X和Y,定义新运算@:X@Y=6XYmX+2Y,其中m 是一个确定的自然数,如果1@2=1,则2@8= .二、解答题(每小题20分,共60分)11 x 、y表示两个数,规定新运算“*”及“△”如下:x∗y=mx+ny,x△y=kxy,其中m、n、k均为正整数,已知1∗2= 5,(2∗3)△4=64,求(1△2)∗3的值.12 设a、b是正整数,“*”为一种运算符号,并规定这种新的运算为:a∗b=1+2+3+⋯+ab.(1)求(4*5)-(2*3)的值;(2)如果a>b>l, 且a*b=595,求a、b的值.13 对于任意两个自然数a和b(a、b都不等于0)规定新运符“*”:a∗b=a×(a+1)×(a+2)×…×(a+b−1)如果(x∗3)∗2=3660,求x的值.。
三年级数学思维专题训练—定义新运算(含答案解析)
三年级思维专题训练—定义新运算一、已知当口大于或等于6时,规定a△6=3×a+4×6;当a小于b时,规定a△6=4×a+3×b,按此规定计算:(6△4)△35=二、定义新运算符号*为A* B=A×B-A-B,已知X*5=11,那么X=三、规定2⊕I= 2 , 2⊕2=2+22=24, 3⊕3=3+33+333=369 ,那么5⊕5=四、通过一种新的运算“△”计算,有以下结果:2△3=2×3×4=244△2=4×5=20那么6△3-7△2等于多少?五、定义f(1)=1,f(2)=1+2=3,f(3)=1+2+3=6,…,那么f(100)=六、若记号“贝贝京京”代表“贝贝比京京高”,依照下图的记号,最高的是七、如果P↑表示P+1,P↓表示P-1,则(4↑)×(3↓)等于1.A.9↓B.10↓C.11↓ D.12↑ E.13↓八、规定一种运算符号“@”,M@N=(M+N)÷5,那么X@5=l0中X的值是九、在密码学中,直接可以看到的内容是明码,对明码进行某种处理后得到的内容为密码有一种密码,将英文26个字母a、b、c…、z(不论大小写)依次对1、2、3…、26这26个自然数(见表格)。
当明码对应的序号x为奇数时,密码对应的序号y=(x+1)÷2;当明码对应的序号x为偶数时,密码对应的序号y=x÷2+13。
字 a b c d e f g h i j k l m 序 1 2 3 4 5 6 7 8 9 10 11 12 13 字n o p q r s t u v w x y z序14 15 16 17 18 19 20 21 22 23 24 25 26 按上述规定,请你算出明码“love”译成密码是什么?十、对于任意自然数,定义n!=l×2×…×n,如4!-1×2×3×4.那么,1!+2!+3 !+4 !+5 !=十一、规定3☆2=3+33=36, 2☆3=2+22+222=246, l☆4=1+11+111+111l=1234.如果一位数a、b满足a☆b=49380,求a和b.十二、规定1※2=1+2=3,2※3=2+3+4=9,5※4=5+6+7+8=26.如果a※15=165,那么a=十三、如果A*B=2A+B,若A*2A*3A*4A*5A=570,那么A=十四、已知有一个数学符号△使下列等式成立:2△4=8,5△3=13,3△5=11, 9△7=25,那么7△3=十五、我们规定:AΟB表示A、B中较大的数,A△B表示A、B中较小的数.则(10△8-6Ο5)×(11Ο13+15△20)=十六、已知“△”表示一种运算符号,若a△b=(a-b)÷2,则3△(6△4)=十七、对于数x、y,定义两种运算“*”及“△”如下:x* y=6x+5y,x△y=3xy,则(2*3)△4=十八、如果6*2=6+7。
小学数学专题 定义新运算 例题+练习
定义新运算一、知识点总结:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、例题讲解:【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
解答:13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
解答:3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
定义新运算(一)
定义新运算(一)典型例题:例1:我们规定A#B=5×A+2×B,请你算一下,6#8的结果是多少?练习:1、我们规定A※B=100×A-3×B,请你算一下,5※6的结果是多少?2、定义一种运算○:A○B=3×A-2×B,求3○4,4○3。
3、两个整数A、B,规定:A◎B=A×5-B×2。
试求:9◎6和13◎8。
例2:定义新的运算§:A§B=A×B+A+B,求6$2。
练习:1、对于两个数a与b,规定a⊙b=a×b-(a+b)。
试计算3⊙5。
2、定义运算a□b=(a+b)×(a-b),计算:18□12;29□28。
3、定义运算:“※”,a※b=a+b-3,求4※5=?9※8=?例3:定义新运算“∞”规定a∞b=2×a+3×b-3,求7∞9=?9∞7=?练习:1、定义运算“〒”a〒b=(a+b)÷5,求15〒5=?26〒9=?2、设有一种运算规则是a¤b=a×b-a-b+1,求8¤8的值。
例4:两个整数A和B,规定:A※B=2×A×B+(A-B)。
试求:11※10,15※9。
练习:设X和Y为两个不同的数,规定X□Y为:X和Y加起来除以4,求12□16。
例5:我们规定A※B=5×A+B,请你算一下,5※(6※4)的结果是多少?练习:1、“◎”表示一种新的运算,它是这样定义的:A◎B=4A-B。
请你算一下,15◎(5◎4)的结果。
2、设A、B两个数,则A#B=A×B+B,那么请你计算(4#3)#6的结果。
3、设a、b都表示数,规定a£b=3×a+2×b。
试计算(1)(5£6)£7(2)5£(6£7)。
家庭作业1、定义运算“$”,对于任意两个整数A$B,有A$B=A×B-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学定义新运算典型例题
1. 若A*B表示(A+3B)×(A+B),求5*7的值。
2. 定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
3.对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
4.规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
计算下式:[(7◎3)& 5]×[ 5◎(3 & 7)]
5.如果1※2=1+11
2※3=2+22+222
3※4=3+33+333+333+3333
计算:(3※2)×5。
小学数学定义新运算典型例题答案:
例【1】若A*B表示(A+3B)×(A+B),求5*7的值。
分析A*B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
解由A*B=(A+3B)×(A+B)
可知:5*7=(5+3×7)×(5+7)
=(5+21)×12
=26×12
=312
例【2】定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
分析所求算式是两重运算,先计算括号,所得结果再计算。
解由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;
6△(3△4)
=6△1
=(6+1)÷1
=7
例【3】对于数a、b、c、d,规定,< a、b、c、d >=2ab-c +d,已知< 1、3、5、x >=7,求x的值。
分析根据新定义的算式,列出关于x的等式,解出x即可。
解将1、3、5、x代入新定义的运算得:2×1×3-5+x=1+x,又根据已知< 1、3、5、x >=7,故1+x=7,x=6。
例【4】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
计算下式:[(7◎3)& 5]×[ 5◎(3 & 7)] 分析新定义运算进行计算时如果遇到有括号的,要先计算小括号里的,再计算中括号里的。
解[(7◎6)& 5]×[ 5◎(3 & 9)]
=[ 6 & 5] ×[ 5◎9 ]
=6×5
=30
例【5】如果1※2=1+11
2※3=2+22+222
3※4=3+33+333+333+3333
计算:(3※2)×5。
分析通过观察发现:a※b中的b表示加数的个数,每个加数数位上的数字都由a组成,都由一个数位,依次增加到b个数位。
解(5※3)×5。
=(5+55+555)×5
=3075
最新文件仅供参考已改成word文本。
方便更改。