层次分析法及应用资料

合集下载

层次分析法的应用实例

层次分析法的应用实例

层次分析法的应用实例层次分析法(Analytic Hierarchy Process,简称AHP)是一种运用于多准则决策问题的定性和定量分析方法。

通过将决策问题分解为多个层次,从而使决策问题的结构更加清晰,更容易理解和处理。

下面将介绍几个AHP方法的应用实例。

1.项目选择在项目选择过程中,可能存在多个关键因素需要权衡。

通过应用AHP,可以将项目选择问题分解为几个层次,例如项目目标、资源投入、风险等等。

然后为每个层次的因素确定权重,从而帮助决策者更加客观地评估不同项目的优劣,并做出最佳选择。

2.供应商评估当公司需要选择供应商时,往往需要考虑多个方面的因素,例如价格、质量、交货时间等等。

通过使用AHP,可以将供应商评估问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,最终确定出最佳供应商。

3.市场调研在市场调研过程中,可能涉及到多个调研指标和因素。

通过应用AHP,可以将市场调研问题分解为几个层次,例如调研目标、调研方法、数据可靠性等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最适合的市场调研方法和指标。

4.产品设计在产品设计过程中,需要考虑多个因素,例如功能、性能、成本等等。

通过使用AHP,可以将产品设计问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,从而帮助设计团队确定出最佳的产品设计方案。

5.企业战略规划在企业战略规划中,需要综合考虑多个战略选项的优劣。

通过应用AHP,可以将战略规划问题分解为不同的层次和因素,例如市场前景、竞争环境、技术能力等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最佳的战略规划方案。

综上所述,层次分析法在多准则决策问题的应用非常广泛。

通过将决策问题分解为多个层次,然后根据不同层次的因素确定权重,能够帮助决策者更加客观地评估不同方案的优劣,并做出最佳选择。

这种方法在项目选择、供应商评估、市场调研、产品设计和企业战略规划等领域都有重要的应用。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。

它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。

本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。

一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。

将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。

例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。

2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。

判断可以基于专家经验、问卷调查或实际数据。

对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。

3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。

通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。

4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。

一致性是指在两两比较中的逻辑关系的一致性。

通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。

5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。

在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。

二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。

假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。

我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。

2. 构造判断矩阵:对于每个子目标,可以进行两两比较。

层次分析法的研究与应用

层次分析法的研究与应用

以某城市的交通规划为例,说明模糊德尔菲层次分析法的应用。首先,根据 城市交通问题的性质和需求,构建了一个包含交通拥堵、环境污染、交通安全、 出行便利性等多个指标的指标体系。然后,邀请多名交通规划专家对这些指标进 行赋值和权重分配。通过多轮专家调查和集体讨论,对各指标的权重进行修正和 优化。最后,根据综合评价结果,制定出符合该城市实际情况的交通规划方案。
对于熵权与层次分析法的结合研究,其优势在于可以综合利用熵权法和层次 分析法的优点,从而更加全面和准确地解决决策问题。具体来说,熵权法可以提 供各指标的权重信息,而层次分析法可以将复杂问题分解为多个层次并进行比较 和评价。因此,将这两种方法结合起来,可以在指标权重和问题层次结构之间找 到一个平衡点,从而得到更加科学合理的决策结果。
4、灵活性:层次分析法可以适用于各种不同领域和问题,能够根据实际情 况进行调整和优化。
分析
文章层次结构的含义及其优点
在层次分析法中,文章层次结构是指将文章按照逻辑关系和重要性分为若干 层次,每个层次包含一组相关的文章片段或句子。这种层次结构有利于将复杂的 问题分解为多个较为简单的部分,使得文章的分析更为系统和全面。同时,文章 层次结构还有以下优点:
例如,在社会经济系统分析领域,可以利用层次分析法对经济系统的各个组 成部分进行分层评价,以揭示经济系统的内在规律;在风险评估领域,可以利用 层次分析法将风险因素分层,并评估各层次的风险程度,以制定相应的风险管理 措施;在数据挖掘领域,可以利用层次分析法对数据进行分层挖掘,以发现数据 中隐藏的模式和规律。
定义
层次分析法是一种定量与定性相结合的决策分析方法,通过将复杂问题分解 为若干层次和因素,评估各因素之间的相对重要性,进而确定各因素在问题解决 中的权重,最终根据权重进行决策。层次分析法能够有效地处理难以用单一指标 评价的问题,为决策者提供全面、客观的信息。

层次分析法的原理及应用

层次分析法的原理及应用

层次分析法的原理及应用层次分析法(Analytic Hierarchy Process,简称AHP)是一种定量分析方法,用于解决决策问题,其原理主要基于层次结构和逐级比较的思想。

AHP通过将决策问题分解为多个层次,设立目标层、准则层和方案层,并通过对层次中各元素进行两两比较和权重计算,从而得出最优方案。

AHP的基本原理如下:1.定义层次结构:将复杂的决策问题分解为目标、准则和方案三个层次。

目标是最终要达到的结果,准则是达到目标所需要满足的条件,方案是实现准则的具体行动或选择。

2.建立判断矩阵:通过两两比较的方式,将每个准则和方案与其他准则和方案进行比较,得出相对重要性的判断矩阵。

在比较过程中,根据专家判断,使用1到9的尺度进行评分。

例如,如果A相对于B很重要,则评分为9,如果A和B相等重要,则评分为13.计算权重:根据判断矩阵,通过特征向量法或特征值法计算每个准则和方案的权重。

特征向量法是将判断矩阵的每一列的平均值作为权重,特征值法是通过计算判断矩阵的最大特征值和特征向量得到权重。

4.一致性检验:通过计算判断矩阵的一致性比率和一致性指标,判断专家意见的一致性。

一致性比率越接近0,说明意见越一致,一致性指标小于0.1时才认为专家意见具有可接受的一致性。

5.综合评价:根据权重和准则的得分,计算每个方案的综合得分,从而选择出最优方案。

1.投资决策:在投资决策中,可以将投资目标、收益预期、风险、投资周期等因素作为准则,不同投资方案作为方案,通过层次分析法计算出最优投资方案。

2.供应商选择:在供应链管理中,可以将供货能力、产品质量、价格等因素作为准则,不同供应商作为方案,通过层次分析法评估供应商的综合能力,选择最合适的供应商。

3.项目评估:在项目管理中,可以将项目目标、成本、资源需求等因素作为准则,不同项目方案作为方案,通过层次分析法评估项目的可行性和优劣。

4.策略制定:在战略管理中,可以将市场需求、竞争优势、组织能力等因素作为准则,不同战略方案作为方案,通过层次分析法制定最佳战略。

层次分析法(详细)

层次分析法(详细)

1
1/5 1/3 2 6.53
5
1 3 3 20
3
1/3 1 1 7.33
1/2
1/3 1 1 3.83
B
p1 p2
p1
p2
p3
p4
p5
p6
0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
p3
p4 p5 p6
0.16 0.09 0.15 0.25 0.42 0.13
3
1
1
和积法具体计算步骤:
o将判断矩阵的每一列元素作归一 化处理,其元素的一般项为:
bij= bij 1nbij
(i,j=1,2,….n)
B
p1 p2
p1 1 1
p2 1 1
p3 1 2
p4 4 4
p5 1 1
p6 1/2 1/2
p3
p4 p5 p6
1
1/4 1 2 6.25
1/2
1/4 1 2 5.75
层次分析法(AHP)特点: 分析思路清楚,可将系统分析人 员的思维过程系统化、数学化和模 型化; 分析时需要的定量数据不多,但 要求对问题所包含的因素及其关系 具体而明确;
层次分析法(AHP)特点: 这种方法适用于多准则、多目标 的复杂问题的决策分析,广泛用于 物流系统规划与评价、地区经济发 展方案比较、科学技术成果评比、 资源规划和分析以及企业人员素质 测评。
层次分析法(AHP)具体步骤: 建立两两比较的判断矩阵 判断矩阵表示针对上一层次 某单元(元素),本层次与它有关 单元之间相对重要性的比较。一般 取如下形式:
Cs
p1 b11 b21 … … bn1

层次分析法及其应用

层次分析法及其应用

层次分析法及其应用1概念层次分析法,就是将复杂问题中的各种因素通过划分出相互联系的有序层次,使之条理化。

根据对一定客观现实的判断,就每一层次指标相对主要性给予定量表示,利用数学方法确定重植,并通过排列结果,分析和解决问题。

层次分析法可应用于决策、评价、分析、预测。

2层次分析法的步骤和方法运用层次分析法构造系统模型时,大体可以分为以下五个步骤:建立层次结构模型构造判断矩阵一致性检验计算各层权重总体一致性检验下面依次分析2.1建立层次结构模型层次分析法强调决策问题的层次性,我们必须认清决策目标与决策因素之间的关系。

简单地说,就是处理各个因素之间的包含关系,再把它们放在一个层次结构图中。

一般地,我们把层次结构图分成3个层次:目标层:决策的目的、要解决的问题准则层:考虑的因素、决策的准则。

方案层:决策时的备选方案。

以选择旅游地作为问题,演示层次分析法的过程。

选择旅游地是决策目标那么应放在目标层。

同时我们在选择旅游地时会考虑到不同的因素,如景色、费用等,这些作为准则层。

最后,我们把各个景点纳入考虑的范围,就有方案层。

目标层准则层方案层O旅游目的地C 1景色C2费用C3居住C4饮食C5旅途P1桂林P2黄山P3北戴河2.2构造判断矩阵建立层次结构图,之后我们就必须讨论同一层因素的权重。

这时我们要得出c1,c2,c3……对O的影响权重,可把权重记为:。

重要性标度含义1 表示两个元素相比,具有同等重要性3 表示两个元素相比,前者比后者稍重要5 表示两个元素相比,前者比后者明显重要7 表示两个元素相比,前者比后者强烈重要9 表示两个元素相比,前者比后者极端重要2,4,6,8 表示中间值倒数若元素I与元素j的重要性之比为a ij,则元素j与元素I的重要之比为a ji=1/a ij这时我们就可以得到判断矩阵,也就是每两个因素的权重比假设我们得到的例子中判断矩阵是:W1/W1 W1/W2 ......W1/Wn 1 1/2 4 3 32 1 7 5 5W2/W1 W2/W2 ......W2/Wn (1) 1/4 1/7 1 1/2 1/3 (2)A= ..... 1/3 1/5 2 1 1..... 1/3 1/5 3 1 1Wn/W1 Wn/W2.......Wn/Wn如A(2,1)就表示,第一个因素与第二个因素的权重比。

经典层次分析法分析及实例教程

经典层次分析法分析及实例教程

当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地










苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1

层次分析法及其应用

层次分析法及其应用

层次分析法及其应用摘要在日常生活中我们会遇到许多决策问题,处理决策问题时,要考虑的因素很多。

此文把层次分析法及其应用分为四个部分进行介绍,首先对层次分析的背景、现状、目的,其次对层次分析的原理进行分析,在运用层次分析和评价或决策时,按四个步骤进行描述:建立层次结构模型;构造成对比较矩阵;计算权向量并做一致性检验;计算组合权向量并做组合一致性检验,再次对层次分析的举例分析并行应用,最后进行总结。

关键词:层次分析法基本原理举例分析应用1、绪论层次分析法(The Analytic Hierarchy Pricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。

目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。

AHP于1982年传入我国。

在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。

随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。

此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。

它的主要特点是定性与定量分析相结合,将人的主观判断用数量形式表达出来并进行科学处理,因此,更能适合复杂的社会科学领域的情况,较准确地反映社会科学领域的问题。

同时,这一方法虽然有深刻的理论基础,但表现形式非常简单,容易被人理解、接受,因此,这一方法得到了较为广泛的应用。

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。

层次分析法

层次分析法

层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

1简介2定义3优缺点▪优点▪缺点4基本步骤5注意事项6应用实例简介编辑层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升购物层次分析模型学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析以及最终的决策提供定量的依据。

定义编辑所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法原理及应用

层次分析法原理及应用

层次分析法原理及应用层次分析法(Analytic Hierarchy Process,简称AHP)是由美国运筹学家托马斯·L·塞蒂博士在1970年代提出的一种决策分析方法,主要用于解决多目标决策问题。

AHP方法通过将复杂的决策问题逐级分解为层次结构,并利用专家判断和主观感受进行两两比较,最终得出权重的相对大小,从而达到对各个因素的定量分析和决策的目的。

层次分析法的基本原理是构建一个决策层次结构,将决策问题分解为若干层次。

具体分为目标层、准则层和方案层。

其中目标层表达决策问题的最终目标,准则层表示实现目标所需考虑的准则或因素,方案层是具体的可选择方案。

通过一系列两两比较,形成一个决策准则的成对比较矩阵,然后通过特征向量方法计算出各个因素的权重。

最后,将各个层次的权重乘起来,得到各个方案的总权重,从而进行方案的排序和选择。

层次分析法的应用非常广泛,以下是几个常见的领域:1. 项目选择和评估:在项目管理领域,层次分析法可以帮助决策者对不同项目的目标和准则进行比较和权衡,从而选择最适合的项目方案。

2. 供应商选择:在供应链管理中,层次分析法可以用于评估和选择供应商。

通过比较和评估不同供应商在成本、质量、交货时间等准则上的表现,从而选择最优的供应商。

3. 市场营销决策:在市场营销中,层次分析法可以用于确定市场细分、产品定位、市场推广策略等决策。

通过比较不同市场细分、不同产品定位、不同推广策略等因素的重要性,从而制定最合理的决策方案。

4. 人事招聘和绩效评估:在人力资源管理中,层次分析法可以帮助企业进行人事招聘和绩效评估。

通过比较不同应聘者在能力、经验、素质等方面的重要性,从而选择最合适的人才;通过比较不同员工在工作成绩、团队合作、个人发展等方面的重要性,从而进行绩效评估和薪酬分配。

5. 投资决策:在投资领域,层次分析法可以用于进行投资决策和投资组合优化。

通过比较不同投资标的在收益、风险、流动性等方面的重要性,从而选择风险与收益最优的投资组合。

层次分析法应用介绍

层次分析法应用介绍
1、层次分析模型的提出
在日常生活中常常碰到一些决策问题:买一件衬 衫,要在棉的、丝的、涤纶的……及花的、白的、方 格的……之中作出抉择;请朋友吃饭,要筹划是办宴 或去饭店,是吃中餐还是西餐;假期旅游,是去风光 绮丽的苏杭,还是去迷人的北戴河海滨,或者去山水 甲天下的桂林。如果这些小事不必作为决策问题认真 对待的话,那么当面临报考学校、挑选专业,或者选 择工作岗位的时候,就要慎重考虑、反复比较,尽可 能作出满意的决策。

W
( 3)

( 2)
一般地,若共有s层,则最下层对最上层的组合权向量
( s ) W ( s )W ( s 1) W (3) ( 2)
因此旅游决策中,P1在目标中的组合权重为
0.595×0.262+0.082×0.474+0.429×0.055
+0.633×0.099+0.166×0.110=0.300
1 3 1 B3 1 1 3 1 / 3 1 / 3 1
1 1 1 /1 3 4 B4 1 / 3 1 1 1 / 4 1 1
(k ) 矩阵Bk(k=1, …,5)中的元素 bij 是方案(旅游地)Pi与Pj 对于准则Ck(景色、费用等)的优越性的比较尺度。
同样可以算出P2、P3在目标中的组合权重分别为 0.246和0.456,于是组合权向量为 (3) 0.300,0.246,0.456 结果表明方案P3在旅游地选择中占的权重近于1/2,远 大于P1和P2,作为第1选择地点。
从事各种职业的人也经常面对决策:一个厂长要 决定购买哪种设备,新上什么项目;科技人员要选择 课题;经理从应试者中选择秘书;各地区各部门的官 员要对人口、交通、经济、环境等领域的发展规划作 出决策。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。

该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。

本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。

一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。

下面将详细介绍每个步骤。

1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。

通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。

2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。

通常,层次结构包括目标层、准则层和方案层。

目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。

3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。

判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。

通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。

根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。

4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。

常用的计算方法包括特征向量法、层次递推法和最大特征值法等。

根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。

5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。

一致性指标主要包括一致性比率和一致性指数。

一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。

如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。

二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。

假设你准备进行一次旅行,有三个备选目的地:A、B和C。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法的原理及应用

层次分析法的原理及应用

层次分析法及其应用摘要层次分析法是美国运筹学家匹兹堡大学教授萨迪于20世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

本文主要介绍层次分析法原理及其在实际工作上的应用。

层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的难于完全定量的复杂决策问题提供简便的决策方法。

基本原理:应用AHP解决问题的思路:首先,把要解决的问题分层次系列化,即根据问题的性质和要达到的目标,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型。

然后,对模型中每一层此因素的相对重要性,根据人们对客观现实的判断给予定量表示,再利用数学方法确定每一层此因素相对重要性次序的权值。

最后,通过综合计算各层因素相对重要性的权值,得到最底层(方案层)相对于最高层(总目标)的相对重要性次序的组合权值,以此作为评价和选择方案的依据。

基本步骤:1.明确问题,建立层次结构模型;2.构造判断矩阵;3.层次单排序及一致性检验;4.层次总排序及一致性检验。

实际案例应用在这个信息化的时代,通讯是必不可少的一部分。

如今,我们的生活也越来越离不开手机,几乎每一个人都拥有一部手机。

同时,生产手机的厂商越来越多,手机的款式五花八门,选择哪款手机这个问题也困扰了许多人。

以下运用层次分析法进行分析:1.将决策分解为三个层次目标层A:购买手机准则层B:价格,性能,外观方案层P:华为,苹果,三星层次结构模型如下图:构造判断矩阵A B1 B2 B3 B1 P1 P2 P3B1 1 3 5 P1 1 5 3B2 1/3 1 3 P2 1/5 1 1/3B3 1/5 1/3 1 P3 1/3 3 1判断矩阵A-B 判断矩阵B1-PB2 P1 P2 P3 B3 P1 P2 P3P1 1 1/3 1/5 P1 1 1/5 3P2 3 1 1/3 P2 5 1 7P3 5 3 1 P3 1/3 1/7 1判断矩阵B2-P 判断矩阵B3-P计算判断矩阵的特征值,特征向量和一致性检验1)13/15/1313/1531=A ,归一化后为:111.0077.0130.0333.0231.0217.0556.0692.0652.02)列正规化后的判断矩阵按行相加:900.1556.0692.0652.0111=++==∑=nj j a W 781.0333.0231.0217.0122=++==∑=nj j a W318.0111.0077.0130.0133=++==∑=nj j a W3)将向量=W []w w w T321,,列归一化后,得特征向量:[]106.0,260.0,634.0TW =4)计算判断矩阵的最大特征根λmax⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321)()()(106.0260.0634.013/15/1313/1531AW AW AW AW 320.0106.01260.03/1634.05/1)(789.0106.03260.01634.03/1)(944.1106.05260.03634.01)(321=⨯+⨯+⨯==⨯+⨯+⨯==⨯+⨯+⨯=AW AW AW 04.33/)()()()(3322111max =⎥⎦⎤⎢⎣⎡++==∑=W AW W AW W AW nW AW ni i i λ 5)对A 进行一致性检验 02.02304.31max =-=--=n n CI λ 由1~9阶矩阵的平均随机一致性指标得:58.0=RI1.0034.058.002.0〈===RI CI CR 满足一致性要求6)对1B ,2B ,3B 进行一致性检验 同理5)步骤进行计算可得:矩阵P B -1:[]TW 260.0,106.0,634.0=,04.3max =λ,1.0034.0〈=CR矩阵P B -2:[]TW 633.0,260.0,106.0=,04.3max =λ,1.0034.0〈=CR矩阵P B -3:[]TW 08.0,724.0,193.0=,067.3max =λ,1.0058.0〈=CR根据上表可得层次总排序的组合权向量:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=319.0202.0457.0321WP WP WP W 故最终决策为:P1首选,P3次之,P2最后。

层次分析法的原理及应用

层次分析法的原理及应用

层次分析法的原理及应用1.建立层次结构:将一个复杂的决策问题分解成一系列的层次结构,包括目标层、准则层和方案层。

在每个层次上,将决策因素分解成更小的子因素,并明确因素之间的层次关系。

2.构造判断矩阵:利用专家知识和经验,将不同因素之间的重要性进行配对判断,构造判断矩阵。

判断矩阵是一个n×n的矩阵,其中n为因素个数,矩阵的每个元素表示因素之间的相对权重。

专家用1-9之间的数值表示不同因素之间的相对重要性,1表示相等,9表示绝对重要。

3.计算权重向量:通过对判断矩阵进行特征值分解和归一化处理,计算出每个因素的权重向量。

权重向量表示每个因素在整体层次结构中的重要程度,数值越大表示影响力越大。

4. 一致性检验:判断矩阵中的判断一致性是评估专家判断的可靠性的重要指标。

一致性比例(Consistency Ratio,简称CR)作为判断矩阵的一致性检验指标,如果CR小于0.1,说明专家判断基本一致;如果大于0.1,需要进行调整。

5.决策和评估:根据各因素的权重向量,对方案进行评估,选择最优方案。

1.经济决策:层次分析法可以用于企业的投资、市场营销策划、产品开发等经济决策中,帮助决策者理清思路,确定决策权重。

2.工程项目:在工程项目的决策中,可以使用层次分析法来确定项目目标、评估技术方案,并确定关键路径,从而提高项目成功的概率。

3.人事管理:在员工选拔、晋升、培训等人事管理决策中,层次分析法可以用于评估员工的素质和能力,帮助企业做出合理的人事决策。

4.城市规划:在城市规划决策中,可以使用层次分析法来确定不同规划因素的权重,如交通、教育、环境等,从而制定合理的城市规划方案。

5.环境影响评估:层次分析法可以用于评估不同因素对环境的影响程度,帮助政府和企业制定环境保护措施。

总之,层次分析法是一种重要的决策分析方法,在许多领域都有广泛的应用。

它通过层次分解和对比评估的方式,帮助决策者理清思路,确定决策权重,并选择最优方案。

层次分析法原理及应用步骤

层次分析法原理及应用步骤

层次分析法原理及应用步骤层次分析法(Analytic Hierarcy Process,简称AHP)是一种定性分析与定量分析相结合的多目标决策分析方法。

对于结构复杂的多准则、多目标决策问题,是一种有效的决策分析工具。

其基本思想,是根据问题的性质和要达到的目标,将问题按层次分析成各个组成因素,再按支配关系分组成有序的递阶层次结构。

对同一层次内的因素,通过两两比较的方式确定诸因素之间的相对重要性权重。

下一层次的因素的重要性,既要考虑本层次,又要考虑到上一层次的权重因子逐层计算,直至最后一层一般是要比较的各个方案权重大小。

运用进行决策时,大体上应分为四个步骤进行:(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序。

下面分别说明这四个步骤的实现方法。

(1)层次结构的建立首先要把问题条理化、层次化,构造出一个层次分析的结构模型。

在这个结构模型下,复杂问题被分解成人们称之为元素的组成部分。

这些元素又按照其属性分成若千组,形成不同层次。

同一层次的元素作为准则对下一层次的某些元素起支配作用,同时它又受上一层次元素的支配。

这些层次大体上可以分为三类:1、最高层这一层次中只有一个元素,一般它是分析问题的预定目标或者理想结果,因此也称目标层。

2、中间层这一层次包括了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需要考虑的准则、子准则,因此也称为准则层3、最低层表示为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或者方案层。

上述各个层次之间的支配关系不一定是完全的,即可以存在这样的元素,它并不支持下一层次的所有元素而仅仅支持其中部分元素。

这种自上而下的支配关系所形成的层次结构,我们称为递阶层次结构。

递阶层次结构中的层次数与问题的复杂程度及需分析的详尽程度有关,一般它可以不受限制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1 7 1 7
AHP的基本思路
先分解后综合
整理和综合人们的主观判断,使定性分析与定量分析有 机结合,实现定量化决策。
首先将所要分析的问题层次化,根据问题的性质和要达 到的总目标,将问题分解成不同的组成因素,按照因素间 的相互关系及隶属关系,将因素按不同层次聚集组合,形 成一个多层分析结构模型,最终归结为最低层(方案、措 施、指标等)相对于最高层(总目标)相对重要程度的权 值或相对优劣次序的问题。
层次分析法 AHP
小组展示:王露娟 韩鹏飞 LOGO
目录
AHP的背景介绍 AHP的基本思路 AHP的基本原理 AHP的步骤和方法 关于手机的案例分析 AHP的广泛应用 AHP的优缺点
AHP背景介绍
AHP (Analytic Hierarchy Process)层次分析法是美国运筹学家
P3 1/ 3 1/ 3 `1
相对于价格
P1 P2 P3
P1 1 3 4 B4 P2 1/ 3 1 1
P3 1/ 4 1 `1
相对于售后
P1 P2 P3
P1 1 1 1/ 4 B5 P2 1 1 1/ 4
P3 4 4 1
(3)、层次单排序及其一致性检验
判断矩阵的层次单排序的结果。
一致性检验
1、一致性指标
λ 设n阶判断矩阵为B,则可用以下方法求出其最大的特征根 max:
BW=λW
其中,W是B 的特征向量。
在层次分析法中,我们用以下的一致性指标CI来检验判断的一致
CI max n
n 1
CI=0,一致。 CI越大,一致性越差
2、随机一致性指标RI
Saaty教授于二十世纪80年代提出的一种实用的多方案或多目标 的决策方法。其主要特征是,它合理地将定性与定量的决策结
合起来,按照思维、心理的规律把决策过程层次化、数量化。
该方法自1982年被介绍到我国以来,以其定性与定量相结合 地处理各种决策因素的特点,以及其系统灵活简洁的优点,迅 速地在我国社会经济各个领域内,如能源系统分析、城市规划 、经济管理、科研评价等,得到了广泛的重视和应用。
max(5) 3.
所对应的特征向量分别为:
0.082

W (3) 2

0.236
0.682
0.429

W (3) 3

0.429,
0.142
0.633
0.166


W (3) 4
0.193,
W (3) 5
0.166.
AHP的步骤和方法
1. 建立层次结构模型 2 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
1、建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它 们之间的相互关系分为最高层、中间层和最低层,绘出层 次结构图。
最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。
识业 务 知
力写 作 能
健康情况 1
业务知识 1
A

写作能力

1
口才 1/ 4
政策水平 工作作风

1 2
1 1 1/ 2 1/ 4 1 2
1 2 1 1/ 5 1/ 3 2
平政
口 才
策 水
风工 作 作
4 1 1/ 2 4 1 1/ 2
5
3
1
/
2

1 1/ 3 1/ 3
9
表示两个元素相比,前者比后者强烈重要
2,4,6,8 表示上述相邻判断的中间值
倒数:若元素i和元素j的重要性之比为aij,那么元素j与元素i的重要 性之比为aji=1/aij
3、层次单排序及其一致性检验
计算特征向量
判断矩阵是针对上一层次某元素而言进行两两评比的评价 数据,层次单排序就是把本层所有各元素对上一层某元素 来说,排出评比顺序。常用计算方法有和积法和方根法。
这一过程是从最高层次到最低层次依次进行的。
A
A1, A2 ,, Am B层的层次
B
a1, a2 ,, am
总排序
m
B1
b11 b12
b1m
a jb1 j b1
j 1
m
B2
b21 b22
b2m
a jb2 j b2



j 1
m
Bn
bn1 bn2
bnm
a jbnj bn


确定这些准则在你心目中各占的比重多大;


就每一准则将三个方案进行对比


将这两个层次的比较判断进行综合,作
出选择
(1) 建立层次结构模型
目标层Z
选择合适的手机
功 质外 价售 准则层C 能 量 观 格 后
方案层P 诺基亚
三星
小米
(2) 构造判断矩阵
设准则层包含5个准则,功能C1 ,质量C2 , 外观C3, 价格C4, 售后C5。 相对于目标层:选择手机,进行两两比较打分。
000...116666668

0.263 0.475
0.055 0.099
0.110


0.300 0.246 0.456
故决策结果是优先选择小米手机
一致性检验
0.005 CI= aiCIi
CI=0.0065
0.0015
处理问题类型:决策、评价、分析、预测等。
范例一
某单位拟从3名干部中选拔一名领导,选拔的标准有政策水平 、工作作风、业务知识、口才、写作能力和健康状况。借助 AHP方法对3人进行综合评估,并最终完成量化排序。
选一领导干部
况健 识业 力写 才口 平政 风工
康务 作
策作
状知 能
水作
P1
P2
P3
况健 康 情
因此,判断矩阵均有满意的一致性,其层次单排序是可以 接受的。
(4)层次总排序及其一致性检验
各个方案优先程度的排序向量为:
0.595
W W (3)W (2) 0.277
0.129
0.082 0.236 0.682
0.429 0.429 0.142
0.633 0.193 0.175
经计算得: max 3.005
P3 1/ 5 1/ 2 `1
对应于
m ax
的正规化的特征向量为:
W (3) 1
0.595 0.277
0.129
算出 B2 , B3, B4 , B5 的最大特征值分别为: max(2) 3.002 , max(3) 3, max(4) 3.009 ,
当 CR 0.1 时,认为层次总排序通过一致性检验。层次
总排序具有满意的一致性,否则需要重新调整那些一致性比 率高的判断矩阵的元素取值。
到此,根据最下层(决策层)的层次总排序做出最后决策。
案例分析
某人想要买手机,现在有三个备选方案:诺基亚(P1)、 三星(P2)、小米(P3)。假如选择的依据和标准有五 个:质量、功能、价格、外观、售后。则常规思维模式如 下:
2、 构造判断矩阵
通过相互比较确定各准则对于目标的权重,即构造判断矩阵。在层次分 析法中,为使矩阵中的各要素的重要性能够进行定量显示,引进了矩 阵判断标度(1~9标度法) :
标度
含义
1
表示两个元素相比稍重要
5
表示两个元素相比,前者比后者明显重要
7
表示两个元素相比,前者比后者极其重要
业务知识
1 1/ 4 1/ 4
B(3) 2
4
1
1/ 2
5 2 1
写作能力
1 3 1/3


B (3) 3

1/ 3
1
1
3 1 1
口才
1 1/3 5
B(3) 4


3
1 7
1/ 5 1/ 7 1
政策水平
1

B(3) 5


AHP的基本原理
层次分析法根据问题的性质和要达到的总目 标,将问题分解为不同的组成因素,并按照因 素间的相互关联影响以及隶属关系将因素按不 同层次聚集组合,形成一个多层次的分析结构 模型,从而最终使问题归结为最低层(供决策的 方案、措施等)相对于最高层(总目标)的相对重要 权值的确定或相对优劣次序的排定。
31 31
1 1

A的最大特征值 max 6.35, 相应的特征向量为:
W (2) (0.16,0.19,0.19,0.05,0.12,0.30)T
假设3名候选人关于6个标准的判断矩阵为:
健康情况
1 1/ 4 1/ 2
B(3) 1

4
1
3
2 1/ 3 1
1/ 2 1
1/ 3 归一化各列 1
0.06

0.09
0.07 0.01
0.06 0.12
0.05 0.10
0.03 0.10
C5 1/ 3 1/ 5 3 1
1

0.09 0.10 0.18 0.10 0.10
1.31
2.37
W 0.27
归一化
CIi= 0
RI= aiRIi
RI=0.58
0.045

0
CR=CI/RI=0.011<0.100
由此可见,层次总排序满足一次性检验
AHP的广泛应用
应用领域:经济计划和管理,能源政策和分配,人才选拔 和评价,生产决策,交通运输,科研选题,产业结构,教 育,医疗,环境,军事等。
相关文档
最新文档