人教版八年级数学上第一学期期中考试 (2)

合集下载

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是()A .1B .2C .3D .83.下面的多边形中,内角和与外角和相等的是()A .B .C .D .4.在ABC 中,若一个内角等于另外两个角的差,则()A .必有一个角等于30°B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为()A .2a +2b -2cB .2a +2bC .2cD .06.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是A .M N ∠=∠B .AM CN =C .AB CD =D .//AM CN7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是()A .15°B .30°C .45°D .60°8.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是()A .1B .34C .23D .129.如图所示,在ABC 中,5AB AC ==,F 是BC 边上任意一一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=()A .2B .4C .6D .810.如图,在ABC △中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;②BD DF AD +=;③CE DE ⊥;④BDE ACE S S =△△,其中正确的有()A .①②B .①③C .①②③D .①②③④11.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长是()A .13cmB .16cmC .19cmD .22cm12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E ,AD ,CE 交于点H .已知4EH EB ==,6AE =,则CH 的长为()A .1B .2C .35D .53二、填空题13.如图,ABC 与A B C '''V 关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.15.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm ,△ABD 的周长为13cm ,则AE 的长为______.16.设三角形的三个内角分别为α、β、γ,且a βγ≥≥,2αγ=,则β的最大值与最小值的和是___.三、解答题17.尺规作图,保留作图痕迹,不写作法.(1)作△ABC 中∠B 的平分线;(2)作△ABC 边BC 上的高.18.如图所示,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()3,2A -,()1,3B -,()2,1C .(1)在图中作出与ABC △关于x 轴对称的111A B C △;(2)点1A 的坐标是______,ABC S =。

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。

3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。

若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。

10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。

11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.以下列各组线段为三角形的边,能组成三角形的是()A .1cm ,2cm ,4cmB .3cm ,3cm ,6cmC .7cm ,7cm ,12cmD .3cm ,6cm ,10cm2.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A .SSSB .SASC .AASD .ASA4.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A .五边形B .六边形C .七边形D .八边形5.如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或126.下列运算中正确的是()A .55102a a a +=B .326326a a a ⋅=C .623a a a ÷=D .222(2)4ab a b -=7.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A .20°B .60°C .50°D .40°8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是()A.12B.10C.8D.69.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.2∥交ED的延长线于点10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF ACF,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题11.等腰三角形的一个角是70°,则它的底角是_____.12.(45)2015×1.252014×(﹣1)2016=_______.13.如图,点D在BC上,AB=AD,∠C=∠E,∠BAD=∠CAE,若∠1+∠2=105°,则∠ABC 的度数是_____.14.计算:﹣3x(2x2+4x﹣3)=_______.15.若29a ka ++是一个完全平方式,则k 的值是________.16.计算:()03.14π-=_____________________.17.在△ABC 中,点P 是边AB,边BC 的垂直平分线的交点,∠A=50°.则∠PBC=______.18.如图,已知点A 、C 、F 、E 在同一直线上,△ABC 是等边三角形,且CD=CE ,EF=EG ,则∠F=_____度.三、解答题19.计算题:(1)(5x+2y )(3x-2y )(2)(4x-3y+2)(4x+3y+2)(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3(4)19992-2000×199820.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .21.如图,在长度为1个单位长度的小正方形组成的网格图中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.22.如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC 的度数.23.如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.20.如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.26.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图①,求∠DCE的度数;(3)如图②,③,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由,并求出∠DCE的度数.参考答案1.C【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,逐项判断即可.【详解】解:A :1cm 2cm 4cm +<,故不能构成三角形;B :3cm 3cm 6cm +=,故不能构成三角形;C :7cm 7cm 12cm +>,故能构成三角形;D :3cm 6cm 10cm +<,故不能构成三角形.故选:C .【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.2.A【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.3.D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.5.C【解析】【分析】分类讨论2是腰与底,根据三角形三边关系验证即可.【详解】解:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.6.D【解析】【分析】直接利用合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则运算即可求出答案.【详解】解:(A )5552a a a +=,故A 错误;(B )532326a a a =g ,故B 错误;(C )624a a a ÷=,故C 错误;(D )222(2)4ab a b -=,故D 正确;故选:D .【点睛】本题考查了合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则的应用,熟练运用运算法则是解决本题的关键.7.D【解析】【分析】由∠BAC 的大小可得∠B 与∠C 的和,再由线段垂直平分线,可得∠BAP =∠B ,∠QAC =∠C ,进而可得∠PAQ 的大小.【详解】∵∠BAC =110°,∴∠B+∠C =70°,又MP ,NQ 为AB ,AC 的垂直平分线,∴BP=AP ,AQ=CQ ,∴∠BAP =∠B ,∠QAC =∠C ,∴∠BAP+∠CAQ =70°,∴∠PAQ =∠BAC ﹣∠BAP ﹣∠CAQ =110°﹣70°=40°.故选D .8.C【分析】由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.9.A【分析】过点D 作DG ⊥AC,由题意得出∠DEC=30°,即可得出DG=5,再证明AD 为角平分线,则DF=DG=5.【详解】过点D 作DG ⊥AC.∵15DAE ADE ∠=∠=︒,AE=10∴∠DEC=30°,DE=AE=10.∴DG=5.∵DE ∥AB,∴∠BAD=∠ADED AE AD E∠=∠∴BAD ∠=∠DAE ,即AD 为∠BAC 的角平分线.,DF AB DG AC⊥⊥ ∴DF=DG=5.故选A【点睛】本题考查角平分线的性质与判定,含30度角的直角三角形的性质,解题的关键在于利用角平分线定理作出辅助线.10.A【解析】【详解】解:∵BF AC ∥,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②,③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .11.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为:55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12.45【解析】【分析】根据逆用同底数幂的乘法运算和积的乘方运算计算即可【详解】(45)2015×1.252014×(﹣1)2016201420144451554⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭20144451554⎛⎫=⨯⨯⨯ ⎪⎝⎭45=故答案为:45【点睛】本题考查了同底数幂的乘法运算和积的乘方运算,正确的计算是解题的关键.13.75°.【解析】【分析】根据平角的定义求出∠ADE=75°,由AAS 证明△ABC ≌△ADE ,根据对应角相等得出即可.【详解】解:∵∠1+∠2=105°,∴∠ADE=75°,∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∵BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ),∴∠ABC=∠ADE=75°;故答案为75°.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形判定定理是解题的关键.14.326129x x x --+【解析】【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:()23232436129x x x x x x -+-=--+,故答案为:326129x x x --+.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.15.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.16.1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键.17.40︒【分析】连接,,AP BP CP ,根据三角形的内角和定理可得130ABC ACB ∠+∠=︒,根据垂直平分线的性质,等腰三角形的性质计算即可求得PBC ∠的度数.【详解】如图,连接,,AP BP CP ,180130ABC ACB BAC ∠+∠=︒-∠=︒ 点P 是边AB,边BC 的垂直平分线的交点,,PA PB PB PC∴==PA PC∴=,PAB PBA PAC PCA∴∠=∠∠=∠50PBA PCA PAB PAC BAC ∴∠+∠=∠+∠=∠=︒1305080PBC PCB ∴∠+∠=︒-︒=︒PB PC= 40PBC PCB ∴∠=∠=︒故答案为:40︒【点睛】本题考查了垂直平分线的性质、三角形的内角和定理,等边对等角,掌握垂直平分线的性质是解题的关键.18.15【解析】【详解】设∠F=x°,根据等腰三角形和外角的性质可得:∠DEC=2x°,∠ACB=4x°,根据等边三角形的性质可得:4x=60°,则x=15°,即∠F=15°.故答案为:15【点睛】考点:等腰三角形的性质19.(1)221544xxy y --;(2)22161649xx y ++-;(3)232324xy y xy --(4)1【解析】【分析】(1)根据多项式乘以多项式进行计算即可;(2)根据平方差公式、完全平方公式进行计算即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)根据平方差公式进行简便运算【详解】(1)(5x+2y )(3x-2y )22151064x xy xy y =-+-221544x xy y =--(2)(4x-3y+2)(4x+3y+2)()()423423x y x y =+-++()()22423x y =+-22161649x x y =++-(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3232324x y y xy =--(4)19992-2000×1998()()219991999119991=-+-()22199919991=--22199919991=-+1=【点睛】本题考查了多项式乘以多项式,多项式除以单项式,乘法公式,正确的计算是解题的关键.20.见解析【解析】【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21.(1)见详解;(2)3;(3)PB+PC【解析】【分析】(1)先分别作出△ABC 的对称点,然后依次连接即为所求;(2)在网格中利用割补法进行求解△ABC 的面积即可;(3)要使PB+PC 的长为最短,只需连接BC′,因为根据轴对称的性质及两点之间线段最短可得,然后利用勾股定理可求最短距离.【详解】解:(1)分别作B 、C 关于直线l的对称点,如图所示:(2)由网格图可得:111242221143222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ;故答案为3;(3)由(1)可得:点C 与点C '关于直线l 对称,连接PC 、BC ',如图所示:∴CP PC '=,∵BP PC BP PC BC ''+=+≥,∴要使BP+PC 为最短,则需B 、P 、C '三点共线即可,即为BC '的长,∴222313BC '=+=,即PB+PC 13【点睛】本题主要考查轴对称图形的性质、勾股定理及三角不等关系,熟练掌握轴对称图形的性质、勾股定理及三角不等关系是解题的关键.22.∠BAC=108°.【解析】【分析】由AB=AC ,DC=CA ,得到AB=AC=CD ,且AD=BD ,利用等边对等角得到∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,由外角性质得到∠ADC=∠DAC=∠B+∠BAD=2x°,在三角形ABC 中,利用三角形的内角和定理列出关于x 的方程,求出方程的解得到x 的值,确定出∠DAC 与∠ADC 的度数,由∠BAD+∠DAC 即可求出∠BAC 的度数.【详解】解:∵AB=AC=DC ,AD=BD ,∴∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,则∠ADC=∠DAC=∠B+∠BAD=2x°,∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180,解得x=36,∴∠B=∠C=∠BAC=36°,∴∠DAC=∠ADC=72°,∴∠BAC=∠BAD+∠DAC=72°+36°=108°.【点睛】此题考查了等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,掌握等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,利用了方程的思想,等边对等角是解题关键.23.见解析【解析】【分析】先由角平分线的性质就可以得出DB DF =,再证明BDE FDC ∆≅∆就可以求出结论.【详解】证明:90B ∠=︒ ,BD AB ∴⊥.AD 为BAC ∠的平分线,且DF AC ⊥,DB DF ∴=.在Rt BDE 和Rt FDC 中,DE DC DB DF =⎧⎨=⎩,()Rt BDE Rt FDC HL ∴ ≌,BE CF ∴=.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解题的关键是证明三角形全等.24.6【解析】【分析】根据等边三角形的性质和中线的性质解答即可.【详解】∵△ABC 是等边三角形,BD 是中线,∴∠A=∠ACB=60°,AC=BC ,AD=CD=12AC ,∵DE⊥AB于E,∴∠ADE=90°-∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB-∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.25.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.26.(1)∠BAD=∠CAE;(2)∠DCE=120°;(3)∠DCE的大小不变,∠DCE=60°.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE=60°,然后利用等式性质即可得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠BAD=∠CAE,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,然后利用∠ACD+∠ACE即可得出结论;(3)分两种情况,点D在BC延长线上,与点D在CB延长线上;点D在BC延长线上,根据等边三角形的性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角的和∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =60°,利用∠DCE =∠ACD -∠ACE ;与点D 在CB 延长线上,根据等边三角形性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角差得出∠ABD=180°-∠ABC =120°,∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =120°,利用∠DCE =∠ACE -∠ACB 即可得解.【详解】解:(1)△ABC 与△ADE 都是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE ,∴∠BAD =∠CAE ;(2)连结CE ,∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC-∠CAD =∠DAE-∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD+∠ACE =60°+60°=120°;(3)∠DCE 的大小不变,∠DCE=60°,分两种情况,点D 在BC 延长线上与点D 在CB 延长线上;点D 在BC 延长线上,如图(2)∵△ABC 是等边三角形,△ADE 是等边三角形,21∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD=180°-∠ACB =120°,∠BAC+∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°;点D 在CB 延长线上;如图(3)∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ABD=180°-∠ABC =120°,∠BAC-∠BAE =∠DAE-∠BAE ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =120°,∴∠DCE =∠ACE -∠ACB =120°-60°=60°.综合得,∠DCE 的大小不变,∠DCE=60°.。

人教版八年级第一学期期中数学试卷及答案二

人教版八年级第一学期期中数学试卷及答案二

人教版八年级第一学期期中数学试卷一、选择题(本大题共10小题,每小题2分,满分20分.)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm3.一个正多边形的每个外角都等于45°,则这个多边形的边数和对角线的条数分别是()A.8,20B.10,35C.6,9D.5,54.下列说法中,正确的是()A.三角形的中线就是过顶点平分对边的直线B.三角形的高就是顶点到对边的垂线C.三角形的角平分线就是三角形的内角平分线D.三角形的三条中线交于一点5.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°6.如图,在△ABC中,点D为BC边上一点,连接AD,取AD的中点P,连接BP,CP.若△ABC的面积为4cm2,则△BPC的面积为()A.4cm2B.3cm2C.2cm2D.1cm27.如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A.5B.4C.3D.28.如图,在△ABC中,BC边的中垂线DE,分别与AB、BC边交于点D、E两点,连接CD,边AC的中垂线FG 分别与CD、AC边交于点F、G两点,连接AF.若△ADF的周长为13,AD=4,则BD的长为()A.4B.9C.13D.179.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是()A.①②B.①②③C.①②④D.①②③④10.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,AD=4,E、F分别是线段AB、AD上的动点,则EF+FB的最小值为()A.4B.4.8C.5.4D.6二、填空题(本大题共6小题,每小题3分,满分18分.)11.工程建筑中经常采用三角形的结构,如图的屋顶钢架,其中的数学道理是.12.如果三角形的三个内角的度数比是2:3:4,则它是三角形(填锐角、直角或钝角).13.已知等腰三角形的两边长为3和6,则它的周长为.14.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,CE⊥AE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=.15.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,则∠A的度数为°.16.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.下列结论:①∠BAD=∠C;②∠EBC=∠C;③AG⊥EF;④FG∥AC.其中正确的结论是.三、解答题(本大题共7小题,满分62分.)17.(6分)如图,已知△ABC,(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D.(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是.18.(6分)已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.19.(8分)如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.20.(8分)如图,在平面直角坐标系中,A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1).(1)用直尺画出△ABC关于y轴的对称图形△A1B1C1,并写出A1、B1、C1的坐标;(2)求出△A1B1C1的面积.21.(10分)在人教版八年级上册数学教材P53的数学活动中有这样一段描述:(1)我们把两组邻边分别相等的四边形叫做“筝形”,如图1所示,四边形ABCD是一个筝形,其中AB=CB,AD=CD,试猜想筝形的对角线AC与BD之间有什么关系?并证明你的猜想;(2)知识拓展:如图2,如果D为△ABC内一点,BD平分∠ABC,且AD=CD,试证明:∠BAD=∠BCD.22.(12分)如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E 是BD延长线上一点,AE=AB.(1)求证:△ABD≌△ACD.(2)求∠ADE的度数.(3)试猜想线段DE,AD,DC之间的数量关系,并证明你的结论.23.(12分)Rt△ABC中,∠ABC=90°,AB=BC,过点A作AE⊥AB.连接BE,CE,M为平面内一动点.(1)如图1,若BC=4,则S△EBC=.(2)如图2,点M在BE上,且CM⊥BE于M,过点A作AF⊥BE于F,D为AC中点,连接FD并延长,交CM于点H.求证:MF=MH;(3)如图3,连接BM,EM,过点B作BM'⊥BM于点B,且满足BM'=BM,连接AM',MM',过点B作BG⊥CE于点G,若S△ABC=18,EM=3,BG=4,求线段AM'的长度的取值范围.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分.)1.下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.一个正多边形的每个外角都等于45°,则这个多边形的边数和对角线的条数分别是()A.8,20B.10,35C.6,9D.5,5【分析】利用多边形的外角和是360度,正多边形的每个外角都是45°,求出这个多边形的边数,再根据一个多边形有条对角线,即可算出有多少条对角线.【解答】解:∵正多边形的每个外角都等于45°,∴360÷45=8,∴这个正多边形是正8边形,∴=20(条),∴这个正多边形的对角线是20条.故选:A.4.下列说法中,正确的是()A.三角形的中线就是过顶点平分对边的直线B.三角形的高就是顶点到对边的垂线C.三角形的角平分线就是三角形的内角平分线D.三角形的三条中线交于一点【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.【解答】解:A.三角形的中线就是一边的中点与此边所对顶点的连线,故本选项错误;B.三角形的高就是顶点到对边的垂线段,故本选项错误;C.三角形的角平分线就是三角形的内角平分线与这个内角的对边的交点与这个内角的顶点之间的线段,故本选项错误;D.三角形的三条中线交于一点,本故选项正确;故选:D.5.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°【分析】由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【解答】解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选:D.6.如图,在△ABC中,点D为BC边上一点,连接AD,取AD的中点P,连接BP,CP.若△ABC的面积为4cm2,则△BPC的面积为()A.4cm2B.3cm2C.2cm2D.1cm2【分析】由点P为AD的中点,可得△ABP的面积=S△ABD,S△CPD=S△ACD,于是得到结论.【解答】解:∵点P是AD的中点,∴△ABP的面积=S△ABD,S△CPD=S△ACD,∴S△BPC=S△ABC=2cm2,故选:C.7.如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A.5B.4C.3D.2【分析】分BC=AC,BC=AB和AB=AC三种情况进行讨论即可得出点C的位置,从而可得出点C的个数.【解答】解:∵A(1,0)、B(0,1),∴OA=OB=1,AB=,设C点坐标为(x,0),则AC=|x﹣1|当BC=AC时,可知点C在线段AB的垂直平分线上,可知点C在O点,即此时点C为(0,0);当BC=AB时,此时∠BCA=∠BAC=45°,可求得OC=1,此时点C为(﹣1,0);当AB=AC时,即|x﹣1|=,可解得x=+1或x=1﹣,此时C点坐标为(1+,0)或(1﹣,0);综上可知点C的位置有4个,故选:B.8.如图,在△ABC中,BC边的中垂线DE,分别与AB、BC边交于点D、E两点,连接CD,边AC的中垂线FG 分别与CD、AC边交于点F、G两点,连接AF.若△ADF的周长为13,AD=4,则BD的长为()A.4B.9C.13D.17【分析】根据线段垂直平分线的性质和三角形的周长公式即可得到答案.【解答】解:∵边AC的中垂线FG分别与CD、AC边交于点F、G两点,连接AF.∴CF=AF,∴△ADF的周长=AF+DF+AD=CF+DF+AD=CD+AD=13,∴CD=9,∵DE是BC边的中垂线,∴BD=CD=9,故选:B.9.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是()A.①②B.①②③C.①②④D.①②③④【分析】由“HL”可证Rt△APR≌Rt△APS,可得AS=AR,∠P AR=∠P AS,由等腰三角形的性质可得∠QAP=∠RAP=∠QP A,可证QP∥AR,由线段垂直平分线的性质可证AP垂直平分RS.【解答】解:如图,连接AP,∵PR⊥AB,PS⊥AC,∴∠ARP=∠ASP=90°,∵AP=AP,PR=PS,∴Rt△APR≌Rt△APS(HL),∴AS=AR,∠P AR=∠P AS,故①正确,∵AQ=PQ,∴∠QAP=∠QP A,∴∠RAP=∠QP A,∴QP∥AR,故②正确,∵AR=AS,PR=PS,∴AP垂直平分RS,故④正确,由题目条件不能证明△BRP≌△QSP,10.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,AD=4,E、F分别是线段AB、AD上的动点,则EF+FB的最小值为()A.4B.4.8C.5.4D.6【分析】作E关于AD的对称点M,连接BM交AD于F,连接EF,过B作BN⊥AC于N,根据三线合一定理求出BD的长和AD平分∠BAC,根据三角形面积公式求出BN,根据对称性质求出EF+FB=BM,根据垂线段最短得出BF+EF≥BN,即可得出答案.【解答】解:作E关于AD的对称点M,连接BM交AD于F,连接EF,过B作BN⊥AC于N,∵AB=AC=5,BC=6,AD⊥BC于D,∴BD=DC=3,AD平分∠BAC,∴M在AC上,∵AD=4,∴S△ABC=BC•AD=AC•BN,∴BN===4.8,∵E关于AD的对称点M,∴EF=FM,∴EF+FB=BF+FM=BM,根据垂线段最短得出:BM≥BN,即BE+EF≥4.8,即EF+FB的最小值是4.8,故选:B.二、填空题(本大题共6小题,每小题3分,满分18分.)11.工程建筑中经常采用三角形的结构,如图的屋顶钢架,其中的数学道理是三角形具有稳定性.【分析】根据三角形具有稳定性解答即可.【解答】解:工程建筑中经常采用三角形的结构,如屋顶钢架,其中的数学道理是三角形具有稳定性,故答案为:三角形具有稳定性.12.如果三角形的三个内角的度数比是2:3:4,则它是锐角三角形(填锐角、直角或钝角).【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【解答】解:∵三角形三个内角的度数比是2:3:4,∴这个三角形的最大角的度数为×180°=80°,∴这个三角形是锐角三角形,故答案为:锐角.13.已知等腰三角形的两边长为3和6,则它的周长为15.【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【解答】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,则不能组成三角形;故答案为:15.14.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,CE⊥AE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=6cm.【分析】利用同角的余角相等求出∠ABD=∠CAE,再利用“角角边”证明△ABD和△CAE全等,根据全等三角形对应边相等可得BD=AE,AD=CE,然后计算即可得解.【解答】解:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥AE,∴∠ABD+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE=CE+DE=2+4=6cm,∴BD=6cm.故答案为:6cm.15.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,则∠A的度数为80°.【分析】连接BC,根据三角形内角和定理求出∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,所以∠GBD+∠GCD=30°,再根据角平分线的定义求出∠ABG+∠ACG=30°,然后根据三角形内角和定理即可求出∠A=80°.【解答】解:连接BC,∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∴∠GBD+∠GCD=70°﹣40°=30°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABG+∠ACG=∠GBD+∠GCD=30°,在△ABC中,∠A=180°﹣40°﹣30°﹣30°=80°.故∠A的度数为80°.16.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.下列结论:①∠BAD=∠C;②∠EBC=∠C;③AG⊥EF;④FG∥AC.其中正确的结论是①③④.【分析】①连接EG.根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C,则∠C=∠ABC,由于∠BAC=90°那么∠C=30°,但∠C≠30°,故②错误;③根据等腰三角形三线合一的性质求出AG⊥EF.故③正确;④证明△ABN≌△GBN,得到AN=GN,证出四边形AFGE是平行四边形,得到GF∥AE,故④正确.【解答】解:①连接EG.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C,故①正确;②如果∠EBC=∠C,则∠C=∠ABC,∵∠BAC=90°那么∠C=30°,但∠C≠30°,故②错误;③∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故③正确.④∵AG是∠DAC的平分线,∴AN⊥BE,FN=EN,在△ABN与△GBN中,,∴△ABN≌△GBN(ASA),∴AN=GN,∴四边形AFGE是平行四边形,∴GF∥AE,即GF∥AC.故④正确.综上所述,正确的结论是①③④.故答案为:①③④.三、解答题(本大题共7小题,满分62分.)17.(6分)如图,已知△ABC,(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D.(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是30..【分析】(1)利用尺规作边AC的垂直平分线DE即可;(2)根据线段垂直平分线的性质得到AC=2AE=10,AD=CD,根据三角形的周长公式即可得到结论.【解答】解:(1)如图,直线DE即为所求作;(2)由(1)知,DE是AC的垂直平分线,∴AC=2AE=10,AD=CD,∵△ABD的周长为20,∴AB+BC=20,∴△ABC的周长是20+10=30,故答案为:30.18.(6分)已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.19.(8分)如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.【解答】(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.20.(8分)如图,在平面直角坐标系中,A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1).(1)用直尺画出△ABC关于y轴的对称图形△A1B1C1,并写出A1、B1、C1的坐标;(2)求出△A1B1C1的面积.【分析】(1)利用关于y轴对称的点的坐标特征用直尺找出它们的对称点,然后描点即可,结合图象利用关于y 轴对称的点的特性写出A1、B1、C1的坐标;(2)利用面积割补法解答即可.【解答】解:(1)如图,△A1B1C1为所作;由图象得:A1(3,2),B1(4,﹣3),C1(1,﹣1);(2)△A1B1C1的面积=5×3﹣×1×5﹣×2×3﹣3×2=15﹣﹣3﹣3=.21.(10分)在人教版八年级上册数学教材P53的数学活动中有这样一段描述:(1)我们把两组邻边分别相等的四边形叫做“筝形”,如图1所示,四边形ABCD是一个筝形,其中AB=CB,AD=CD,试猜想筝形的对角线AC与BD之间有什么关系?并证明你的猜想;(2)知识拓展:如图2,如果D为△ABC内一点,BD平分∠ABC,且AD=CD,试证明:∠BAD=∠BCD.【分析】(1)证△ADB≌△CDB(SSS),得∠ADO=∠ODC,再证△AOD≌△COD(SAS),得∠AOD=∠COD,OA=OC,得∠DOC=90°,即可得出BD⊥AC;(2)过点D分别作DE⊥AB,DF⊥BC,垂足分别为E,F,证Rt△ADE≌Rt△CDF(HL),即可得出∠BAD=∠BCD.【解答】(1)解:猜想BD⊥AC,AO=OC,理由如下:在△ADB和△BCD中,,∴△ADB≌△CDB(SSS),∴∠ADO=∠ODC,在△AOD和△ODC中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD,OA=OC,∴∠DOC=90°,∴BD⊥AC;(2)证明:过点D分别作DE⊥AB,DF⊥BC,垂足分别为E,F,如图2所示:∵BD平分∠ABC,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL),∴∠BAD=∠BCD.22.(12分)如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E 是BD延长线上一点,AE=AB.(1)求证:△ABD≌△ACD.(2)求∠ADE的度数.(3)试猜想线段DE,AD,DC之间的数量关系,并证明你的结论.【分析】(1)利用SSS定理证明△ABD≌△ACD;(2)根据三角形内角和定理得到∠ABC=∠ACB=75°,根据全等三角形的性质得到∠BAD=∠CAD=15°,根据三角形的外角性质计算,得到答案;(3)在线段DE上截取DM=AD,连接AM,得到△ADM是等边三角形,根据△ABD≌△AEM,得到BD=ME,结合图形证明结论.【解答】(1)证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)解:∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵DB=DC,∠DCB=30°,∴∠DBC=∠DCB=30°,∴∠ABD=∠ABC﹣∠DBC=45°,∵△ABD≌△ACD,∴∠BAD=∠CAD=∠BAC=15°,∴∠ADE=∠ABD+∠BAD=60°;(3)解:DE=AD+CD,理由如下:在线段DE上截取DM=AD,连接AM,∵∠ADE=60°,DM=AD,∴△ADM是等边三角形,∴∠ADB=∠AME=120°.∵AE=AB,∴∠ABD=∠E,在△ABD和△AEM中,,∴△ABD≌△AEM(AAS)∴BD=ME,∵BD=CD,∴CD=ME.∵DE=DM+ME,∴DE=AD+CD.23.(12分)Rt△ABC中,∠ABC=90°,AB=BC,过点A作AE⊥AB.连接BE,CE,M为平面内一动点.(1)如图1,若BC=4,则S△EBC=8.(2)如图2,点M在BE上,且CM⊥BE于M,过点A作AF⊥BE于F,D为AC中点,连接FD并延长,交CM于点H.求证:MF=MH;(3)如图3,连接BM,EM,过点B作BM'⊥BM于点B,且满足BM'=BM,连接AM',MM',过点B作BG⊥CE于点G,若S△ABC=18,EM=3,BG=4,求线段AM'的长度的取值范围.【分析】(1)由平行线的性质可得S△AEC=S△ABE,即可求解;(2)由“AAS”可证△ABF≌△BCM,利用全等三角形的性质可得AF=BM,BF=CM,由“ASA”可证△ADF ≌△CDH,利用相似三角形的性质可得AF=HC,DF=DH,可得结论;(3)由“SAS”可证△CBM≌△ABM',可得CM=AM',由三角形的三边关系定理可求解.【解答】解:(1)∵∠ABC=90°,AB=BC,BC=4,∴S△ABC=AB•BC=8.∵AE⊥AB,BC⊥AB,∴AE∥BC,∴S△EBC=S△ABC=8,故答案为:8;(2)∵∠ABC=90°=∠AFB=∠CMB,∴∠ABF+∠CBM=90°,∠ABF+∠BAF=90°,∴∠BAF=∠CBM,在△ABF和△BCM中,,∴△ABF≌△BCM(AAS),∴AF=BM,BF=CM,∵AF⊥BE,CM⊥BE,∴AF∥CM,∴∠F AD=∠HCD,∵D为AC中点,∴AD=CD,又∵∠ADF=∠CDH,在△ADF和△CDH中,,∴△ADF≌△CDH(AAS),∴AF=HC,DF=DH,∴BF﹣BM=CM﹣AF=CM﹣CH,∴MF=MH;(3)连接CM,如图,∵BM′⊥BM,∴∠MBM'=∠ABC=90°,∴∠ABM'=∠CBM,在△CBM和△ABM'中,,∴△CBM≌△ABM'(SAS),∴AM'=CM,∵AE∥BC,∴S△ABC=S△BEC=18,∴×EC•BG=18,∴EC==9,在△EMC中,EC﹣EM<CM<EM+EC,∴6<CM<12,∴6<AM'<12.∴当点E,点M,点C共线时,CM最大值为12,最小值为6,∴6≤AM'≤12.。

人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试题一、单选题1.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案不是轴对称图形的是()A .B .C .D .2.已知三角形的两边长分别为2、10,则第三边长可能是()A .6B .8C .10D .123.如图,在△ABC 中,AC 边上的高是()A .ADB .BEC .BFD .CF4.如图,已知DAB CAB ∠=∠,添加下列条件不能判定DAB CAB ≌△△的是()A .DBE CBE ∠=∠B .DC ∠=∠C .DA CA =D .DB CB=5.如图,OP 平分AOB ∠,PC OA ⊥,点D 是OB 上的动点,若3cm PC =,则PD 的长为()A .大于等于3cmB .大于3cmC .小于等于3cmD .小于3cm6.如图,在ABC 中,AB AC =,D 是AB 垂直平分线上一点,80ADC ∠=︒,则C ∠的度数是()A .60°B .50°C .40°D .30°7.如图,在ABC 中,AC BC =,16AB =,CG 4=,观察图中尺规作图的痕迹ACG 的面积为()A .64B .32C .16D .88.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别是点A (-3,0)、点B (-1,2)、点C (3,2).则到△ABC 三个顶点距离相等的点的坐标是()A .(0,-1)B .(0,0)C .(1,-1)D .(1,-2)9.如图,在△ABC 和△DCB 中,∠A=∠D=90°,AB=CD ,∠ACB=40°,则∠ACD 的度数为()A .10°B .20°C .30°D .40°10.如图所示,有三条道路围成Rt △ABC ,其中BC=1000m ,一个人从B 处出发沿着BC 行走了800m ,到达D 处,AD 恰为∠CAB 的平分线,则此时这个人到AB 的最短距离为A .1000mB .800mC .200mD .1800m二、填空题11.五边形ABCDE 的内角和是______度.12.若ABC ABD △≌△,4BC =,5AC =,2AB =,则AD 的长为__________.13.等腰三角形底边为2,腰长为5,则它的周长为__________.14.一副三角板如图所示叠放在一起,则图中α∠的度数是_______.15.如图,在ABC 中,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,如果1AD =,那么BD=__________.16.在平面直角坐标系中,点(,2)A a -,点(5,)B b -关于x 轴对称,则a b +的值为__________.17.如图,等腰直角ABC ,90ACB ∠=︒,CD AB ⊥,E 为边AC 上一点(不与A 、C 重合),DF DE ⊥交BC 于点F ,连接EF 交CD 于点O ,当EOD △为等腰三角形时,EOD ∠的度数为__________.18.如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,以BC 为边在BC 的右侧作等边BCD △,点E 为BD 的中点,点P 为CE 上一动点,连结AP ,BP .当AP BP +的值最小时,CBP ∠的度数为__________.三、解答题19.尺规作图:已知在Rt ABC △中,90ACB ∠=︒.(1)过点C 作直线CD AB ⊥,垂足为D ;(要求:保留作图痕迹,不写作法)(2)直接写出与ACD ∠相等的角为__________.20.如图,在ABC 中,AD 是角平分线,AE 是高,10DAE ∠=︒,42B ∠=︒,求C ∠的度数.21.如图,点D 在AB 上,点E 在AC 上,AD=AE ,∠B=∠C ,求证:AB=AC .22.如图,AD=BC ,AC=BD ,求证:△EAB 是等腰三角形.23.如图,在Rt ABC △和Rt DEF △中,90ACB DFE ∠=∠=︒,A 、E 、B 、D 在一条直线上,BC EF =,CE AD ⊥,FB AD ⊥,垂足分别是E 、B .求证:AC DF =.24.如图,在ABC 中,D 为边BC 上一点,DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,DE DF =,DA AC =,21B ∠=︒,求FDC ∠的度数.25.如图,点C 为线段AB 上一动点,//AD EB ,AC BE =,AD BC =,过点C 作CF DE ⊥于点F ,CF 所在直线交DA 延长线于点G .(1)求证:CF 平分DCE ∠;(2)若6AB =,求DG 长度.26.如图,在等腰ABC 中,AB AC =,点D 为直线BC 上一点,连接AD ,以AD 为腰在AD 的右侧作等腰ADE ,AD AE =,BAC DAE α∠=∠=,连接CE .(1)如图1,当点D 在线段BC 上时,求证:ABD ACE △≌△;(2)当60α∠=︒,①如图2,求证://CE AB ;②探究线段CE 、AB 、CD 之间的数量关系,请直接写出结论.参考答案1.B2.C3.B4.D5.A6.C7.C8.D9.A10.C11.540【分析】利用多边形内角和公式计算即可.【详解】五边形ABCDE 的内角和=()52180540-⨯︒=︒.故答案为:540°.【点睛】本题考查多边形内角和问题,掌握多边形内角和公式是解题关键.12.5【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABC ≌△ABD ,AC=5,∴AD=AC=5,故答案为:5.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.13.12【解析】【分析】根据等腰三角形的性质可得到另一个腰长,从而不难求得周长.【详解】解:∵等腰三角形的腰长是5,则底边长2,∴周长=5+5+2=12.故答案为:12.【点睛】此题主要考查等腰三角形的性质:等腰三角形的两腰相等.14.75°【分析】根据三角形内角和定理求出∠ECF 、∠D 的度数,再求出∠a 的度数即可得到结果.【详解】解:如图所示,根据三角形内角和定理,∠A=30°,∠E=45°,∴∠D=180°-90°-∠A=60°,∠ECF=180°-90°-∠E=45°∴∠a=180°-∠ECF-∠D=75°15.3【分析】根据直角三角形的两锐角互余求得∠A=60°,∠ACD=30°,再根据直角三角形中30°角所对的直角边等于斜边的一半求得AC 、AB 即可解答.【详解】解:∵在ABC 中,90ACB ∠=︒,30ABC ∠=︒,∴∠A=90°﹣30°=60°,∵CD ⊥AB ,∴∠ACD=90°﹣60°=30°,又AD=1,∴AC=2AD=2,∴AB=2AC=4,∴BD=AB ﹣AD=4﹣1=3,故答案为:3.【点睛】本题考查含30°角的直角三角形的性质,熟练掌握直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.16.3【解析】【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,2)A a -与点(5,)B b -关于x 轴对称,5a ∴=,2b =-,则a b +的值是:3,故答案为:3.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.17.67.5°或90°【解析】【分析】根据等腰直角三角形的性质可得∠A=∠DCF=45°,CD=AD ,根据DF DE ⊥,利用同角的余角相等可得∠ADE=∠CDF ,利用ASA 可证明△ADE ≌△CDF ,可得DE=DF ,即可证明△EDF 是等腰直角三角形,可得∠DEF=45°,分DE=OE 、OE=OD 、DE=OD 三种情况,根据等腰三角形的性质即可得答案.【详解】∵等腰直角ABC ,90ACB ∠=︒,CD AB ⊥,∴∠A=∠DCF=45°,CD=AD ,∠ADE+∠CDE=90°,∵DF DE ⊥,∴∠CDF+∠CDE=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,A DCF AD CD ADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF ,∴DE=DF ,∴△EDF 是等腰直角三角形,∴∠DEF=45°,如图,当DE=OE 时,EOD ∠=1(180)2DEF ︒-∠=67.5°.如图,当OE=OD 时,∠EDO=∠DEF=45°,∴∠EOD=180°-2∠DEF=90°.当DE=OD 时,点E 与点A 或点B 重合,不符合题意,综上所述:EOD ∠的度数为67.5°或90°,故答案为:67.5°或90°【点睛】本题考查等腰直角三角形的判定与性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理,正确得出△EDF 是等腰直角三角形是解题关键.18.15°【解析】【分析】连接PD 、AD ,设AD 与CE 交于点P 1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP ,根据两点之间线段最短得出当点A 、P 、D 共线时即点P 运动到P 1时,AP+BP 有最小值,连接BP 1,根据等边对等角证得∠CBP 1=∠CDP 1=∠CAD ,再根据三角形的外角性质即可求解.【详解】解:连接PD、AD,设AD与CE交于点P1,∵△BCD是等边三角形,点E为BC的中点,∴∠CBD=∠BCD=∠BDC=60°,BC=CD,CE⊥BD,BE=DE,∴CE为线段BD的垂直平分线,∴PD=BP,∴当点P运动时,AP+BP=AP+PD,而AP+PD≥AD,∴当点A、P、D共线时即点P运动到P1时,AP+BP有最小值,连接BP1,则BP1=DP1,∴∠P1BD=∠P1DB,又∠CBD=∠BDC,∴∠CBP1=∠CDP1,∵AC=BC=CD,∴∠CDP1=∠CAD,即延长AC至Q,∵∠ACB=90°,∠BCD=60°,∴∠DCQ=90°﹣60°=30°,又∠DCQ=∠CDP1+∠CAD=2∠CDP1,∴∠CDP1=15°,即∠CBP1=15°,∠=15°,∴当AP BP+的值最小时,CBP故答案为:15°.【点睛】本题考查等边三角形的性质、线段垂直平分线的性质、最短路径问题、等腰三角形的性质、三角形的外角性质,熟练掌握相关性质的联系与运用,会利用两点之间线段最短解决最值问题是解答的关键.19.(1)图见解析;(2)B Ð.【解析】【分析】(1)先以点A 为圆心、AC 长为半径画弧,再以点B 为圆心、BC 长为半径画弧,两弧相交于点E ,然后过点,C E 画直线,交AB 于点D 即可得;(2)先根据角的和差可得90ACD BCD ∠+∠=︒,再根据三角形的内角和定理可得90B BCD ∠+∠=︒,由此即可得出答案.【详解】解:(1)如图,CD 即为所作.(2)90ACB ∠=︒ ,90ACD BCD ∴∠+∠=︒,CD AB ⊥ ,90BDC ∴∠=︒,18090B BCD BDC ∠+∠=︒-∠=∴︒,ACD B ∴∠=∠,故答案为:B Ð.【点睛】本题考查了画垂线、三角形的内角和定理等知识点,熟练掌握垂线的画法是解题关键.20.62︒【解析】【分析】由AD 是角平分线,AE 是高,通过角平分线性质,及直角三角形锐角互余,再利用三角形内角和公式,等量关系列以C ∠为变量的方程,解方程即可.【详解】∵ABC 中,AD 是角平分线,AE 是高,∴BAD CAD ∠=∠,AEC △是直角三角形()1090100BAD CAD DAE CAE C C∠=∠=∠+∠=︒+︒-∠=︒-∠又∵2180B BAD C ∠+∠+∠=︒,42B ∠=︒即()422100180C C ︒+︒-∠+∠=︒解得62C ∠=︒.【点睛】本题旨在考查如何利用三角形的高及角平分线的性质,以及三角形内角和来求角度,熟练掌握三角形相关性质是解题的关键.21.见解析【解析】【分析】根据“AAS”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】在△ABE 和△ACD 中,∵∠A=∠A,∠B=∠C,AE=AD ,△ABE ≌△ACD ,∴AB=AC .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.证明见解析【解析】【分析】先用SSS 证△ADB ≌△BCA ,得到∠DBA=∠CAB ,利用等角对等边知AE=BE ,从而证得△EAB 是等腰三角形.【详解】证明:在△ADB 和△BCA 中,AD=BC ,AC=BD ,AB=BA ,∴△ADB ≌△BCA (SSS ).∴∠DBA=∠CAB .∴AE=BE .∴△EAB 是等腰三角形.23.见解析【解析】【分析】先利用HL 证明Rt △EBC ≌Rt △BEF ,得出CBE FEB ∠=∠,再利用ASA 证明△ABC ≌△DEF 可证明结论.【详解】证明:∵CE AD ⊥,FB AD ⊥,∴90∠=∠=︒CEB FBE ,在Rt △CBE 和Rt △FBE 中,BC EF BE EB=⎧⎨=⎩∴Rt △CBE ≌Rt △FBE (HL ),∴CBE FEB ∠=∠,在△ABC 和△DEF 中,CBE FEB BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ),∴AC=DF .【点睛】本题主要考查全等三角形的判定与性质,判定两个直角三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .24.23°【解析】【分析】先根据角平分线的判定定理证得∠BAD=∠DAC=12∠BAC ,再根据等边对等角得出∠ADC=∠C ,然后根据三角形的内角和为180°求得∠BAC 的度数,再由同角的余角相等得出∠FDC=14∠BAC 求解即可.【详解】解:∵DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,DE=DF ,∴AD 为∠BAC 的平分线,∠DFC=90°,∴∠BAD=∠DAC=12∠BAC ,∵DA=AC ,∴∠ADC=∠C ,∴∠C=12(180°﹣∠DAC)=90°﹣12∠DAC=90°﹣14∠BAC ,∵∠B+∠BAC+∠C=180°,∠B=21°,∴∠BAC =92°,∵∠C=90°﹣14∠BAC=90°﹣∠FDC ,∴∠FDC=14∠BAC=14×92°=23°.【点睛】本题考查角平分线的判定定理、等腰三角形的性质、三角形的内角和定理、同角的余角相等,熟练掌握相关知识的联系与运用是解答的关键.25.(1)见解析;(2)6【解析】【分析】(1)先根据平行线的性质得出∠DAC=∠B ,再根据SAS 得出△ADC ≌△BCE ,然后再根据等腰三角形的性质即可得出结论;(2)先根据△ADC ≌△BCE ,得出∠ADC=∠BCE ,再根据三角形的外角的性质结合(1)中得结论得出AG=AC ,继而得出DG=AB 即可;【详解】解:(1)∵//AD EB ,∴∠DAC=∠B ,在△ADC 和△BCE 中,AC BE DAC B AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BCE ,∴CD=CE ;∵CF DE⊥∴∠DCF=∠ECF ,∴CF 平分DCE ∠;(2)∵△ADC ≌△BCE ,∴∠ADC=∠BCE ,∵∠DCF=∠ADC+∠AGC ,∠ECF=∠BCE+∠BCF ,∵∠DCF=∠ECF ,∴∠AGC=∠BCF ,∵∠BCF=∠ACG ,∴∠AGC=∠ACG ,∴AG=AC ,∵AD BC =,∴AG AB=∵6AB =,∴6AG =【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的判定,三角形的外角的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.26.(1)见解析;(2)见解析;(3)AB CD CE +=【解析】【分析】(1)根据BAC DAE α∠=∠=,推出BAD CAE ∠=∠,由已给条件可得,ABD ACE SAS △≌△();(2)①由题可得ABC 是等边三角形,由ABD ACE △≌△得,60ACE ABC ∠=∠=︒,从而得出60ECD ∠=︒,故ABC ECD ∠=∠,同位角相等,两直线平行,即可得出答案;②由ABD ACE △≌△得,BD CE =,由ABC 是等边三角形得AB BC =,等量代换即可得出答案.【详解】(1)BAC DAE α∠=∠= ,BAD CAE ∴∠=∠,在ABD △与ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴ ≌;(2)①AB AC = ,60α∠=︒,ABC ∴ 是等边三角形,ABD ACE ≌,60ACE ABC ∴∠=∠=︒,180606060ECD ∴∠=︒-︒-︒=︒,ABC ECD ∴∠=∠,//EC AB ∴;②AB CD CE +=,理由如下:ABD ACE ≌,BD CE ∴=,ABC 是等边三角形,AB BC ∴=,BD BC CD AB CD CE ∴=+=+=.。

02 【人教版】八年级上期中数学试卷(含答案)

02 【人教版】八年级上期中数学试卷(含答案)

第一学期中期质量检测试卷八年级 数学一、选择题(本大题共10小题,每小题3分,共30分。

每小题给出代号为A 、B 、C 、D 的四个结论,其中只有一个正确,请考生将正确的选项填入括号中。

) 1. 等腰三角形一个底角是30°,则它的顶角的度数是 ( )A. 30°B. 60°C. 90°D. 120° 2. 下列说法正确的是 ( )A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等 3. 下列图案中,是轴对称图形.....的是 ( )4. 如图,已知MB = ND ,∠MBA = ∠NDC,下列条件中不能判定 △ABM≌△CDN 的是( )A. ∠M = ∠NB. AM∥CNC. AB = CDD. AM = CN5.点M (2,3)关于x 轴对称的点的坐标为( ) A.(- 2,- 3) B.(2,- 3) C.(- 2,3)D.(3,- 2)6.如图所示,在△ABC 中,AC ⊥BC ,AE 为∠BAC 的平分线, DE ⊥AB ,AB = 7cm ,AC = 3cm ,则BD 等于( ) A. 1cm B. 2cm C. 3cm D. 4cm 7. 正六边形的每个内角度数是( )A. 60°B. 90°C. 108°D. 120°8. 某等腰三角形的顶角是80°,则一腰上的高与底边所成的角的度数( ) A. 40° B. 60° C. 80° D. 100° 9. 如图,在△ABC 中,点D 是BC 上一点,∠BAD = 80°,AB = AD = DC ,则∠C 的度数是( )第4题图第6题图 第9题图A B C D第12题图A. 50°B. 20°C. 25°D. 30° 10. 等腰三角形的两边分别为12和6,则这个三角形的周长是( )A . 24 B. 18 C. 30 D. 24或30 二、填空题:(本大题共6题,每小题4分,共24分)11. 正十二边形的内角和是 . 正五边形的外角和是 . 12. 如图,已知BC = DC ,需要再添加一个条件 .可得△ABC≌△ADC.13. 在△ABC 中,AB = 3,AC = 5,则BC 边的取值范围是 .14. 如图,已知点A 、C 、F 、E 在同一直线上,△ABC是等边三角形,且CD = CE ,EF = EG ,则 ∠F = .度。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.下列图标是节水、绿色食品、回收、节能的标志,其中是轴对称图形的是()A .B .C .D .2.正多边形的一个内角为144°,那么该正多边形的边数为()A .8B .9C .10D .113.下列命题:①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④面积相等的两个三角形全等。

其中真命题的个数是()A .4个B .3个C .2个D .1个4.如图,ΔABC 与ΔA’B’C’关于直线l 对称,则∠B 的度数为()A .30°B .50°C .90°D .100°5.如图,ABC ADE △≌△,点D 在边BC 上,则下列结论中一定成立的是()A .AC DE =B .AB BD =C .ABD ADB ∠=∠D .EDC AED ∠=∠6.已知:如图,AD 与BC 交于点O ,AB =CD ,不能判断△AOB 与△DOC 全等的是()A .∠A =∠DB .∠B =∠C C .OA =OD D .AB ∥DC7.如图,AD ,CE 是△ABC 的两条高,已知AD=10,CE=9,AB=12,则BC 的长是()A .10B .10.8C .12D .158.在 ABC 中,AD 是它的角平分线,AB =8cm ,AC =6cm ,则:ABD ACD S S △△=()A .3:4B .4:3C .16:9D .9:169.如图,△ABC 中,∠A =46°,∠C =74°,BD 平分∠ABC ,交AC 于点D ,那么∠BDC 的度数是()A .76°B .81°C .92°D .104°10.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?()A .115B .120C .125D .130二、填空题11.在 ABC 中,∠A ﹣∠B =30°,∠C =4∠B .则∠B 的度数是______.12.若点P 关于x 轴的对称点为P 1(2a+b ,-a+1),关于y 轴对称点的点为P 2(4-b ,b+2),则点P的坐标为_______________.13.如图所示,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC 的周长为17m,请你计算BC的长是__________.14.如图, ABE≌ DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,那么DE=_____cm,∠C=_________°.15.如图,在 AOC与 BOC中,若∠1=∠2,加上条件__________则有 AOC≌ BOC.16.在Rt ABC中,∠C=90°,若BC=6,AD平分∠BAC交BC于点D,BD=2CD,则点D到线段AB的距离为_____.17.如图,D 为等边三角形ABC 内一点,AD=BD ,BP=AB ,∠DBP=∠DBC ,则∠BPD=_______度.三、解答题18.请画出 ABC 关于直线l 对称的A B C '''V (其中,,A B C '''分别是A ,B ,C 的对应点,不写画法,保留作图痕迹).19.如图,在 ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.20.已知:如图,点A ,D ,C 在同一直线上,//AB CE ,AC CE =,B CDE ∠=∠.求证:BC DE =.21.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.22.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC23.已知:如图,Rt△ABC中,∠BAC=90°(1)按要求作图:(保留作图痕迹)①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD ,BE 并猜想线段AD 与BE 的大小关系;(2)证明(1)中你对线段AD 与BE 大小关系的猜想.24.如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作等腰直角三角形ADE ,AD=AE ,∠DAE=90º.解答下列问题:(1)如果AB=AC ,∠BAC=90º.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CE 、BD 之间的位置关系为,数量关系为.(不用证明)②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC ,∠BAC≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CE ⊥BD (点C 、E 重合除外)?画出相应的图形,并说明理由.25.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.参考答案1.B【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【解析】【分析】根据正多边形的一个内角是144︒,则知该正多边形的一个外角为36︒,再根据多边形的外角之和为360︒,即可求出正多边形的边数.【详解】解: 正多边形的一个内角是144︒,∴该正多边形的一个外角为36︒,多边形的外角之和为360︒,∴边数36010 36︒==︒,∴这个正多边形的边数是10.故选:C.【点睛】本题主要考查多边形内角与外角的知识点,解题的关键是知道多边形的外角之和为360︒,此题难度不大.3.B【解析】【分析】根据全等三角形的性质对①②③进行判断,根据全等三角形的判定方法对④进行判断.【详解】解:全等三角形的周长相等,故①正确;全等三角形的对应角相等,故②正确;全等三角形的面积相等,故③正确;面积相等的两个三角形不一定全等,故④错误,故选:B.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题,许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯,那么⋯”的形式,有些命题的正确性用推理证实的,这样的真命题叫做定理.4.D【解析】【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°,∴∠B=180°﹣80°=100°.故选D.5.C【解析】【分析】根据全等三角形的性质可直接进行排除选项.【详解】△≌△,解:∵ABC ADE∴AB=AD,BC=DE,AC=AE,∠B=∠ADE,∠C=∠E,∴∠ABD=∠ADB,故A、B、D都是错误的,C选项正确;故选C.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.6.C【解析】【分析】利用∠AOB=∠DOC,AB=CD,然后根据全等三角形的判定方法对各选项进行判断.【详解】解:∵∠AOB=∠DOC,AB=CD,∴当添加∠A=∠D时,根据“AAS”判断△AOB与△DOC全等;当添加∠B=∠C时,根据“AAS”判断△AOB与△DOC全等;当添加OA=OD时,“SSA”不能判断△AOB与△DOC全等;当添加AB∥DC时,得到∠A=∠D,根据“AAS”判断△AOB与△DOC全等.故选:C.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.7.B【解析】【详解】∵AD,CE是△ABC的两条高,AD=10,CE=9,AB=12,∴△ABC的面积=12×12×9=12BC⋅AD=54,即12BC⋅10=54,解得BC=10.8.故选B.8.B【解析】【分析】过点D分别作DE⊥AB于E,DF⊥AC于点F,根据角平分线的性质定理及三角形的面积即可求得.【详解】过点D分别作DE⊥AB于E,DF⊥AC于点F,如图∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC∴DE=DF∴以AB 和AC 为底的△ABD 和△ACD 的高相等∴::8:64:3ABD ACD S S AB AC === 故选:B【点睛】本题考查了角平分线的性质定理,三角形的面积,关键是作垂线便于使用角平分线的性质定理.9.A【解析】【分析】根据三角形的内角和为180°,可得∠A+∠C+∠ABC=180°,然后根据△ABC 中,∠A =46°,∠C =74°,求得∠ABC=60°,然后根据角平分线的性质,可得∠ABD=30°,再根据三角形的外角性质,可得∠BDC=∠A+∠ABD=76°.【详解】解:∵△ABC 中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD 为∠ABC 平分线,∴∠ABD=∠CBD=30°,∵∠BDC 为△ABD 外角,∴∠BDC=∠A+∠ABD=76°,故选A【点睛】此题主要考查了三角形的内角和外角的性质,解题关键是构造合适的角的和差关系,然后根据角平分线的性质求解即可.10.C【解析】【详解】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC 与△AED全等.11.25°【解析】【分析】根据三角形内角和定理及已知,可得关于∠B的方程,解方程即可求得∠B的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=4∠B,∴∠A+5∠B=180°,∵∠A﹣∠B=30°,∴∠A=∠B+30°,∴∠B+30°+5∠B=180°,解得:∠B=25°,故答案为:25°.【点睛】本题考查了三角形内角和定理,解一元一次方程方程,关键是掌握三角形内角和定理,应用方程思想求解.12.(-9,-3)【解析】【详解】解:∵若P关于x轴的对称点为P1(2a+b,-a+1),∴P点的坐标为(2a+b,a-1),∵关于y轴对称的点为P2(4-b,b+2),∴P点的坐标为(b-4,b+2),则2a b b4 {a1b2+=--=+,解得a2 {b5=-=-.代入P点的坐标,可得P点的坐标为(-9,-3).故答案为:(-9,-3)13.7m【解析】【分析】根据垂直平分线的性质得出DA=DB,再结合△BDC的周长推出BC+AC=17,即可求解.【详解】解:∵DE垂直平分AB,∴DA=DB,而△BDC的周长为17m,即BC+DC+BD=17m,∴BC+DC+AD=17,∴BC+AC=17,而AC=10m,∴BC=7m,故答案为:7m.【点睛】本题主要考查垂直平分线的性质,理解并熟练掌握垂直平分线的性质是解题关键.14.248【解析】【分析】根据全等三角形的性质即可求得结果.【详解】∵ ABE≌ DCE∴DE=AE=2cm,∠C=∠B=48°故答案为:2,4815.OA=OB【详解】解:可添加OA=OB∵OA=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC,故答案为:OA=OB.16.2【分析】过点D作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE,得到答案.【详解】解:过点D作DE⊥AB于E,∵BC=6,BD=2CD,∴CD=2,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=2,即点D到线段AB的距离为2,故答案为:2.17.30【解析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的判定和性质解答即可.【详解】解:作AB的垂直平分线,∵AD=BD ,∴△ABD 为等腰三角形,∵△ABC 为等边三角形,∴AB 的垂直平分线必过C 、D 两点,∠BCE=30°,∵AB=BP=BC ,∠DBP=∠DBC ,BD=BD ,∴△BDC ≌△BDP ,∴∠BPD=∠BCE=30°.故答案为30.18.见解析【解析】根据轴对称图形的性质即可完成.【详解】如图所示,所画的A B C '''V 即为所求19.203BE =.【解析】【分析】根据三角形面积公式计算即可.【详解】解:11=,=22ABC ABC S AC BE S BC AD ⋅⋅ AC BE BC AD∴⋅=⋅402063BE ∴==.【点睛】本题考查三角形面积的计算,利用等积法是解题关键.20.见解析【解析】根据平行线的性质,得到内错角相等,即A DCE ∠=∠,再用AAS 证明ABC ≌CDE △,再根据全等三角形的对应边相等即可证明结论.【详解】证明: //AB CE ,∴A DCE ∠=∠,在ABC 和CDE △中,B CDE A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC ≌CDE △()AAS ,∴BC DE =.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是掌握平行线的性质.21.90°;65°【解析】【分析】由E ABC AD ≅∆∆,可得1()2DAE BAC EAB CAD ∠=∠=∠-∠,根据三角形外角性质可得DFB FAB B ∠=∠+∠,因为FAB FAC CAB ∠=∠+∠,即可求得DFB ∠的度数;根据三角形内角和定理可得DGB DFB D ∠=∠-∠,即可得DGB ∠的度数.【详解】解:ABC ADE ∆≅∆ ,11()(12010)5522DAE BAC EAB CAD ∴∠=∠=∠-∠=︒-︒=︒.10552590DFB FAB B FAC CAB B ∴∠=∠+∠=∠+∠+∠=︒+︒+︒=︒902565DGB DFB D ∠=∠-∠=︒-︒=︒.综上所述:90DFB ∠=︒,65DGB ∠=︒.【点睛】本题主要考查三角形全等的性质,解题的关键是找到相应等量关系的角,做题时要结合图形进行思考.22.见解析【解析】【分析】连接CD ,利用HL 定理得出Rt △ADC ≌Rt △BCD 进而得出答案.【详解】证明:如图,连接CD ,∵AD ⊥AC ,BC ⊥BD ,∴∠A=∠B=90°,在Rt △ADC 和Rt △BCD 中CD CD AC BD =⎧⎨=⎩,∴Rt △ADC ≌Rt △BCD (HL ),∴AD=BC .【点睛】本题主要考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.(1)见解析;(2)见解析【解析】【分析】(1)根据基本作图,作一条线段等于已知线段的作图方法就可以作出图形;(2)延长AC 到点F ,使CF=AC ,连接BF ,证明△ACD ≌△FCB ,就有AD=FB ,进而得出AE=AF,就可以得出BE=BF,从而结论AD=BE.【详解】解:(1)由题意,得作图如下:(2)延长AC到点F,使CF=AC,连接BF,在△ACD和△FCB中,CD=CB,∠ACD=∠FCB,AC=FC,∴△ACD≌△FCB(SAS)∴AD=FB.∵CF=AC,∴AF=2AC.∵AE=2CA,∴AF=AE,∵∠BAC=90°,∴AB⊥EF,∴AB是EF的垂直平分线,∴BE=BF,∴AD=BE.24.(1)①位置关系是CE⊥BD,数量关系是CE=BD;②结论仍成立,理由见解析;(2)当∠BCA=45°时,CE⊥BD,理由见解析【解析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图乙,∵∠BAD=90°−∠DAC,∠CAE=90°−∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为CE⊥BD;CE=BD.②当点D在BC的延长线上时,①的结论仍成立.如图丙,∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC,∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图丁所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA ,∴△GAD ≌△CAE ,∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE ⊥BD .【点睛】本题为三角形综合题,考查了全等三角形的判定与性质以及等腰直角三角形的性质,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.25.(1)见解析;(2)65︒【解析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可;(2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2) 100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE 平分ABC ∠,∴1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,1801801001565AEB A ABE ∠=︒∠∠=︒︒︒=︒----.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016~2017学年度第一学期期中考试
八年级数学试题
亲爱的同学:
祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功! 一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内。

题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案
1.(﹣2)2的平方根是( )
A .±2
B .﹣2
C .2
D .
2.已知直角三角形两边的长为3和4,则此三角形的周长为( )
A .12
B .77+
C .12或77+
D .以上都不对
3.估计
+1的值( )
A .在1和2之间
B .在2和3之间
C .在3和4之间
D .在4和5之间 4.下列运算中错误的有( )个
①416= ②4)8-(32= ③3-3-2= ④3)3-(2= ⑤332=±
A .4
B .3
C .2
D .1
5.设正比例函数y =m x 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m=( )
A .4
B .﹣4
C . 2
D .﹣2
6.如图,数轴上点A ,B 分别对应1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,
交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是( ) A . B .
C .
D .
第6题图
第7题图 第8题图。

相关文档
最新文档