北师大版九年级数学上册试卷全套下载
北师大版九年级数学上册全套单元测试卷
北师大版九年级数学上册全套单元测试卷特别说明:本试卷为最新北师大版中学生九年级试卷。
全套试卷共13份。
(含答案)试卷内容如下:1. 第一单元使用(2份)2. 第二单元使用(2份)3. 第三单元使用(2份)4. 第四单元使用(2份)5. 第五单元使用(2份)6. 第六单元使用(2份)7. 期末检测卷(1份)第一章达标测试卷一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为() A.1 B. 3 C.2 D.232.已知正方形的面积为36,则其对角线的长为()A.6 B.6 2 C.9 D.923.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形6.如图,EF过矩形ABCD对角线的交点O,分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD的面积的()A.15 B.14 C.13 D.3107.如图,在△ABC中,AB=AC,四边形ADEF为菱形,S△ABC=83,则S菱形ADEF 等于()A.4 B.4 6C.4 3 D.288.在四边形ABCD中,点O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAD=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC9.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=6,则四边形ABCD的面积是()A.3 B.4 C.2 6 D.610.如图,把矩形OABC放入平面直角坐标系中,点B的坐标为(10,8),点D 是OC上一点,将△BCD沿边BD折叠,点C恰好落在OA上的点E处,则点D的坐标是()A.(0,4) B.(0,5) C.(0,3) D.(0,2)二、填空题(每题3分,共30分)11.在R t△ABC中,如果斜边上的中线CD=4 cm,那么斜边AB=________.12.已知菱形的两条对角线长分别为2 cm,3 cm,则它的面积是________.13.如图,一活动菱形衣架中,菱形的边长均为16 cm,若墙上钉子间的距离AB =BC=16 cm,则∠1=________.14.已知矩形ABCD的对角线AC,BD相交于点O,当添加条件__________时,矩形ABCD是正方形(只填一个即可).15.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.16.如图,菱形ABCD的顶点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.17.如图,在正方形ABCD的外侧作等边三角形ADE,则∠BED=________.18.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为________.19.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE=________.20.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G.下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论的序号为__________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为点E,F.求证:BE=CF.22.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.24.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使△BPE的周长最小(作图说明);(2)求出△BPE周长的最小值.25.如图,在等腰三角形ABC中,AB=AC,AH⊥BC于点H,点E是AH上一点,延长AH至点F,使FH=EH,连接BE,CE,BF,CF.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.26.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD 的中点G,连接EG,CG,如图①,易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.答案一、1.C 2.B 3.D 4.D 5.C 6.B 7.C 8.C 9.D 10.C 二、11.8 cm 12.3 cm 2 13.120° 14.AC ⊥BD (答案不唯一)15.2 cm ; 3 cm 2 16.(4,4) 17.45° 18.5013 19.2-1 20.①②③⑤ 三、21.证明:∵四边形ABCD 为矩形,∴OA =OC ,OB =OD ,AC =BD . ∴BO =CO .∵BE ⊥AC 于E ,CF ⊥BD 于F , ∴∠BEO =∠CFO =90°. 又∵∠BOE =∠COF , ∴△BOE ≌△COF (AAS). ∴BE =CF .22.(1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,AB =CD .又∵E 在AB 的延长线上,且BE =AB , ∴BE ∥CD ,BE =CD .∴四边形BECD 是平行四边形. ∴BD =EC .(2)解:∵四边形BECD 是平行四边形,∴BD ∥CE .∴∠ABO =∠E =50°. 又∵四边形ABCD 是菱形, ∴AC ⊥BD .∴∠BAO =90°-∠ABO =40°. 23.(1)证明:∵四边形ABCD 是正方形,∴∠DAB =∠ADC =∠BCD =90°,AD =BC .∵△CDE 是等边三角形,∴∠CDE =∠DCE =60°,DE =CE . ∴∠ADE =∠BCE =30°. 在△ADE 和△BCE 中,⎩⎨⎧AD =BC ,∠ADE =∠BCE ,DE =CE ,∴△ADE ≌△BCE (SAS). (2)解:∵△ADE ≌△BCE ,∴AE =BE . ∴∠BAE =∠ABE .又∵∠BAE +∠DAE =90°, ∠ABE +∠AFB =90°, ∴∠DAE =∠AFB .∵∠ADE =30°,DE =DC =DA , ∴∠DAE =75°. ∴∠AFB =75°.24.解:(1)如图,连接DE ,交AC 于点P ′,连接BP ′,则此时P ′B +P ′E 的值最小,即△BPE 的周长最小.(2)∵四边形ABCD 是正方形,∴B ,D 关于AC 对称. ∴P ′B =P ′D . ∴P ′B +P ′E =DE . ∵BE =2,AE =3BE , ∴AE =6,AD =AB =8. ∴DE =62+82=10.∴PB+PE的最小值是10.∴△BPE周长的最小值=10+BE=10+2=12. 25.证明:(1)∵AB=AC,AH⊥BC,∴BH=CH.∵FH=EH,∴四边形EBFC是平行四边形.又∵EF⊥BC,∴四边形EBFC是菱形.(2)如图所示.∴∠2=∠3=12∠ECF.∵AB=AC,AH⊥BC,∴∠4=12∠BAC.又∵∠BAC=∠ECF,∴∠4=∠3.∵∠4+∠1+∠2=90°,∴∠3+∠1+∠2=90°,即AC⊥CF.26.解:(1)EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.证明如下:延长FE交DC的延长线于点M,连接MG,如图所示.易得∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,BC=EM,∠EMC=90°.易知∠ABD=45°,∴∠EBF=45°.又∵∠BEF=90°,∴△BEF为等腰直角三角形.∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC =90°,FG =DG , ∴MG =12FD =FG . ∵BC =EM ,BC =CD , ∴EM =CD .∵EF =CM ,∴FM =DM . 又∵FG =DG ,∴∠CMG =12∠EMC =45°. ∴∠F =∠CMG . 在△GFE 和△GMC 中,⎩⎨⎧FG =MG ,∠F =∠GMC ,EF =CM ,∴△GFE ≌△GMC (SAS). ∴EG =CG ,∠FGE =∠MGC . ∵MF =MD ,FG =DG , ∴MG ⊥FD .∴∠FGE +∠EGM =90°. ∴∠MGC +∠EGM =90°, 即∠EGC =90°. ∴EG ⊥CG .第一章达标测试卷一、选择题(每题3分,共30分)1.菱形、矩形、正方形都具有的性质是( )A .四条边相等,四个角相等B .对角线相等C .对角线互相垂直D .对角线互相平分2.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D .53.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.3104.如图,菱形ABCD的周长为24 cm,对角线AC,BD相交于点O,点E是AD 的中点,连接OE,则线段OE的长等于()A.3 cm B.4 cm C.2.5 cm D.2 cm5.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.3 B.2 2 C. 6 D.336.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60° D.30°或60°8.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E,F分别为BC,CD的中点,则∠EAF等于()A.75°B.45°C.60°D.30°9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AEB.△ABE≌△AGFC.EF=2 5D.AF=EF10.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF 的周长为________.13.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是________.14.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为________.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 019 s时,点P的坐标为________.16.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.17.如图,在矩形ABCD中,AB=3,BC=2,点E为AD的中点,点F为BC 边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG +FH=________.18.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(19,20题每题9分,21题10分,22,23题每题12分,24题14分,共66分)19.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.20.如图,点O是菱形ABCD对角线的交点,过点C作CE∥OD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形OCED是矩形.(2)若AB=4,∠ABC=60°,求矩形OCED的面积.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE.(2)若CD=2,∠ADB=30°,求BE的长.23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F 不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.24.在正方形ABCD的外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并给出证明.答案一、1.D2.B3.B4.A点拨:∵菱形ABCD的周长为24 cm,∴AB=24÷4=6 (cm),OB=OD.又∵E为AD边的中点,∴OE是△ABD的中位线.∴OE=12AB=12×6=3 (cm).故选A.5.D6.D7.D8.C9.D点拨:如图,由折叠的性质得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠的性质得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.又∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又∵AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE2-AB2=52-42=3.过点F作FM⊥BC于点M,则FM=4,EM=5-3=2.在Rt△EFM中,根据勾股定理得EF=EM2+FM2=22+42=20=25,则选项C正确.∵AF=5,EF=25,∴AF≠EF.故选项D错误.10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°. 在Rt △ABE 和Rt △ADF 中,∴Rt △ABE ≌Rt △ADF (HL). ∴BE =DF (故①正确), ∠BAE =∠DAF .∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF (故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x . ∴AG =62x . ∴AC =6x +2x2. ∴AB =BC =3x +x 2.∴BE =3x +x 2-x =3x -x2.∴BE +DF =3x -x ≠2x (故④错误). 易知S △CEF =x 22,S △ABE =3x -x 2·3x +x 22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.90° 12.16 13.2.514.213 点拨:设正方形的边长为a ,∵S △ABE =18,∴S 正方形ABCD =2S △ABE =36,∴a 2=36.∵a >0,∴a =6. 在Rt △BCE 中,∵BC =6,CE =4,∠C =90°, ∴BE =BC 2+CE 2=62+42=213. 15.⎝ ⎛⎭⎪⎫14,334 16.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y )2=42=16.∴x 2+(y -4)2=16. 17.3105 点拨:如图,连接EF ,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =2,∠A =∠D =90°. ∵点E 为AD 的中点,∴AE =DE =1,∴BE =AE 2+AB 2=12+32=10,CE =DE 2+DC 2=12+32=10, ∴CE =BE .∵S △BCE =S △BEF +S △CEF ,∴12BC ·AB =12BE ·FG +12CE ·FH ,∴BC ·AB =BE (FG +FH ),即2×3=10(FG +FH ),解得FG +FH =3105.18.7 点拨:如图,过点O 作OM ⊥CA ,交CA 的延长线于点M ,过点O作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =N B.又∵∠ACB =90°,∠OMA =∠ONB =90°,OM =ON , ∴四边形OMCN 是正方形. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.三、19.证明:连接DB.∵四边形ABCD是菱形,∴BD平分∠ABC.又∵DE⊥AB,DF⊥BC,∴DE=DF.20.(1)证明:∵CE∥OD,DE∥AC,∴四边形OCED是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠COD=90°,∴四边形OCED是矩形.(2)解:∵在菱形ABCD中,AB=4,∴AB=BC=CD=4.又∵∠ABC=60°,∴△ABC是等边三角形,∴AC=4,∴OC=12AC=2,∴OD=42-22=23,∴矩形OCED的面积是23×2=4 3.21.(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又∵BE∥AC,E在DC的延长线上.∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(2)解:如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF,又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.22.(1)证明:∵在矩形ABCD中,AD∥BC,∠A=∠C=90°,∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠FDB,∠F=∠A=90°,∴∠DBC=∠FDB,∠C=∠F.∴BE=DE.在△DCE和△BFE中,∴△DCE≌△BFE.(2)解:在Rt△BCD中,∵CD=2,∠DBC=∠ADB=30°,∴BD=4.∴BC=2 3.在Rt△ECD中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC2=CD2.又∵CD=2,∴CE=23 3.∴BE=BC-EC=43 3.23.(1)证明:如图,连接AC.∵四边形ABCD为菱形,∠BAD=120°,∴AB=BC=CD=DA,∴∠BAC=∠DAC=60°,∴△ABC 和△ADC都是等边三角形,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AB =AC .∴△ABE ≌△ACF . ∴BE =CF .(2)解:四边形AECF 的面积不变. 由(1)知△ABE ≌△ACF , 则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC . 如图,过点A 作AM ⊥BC 于点M ,则BM =MC =2, ∴AM =AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ·AM =12×4×23=4 3.故S 四边形AECF =4 3. 24.解:(1)如图①.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, ∴∠P AE =∠P AB =20°,AE =AB. ∵四边形ABCD 是正方形, ∴AE =AB =AD ,∠BAD =90°.∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠P AE =130°. ∴∠ADF =180°-130°2=25°. (3)EF 2+FD 2=2AB 2.证明如下:如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF .∵∠BAD =90°, ∴∠ABF +∠FBD +∠ADB =90°. ∴∠ADF +∠ADB +∠F BD =90°.∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2. 在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2, ∴EF 2+FD 2=2AB 2.第二章达标测试卷一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的是()A.x2+3x+y=0 B.x2+1x+5=0 C.2x2+13=x+12D.x+y+1=02.一元二次方程x2-2x-3=0配方后可变形为()A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=7 3.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为() A.1 B.-1 C.2 D.-24.根据下面表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是() A.1<x<1.33 B.1.33<x<1.34C.1.34<x<1.35 D.1.35<x<1.365.下列一元二次方程中,没有..实数根的是()A.x2+2x-3=0 B.x2+x+14=0C.x2+2x+1=0 D.-x2+3=06.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1 400B.200+200(1+x)+200(1+x)2=1 400C.200(1+x)2=1 400D.200(1+x)+200(1+x)2=1 4007.x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于38.已知x1,x2是一元二次方程3x2=6-2x的两根,则x1-x1x2+x2的值是()A.-43 B.83C.-83 D.439.若关于x的一元二次方程kx2+2(k-1)x+k-1=0有实数根,则k的取值范围是()A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠010.已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长是()A.5 B.7 C.5或7 D.10二、填空题(每题3分,共30分)11.把一元二次方程(x-3)2=4化为一般形式是____________,其中二次项为________,一次项系数为________.12.若关于x的方程(a-2)x a2-2+2x=0是一元二次方程,则a=________.13.方程(x+3)2=x+3的解是______________.14.若一元二次方程ax2-bx-2 019=1有一根为x=-1,则a+b=________.15.已知方程x2+mx+3=0的一个根是x=1,则它的另一个根是________,m =________.16.当k=________时,关于x的一元二次方程(k+1)x2+2x-1=0没有实数根(写出一个你喜欢的k的值).17.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程:________________.18.若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是________.19.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长是________.20.如图,在一条矩形床单的四周绣上宽度相等的花边,剩下部分的面积为1.6 m2.已知床单的长是2 m,宽是1.4 m,则花边的宽度为________.三、解答题(21题12分,22题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x2-2x=2;(4)x(x-7)=8(7-x).22.已知关于x的方程(k-1)x2-(k-1)x+14=0有两个相等的实数根.(1)求k的值;(2)求此时该方程的根.23.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根.(2)当t为何值时,方程的两个根互为相反数?请说明理由.24.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率.(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年六月份的快递投递任务?如果不能,请问至少需要增加几名业务员?25.某小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.该小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:(2)如果该小商品市场希望通过销售这批羽毛球拍获利9 200元,那么十月份的销售单价应是多少元?26.请阅读下列材料.问题:已知方程x 2+x -1=0,求一个一元二次方程,使它的根分别是已知方程的根的2倍.解:设所求方程的根为y ,则y =2x ,所以x =y2. 把x =y 2代入已知方程,得⎝ ⎛⎭⎪⎫y 22+y2-1=0.化简,得y 2+2y -4=0. 故所求方程为y 2+2y -4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式). (1)已知方程x 2+x -2=0,求一个一元二次方程,使它的根分别是已知方程的根的相反数;(2)已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.答案一、1.C 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.D 10.B 二、11.x 2-6x +5=0;x 2;-6 12.-2 13.x 1=-3,x 2=-2 14.2 020 15.x =3;-4 16.-3(答案不唯一) 17.x 2-9x +6=0(答案不唯一) 18.5 19.4+22 20.0.2 m三、21.解:(1)两边开平方,得6x -1=±5,即6x -1=5或6x -1=-5. ∴x 1=1,x 2=-23. (2)移项,得x 2-4x =-1. 配方,得x 2-4x +4=-1+4, 即(x -2)2=3.两边开平方,得x -2=±3, 即x -2=3或x -2=- 3. ∴x 1=2+3,x 2=2- 3.(3)将原方程化为一般形式,得x 2-2x -2=0. ∵b 2-4ac =(-2)2-4×1×(-2)=10, ∴x =2±102×1. ∴x 1=2+102,x 2=2-102. (4)移项,得x (x -7)+8(x -7)=0.变形,得(x -7)(x +8)=0. ∴x -7=0或x +8=0. ∴x 1=7,x 2=-8.22.解:(1)∵关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,∴Δ=b 2-4ac =[-(k -1)]2-4·(k -1)·14=0, 即(k -1)2-(k -1)=0. 解得k =2或k =1.∵原方程是一元二次方程,∴k -1≠0,即k ≠1,则k =2. (2)当k =2时,原方程为x 2-x +14=0,解得x 1=x 2=12.23.(1)证明:∵Δ=b2-4ac=[-(t-1)]2-4(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设此一元二次方程的两个根是x1,x2.由题意得x1=-x2,即x1+x2=0.利用根与系数的关系可得x1+x2=t-1=0,∴t=1.24.解:(1)设该快递公司投递总件数的月平均增长率为x.根据题意,得10(1+x)2=12.1,解得x1=0.1=10%,x2=-2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)今年六月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递快递0.6万件,∴21名快递投递业务员每月最多能完成的快递投递任务是0.6×21=12.6(万件).∵12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年六月份的快递投递任务.∵(13.31-12.6)÷0.6=111 60,∴至少需要增加2名业务员.25.解:(1)100-x;200+2x;400-2x(2)根据题意,得100×200+(100-x)(200+2x)+50(400-2x)-60×800=9 200.解得x1=20,x2=-70(舍去).当x=20时,100-x=80>60,符合题意.答:十月份的销售单价应是80元.26.解:(1)设所求方程的根为z,则z=-x,∴x=-z.把x=-z代入已知方程,得z2-z-2=0,故所求方程为z2-z-2=0.(2)设所求方程的根为t,则t=1x(x≠0),于是x=1t(t≠0).把x=1t代入方程ax2+bx+c=0,得a ⎝ ⎛⎭⎪⎫1t 2+b ·1t +c =0. 去分母,得a +bt +ct 2=0.若c =0,则有ax 2+bx =0,于是方程ax 2+bx +c =0有一个根为0,不符合题意,∴c ≠0.故所求方程为ct 2+bt +a =0(c ≠0).第二章达标测试卷一、选择题(每题3分,共30分)1.下列等式中是关于x 的一元二次方程的是( )A .3(x +1)2=2(x +1)B .1x 2+1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-12.一元二次方程x 2-6x +5=0配方后可化为( )A .(x -3)2=-14B .(x +3)2=-14C .(x -3)2=4D .(x +3)2=143.关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠14.已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一个实数根及m 的值分别为( )A .4,-2B .-4,-2C .4,2D .-4,25.已知x 为实数,且满足(x 2+3x )2+2(x 2+3x )-3=0,那么x 2+3x 的值为( )A .1B .-3或1C .3D .-1或36.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( )A .7队B .6队C .5队D .4队7.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-18.已知x =2是关于x 的方程x 2-2mx +3m =0的一个根,并且等腰三角形ABC的腰长和底边长恰好是这个方程的两个根,则△ABC 的周长为( )A.10 B.14 C.10或14 D.8或109.若关于x的方程2x2+mx+n=0的两个根是-2和1,则nm的值为() A.-8 B.8 C.16 D.-1610.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△AB C沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于()A.0.5 cmB.1 cmC.1.5 cmD.2 cm二、填空题(每题3分,共24分)11.一元二次方程x(x-7)=0的解是________.12.若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a=________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市加大了对雾霾的治理力度,2017年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.已知线段AB的长为2,以AB为边在AB的下方作正方形ABCD,取AB边上一点E(不与点A,B重合),以AE为边在AB的上方作正方形AENM.过点E作EF⊥CD,垂足为点F,如图.若正方形AENM与四边形EFCB的面积相等,则AE的长为________.17.已知(2a+2b+1)(2a+2b-1)=19,则a+b=________.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)3x(x-2)=x-2;(3)x2-22x+1=0; (4)(x+8)(x+1)=-12.20.已知关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.21.解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为x1=2,x2=5.请利用这种方法求方程(2x+5)2-4(2x+5)+3=0的解.22.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.一个矩形周长为56 cm.(1)当矩形的面积为180 cm2时,长和宽分别为多少?(2)这个矩形的面积能为200 cm2吗?请说明理由.24.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A出发沿AB边向点B以1 cm/s的速度移动,点Q从点B出发沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.25.某中学九年级准备组织学生去方特梦幻王国进行春游活动.方特梦幻王国给出了学生团体门票的优惠价格:如果学生人数不超过30名,那么门票为每张240元;如果人数超过了30名,则每超过1名,每张门票就降低2元,但每张门票最低不能少于200元.(1)若一班共有40名学生参加了春游活动,则需要交门票费多少元?(2)若二班共有52名学生参加了春游活动,则需要交门票费多少元?(3)若三班交了门票费9 450元,请问该班参加春游的学生有多少名?答案一、1.A2.C3.C4.D5.A6.C7.D8.B9.C10.B点拨:设AC交A′B′于H.∵∠DAC=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1,即AA′=1 cm.故选B.二、11.x1=0,x2=712.-113.2点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1点拨:由方程x2-4x+3=0,得(x-1)(x-3)=0,∴x-1=0或x-3=0.解得x1=1,x2=3.当x=1时,分式方程1x-1=2x+a无意义;当x=3时,13-1=23+a,解得a=1.经检验,a=1是方程13-1=23+a的解.16.5-1点拨:本题主要考查了根据几何图形列一元二次方程,解题的关键是根据已知条件和图形找出等量关系,列出方程.17.±5 点拨:设t =2(a +b ),则原方程可化为(t +1)(t -1)=19,整理,得t 2=20,解得t =±25,则a +b =t 2=± 5.技巧点拨:换元法的一般步骤是:(1)设新元,即根据问题的特点或关系,引进适当的辅助元作为新元;(2)换元,用新元去代替原问题中的代数式或旧元;(3)求解新元,将解出的新元代回所设的换元式,求解原问题的未知元.18.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm.又∵AP =2t cm ,∴S 1=12AP ·BD =12×2t ×82=8t(cm 2),PD =(82-2t )cm.易知PE =AP =2t cm ,∴S 2=PD ·PE =(82-2t )·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t )·2t .解得t 1=0(舍去),t 2=6.三、19.解:(1)(公式法)a =1,b =-1,c =-1,∴b 2-4ac =(-1)2-4×1×(-1)=5.∴x =-b ±b 2-4ac 2a=1±52, 即原方程的根为x 1=1+52,x 2=1-52.(2)(因式分解法)移项,得3x (x -2)-(x -2)=0,即(3x -1)(x -2)=0,∴x 1=13,x 2=2.(3)(配方法)配方,得(x -2)2=1,∴x -2=±1,∴x 1=2+1,x 2=2-1.(4)(因式分解法)原方程可化为x 2+9x +20=0,即(x +4)(x +5)=0,解得x1=-4,x2=-5.20.解:(1)∵关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根,∴m-2≠0且Δ=(2m)2-4(m-2)(m+3)=-4(m-6)>0,解得m<6且m≠2.∴m的取值范围是m<6且m≠2.(2)在m<6且m≠2的范围内,最大整数为5.此时,方程化为3x2+10x+8=0,解得x1=-2,x2=-4 3.21.解:设2x+5=y,则原方程可化为y2-4y+3=0,所以(y-1)(y-3)=0,解得y1=1,y2=3.当y=1时,即2x+5=1,解得x=-2;当y=3时,即2x+5=3,解得x=-1,所以原方程的解为x1=-2,x2=-1.22.解:(1)由题意得Δ=9-4(m-1)≥0,∴m≤13 4.(2)由根与系数的关系得x1+x2=-3,x1x2=m-1.∵2(x1+x2)+x1x2+10=0,∴-6+(m-1)+10=0,∴m=-3,∵m≤134,∴m的值为-3.23.解:(1)设矩形的长为x cm,则宽为(28-x)cm,由题意列方程,得x(28-x)=180,整理,得x2-28x+180=0,解得x1=10(舍去),x2=18.答:矩形的长为18 cm,宽为10 cm.(2)不能.理由如下:设矩形的长为y cm,则宽为(28-y) cm,由题意列方程,得y(28-y)=200,整理,得y2-28y+200=0,则Δ=(-28)2-4×200=784-800=-16<0.∴该方程无实数解.故这个矩形的面积不能为200 cm2.24.解:(1)设t s后,△PBQ的面积为8 cm2,则PB=(6-t)cm,BQ=2t cm,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴2 s或4 s后,△PBQ的面积为8 cm2.(2)设出发x s后,PQ=4 2 cm,由题意,得(6-x)2+(2x)2=(42)2,解得x1=25,x2=2,故出发25s或2 s后,线段PQ的长为4 2 cm.(3)不能.理由:设经过y s,△PBQ的面积等于10 cm2,则12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴该方程无实数解.∴△PBQ的面积不能为10 cm2.25.解:(1)240-(40-30)×2=220(元),220×40=8 800(元).答:若一班共有40名学生参加了春游活动,则需要交门票费8 800元.(2)240-(52-30)×2=196(元),∵196<200,∴每张门票200元.200×52=10 400(元).答:若二班共有52名学生参加了春游活动,则需要交门票费10 400元.(3)∵9 450不是200的整数倍,且240×30=7 200(元)<9 450元,∴每张门票的价格高于200元且低于240元.设三班参加春游的学生有x名,则每张门票的价格为[240-2(x-30)]元,根据题意,得[240-2(x-30)]x=9 450,整理,得x2-150x+4 725=0,解得x1=45,x2=105,∵240-2(x-30)>200,∴x<50.∴x=45.答:若三班交了门票费9 450元,则该班参加春游的学生有45名.第三章达标测试卷一、选择题(每题3分,共30分)1.从-5,0,4,π,3.5这五个数中随机抽取一个,则抽到无理数的概率是()A.15B.25C.35D.452.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.13C.23D.13.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.12B.13C.14D.164.在元旦游园晚会上有一个闯关活动:将5张分别画有正方形、圆、平行四边形、等边三角形、菱形的卡片任意摆放(卡片大小、质地、颜色完全相同),将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关.那么一次过关的概率是()A.15B.25C.35D.455.在一个不透明的盒中有20个除颜色外均相同的球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计盒中红球的个数为()A.4个B.6个C.8个D.12个6.某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是() A.移植10棵幼树,结果一定是“9棵幼树成活”B.移植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.移植10n棵幼树,恰好有“n棵幼树不成活”D.移植n棵幼树,当n越来越大时,幼树成活的频率会越来越稳定于0.9 7.用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()。
北师大版初中九年级数学上册单元测试题含答案全册
北师大版初中九年级数学上册单元测试题第一章 证明〔Ⅱ〕 班级 姓名 学号 成果一、推断题〔每题2分,共10分〕以下各题正确的在括号内画“√〞,错误的在括号内画“×〞.1、两个全等三角形的对应边的比值为1 . 〔 〕2、两个等腰三角形确定是全等的三角形. 〔 〕3、等腰三角形的两条中线确定相等. 〔 〕4、两个三角形假设两角相等,那么两角所对的边也相等. 〔 〕5、在一个直角三角形中,假设一边等于另一边的一半,那么,一个锐角确定等于30°.〔 〕二、选择题〔每题3分,共30分〕每题只有一个正确答案,请将正确答 案的番号填在括号内.1、在△和△中,,,要使△≌△,还须要的条件是〔 〕A 、∠∠DB 、∠∠FC 、∠∠ED 、∠∠D2、以下命题中是假命题的是〔 〕A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,那么这个三角形是等腰三角形3、如图(一),,,D 是上的一点,那么以下结论不确定成立的是〔 〕A 、∠1=∠2B 、C 、D 、∠∠4、如图〔二〕,和相交于O 点,∥,,过O 〔一〕任作一条直线分别交、于点E 、F ,那么以下结论:①② ③ ④,其中成立的个数是〔 〕A 、1B 、2C 、3D 、45、假设等腰三角形的周长是18,一条边的长是5,那么其他两边的长是〔 〕 〔二〕6、以下长度的线段中,能构成直角三角形的一组是〔 〕A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图〔三〕, ,那么以下结果正确的选项是〔 〕 〔三〕A 、∠∠B 、C 、∠∠D 、⊥8、如图〔四〕,△中,∠30°,∠90°的垂直平分线交于D 点,交于E 点,那么以下结论错误的选项是〔 〕A 、B 、C 、D 、 〔四〕9、如图〔五〕,在梯形中,∠90°,M 是的中点,平分∠,∠35°,那么∠是〔 〕A 、35°B 、55°C 、70°D 、20°10、如图〔六〕,在△中,平分∠,, 〔五〕 ∠∠,那么,DCAC 的值为〔 〕A B A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ 〔六〕三、填空题,〔每空2分,共20分〕1、如图〔七〕,, 及相交于O 点,那么图中全等三角形共有 对. 〔七〕2、如图〔八〕,在△和△中,∠∠D ,,假设依据“〞说明△≌△,那么应添加条件 = . 〔八〕或 ∥ .3、一个等腰三角形的底角为15°,腰长为4,那么,该三角形的面积等于 .4、等腰三角形一腰上的高及底边的夹角等于45°,那么这个三角形的顶角等于 .5、命题“假如三角形的一个内角是钝角,那么其余两个内角确定是锐角〞的逆命题是 .6、用反证法证明:“随意三角形中不能有两个内角是钝角〞的第一步:假设 .7、如图〔九〕,一个正方体的棱长为2,一只蚂蚁欲从A 点处沿正方体侧面到B 点处吃食物,那么它须要爬行的最短途径的长是 .8、在△中,∠90°,8, 的垂直平分线交 (九)于D ,那么 .9、如图〔十〕的(1)中,是一张正方形纸片,E ,F 分别为,的中点,沿过点D 的折痕将A 角翻折,使得点A 落在〔2〕中上,折痕交于点G ,那么∠ .四、作图题〔保存作图的痕迹,写出作法〕〔共6分〕 〔十〕如图〔十一〕,在∠内,求作点P ,使P 点到,的 间隔 相等,并且P 点到M ,N 的间隔 也相等.〔十一〕五、解答题〔5分〕如图〔十二〕,一根旗杆的升旗的绳垂直落地后还剩余1米,假设将绳子拉直, 那么绳端离旗杆底端的间隔 ()有5米.求旗杆的高度.〔十二〕六、证明题〔第1,第2两小题各6分,第3小题8分,第4小题9分〕1、:如图〔十三〕,AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点.〔十三〕2、:如图〔十四〕,, ,E ,F 分别是,的中点.求证: .〔十四〕3、如图〔十五〕,△中,是∠的平分线,⊥于E ,⊥于F.求证:〔1〕⊥ ;〔2〕当有一点G 从点D 向A 运动时,⊥于E ,⊥于F ,此时上面结论是否成立?〔十五〕4、如图〔十六〕,△、△均为等边三角形,点M 为线段的中点,点N 为线段的中点,求证:△为等边三角形.〔十六〕九年级 数学 第二章 一元二次方程班级 姓名 学号 成果一、填空题(每题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,那么a 的值是 .6.322--x x 及7+x 的值相等,那么x 的值是 . 7.〔1〕22___)(96+=++x x x ,〔2〕222)2(4___p x p x -=+-. 8.假如-1是方程0422=-+bx x 的一个根,那么方程的另一个根是 ,b 是 .9.假设1x 、2x 为方程0652=-+x x 的两根,那么21x x +的值是,21x x 的值是.10.用22长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是 .11.甲、乙两人同时从A 地动身,骑自行车去B 地,甲比乙每小时多走3千米,结果比乙早到0.5小时,假设A 、B 两地相距30千米,那么乙每小时 千米. 二、选择题〔每题3分,共18分〕每题只有一个正确答案,请将正确答案的番号填在括号内.1、关于的方程,〔1〕20;〔2〕x 2-482;〔3〕1+(1)(1)=0;〔4〕〔k 2+1〕x 2 + + 1= 0中,一元二次方程的个数为〔 〕个A 、1B 、2C 、3D 、42、假如01)3(2=+-+mx x m 是一元二次方程,那么 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、方程()031222=+--m x m x 的两个根是互为相反数,那么m 的值是 〔 〕A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是〔 〕A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、假如022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 〔 〕A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 〔 〕A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程〔每题3分,共12分〕1.02522=-+)(x 〔干脆开平方法〕 2. 0542=-+x x 〔配方法〕 3.025)2(10)2(2=++-+x x 〔因式分解法〕 4. 03722=+-x x 〔公式法〕 四、适当的方法解方程〔每题4分,共8分〕1.036252=-x 2. 0)4()52(22=+--x x 五、完成以下各题〔每题5分,共15分〕1、函数222a ax x y --=,当1=x 时,0=y , 求a 的值. 2、假设分式1|3|432----x x x 的值为零,求x 的值. 3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根. (1)假设方程只有一个实根,求出这个根; (2)假设方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值. 六、应用问题(第1小题5分,第2小题6分,共11分)1、恳求解我国古算经?九章算术?中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?〔1丈=10尺〕2、某科技公司研制胜利一种新产品,确定向银行贷款200万元资金用于消费这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;假设该公司在消费期间每年比上一年资金增长的百分数一样,试求这个百分数.九年级 数学 第三章 证明〔Ⅲ〕班级 姓名 学号 成果一、选择题〔每题4分,共40案的番号填在括号内. 1、如图1那么图中共有相等的角〔 〕A 、4对B 、5对C 、6对D 、8对 2、如图2,E 、F 分别为 连接、所形成的四边形的面 〕A 、1:1B 、1:2C 、1:3D 、1:43、过四边形的顶点A 、B 、C 、D 作、的平行线围成四边形,假设 是菱形,那么四边形确定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是、的中点,那么=∠EAF 〔 〕A 、075B 、055C 、450D 、0605、矩形的一条长边的中点及另一条长边构成等腰直角三角形,矩形的周长是36,那么矩形一条对角线长是〔 〕A 、56B 、55C 、54D 、356、矩形的内角平分线可以组成一个〔 〕A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形的一组邻边、向形外作等边三角形、,那么以下结论中错误的选项是〔 〕A 、平分EBF ∠B 、030=∠DEFC 、EF ⊥D 、045=∠BFD8、正方形的边长是10,APQ ∆是等边三角形,点P 在上,点Q 在上,那么的边长是〔 〕A 、55B 、3320 C 、)31020(- D 、)31020(+ 9、假设两个三角形的两条中位线对应相等且两条中位线及一对应边的夹角相等,那么这两个三角形的关系是〔 〕A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是〔 〕A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题〔每空1分,共11分〕1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰及上底相等且等于下底的一半,那么该梯形的腰及下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,那么原三角形的周长为 .4、在ABC ∆中,D 为的中点,E 为上一点,AC CE 31=,、交于点O ,cm BE 5=,那么=OE .5、顺次连接随意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片沿对角线对折后,及交于点E ,那么的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,那么矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,那么菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、四边形是菱形,AEF ∆是正三角形,E 、F 分别在、上,且CD EF =,那么=∠BAD .三、解答题〔第1、2小题各10分,第3、4小题各5分,共30分〕1、如图3,,090=∠ACB ,E 是的中点, ,和相交于点F.求证:〔1〕AC DE ⊥; 〔2〕ACE ACD ∠=∠.2、如图4,为平行四边形,和为正方形.求证: 34四、〔第1、2小题各6分,第3小题7分,共1、如图5,正方形纸片的边上有一点E ,8么纸片折痕的长是多少?2、如图6,在矩形中,E 是上一点且,又DF ⊥3、如图7,P 是矩形的内的一点.求证:2PC PA +九年级 数学 半期检测题〔总分120分,100分钟完卷〕 班级 姓名 学号 成果一、选择题〔每题3分,共36番号填在括号内.1、以下数据为长度的三条线段可以构成直角三角形的是〔〔A 〕3、5、6 〔B 〕2、3、4〔C 〕 6、7、9 〔D 〕9、12、15 2、如图(一):,D 、E 、F 分别是三边中点,那么图中全等三角形共有〔 〕〔A 〕 5对 〔B 〕 6对 〔C 〕 7对 〔D 〕 8对 3、△中,∠150º,10,18,那么△的面积是〔 〕〔A 〕45 〔B 〕90 〔C 〕180 〔D 〕不能确定4、△中,∠90º,∠30º,平分∠B 交于点D ,那么点D 〔 〕〔A 〕是的中点 〔B 〕在的垂直平分线上〔C 〕在的中点 〔D 〕不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,那么a 的值是〔 〕〔A 〕1 〔B 〕 -1 〔C 〕 1或-1 〔D 〕21 6、方程x x 52=的根是〔 〕〔A 〕5=x 〔B 〕0=x 〔C 〕 5,021==x x 〔D 〕 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为〔 〕〔A 〕100)2(2++x 〔B 〕100)2(2--x 〔C 〕100)2(2-+x 〔D 〕 100)2(2+-x8、两个连续奇数的乘积是483,那么这两个奇数分别是〔 〕〔A 〕 19和21 〔B 〕 21和23 〔C 〕 23和25 〔D 〕 20和229、依据以下条件,能断定一个四边形是平行四边形的是〔 〕〔A 〕两条对角线相等 〔B 〕一组对边平行,另一组对边相等 〔C 〕一组对角相等,一组邻角互补 〔D 〕一组对角互补,一组对边相等10、能断定一个四边形是矩形的条件是〔 〕〔A 〕对角线相等 〔B 〕对角线相互平分且相等〔C 〕一组对边平行且对角线相等 〔D 〕一组对边相等且有一个角是直角11、假如一个四边形要成为一个正方形,那么要增加的条件是〔 〕 〔A 〕对角线相互垂直且平分 〔B 〕对角互补〔C 〕对角线相互垂直、平分且相等 〔D 〕对角线相等12、矩形的四个内角平分线围成的四边形〔 〕〔A 〕确定是正方形 〔B 〕是矩形 〔C 〕菱形 〔D 〕只能是平行四边形 二、填空题〔每空2分,共38分〕1、直角三角形两直角边分别是5和12,那么斜边长是 ,斜边上的高 是 .2、命题“对顶角相等〞的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△中,,∠120º, ⊥,8,那么 .5、:如图(三),△中,,∠40º,A BC D 的中垂线交于点D ,交于点E ,那么∠ ,∠ . 〔二〕6、假设关于x 的方程42322-=+x x kx 是一元二次方程,那么k 的取值范围是 . 〔三〕7、关于x 的方程124322+-=-a ax x x ,假设常数项为0,那么a = .8、假如m x x ++32是一个完全平方式,那么m = .9、9)2(222=++y x ,那么=+22y x .10、方程012=--x x 的根是 .11、04322=--y xy x ,那么yx 的值是 . 12、如图(四),平行四边形中,6 9,平分∠,那么 . (四)13、矩形的周长是24 ,点M 是中点,∠90°,那么 ,.14、菱形周长为52,一条对角线长是24,那么这个菱形的面积是 .15、等腰梯形上底长及腰长相等,而一条对角线及一腰垂直,那么梯形上底角的度数是 .三、解方程〔每题4分,共16分〕1、0862=--x x 〔用配方法〕.2、23142-=--x x x 〔用公式法〕.3、04)5(=+-x x x 〔用因式分解法〕.4、02)12(2=++-x x .四、解答题〔每题5分,共15分〕1、为响应国家“退耕还林〞的号召,变更我省水土流失严峻的状况,2002年我省退耕还林1600亩,方案2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校打算在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较相宜?3、如图(五),Δ中,20,12,是中线,且8,求的长.〔五〕 五、证明〔计算〕〔每题5分,共15分〕1、:如图〔六〕,点C 、D 在上,,∥,∥.求证:.(六) 2、如图〔七〕,正方形中,E 为上一点,F 为延长线上一点,. 〔1〕求证:△≌△;〔2〕假设∠600,求∠的度数.〔七〕3、:如图〔八〕,在直角梯形中,∥,⊥, 又⊥于E.求证:.A B C D E F〔八〕九年级数学第四章视图及投影一、选择题〔每题4分,共32分〕以下每题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是一样的长方形,府视图为圆,那么这个几何体为〔〕A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变更规律是〔〕A、先变长,后变短B、先变短,后变长C、方向变更,长短不变D、以上都不正确.5米人测竿的影长为米,那么影长为30米的旗杆的高是〔〕A、20米B、16米C、18米D、15米4、以下说法正确的选项是〔〕A、物体在阳光下的投影只及物体的高度有关B、小明的个子比小亮高,我们可以确定,不管什么状况,小明的影子确定比小亮的影子长.C、物体在阳光照耀下,不同时刻,影长可能发生变更,方向也可能发生变更.D、物体在阳光照耀下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有〔〕〔1〕我们把视线看不到的地方称为盲区〔2〕我们上山及下山时视野盲区是一样的〔3〕我们坐车向前行驶,有时会发觉一些高大的建筑物会被比矮的建筑物拦住〔4〕人们常说“站得高,看得远〞,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的选项是〔〕图17、如图2所示,这是圆桌正上方的灯泡〔看作一个点〕发出的光线照耀桌面后,在地面上形成阴影〔圆形〕的示意图.桌面的直径为,桌面间隔地面1m,假设灯泡间隔地面3m,那么地面上阴影部分的面积为〔〕图 2A、πm2B、πm2C、2πm2D、πm28、如图〔三〕是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后依次进展排列正确的选项是〔〕〔三〕A、〔1〕〔2〕〔3〕〔4〕B、〔4〕〔3〕〔1〕〔2〕C、〔4〕〔3〕〔2〕〔1〕D、〔2〕〔3〕〔4〕〔1〕二、填空题〔每题3分,共21分〕1、主视图、左视图、府视图都一样的几何体为〔写出两个〕.2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形态,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为米,那么电线杆的高为米.5、假如一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高一样的小明和小华站在灯光下的不同位置,假如小明离灯较远,那么小明的投影比小华的投影 .三、解答题〔此题7个小题,共47分〕1、某糖果厂为儿童设计一种新型的装糖果的不倒翁〔如图4所示〕请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,假设小猫看见了小老鼠,那么小老鼠就会有危急,试画出小老鼠在墙的左端的平安区.图 75、如图8为住宅区内的两幢楼,它们的高30m,两楼间的间隔 30m,现需理解甲楼对乙楼的采光的影响状况,〔1〕当太阳光及程度线的夹角为30°角时,求甲楼的影子在乙楼3〕;〔2〕假设要甲楼的影子刚好不落在乙楼的墙上,此时太阳及上有多高〔精确到,程度线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下长的影子[如图〔9〕所示],窗框的影子到窗下墙脚的间隔,窗口底边离地面的间隔,试求窗口的高度〔即的值〕图 97、一位同学想利用有关学问测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为,但当他立刻测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子,又测地面部分的影长,你能依据上述数据帮他测出旗杆的高度吗?图 10九年级 数学 第五章 反比例函数一、填空题〔每题3分,共30分〕1、近视眼镜的度数y 〔度〕及镜片焦距x 米,那么眼镜度数y 及镜片焦距x 之间的函数关系式是 .2、假如反比例函数xk y =的图象过点〔2,-3〕,那么k = . 3、y 及x 成反比例,并且当2时,1,那么当3时,x 的值是 .4、y 及〔21〕成反比例,且当1时,2,那么当0,y 的值是 .5、假设点A 〔6,y 1〕和B 〔5,y 2〕在反比例函数xy 4-=的图象上,那么y 1及y 2的大小关系是 . 6、函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、假设函数12)1(---=m m x m y 是反比例函数,那么m 的值是 .8、直线5及双曲线x y 2-=相交于 点P 〔-2,m 〕,那么 .9、如图1,点A 在反比例函数图象上,过点A 作垂直于x 轴,垂足为B ,假设S △2,那么这个反比例函数的解析式为. 图 110、如图2,函数(k≠0)及xy 4-=的图 象交于点A 、B ,过点A 作垂直于y 轴,垂足为C ,那么△的面积为 . 图 2二、选择题〔每题3分,共30分〕以下每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、假如反比例函数的图象经过点P 〔-2,-1〕,那么这个反比例函数的表达式为〔 〕A 、x y 21=B 、x y 21-=C 、x y 2=D 、xy 2-= 2、y 及x 成反比例,当3时,4,那么当3时,x 的值等于〔 〕A 、4B 、-4C 、3D 、-33、假设点A 〔-1,y 1〕(22),C 〔3,y 3〕都在反比例函数xy 5=的图象上,那么以下关系式正确的选项是〔 〕A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是〔 〕A 、m <0B 、m >0C 、m <5D 、m >55、反比例函数的图象经过点〔1,2〕,那么它的图象也确定经过〔 〕A 、〔-1,-2〕B 、〔-1,2〕C 、〔1,-2〕D 、〔-2,1〕6、假设一次函数b kx y +=及反比例函数x k y =的图象都经过点〔-2,1〕,那么b 的值是〔 〕A 、3B 、-3C 、5D 、-57、假设直线1x(k 1≠0)和双曲线xk y 2=〔k 2≠0〕在同一坐标系内的图象无交点,那么k 1、k 2的关系是〔 〕A 、k 1及k 2异号B 、k 1及k 2同号C 、k 1及k 2互为倒数D 、k 1及k 2的值相等8、点A 是反比例函数图象上一点,它到原点的间隔 为5,到x 轴的间隔 为3,假设点A 在第二象限内,那么这个反比例函数的表达式为〔 〕A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、假如点P 为反比例函数x y 6=的图像上的一点,垂直于x 轴,垂足为Q ,那么 △的面积为〔 〕A 、12B 、6C 、3D 、1.510、反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数的图象经过〔 〕A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题〔此题6个小题,共40分〕1、〔6分〕矩形的面积为6,求它的长y 及宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、〔6分〕确定质量的氧气,它的密度ρ〔3〕是它的体积v (m 3)的反比例函数,当v =10m3时,ρ3. 〔1〕求ρ及v 的函数关系式;〔2〕求当v =2m 3时,氧气的密度ρ.3、〔7分〕某蓄水池的排水管每时排水8m 3,6小时〔h 〕可将满水池全部排空.〔1〕蓄水池的容积是多少?〔2〕假如增加排水管,使每时的排水量到达Q 〔m 3〕,那么将满池水排空所需的时间t(h)将如何变更?〔3〕写出t 及Q之间的关系式〔4〕假如打算在5h 内将满池水排空,那么每时的排水量至少为多少?〔5〕排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?4、〔7分〕某商场出售一批进价为2元的贺卡,在市场营销中发觉此商品的日销售单价x 〔元〕及日销售量y 〔个〕之间有如下关系:日销售单价x 〔元〕3 4 5 6 日销售量y(个) 20 15 12 10〔1〕依据表中数据,在直角坐标系中描出实数对〔x ,y 〕的对应点;〔2〕猜测并确定y 及x 之间的函数关系式,并画出图象;〔3〕设经营此贺卡的销售利润为W元,求出W及x 之间的函数关系式.假设物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?5、〔7分〕如图3,点A是双曲线xk y =及直线(1)在第二象限内的交点,AB⊥x 轴于B ,且S△=23. 〔1〕求这两个函数的解析式;〔2〕求直线及双曲线的两个交点A、C的坐标和△的面积.图 36、〔7分〕反比例函数xk y 2 和一次函数21,其中一次函数的图象经过〔〕,〔1,〕两点.〔1〕求反比例函数的解析式;〔2〕如图4,点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;〔3〕利用〔2〕的结果,请问:在x 轴上是否存在点P ,使△为等腰三角形?假设存在,把符合条件的P 点坐标都求出来;假设不存在,请说明理由.图 4九年级 数学 第六章 频率及概率一、选择题〔每题4分,共40分〕以下每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事务发生的概率不行能是〔 〕A 、0B 、1C 、21D 、23 2、以下说法正确的选项是〔 〕 A 、投掷一枚图钉,钉尖朝上、朝下的概率一样 B 、统一发票有“中奖〞和“不中奖〞两种情形,所以中奖的概率是21 C 、投掷一枚匀称的硬币,正面朝上的概率是21 D 、投掷一枚匀称的骰子,每一种点数出现的概率都是61,所以每投6次,确定会出现一次“1点〞.3、关于频率和概率的关系,以下说法正确的选项是〔 〕A 、频率等于概率B 、当试验次数很大时,频率稳定在概率旁边C 、当试验次数很大时,概率稳定在频率旁边D 、试验得到的频率及概率不行能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是〔 〕A 、38%B 、60%C 、约63%D 、无法确定5、随机掷一枚匀称的硬币两次,两次都是正面的概率是〔 〕A 、21B 、31C 、41 D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,口袋中有黑球10个和假设干个白球.由此估计口袋中大约有多少个白球〔 〕A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,方法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是〔 〕A 、100001B 、1000050C 、10000100D 、10000151 8、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是〔 〕A 、21B 、31C 、41D 、61 9、某校九年级一班共有学生50人,如今对他们的生日〔可以不同年〕进展统计,那么正确的说法是〔 〕A 、至少有两名学生生日一样B 、不行能有两名学生生日一样C 、可能有两名学生生日一样,但可能性不大D 、可能有两名学生生日一样,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,那么某人偶尔遇到一辆自行车,其牌照编号大于9000的概率是〔 〕A 、101 B 、109 C 、1001 D 、1009 二、填空题〔每题3分,共24分〕 1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .“幸运观众〞10名,张华同学打通了一次热线 ,那么他成为“幸运观众〞的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都一样.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌嬉戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和假设干个白球,从口袋中一次摸出10个球,求出黑球数及10的比值,不断重复上述过程,总共摸了10次,黑球数及10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,随意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色〔即配成紫色〕的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字及所设定的密码一样时,才能将锁翻开.小亮忘了密码的前面两个数字,他随意按下前两个数字,那么他一次就能翻开锁的概率是 .8、某市民政部门今年元宵节期间实行了“即开式社会福利彩票〞销售活动,设置彩票3000是 .三、解答题〔此题有5个小题,共36分〕1、〔7分〕有30张牌,牌面朝下,每次抽出一张登记花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、〔7分〕一那么广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这那么广告后,想:“5021,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖〞.你认为小明的想法对吗?请说明理由.3、〔7分〕桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做嬉戏,嬉戏规那么是:随机取2张牌并把它们翻开,假设2张牌中没有老K,那么红方胜,否那么蓝方胜.你情愿充当红方还是蓝方?请说明理由.4、〔7分〕为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回。
2024-2025学年北师大版数学九年级上册第一次月考测试试题
2024-2025学年北师大版数学九年级上册第一次月考测试试题一、单选题1.若关于x 的方程()230m x x m -+-=是一元二次方程,则m 的取值范围是( )A .0m ≠B .3m ≠C .0m =D .3m = 2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形 3.下列命题中正确的是( )A .有一组邻边相等的四边形是菱形B .一组对边平行的四边形是平行四边形C .对角线垂直的平行四边形是正方形D .有一个角是直角的平行四边形是矩形 4.一元二次方程()2130x k -+-=的一个根是1x =,则k =( )A .3B .2C .-3D .-25.某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异,若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是( )A .12B .13C .23D .346.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 7.如图,在平行四边形ABCD 中,E 是AD 上一点,连接CE 并延长交BA 的延长线于点F ,则下列结论错误的是( )A .AB DE AF EA = B .AE AF AD FB =C .FA FE AB EC =D .C FA CD AE B = 8.如图,在平面直角坐标系中,点A 的坐标为()6,8,过点A 作AD y ⊥轴于点D ,将O A D △绕点O 顺时针旋转得到''OA D V ,使得点D 的对应点'D 落在边OA 上,延长D A ''交x 轴于点B ,则点B 的坐标为( )A .()6,0B .22,03⎛⎫ ⎪⎝⎭C .40,03⎛⎫ ⎪⎝⎭D .()10,09.定义[]x 表示不超过实数x 的最大整数,如[]1.41=,[]1.22-=-,[]33-=-,则方程[]22x x =的解为( )A .0B .0或2C .2D .0 2 10.如图,菱形ABCD 的对角线AC BD ,相交于点O ,过点C 作CE AB ⊥,交AB 于点E ,连接OE ,若3,4OE OB ==,则CE 的长为( )A B .125 C .245 D .485二、填空题11.已知a ,b ,c ,d 是成比例线段,且2,6,3a b c ===,那么d =.12.2023年5月8日起至2023年6月10日止,“印象长治⋅诗画太行”主题摄影展进行征稿,作品内容包括“产业发展”“城市建设”“自然人文”“民生福祉”四部分,展览按照四部分分类展出,现小文和小乐两人各随机从中选择一类展览先进行观看,则两人选择先观看的展览作品内容恰好是同一类别的概率为 .13.若关于x 的一元二次方程2210kx x -+=无实数根,则k 的取值范围是.14.如图,在菱形ABCD 中,AB 的垂直平分线交对角线BD 于点F ,垂足为点E ,连接AF 、AC ,若∠DCB =70°,则∠F AC =.15.如图,正方形ABCD 的边长为8,P 是边CD 上的一动点,EF ⊥BP 交BP 于G ,且EF 平分正方形ABCD 的面积,则线段GC 的最小值是.三、解答题16.计算(1)2210x -+=(公式法)(2)23410x x -+=(配方法)17.在Rt ABC △中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作AF BC ∥交BE 的延长线于点F .(1)求证:AEF DEB V V ≌;(2)证明四边形ADCF 是菱形.18.已知关于x 的方程()2223410x k x k k ----+=.若这个方程有实数根,求k 的取值范围.19.某校积极响应推进“文明城市建设”的工作,培养学生的环保意识.为了解学生对环保知识的掌握情况,该校随机抽取了一个班的学生,对他们进行了垃圾分类了解程度的调查(A 类表示不了解,B 类表示了解很少,C 类表示基本了解,D 类表示非常了解).根据调查的结果绘制了如下两幅不完整的统计图:请根据图中提供的信息,解答下列问题:(1)该班的学生共有________名;在扇形统计图中A 类所对的扇形圆心角的度数为_______;(2)请补全条形统计图.(3)根据统计结果,请估计全校1200名学生中对垃圾分类不了解的学生人数.(4)从D 类的10人中选5人,其中2人善于语言表达,3人善于动作表演.现从这5人中随机抽取2人参加班级举行的“文明践行从我做起”主题班会的“双簧”表演,请用列表或画树状图的方法求出所选2人恰好1个善于语言表达1个善于动作表演的概率.20.某景区的门票价格为每人80元,每天最多能接待2500名游客,在旅游旺季平均每天能售出1000张门票.为了吸引更多的游客,提高景区知名度,景区决定适当降低门票价格.经过调查发现,当票价每降低2元时,在旅游旺季每天可以多卖出100张票.(1)设每张门票降低x 元,则每天可售出_______张门票;(2)若景区想每天获得12万元的门票收入,则每张门票应降低多少元?21.如图,学校的操场上有一旗杆AB ,甲在操场上的C 处竖立3m 高的竹竿CD ;乙从C 处退到E 处恰好看到竹竿顶端D 与旗杆顶端B 重合,量得CE =3m ,乙的眼睛到地面的距离FE =1.5m ;丙在C 1处竖立3m 高的竹竿C 1D 1,乙从E 处后退6m 到E 1处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D 1与旗杆顶端B 也重合,量得C 1E 1=4m .求旗杆AB 的高.22.阅读材料:材料1:若关于x 的一元二次方程20(a 0)++=≠ax bx c 的两个根为1x ,2x ,则12b x x a+=-,12c x x a=. 材料2:已知一元二次方程210x x --=的两个实数根分别为m ,n ,求22m n mn +的值. 解:∵一元二次方程210x x --=的两个实数根分别为m ,n ,∴1m n +=,1mn =-,则22()111m n mn mn m n +=+=-⨯=-.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2310x x --=的两个根为1x ,2x ,则12x x +=___________,12x x =___________.(2)类比应用:已知一元二次方程2310x x --=的两根分别为m 、n ,求n m m n+的值. (3)思维拓展:已知实数s 、t 满足2310s s --=,2310t t --=,且s t ≠,求11 s t-的值. 23.(1)【问题提出】:“综合实践课”上,老师画出了如图①所示的矩形ABCD AD nAB =,(其中1n >),点P (不与点A 重合)是边AD 上的动点,连接点P 边AB 的中点E ,将APE V 沿直线PE 翻折得到OPE V ,延长PO 交BC 于点F (点F 不与点C 重合),作PFC ∠的平分线FG ,交矩形ABCD 的边于点G .试说明PE FG ∥;(2)【问题探究】:老师将图①中的图形通过几何画板改动为图②,在点P 运动过程中,连接EG ,若E ,O ,G 三点共线,点G 与点D 恰好重合,求n 的值.(3)【问题解决】:如图③,若2n =,连接OG ,当P O G V 是以OP 为直角边的直角三角形,且点G 落在边AD 上时,求DP AP的值.。
北师大版九年级上册数学全册综合测试试题
九年级数学试题一.选择题(每题4分共48分)1.方程x(x﹣1)=0的根是()A.x=0B.x=1C.x1=0,x2=1D.x1=0,x2=﹣1 2.如图所示的几何体的左视图是()A.B.C.D.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上5.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2B.3C.4D.56.点A(a,﹣1),在双曲线y=上,则a的值是()A.1B.﹣1C.3D.﹣37.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:818.如图,某大楼DE的顶部竖有一块广告牌CD,小林在山坡的坡脚A处测得广告牌底部D 的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:2.4,AB=26米,AE=30米.则广告牌CD的高度约为()(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)A.35B.30C.24D.209.某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米10.下列说法中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线互相垂直D.正方形的对角线相等11.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.12.若反比例函数y=(a>1,x<0)图象上有两个点(x1,y1),(x2,y2),设m=(x1﹣x2)(y1﹣y2),则y=mx﹣m不经过第()象限.A.一B.二C.三D.四二.填空题(每题4分共24分)13.如果,那么=.14.如图,矩形的对角线AC和BD相交于O,∠BOC=120°,AB=3,则BD的长是15.如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.16.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有个红球.17.如图,直线y=﹣x+2与x轴交于C,与y轴交于D,以CD为边作矩形CDAB,点A 在x轴上,双曲线y=(k<0)经过点B与直线CD交于E,EM⊥x轴于M,则S四边形BEMC=.18.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三.解答题(共78分)19.(6分)计算:cos245°﹣4sin30°tan45°20.(6分)解方程:x2﹣4=3(x﹣2)21.(6分)如图,在菱形ABCD中,CE=CF,求证:AE=AF.22.(8分)如图,在12×12的正方形网格中,△TAB的顶点分别为T(1,1),A(2,3),B(4,2).(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB 放大为△TA′B′,放大后点A,B的对应点分别为A′,B′,画出△TA′B′,并写出点A′,B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.23.(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)24.(10分)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.25.(10分)如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?26.(12分)如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.27.(12分)问题提出(1)如图①,Rt△ABC中AB=3,平面内有一点D且AD=1,则点D到BC的距离DE 的最小值为;问题探究(2)如图②,矩形ABCD,AB=3,BC=4,点E在边AB上且BE=1,点F是边BC 上的点,将△EFB沿EF所在直线折叠到△EFO处,连接AO、CO,四边形AOCD的面积是否存在最小值,若存在,求出并说明理由.(3)如图③,矩形ABCD中,AD=2,AB=6,点E、F分别在边BC、CD上,且线段EF=2,点G是EF中点,连接BG交CD于点H,过G做CD的平行线交BD于点I,连接HI,则△BHI的面积是否存在最小值,若存在,求出并说明理由.参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣1)=0的根是()A.x=0B.x=1C.x1=0,x2=1D.x1=0,x2=﹣1【分析】由题意推出x=0,或(x﹣1)=0,解方程即可求出x的值.【解答】解:∵x(x﹣1)=0,∴x1=0,x2=1,故选:C.【点评】本题主要考查解一元二次方程,关键在于根据题意推出x=0,或(x﹣1)=0即可.2.如图所示的几何体的左视图是()A.B.C.D.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解答】解:∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=∠DAB=25°.故选:B.【点评】此题主要考查了菱形的性质,正确得出∠DAB的度数是解题关键.4.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【解答】解:A、是随机事件,故A正确;B、不是必然事件,故B错误;C、不是必然事件,故C错误;D、是随机事件,故D错误;故选:A.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2B.3C.4D.5【分析】根据平行线分线段成比例定理列出比例式,代入计算.【解答】解:∵AD∥BE∥CF,∴=,∵AB=3,BC=6,DE=2,∴EF==4,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.6.点A(a,﹣1),在双曲线y=上,则a的值是()A.1B.﹣1C.3D.﹣3【分析】把点A(a,﹣1)代入y=即可得到结论.【解答】解:把点A(a,﹣1)代入y=得,﹣a=3,∴a=﹣3,故选:D.【点评】本题考查了反比例函数的性质,反比例函数图形上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.7.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.8.如图,某大楼DE的顶部竖有一块广告牌CD,小林在山坡的坡脚A处测得广告牌底部D 的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:2.4,AB=26米,AE=30米.则广告牌CD的高度约为()(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)A.35B.30C.24D.20【分析】过B作BG⊥DE于G,BH⊥AE于H,由坡度的定义求出BH=10,AH=24,求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG=54,再求出DE的长,即可得出答案.【解答】解:过B作BG⊥DE于G,BH⊥AE于H,如图:则BG=AH+AE,GE=BH,在Rt△ABF中,i=tan∠BAH=1:2.4=,∴AH=2.4BH,∴AB==2.6BH=26,∴BH=10,AH=24,∴BG=AH+AE=24+30=54,在Rt△BGC中,∠CBG=45°,∴CG=BG=54.在Rt△ADE中,∠DAE=53°,∴∠ADE=90°=53°=37°,∵tan∠ADE==tan37°≈0.75,∴DE=AE=40.∴CD=CG+GE﹣DE=54+10﹣40=24(米);即广告牌CD的高度约为24米;故选:C.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.9.某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:∵同一时刻物高与影长成正比例.∴1.8:1.5=旗杆的高度:12∴旗杆的高度为14.4米故选:C.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.10.下列说法中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线互相垂直D.正方形的对角线相等【分析】利用正方形的性质,矩形的性质,菱形的性质,平行四边形的性质依次判断可求解.【解答】解:A、平行四边形的对角线互相平分,故选项A不符合题意;B、菱形的对角线互相垂直平分,故选项B不符合题意;C、矩形的对角线相等且互相平分,故选项C符合题意;D、正方形的对角线相等且互相垂直平分,故选项D不符合题意;故选:C.【点评】本题考查了正方形的性质,平行四边形的性质,菱形的性质,矩形的性质,掌握这些性质是本题的关键.11.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【分析】过C作CD⊥AB于D,首先根据勾股定理求出AC,然后在Rt△ACD中即可求出sin∠BAC的值.【解答】解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.【点评】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.12.若反比例函数y=(a>1,x<0)图象上有两个点(x1,y1),(x2,y2),设m=(x1﹣x2)(y1﹣y2),则y=mx﹣m不经过第()象限.A.一B.二C.三D.四【分析】利用反比例函数的性质判断出m的正负,再根据一次函数的性质即可判断.【解答】解:∵y=(a>1,x<0),∴a﹣1>0,∴y=(a>1,x<0)图象在三象限,且y随x的增大而减小,∵图象上有两个点(x1,y1),(x2,y2),x1与y1同负,x2与y2同负,∴m=(x1﹣x2)(y1﹣y2)<0,∴y=mx﹣m的图象经过一,二、四象限,不经过三象限,故选:C.【点评】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共7小题)13.如果,那么=.【分析】用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=b,∴==.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键.14.如图,矩形的对角线AC和BD相交于O,∠BOC=120°,AB=3,则BD的长是6【分析】根据矩形的性质,因为矩形的对角线相等且互相平分,则△AOB是等腰三角形.【解答】解:∵∠BOC=120°,∴∠AOB=180°﹣∠BOC=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=OD,∴△AOB是等边三角形,∴AO=OB=AB=3,∴BD=2OB=6.故答案为:6【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记各性质并判断出△AOB 是等边三角形是解题的关键.15.如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.【分析】由方程x2﹣3x+m=0有两个相等的实数根,即可得根的判别式△=b2﹣4ac=0,即可得方程9﹣4m=0,解此方程即可求得答案.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m=9﹣4m=0,解得:m=.故答案为:.【点评】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有6个红球.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:设袋中有x个红球.由题意可得:=20%,解得:x=6,故答案为:6.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17.如图,直线y=﹣x+2与x轴交于C,与y轴交于D,以CD为边作矩形CDAB,点A在x轴上,双曲线y=(k<0)经过点B与直线CD交于E,EM⊥x轴于M,则S四边形BEMC=.【分析】欲求S四BEMC,可将化为求S△BEC和S△EMC,根据题意,两三角形均为直角三角形,故只需求出B到CD的距离和E、C两点的坐标即可.【解答】解:根据题意,直线y=﹣x+2与x轴交于C,与y轴交于D,分别令x=0,y=0,得y=2,x=4,即D(0,2),C(4,0),即DC=2,又AD⊥DC且过点D,所以直线AD所在函数解析式为:y=2x+2,令y=0,得x=﹣1,即A(﹣1,0),同理可得B点的坐标为B(3,﹣2)又B为双曲线(k<0)上,代入得k=﹣6.即双曲线的解析式为与直线DC联立,,得和根据题意,不合题意,故点E的坐标为(6,﹣1).所以BC=,CE=,CM=2,EM=1,所以S△BEC=×BC×EC=,S△EMC=×EM×CM=1,故S四边形BEMC=S△BEC+S△EMC=.故答案为:.【点评】本题综合考查了直线方程和双曲线方程的解答,以及对四边形面积的求解.18.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有①②④(把所有正确结论的序号都填上).【分析】①正确.证明∠ADM=30°,即可得出结论.②正确.证明△DHM是等腰直角三角形即可.③错误.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.④正确.证明∠AHM<∠BAC=45°,即可判断.【解答】解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③错误,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②④.故答案为①②④.【点评】本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.四.解答题(共9小题)19.计算:cos 245°﹣4sin30°tan45°=23-20.解方程:x 2﹣4=3(x ﹣2) 1,221==x x21.如图,在菱形ABCD 中,CE =CF ,求证:AE =AF .【分析】由四边形ABCD 为菱形,可得AD =AB =CD =CB ,∠B =∠D .又因为CE =CF ,所以CD ﹣CE =CB ﹣CF ,即DE =BF .可证△ADE ≌△ABF ,所以AE =AF .【解答】证明:∵四边形ABCD 为菱形,∴AD =AB =CD =CB ,∠B =∠D .又∵CE =CF ,∴CD ﹣CE =CB ﹣CF ,即DE =BF .在△ADE 和△ABF 中∴△ADE ≌△ABF (SAS ).∴AE=AF.【点评】此题主要考查了菱形的性质以及全等三角形的判断和性质形,能够灵活运用菱形知识解决有关问题是解题的关键.22.如图,在12×12的正方形网格中,△TAB的顶点分别为T(1,1),A(2,3),B(4,2).(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB 放大为△TA′B′,放大后点A,B的对应点分别为A′,B′,画出△TA′B′,并写出点A′,B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.【分析】(1)根据题目的叙述,正确地作出图形,然后确定各点的坐标即可.(2)根据(1)中变换的规律,即可写出变化后点C的对应点C′的坐标.【解答】解:(1)所画图形如下所示:点A′,B′的坐标分别为:A′(4,7),B′(10,4);(2)变化后点C的对应点C′的坐标为:C′(3a﹣2,3b﹣2)或填C′(3(a﹣1)+1,3(b﹣1)+1).【点评】本题考查位似变换作图的问题,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.23.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【分析】(1)开通隧道前,汽车从A地到B地要走的距离为AC+BC的长,利用角的正弦值和余弦值即可算出.(2)开通隧道后,汽车从A地到B地要走的距离为AB的长,汽车从A地到B地比原来少走的路程为AC+BC﹣AB的长,利用角的余弦值和正切值即可算出.【解答】解:(1)如图,过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC===40(千米),∴AC+BC=80+40≈1.41×40+80=136.4(千米).∴开通隧道前,汽车从地到地大约要走136.4千米.(2)∵cos30°=,BC=80千米,∴BD=BC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴AD===40(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.【点评】本题主要考查了三角函数在解直角三角形中的应用,明确三角函数的定义式及其变形是解题的关键.24.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.【分析】(1)由概率公式即可得出结果;(2)画出树状图,由树状图求得所有等可能的结果与抽到的两张卡片上标有的数字之和大于7的情况,再由概率公式即可求得答案.【解答】解:(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率为;故答案为:;(2)画树状图得:共有9种等可能的结果,抽到的两张卡片上标有的数字之和大于7的有3种情况,∴两次抽取的卡片上数字之和大于7的概率为=.【点评】本题考查了列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?【分析】(1)设道路宽x米,根据题意列出方程,求出方程的解即可得到结果.(2)设选A种类型步道砖y平方米,根据铺路费用不高于23600元,列出不等式求解即可.【解答】解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.26.如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3﹣n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m﹣3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【解答】解:(1)∵直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴﹣a+2=3,﹣3+2=b,∴a=﹣1,b=﹣1,∴A(﹣1,3),B(3,﹣1),∵点A(﹣1,3)在反比例函数y=上,∴k=﹣1×3=﹣3,∴反比例函数解析式为y=﹣;(2)设点P(n,﹣n+2),∵A(﹣1,3),∴C(﹣1,0),∵B(3,﹣1),∴D(3,0),∴S△ACP=AC×|x P﹣x A|=×3×|n+1|,S△BDP=BD×|x B﹣x P|=×1×|3﹣n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3﹣n|,∴n=0或n=﹣3,∴P(0,2)或(﹣3,5);(3)设M(m,0)(m>0),∵A(﹣1,3),B(3,﹣1),∴MA2=(m+1)2+9,MB2=(m﹣3)2+1,AB2=(3+1)2+(﹣1﹣3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m﹣3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=﹣1+或m=﹣1﹣(舍),∴M(﹣1+,0)③当MB=AB时,(m﹣3)2+1=32,∴m=3+或m=3﹣(舍),∴M(3+,0)即:满足条件的M(﹣1+,0)或(3+,0).【点评】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.27.问题提出(1)如图①,Rt△ABC中AB=3,平面内有一点D且AD=1,则点D到BC的距离DE 的最小值为2;问题探究(2)如图②,矩形ABCD,AB=3,BC=4,点E在边AB上且BE=1,点F是边BC 上的点,将△EFB沿EF所在直线折叠到△EFO处,连接AO、CO,四边形AOCD的面积是否存在最小值,若存在,求出并说明理由.(3)如图③,矩形ABCD中,AD=2,AB=6,点E、F分别在边BC、CD上,且线段EF=2,点G是EF中点,连接BG交CD于点H,过G做CD的平行线交BD于点I,连接HI,则△BHI的面积是否存在最小值,若存在,求出并说明理由.【分析】(1)如图①中,根据垂线段最短,构建不等式解决问题即可.(2)存在.如图②中,连接AC,过点E作EH⊥AC于H,过点O作OJ⊥AC于J.求出OJ的最小值即可解决问题.(3)存在.如图③中,连接CG,过点G作GJ⊥BD于J,根点C作CK⊥BD于K.由题意S△BIH=•GI•AD=GI,推出GI的值最小时,△BIH的面积最小,根据垂线段最短,构建不等式求出GJ的最小值即可解决问题.【解答】解:(1)如图①中,∵DE⊥BC,AB⊥BC,∴AD+DE≥AB,∴1+DE≥3,∴DE≥2,∴DE的最小值为2.故答案为2.(2)存在.理由:如图②中,连接AC,过点E作EH⊥AC于H,过点O作OJ⊥AC于J.∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC===5,∵BE=1,∴AE=AB﹣BE=2,∵sin∠BAC==,∴=,∴EH=,∵OJ⊥AC,EH⊥AC,∴EO+OJ≥EH,∴1+OJ≥,∴OJ≥,∴OJ的最小值为,∴△AOC的面积的最小值为×5×=,∴四边形ADCO的面积的最小值为+×3×4=.(3)存在.理由:如图③中,连接CG,过点G作GJ⊥BD于J,根点C作CK⊥BD于K.∵GI∥CD,AB∥CD,∴GI∥AB,∴S△BIH=•GI•AD=GI,∴GI的值最小时,△BIH的面积最小,∵四边形ABCD是矩形,∴∠A=90°,∴tan∠ABD==,∴∠ABD=30°,BD=2AD=4,∵CK⊥BD,∴S△BCD=•CD•CB=•BD•CK,∴CK=3,∵GI∥AB,∴∠GIJ=∠ABD=30°,∵∠GJI=90°,∴GJ=GI,∵GJ⊥BD,CK⊥BD,∴CG+GJ≥CK,∵∠ECF=90°,EF=2,FG=EG,∴CG=EF=1,∴1+GJ≥3,∴GJ≥2,∴GJ的最小值为2,∴IG的最小值为4,∴△BHI的面积的最小值为4.【点评】本题属于四边形综合题,考查了矩形的性质,解直角三角形,垂线段最短,四边形的面积等知识,解题的关键是学会利用垂线段最短,解决最值问题,属于中考压轴题.。
北师大版九年级数学上册全册综合测试试卷 无答案
九年级数学上册综合测试试卷(满分100分,考试时间90分钟)学校班级 姓名一、选择题(每小题 3 分,共 24 分)1. 一元二次方程 4x 2-x =1 的解是( )A .x =0B .x 1=0,x 2=4 2.菱形、矩形、正方形都具有的性质是()A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等3.若反比例函数 y k的图象过点(-2,1),则一次函数 y =kx -k 的图象过( )xA .第一、二、四象限B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限 4.如图 1 是一个正三棱柱毛坯,将其截去一部分,得到一个工件如图 2,这个工件的俯视图是( )图 1 图 2 abcdA .aB .bC .cD .d 5.已知关于 x 的一元二次方程 mx 2+2x -1=0 有两个不相等的实数根,则 m 的取值范围是( ) A .m <-1 B .m >1 C .m <1 且 m ≠0 D .m >-1 且 m ≠0 6.如图,在平行四边形 ABCD 中,过点 B 的直线与对角线 AC 、边 AD 分别交于点 E ,F ,过点 E 作 EG ∥BC ,交 AB 于 G ,则图中的相似三角形有( ) A .4 对 B .5 对 DC .6 对D .7 对7.点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y =-3的图象上,若x1<xx2<0<x3,则y1,y2,y3 的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3 8.如图,在△ABC 中,∠ACB=90°,CB=CA,点D 在边BC 上(与B,C 不重合),四边形ADEF 为正方形,过点F 作FG⊥AC,交CA 的延长线于点G,连接FB,交DE于点Q.给出以下结论:①AC=FG;②S△FAB :S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ·AC.其中正确的结论有()A.1 个B.2 个G FC.3 个D.4 个AE二、填空题(每小题3 分,共21 分)Q C D B9.已知点P(a,b)在反比例函数y =2的图象上,若点P 关于y 轴的对称点在反x比例函数y =k的图象上,则k 的值为.x10.若线段MN 的长为1,P 是MN 的黄金分割点,则MP 的长为.11.如图,在长70 m,宽40 m 的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的1,则路宽x 应满足的方程是8.4012.如图,小明在墙上挂了一面镜子AB,调整好标杆CD,正好通过标杆顶部在镜子上边缘A 处看到旗杆的顶端E 的影子,已知AB=2 m,CD=1.5 m,BD=2 m,BF=20 m,则旗杆EF 的高度为.EB D FA CFE M 13.如图,在△ABC 中,AB =6,AC =8,BC =10,P 为 BC 边上一动点,PE ⊥AB 于点 E ,PF ⊥AC 于点 F .若 M 为 EF 的中点,则 AM 长度的最小值为 .ABP C第 13 题图第 14 题图14.如图,直线 y =2x 与双曲线 y = k(x >0)交于点 A ,将直线 y =2x 向右平移 3 x个单位后,与双曲线 y = k (x >0)交于点 B ,与 x 轴交于点 C .若 BC = 1OA ,x 2则 k 的值为 . 15.如图,矩形 ABCD 与菱形 EFGH 的对角线均交于点 O ,且 EG ∥BC ,将矩形 折叠,使点 C 与点 O 重合,折痕 MN 恰好经过点 G ,若 AB = ∠H =120°,则 DN 的长为 .AB,EF =2,DC三、解答题(本大题共 7 个小题,满分 55 分) 16. (5 分)解方程:3x 2+8x -3=0.D'N HE OGFM617.(8 分)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF∥BC 交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF 是菱形; A F (3)若AC=4,AB=5,求菱形ADCF 的面积.E18.(8 分)父亲节快到了,明明准备为爸爸煮四个大汤圆作为早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.yB O xA19. (8 分)如图,已知反比例函数 y 2的图象与正比例函数 y =kx 的图象交于x点 A (m ,-2).(1)求正比例函数的解析式及两函数图象另一个交点 B 的坐标.(2)试根据图象写出不等式 2≥kx 的解集.x(3)在反比例函数图象上是否存在点 C ,使△OAC 为等边三角形?若存在, 求出点 C 的坐标;若不存在,请说明理由.20. (8 分)某商店购进 600 个旅游纪念品,进价为每个 6 元,第一周以每个 10元的价格售出 200 个,第二周若按每个 10 元的价格销售仍可售出 200 个, 但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低 1 元, 可多售出 50 个,但售价不得低于进价).第二周过后,商店对剩余旅游纪念品清仓处理,以每个 4 元的价格全部售出,若这批旅游纪念品共获利 1 250 元,则第二周每个旅游纪念品的售价为多少元?AC'OFO21. (8 分)(1)已知正方形 ABCD 中,对角线 AC 与 BD 相交于点 O ,如图 1,将△BOC 绕点 O 逆时针旋转得到△B′OC′,OC′与 CD 交于点 M ,OB′与 BC 交于点 N ,请猜想线段 CM 与 BN 的数量关系,并证明你的猜想.(2)如图 2,将(1)中的△BOC 绕点 B 逆时针旋转得到△BO′C′,连接 AO′, DC′,请猜想线段 AO′与 DC′的数量关系,并证明你的猜想.(3)如图 3,已知矩形 ABCD 和 Rt △AEF 有公共点 A ,且∠AEF =90°,连接DE ,CF ,若 EF =3,AE =4,AB =9,BC =12,请求出DE的值.CFAD MC'OBN C B' 图 1DO'BC图 2EADBC图 322.(10 分)如图,在平面直角坐标系中,△ABC 的顶点A 在x 轴负半轴上,顶点C 在x 轴正半轴上,顶点B 在第一象限,过点B 作BD⊥y 轴于点D,线段OA,OC 的长是一元二次方程x2-12x+36=0 的两个实数根,BC= 4 5 ,∠BAC=45°.(1)求点A,C 的坐标.(2)反比例函数y k的图象经过点B,求k 的值.x(3)在y 轴上是否存在点P,使以P,B,D 为顶点的三角形与以P,O,A 为顶点的三角形相似?若存在,请写出满足条件的点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.。
新北师大版九年级数学上册综合测试卷(word文档有答案)
新北师大版九年级数学上册综合测试卷==本文档为word 格式,下载后可随意编辑修改!==(时间:100分钟 满分:120分)班级 姓名 总分一、选择题(本大题10小题,每小题3分,共30分)1. 在下列几何体中,三视图都是圆为( )2. 已知x =1是方程x 2+px +1=0的一个实数根,则p 的值是( )A .0B .1C .2D .-23. 如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,则下列式子不正确的是( )A .AB BC =DE EF B .AB DE =BC EF C .AB AC =DE DFD .AB BC =BE CF第3题图)第7题图)4. 若关于x 的方程kx 2-3x -94=0有实数根,则实数k 的取值范围是( )A .k =0B .k ≥-1且k≠0C .k ≥-1D .k>-15. 下列命题中,是假命题的是( )A .分别有一个角是110°的两个等腰三角形相似B .如果两个三角形相似,则它们的面积比等于相似比C .若5x =8y ,则x y =85D .一个角相等的两个菱形相似6. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( )A .13B .23C .16D .567. 小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A .10米B .12米C .15米D .22.5米8. 反比例函数y =kbx的图象如图所示,则一次函数y =kx +b(k≠0)的图象大致是( )9. 如图,菱形ABCD 的边长为4,对角线交于点 O ,∠ABC =60°,点E ,F 分别为AB ,AO 的中点,则EF 的长度为( )A . 3B .3C .2 3D .4(第9题图) (第10题图)10. 如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④二、填空题(本大题6小题,每小题4分,共24分) 11. 若a b =c d =3(b +d≠0),则a +cb +d= .12. 为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x ,则根据题意可列方程为13. 若y =(m -3)xm 2-2m -4是反比例函数,则m = .14. 如图,在矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE⊥AC 交AD 于点E ,则AE 的长是 .,第14题图),第15题图) ,第16题图)15. 如图,Rt △ABC 中,∠ACB =90°,直线EF∥BD 交AB 于点E ,交AC 于点G ,交AD 于点F.若S △AEG =13S四边形EBCG ,则CFAD= .16. 如图,正方形ABCD 的边长为8,M 在CD 上,且DM =2,N 是AC 上的一个动点,则DN +MN 的最小值为 .三、解答题(一)(本大题3个小题,每小题6分,共18分) 17. 解方程:(1)2(x -3)2=x 2-9; (2)3x(x -1)=2(1-x).18. 如图,直线y =-x +2与反比例函数y =kx的图象只有一个交点,求反比例函数的表达式.19. 一张长为30 cm ,宽20 cm 的矩形纸片,如图①所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264 cm 2,求剪掉的正方形纸片的边长.三、解答题(二)(本大题3个小题,每小题7分,共21分)20. 已知关于x 的一元二次方程(m -2)x 2+2mx +m +3=0有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.21. 如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数.22. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x ,y 确定的点(x ,y)在函数y =-x +5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy>6则小明胜,若x ,y 满足xy<6则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,函数y =kx 的图象y =-2x +8交于点A(1,a),B(b ,2).(1)求函数y =kx的解析式以及A ,B 的坐标;(2)观察图象,直接写出不等式kx>-2x +8的解集;(3)若点P 是y 轴上的动点,当PA +PB 取得最小值时,直接写出点P 的坐标.24. 如图,四边形ABCD是正方形,AB=4,E是边CD上的点,F是DA延长线上的点且CE=AF,将△BCE 沿BE折叠,得到△BC′E,延长BC′交AD于G.(1)求证:△BCE≌△BAF;(2)若DG=1,求FG的长;(3)若∠CBE=30°,点B和点H关于DF的对称,求证:四边形FHGB是菱形.25. 如图,在Rt△ABC中,∠C=90°,AC=3 3 cm,BC=3 cm,点P由B点出发沿BA方向向点A匀速运动,速度为2 cm/s,点Q由A点出发沿AC方向向点C匀速运动,速度为 3 cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.新北师大版九年级数学上册综合测试卷参考答案一、选择题(本大题10小题,每小题3分,共30分)1. 在下列几何体中,三视图都是圆为(D )2. 已知x =1是方程x 2+px +1=0的一个实数根,则p 的值是(D )A .0B .1C .2D .-23. 如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,则下列式子不正确的是(D )A .AB BC =DE EF B .AB DE =BC EF C .AB AC =DE DFD .AB BC =BE CF第3题图)第7题图)4. 若关于x 的方程kx 2-3x -94=0有实数根,则实数k 的取值范围是(C )A .k =0B .k ≥-1且k≠0C .k ≥-1D .k>-15. 下列命题中,是假命题的是(B )A .分别有一个角是110°的两个等腰三角形相似B .如果两个三角形相似,则它们的面积比等于相似比C .若5x =8y ,则x y =85D .一个角相等的两个菱形相似6. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是(B )A .13B .23C .16D .567. 小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为(A )A .10米B .12米C .15米D .22.5米8. 反比例函数y =kbx的图象如图所示,则一次函数y =kx +b(k≠0)的图象大致是(D )9. 如图,菱形ABCD 的边长为4,对角线交于点 O ,∠ABC =60°,点E ,F 分别为AB ,AO 的中点,则EF 的长度为(A )A . 3B .3C .2 3D .4(第9题图) (第10题图)10. 如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是(C )A .①③B .②③C .①④D .②④二、填空题(本大题6小题,每小题4分,共24分) 11. 若a b =c d =3(b +d≠0),则a +cb +d=3.12. 为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x ,则根据题意可列方程为100(1-x)2=81.13. 若y =(m -3)xm 2-2m -4是反比例函数,则m =-1.14. 如图,在矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE⊥AC 交AD 于点E ,则AE 的长是3.4.,第14题图),第15题图) ,第16题图)15. 如图,Rt △ABC 中,∠ACB =90°,直线EF∥BD 交AB 于点E ,交AC 于点G ,交AD 于点F.若S △AEG =13S四边形EBCG ,则CF AD =12.16. 如图,正方形ABCD 的边长为8,M 在CD 上,且DM =2,N 是AC 上的一个动点,则DN +MN 的最小值为10.(1)2(x -3)2=x 2-9; (2)3x(x -1)=2(1-x).解:x 1=3,x 2=9 解:x 1=1,x 2=-2318. 如图,直线y =-x +2与反比例函数y =kx的图象只有一个交点,求反比例函数的表达式.解:由k x =-x +2得x 2-2x +k =0,∵直线y =-x +2与y =k x只有一个交点,则Δ=0.解得k =1.∴反比例函数的表达式为y =1x19. 一张长为30 cm ,宽20 cm 的矩形纸片,如图①所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264 cm 2,求剪掉的正方形纸片的边长.解:设剪掉的正方形纸片的边长为x cm .由题意,得 (30-2x)(20-2x)=264.整理,得 x 2-25x +84=0,解方程,得x 1=4,x 2=21(不符合题意,舍去).答:剪掉的正方形的边长为4 cm三、解答题(二)(本大题3个小题,每小题7分,共21分)20. 已知关于x 的一元二次方程(m -2)x 2+2mx +m +3=0有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.解:(1)由题意知,Δ=(2m)2-4(m -2)(m +3)>0,解得m <6,又m -2≠0,即m≠2,则m <6且m≠2(2)由(1)知m =5,则方程为3x 2+10x +8=0,即(x +2)(3x +4)=0,解得x 1=-2,x 2=-4321. 如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数.解:(1)∵EF 垂直平分BC ,∴CF =BF ,BE =CE ,∠BDE =90°,BD =CD ,又∵∠ACB=90°,∴EF ∥AC ,∴BE∶AB=DB∶BC=1∶2∴点E 为AB 的中点,即BE =AE.∵CF=AE ,∴CF =BE.∴CF=FB =BE =CE.∴四边22. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x ,y 确定的点(x ,y)在函数y =-x +5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy>6则小明胜,若x ,y 满足xy<6则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.解:(1)画树状图:∵共有12种等可能的结果,在函数y =-x +5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x ,y)在函数y =-x +5的图象上的概率为412=13(2)∵x,y 满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x ,y 满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P(小明胜)=412=13,P(小红胜)=612=12.∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy≥6,则小明胜,若x ,y 满足xy<6,则小红胜五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,函数y =kx 的图象y =-2x +8交于点A(1,a),B(b ,2).(1)求函数y =kx的解析式以及A ,B 的坐标;(2)观察图象,直接写出不等式kx>-2x +8的解集;(3)若点P 是y 轴上的动点,当PA +PB 取得最小值时,直接写出点P 的坐标.解:(1)反比例函数解析式为y =6x,A(1,6),B(3,2) (2)0<x <1或x >3 (3)作点B 关于y 轴的对称点B′(-3,2),连接AB′交y 轴于点P ,则PB′=PB ,所以AP +BP =AP +B′P=AB′,即AP +BP 的最小值为线段AB′的长度.设直线AB′的解析式为y =mx +n ,∵A(1,6),B ′(-3,2),∴⎩⎪⎨⎪⎧m +n =6,-3m +n =2,解得⎩⎪⎨⎪⎧m =1,n =5,∴直线AB′的解析式为y =x +5,当x =0时,y =5,∴点P 的坐标为(0,5)24. 如图,四边形ABCD 是正方形,AB =4,E 是边CD 上的点,F 是DA 延长线上的点且CE =AF ,将△BCE 沿BE 折叠,得到△BC′E,延长BC′交AD 于G.(1)求证:△BCE≌△BAF; (2)若DG =1,求FG 的长;(3)若∠CBE=30°,点B 和点H 关于DF 的对称,求证:四边形FHGB 是菱形.解:(1)在正方形ABCD 中,BA =BC ,∠C =∠BAD=∠BAF=90°,∵AF =CE ,∴△BCE ≌△BAF (2)由(1)知,∠AFB =∠BEC,∠FBA =∠CBE,∠ABC =90°,∴∠FBE =90°,∴∠FBG =90°-∠CBE=∠GFB,∴FG =BG ,∵AD =AB =4,DG =1,∴AG =3,BG =5,∴FG =BG =5 (3)∵∠CBE=30°,∴∠ABF =∠CBE=∠ABG=30°,∵点B 关于DA 的对称点为H ,∴BF =HF ,GH =GB ,∠ABF =∠AHF=30°=∠ABG=∠GHA,∴25. 如图,在Rt △ABC 中,∠C =90°,AC =3 3 cm ,BC =3 cm ,点P 由B 点出发沿BA 方向向点A 匀速运动,速度为2 cm /s ,点Q 由A 点出发沿AC 方向向点C 匀速运动,速度为 3 cm /s ;若设运动的时间为t(s )(0<t <3),解答下列问题:(1)如图①,连接PC ,当t 为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P ,Q 运动时,是否存在某一时刻t ,使得点P 在线段QC 的垂直平分线上,请说明理由;(3)如图③,当点P ,Q 运动时,线段BC 上是否存在一点G ,使得四边形PQGB 为菱形?若存在,试求出BG 长;若不存在请说明理由.解:(1)在Rt △ACB 中,∠C =90°,AC =3 3 cm ,BC =3 cm ,∴AB =6,由运动知,BP =2t ,AQ =3t ,∴AP =6-2t ,∵△APC ∽△ACB ,∴AC AB =AP AC ,∴336=6-2t 33,∴t =34 (2)存在,理由:过点P 作PM⊥AC,由运动知,BP =2t ,AQ =3t ,∴AP =6-2t ,CQ =33-3t ,∵点P 在QC 的垂直平分线上,∴QM =CM =12CQ =12(33-3t)=32(3-t),∴AM =AQ +QM =3t +12(33-3t)=32(t +3).∵∠ACB=90°,∴PM ∥BC ,∴AP AM =BPCM,∴6-2t 32(t +3)=2t32(3-t ),∴t =1 (3)不存在,理由:由运动知,BP =2t ,AQ =3t ,∴AP =6-2t ,假设线段BC 上是存在一点G ,使得四边形PQGB 为菱形,∴PQ ∥BG ,PQ =BG ,∴△APQ ∽△ABC ,∴AP AB =AQ AC =PQ BC ,∴6-2t 6=3t 33=PQ 3,∴t =32,PQ =32,∴BP =2t =3,∴PQ ≠BP ,∴四边形PQGB 不可能是菱形.即:线段BC 上不存在一点G ,使得四边形PQGB 为菱形。
2023-2024学年九年级上学期数学(北师大版)第一次月考试卷附详细答案精选全文
可编辑修改精选全文完整版2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( )ADCBOA.1B.−1C.0D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DC 边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A第8题图ADCBO第12题图A D BCPE第11题图ACDB出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBEO ABCDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
北师大九年级上册数学全册单元测试
北师大九年级上册数学全册单元测试WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】九年级数学单元测试卷(证明二)一.选择题(本题共5小题,每题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选项的字母写在题目后面的括号里.1.在△ABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则∠B 的度数为( )A .20°B .70°C .70°或20°D .无法确定2.如图,在△ABC 中,∠C=90°,AC=14,BD 平分∠ABC ,交AC 于D ,AD ∶DC=5∶2,则点D 到AB 的距离为( )A .10 B .4C .7D .6 3.如图,△ABC 中,AB=AC=BD ,AD=DC ,则∠BAC 的度数为( )A .120°B .108°C .100°D .135°4.如图,△ABC 中,∠B ,∠C 的角平分线相交于点O ,过O 作DE ∥BC ,若BD+CE=5,则DE 等于( )A .7 B .6C .5D .45.已知在Rt △ABC 中,∠C=90°,∠A=30°,AB=a ,则AB AC 等于( ) A .21 B .2 C .23 D . 332 二.填空题(本题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上.CBD第2题 第3题 第4题AAB C第11题 6.等腰三角形的周长为13,其中一边长为3,则其他两边长为 ________________7.等腰三角形一腰上的高与腰长之比为1∶2,则等腰三角形的顶角为8.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,236cm S ABC =∆,AB=18cm ,BC=12cm ,则DE= cm .9.如图,把一张矩形纸片ABCD 沿BD 对折,使点C 落在E 处,BE 与AD 相交于点O ,若BC=8,EO=3,则CD=10.如图,△ABC 中,BC=5,AB 的垂直平分线交BC 于D ,AC 的垂直平分线交BC于E ,则△ADE 的周长是 .三.解答题(本大题共5小题,每小题6分,共30分)11.(2008中考·广东)如图,在ΔABC 中,8,10===BC AC AB .用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.12.如图,在△ABC 中,AC=BC ,∠C=90°,AD是△ABC 的角平分线,DE ⊥AB ,垂足为E 。
北师大版数学九年级上册单元试卷【全册合集】
北师大新版九年级上册<第1章特殊的平行四边形>2021年单元测试卷一、选择题:〔每题3分,共36分〕1.以下判定正确的选项是( )A.对角线互相垂直的四边形是菱形B.两条对角线相等且互相垂直的四边形是正方形C.四边相等且有一个角是直角的四边形是正方形D.一组对边平行,一组对边相等的四边形是平行四边形2.以下说法中,错误的选项是( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形3.以下命题原命题与逆命题都是真命题的是( )A.矩形的对角线相等B.对角线互相平分且相等的四边形是矩形C.矩形有一个内角是直角D.对角线互相垂直且平分的四边形是矩形4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A.正方形B.矩形 C.菱形 D.矩形或菱形5.两条对角线相等的平行四边形一定是( )A.矩形 B.菱形 C.矩形或正方形 D.正方形6.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,那么OH的长等于( )A.3.5 B.4 C.7 D.147.顺次连接矩形四条边的中点,所得到的四边形一定是( )A.矩形 B.菱形 C.正方形D.平行四边形8.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,那么∠FAB=( )A.30°B.45°C.22.5° D.135°9.如图,点E为正方形ABCD对角线BD上一点,且BE=BC,那么∠DCE的度数为( )A.30°B.22.5° C.15°D.45°10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,那么DE长为( )A.4.8 B.5 C.5.8 D.611.如图,边长为6的大正方形中有两个小正方形,假设两个小正方形的面积分别为S1、S2,那么S1+S2的值为( )A.16 B.17 C.18 D.1912.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,那么这个最小值为( )A.2 B.3 C. D.二、填一填题〔每题3分,共12分〕13.菱形的周长为40cm,两个相邻角度数比为1:2,那么较短的对角线长为__________,面积为__________.14.如图,矩形ABCD中,E是AD的中点,将△ABE折叠后得到△GBE,延长BG交CD 于点F,假设CF=1,FD=2,那么BC的长为__________.15.在矩形ABCD中,AB=5,AD=12,P是AD上的动点,PE⊥AC于点E,PF⊥BD于点F,那么PE+PF=__________.16.如图,菱形ABCD的周长为24cm,∠A=120°,E是BC边的中点,P是BD上的动点,那么PE﹢PC的最小值是__________.三、解答题:17.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.18.,如图,AD是△ABC的角平分线,DE∥AC,ED=AF.求证:四边形AEDF是菱形.19.:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.20.:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,〔1〕求证:四边形ADCE为矩形;〔2〕当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.21.:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F.〔1〕求证:DE=DF;〔2〕只添加一个条件,使四边形EDFA是正方形,并给出证明.22.如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.23.,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.〔1〕求证:△BCE≌△DCF;〔2〕求CF的长;〔3〕如图2,在AB上取一点H,且BH=CF,假设以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?假设存在,直接写出所有符合条件的P点坐标;假设不存在,说明理由.北师大新版九年级上册<第1章特殊的平行四边形>2021年单元测试卷一、选择题:〔每题3分,共36分〕1.以下判定正确的选项是( )A.对角线互相垂直的四边形是菱形B.两条对角线相等且互相垂直的四边形是正方形C.四边相等且有一个角是直角的四边形是正方形D.一组对边平行,一组对边相等的四边形是平行四边形【考点】多边形.【分析】根据平行四边形的判定,菱形的判定,正方形的判定,可得答案.【解答】解:A、对角线互相平分且互相垂直的四边形是菱形,故A错误;B、两条对角线相等且平分且互相垂直的四边形是正方形,故B正确;C、四边相等且有一个角是直角的四边形是正方形,故C正确;D、一组对边平行,一组对边相等的四边形可能是平行四边形、可能是等腰梯形,故D错误;应选:B.【点评】此题考查了多边形,熟记平行四边形的判定与性质、特殊平行四边形的判定与性质是解题关键.2.以下说法中,错误的选项是( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【考点】菱形的判定与性质;平行四边形的判定与性质.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ABC均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形,应选:D.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形根本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.3.以下命题原命题与逆命题都是真命题的是( )A.矩形的对角线相等B.对角线互相平分且相等的四边形是矩形C.矩形有一个内角是直角D.对角线互相垂直且平分的四边形是矩形【考点】命题与定理.【分析】分别写出四个命题的逆命题,再判断是否是真命题即可.【解答】解:A、矩形的对角线相等,逆命题是对角线相等的四边形是矩形,错误;B、对角线互相平分且相等的四边形是矩形,逆命题是矩形的对角线互相平分且相等,正确;C、矩形有一个内角是直角,逆命题是有一个内角是直角的四边形是矩形,错误;D、对角线互相垂直且平分的四边形是矩形,错误.应选B.【点评】此题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.应选D.【点评】此题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两局部沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.两条对角线相等的平行四边形一定是( )A.矩形 B.菱形 C.矩形或正方形 D.正方形【考点】矩形的判定.【分析】根据对角线相等的平行四边形是矩形,直接得出答案即可.【解答】解:因为对角线相等的平行四边形是矩形.应选:A.【点评】此题考查了特殊平行四边形的判定,需熟练掌握各特殊平行四边形的特点是解题关键.6.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,那么OH的长等于( )A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.应选:A.【点评】此题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.7.顺次连接矩形四条边的中点,所得到的四边形一定是( )A.矩形 B.菱形 C.正方形D.平行四边形【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.应选B.【点评】此题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.8.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,那么∠FAB=( )A.30°B.45°C.22.5° D.135°【考点】菱形的性质;正方形的性质.【分析】由正方形的性质得对角线AC平分直角,因为菱形的对角线平分所在的角,所以∠FAB为直角的.【解答】解:因为AC为正方形ABCD的对角线,那么∠CAE=45°,又因为菱形的每一条对角线平分一组对角,那么∠FAB=22.5°,应选:C.【点评】此题主要考查了正方形、菱形的对角线的性质.9.如图,点E为正方形ABCD对角线BD上一点,且BE=BC,那么∠DCE的度数为( )A.30°B.22.5° C.15°D.45°【考点】正方形的性质;等腰三角形的性质.【分析】由正方形的性质得到BC=CD,∠DBC=∠BDC=45°,根据BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°,根据∠DCE=∠BCD﹣∠BCE即可求出答案.【解答】解:∵正方形ABCD,∴BC=CD,∠DBC=∠BDC=45°,∵BE=BC,∴∠BEC=∠BCE=67.5°,∴∠DCE=∠BCD﹣∠BCE=90°﹣67.5°=22.5°,应选B.【点评】此题主要考查对正方形的性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质求出∠DCE的度数是解此题的关键,题型较好,难度适中.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,那么DE长为( )A.4.8 B.5 C.5.8 D.6【考点】翻折变换〔折叠问题〕.【专题】数形结合.【分析】注意发现:在折叠的过程中,BE=DE,从而设BE即可表示AE,在直角三角形ADE 中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,那么BE=DE=x,AE=AB﹣BE=10﹣x,在RT△ADE中,DE2=AE2+AD2,即x2=〔10﹣x〕2+16.解得:x==5.8〔cm〕.应选C.【点评】此题考查了翻折变换的知识,解答此题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,边长为6的大正方形中有两个小正方形,假设两个小正方形的面积分别为S1、S2,那么S1+S2的值为( )A.16 B.17 C.18 D.19【考点】勾股定理.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.应选B.【点评】此题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.12.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,那么这个最小值为( )A.2 B.3 C. D.【考点】轴对称-最短路线问题;正方形的性质.【专题】几何图形问题.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为4,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为4,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.∴所求最小值为2.应选:A.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.二、填一填题〔每题3分,共12分〕13.菱形的周长为40cm,两个相邻角度数比为1:2,那么较短的对角线长为10cm,面积为50cm2.【考点】菱形的性质.【专题】计算题.【分析】根据可求得菱形的边长及其两内角的度数,根据勾股定理可求得其对角线的长,根据菱形的面积等于两对角线乘积的一半求得其面积.【解答】解:根据可得,菱形的边长AB=BC=CD=AD=10cm,∠ABC=60°,∠BAD=120°,∴△ABC为等边三角形,∴AC=AB=10cm,AO=CO=5cm,在Rt△AOB中,根据勾股定理得:BO==5,∴BD=2BO=10〔cm〕,=×AC×BD=×10×10 =50〔cm2〕;那么S菱形ABCD故答案为:10cm,50cm2.【点评】此题考查的是菱形的面积求法及菱形性质的综合.菱形的面积有两种求法〔1〕利用底乘以相应底上的高〔2〕利用菱形的特殊性,菱形面积=×两条对角线的乘积.14.如图,矩形ABCD中,E是AD的中点,将△ABE折叠后得到△GBE,延长BG交CD 于点F,假设CF=1,FD=2,那么BC的长为.【考点】翻折变换〔折叠问题〕;矩形的性质.【专题】压轴题.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM〔AAS〕,MN 是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=3,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG和△BNM中∵,∴△ENG≌△BNM〔AAS〕,∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.故答案为:2.【点评】此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.15.在矩形ABCD中,AB=5,AD=12,P是AD上的动点,PE⊥AC于点E,PF⊥BD于点F,那么PE+PF=.【考点】矩形的性质.【分析】连接PO,过D作DM⊥AC于M,求出AC、DM,根据三角形面积公式得出PE+PF=DM,即可得出答案.【解答】解:连接PO,过D作DM⊥AC于M,∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD=5,AD=12,OA=OC,OB=OD,AC=BD,∴OA=OD,由勾股定理得:AC=13,∴OA=OD=6.5,∵S△ADC=×12×5=×13×DM,∴DM=,∵S AOD=S△APO+S△DPO,∴AO×PE+OD×PF=×AO×DM,∴PE+PF=DM=,故答案为:.【点评】此题考查了矩形的性质,勾股定理,三角形的面积的应用,关键是求出DM长和得出PE+PF=DM.16.如图,菱形ABCD的周长为24cm,∠A=120°,E是BC边的中点,P是BD上的动点,那么PE﹢PC的最小值是3.【考点】轴对称-最短路线问题;菱形的性质.【专题】探究型.【分析】先求出菱形各边的长度,作点E关于直线BD的对称点E′,连接CE′交BD于点P,那么CE′的长即为PE﹢PC的最小值,由菱形的性质可知E′为AB的中点,由直角三角形的判定定理可得出△BCE′是直角三角形,利用勾股定理即可求出CE′的长.【解答】解:∵菱形ABCD的周长为24cm,∴AB=BC==6cm,作点E关于直线BD的对称点E′,连接CE′交BD于点P,那么CE′的长即为PE﹢PC的最小值,∵四边形ABCD是菱形,∴BD是∠ABC的平分线,∴E′在AB上,由图形对称的性质可知,BE=BE′=BC=×6=3,∵BE′=BE=BC,∴△BCE′是直角三角形,∴CE′===3,故PE﹢PC的最小值是3.【点评】此题考查的是轴对称﹣最短路线问题及菱形的性质、直角三角形的判定定理,根据轴对称的性质作出图形是解答此题的关键.三、解答题:17.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质.【分析】根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.【点评】此题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.18.,如图,AD是△ABC的角平分线,DE∥AC,ED=AF.求证:四边形AEDF是菱形.【考点】菱形的判定;角平分线的定义;平行线的性质.【专题】证明题.【分析】由易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,那么可求得AF=DF,故可证明四边形AEDF是菱形.【解答】证明:∵AD是△ABC的角平分线∴∠EAD=∠FAD∵DE∥AC,ED=AF∴四边形AEDF是平行四边形∴∠EAD=∠ADF∴∠FAD=∠FDA∴AF=DF∴四边形AEDF是菱形.【点评】此题主要考查菱形的判定、角平分线的定义和平行线的性质.此题运用了菱形的判定方法“一组邻边相等的平行四边形是菱形〞.19.:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形,∴AB=AD,∠B=∠D.又∵EB=DF,∴△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.【点评】此题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.20.:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,〔1〕求证:四边形ADCE为矩形;〔2〕当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.【分析】〔1〕根据矩形的有三个角是直角的四边形是矩形,CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.〔2〕根据正方形的判定,我们可以假设当AD=BC,由可得,DC=BC,由〔1〕的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】〔1〕证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.〔2〕当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】此题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.21.:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F.〔1〕求证:DE=DF;〔2〕只添加一个条件,使四边形EDFA是正方形,并给出证明.【考点】正方形的判定.【分析】〔1〕连接AD,根据等腰三角形的性质可得AD是∠BAC的角平分线,再根据角平分线的性质可得DE=DF;〔2〕添加∠BAC=90°,根据三角形是直角的四边形是矩形可得四边形AFDE是矩形,再由条件DF=DE可得四边形EDFA是正方形.【解答】解:〔1〕连接AD,∵AB=AC,D是的BC边的中点,∴AD是∠BAC的角平分线,∵DE⊥AC,DF⊥AB,∴DF=DE;〔2〕添加∠BAC=90°,∵DE⊥AC,DF⊥AB,∴∠AFD=∠AED=90°,∴四边形AFDE是矩形,∵DF=DE,∴四边形EDFA是正方形.【点评】此题主要考查了等腰三角形的性质,以及正方形的判定,关键是掌握等腰三角形三线合一的性质.22.如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质;等边三角形的判定与性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分,∴OA=OD∴△AOD为等边三角形,那么OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1,答:OE的长度为1.【点评】此题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,此题中求得E为OD的中点是解题的关键.23.,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.〔1〕求证:△BCE≌△DCF;〔2〕求CF的长;〔3〕如图2,在AB上取一点H,且BH=CF,假设以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?假设存在,直接写出所有符合条件的P点坐标;假设不存在,说明理由.【考点】四边形综合题.【分析】〔1〕利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;〔2〕通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;〔3〕分三种情况分别讨论即可求得.【解答】〔1〕证明:如图1,在△BCE和△DCF中,,∴△BCE≌△DCF〔SAS〕;〔2〕证明:如图1,∵BE平分∠DBC,OD是正方形ABCD的对角线,∴∠EBC=∠DBC=22.5°,由〔1〕知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°〔全等三角形的对应角相等〕;∴∠BGD=90°〔三角形内角和定理〕,在△DBG和△FBG中,,∴△DBG≌△FBG〔ASA〕,∴BD=BF,DG=FG〔全等三角形的对应边相等〕,∵BD==,∴BF=,∴CF=BF﹣BC=﹣1;〔3〕解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1,①当BH=BP时,那么BP=﹣1,∵∠PBC=45°,设P〔x,x〕,∴2x2=〔﹣1〕2,解得x=2﹣或﹣2+,∴P〔2﹣,2﹣〕或〔﹣2+,﹣2+〕;②当BH=HP时,那么HP=PB=﹣1,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P〔﹣1,﹣1〕;③当PH=PB时,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P〔,〕,综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为〔2﹣,2﹣〕、〔﹣2+,﹣2+〕、〔﹣1,﹣1〕、〔,〕.【点评】此题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.北师大新版九年级上册<第2章一元二次方程>2021年单元测试卷一、精心选一选,相信自己的判断!〔每题3分,共30分〕1.方程2x2﹣3=0的一次项系数是( )A.﹣3 B.2 C.0 D.32.方程x2=2x的解是( )A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=3.方程x2﹣4=0的根是( )A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=44.假设一元二次方程2x〔kx﹣4〕﹣x2+6=0无实数根,那么k的最小整数值是( ) A.﹣1 B.0 C.1 D.25.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的选项是( )A.〔x+2〕2=1 B.〔x﹣2〕2=1 C.〔x+2〕2=9 D.〔x﹣2〕2=96.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如下图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=07.直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( )A.6 B.8 C.10 D.128.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,那么这个三角形的周长为( ) A.12 B.12或15 C.15 D.不能确定9.假设关于一元二次方程x2+2x+k+2=0的两个根相等,那么k的取值范围是( ) A.1 B.1或﹣1 C.﹣1 D.210.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有( )名学生.A.12 B.12或66 C.15 D.33二、耐心填一填:〔把答案填放相应的空格里.每题3分,共15分〕.11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:__________.12.﹣1是方程x2+bx﹣5=0的一个根,那么b=__________,另一个根是__________.13.方程〔2y+1〕〔2y﹣3〕=0的根是__________.14.一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=__________.15.用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,那么原方程可化为关于y的一元二次方程的一般形式是__________.三、按要求解一元二次方程:16.按要求解一元二次方程〔1〕4x2﹣8x+1=0〔配方法〕〔2〕7x〔5x+2〕=6〔5x+2〕〔因式分解法〕〔3〕3x2+5〔2x+1〕=0〔公式法〕〔4〕x2﹣2x﹣8=0.四、细心做一做:20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙〔墙长18 m〕,另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?21.如下图,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?22.某企业2006年盈利1500万元,2021年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2021年,如果该企业每年盈利的年增长率相同,求:〔1〕该企业2007年盈利多少万元?〔2〕假设该企业盈利的年增长率继续保持不变,预计2021年盈利多少万元?23.中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场方案每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?24.如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.〔1〕经过几秒△PCQ的面积为△ACB的面积的?〔2〕经过几秒,△PCQ与△ACB相似?〔3〕如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?假设有可能,求出运动的时间;假设没有可能,请说明理由.北师大新版九年级上册<第2章一元二次方程>2021年单元测试卷一、精心选一选,相信自己的判断!〔每题3分,共30分〕1.方程2x2﹣3=0的一次项系数是( )A.﹣3 B.2 C.0 D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0〔a,b,c是常数且a≠0〕特别要注意a≠0的条件.这是在做题过程中容易无视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.应选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.方程x2=2x的解是( )A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x〔x﹣2〕=0∴x1=0,x2=2.应选C.【点评】此题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.方程x2﹣4=0的根是( )A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.应选C.【点评】〔1〕用直接开方法求一元二次方程的解的类型有:x2=a〔a≥0〕,ax2=b〔a,b同号且a≠0〕,〔x+a〕2=b〔b≥0〕,a〔x+b〕2=c〔a,c同号且a≠0〕.法那么:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解〞;〔2〕运用整体思想,会把被开方数看成整体;〔3〕用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.假设一元二次方程2x〔kx﹣4〕﹣x2+6=0无实数根,那么k的最小整数值是( ) A.﹣1 B.0 C.1 D.2。
(word完整版)北师大版九年级数学上册单元测试题全套与,文档
最新北师大版九年级数学上册单元测试题全套及答案(最新北师大版,2021年秋配套试题)(时间:第一章检测题120 分钟总分值:120 分)一、选择题 ( 每题 3分,共30 分)1.菱形的对称轴的条数为()A. 1B. 2C. 3D. 42.以下说法中,正确的选项是()A.相等的角必然是对顶角 B .四个角都相等的四边形必然是正方形C.平行四边形的对角线互相均分 D .矩形的对角线必然垂直3.平面直角坐标系中,四边形ABCD 的极点坐标分别是A(- 3, 0), B(0 ,2) , C(3,0) , D(0 ,-2) ,那么四边形 ABCD 是 ()A.矩形 B .菱形 C .正方形 D .平行四边形4.以下命题是假命题的是()A.四个角相等的四边形是矩形 B .对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D .对角线垂直的平行四边形是菱形5 .如图,矩形纸片ABCD 中, AB =6 cm, BC = 8 cm,现将其沿AE 对折,使得点 B 落在边AD 上的点处,折痕与边BC 交于点E,那么 CE 的长为 ()A. 6 cm B . 4 cm C . 2 cm D . 1 cm6.如图,四边形ABCD 是菱形,AC= 8, DB= 6, DH ⊥ AB 于 H,那么 DH 等于 ( A)B12412A.B.C.5D.455,第6题图),第7题图)7 .如图,每个小正方形的边长为1, A, B, C 是小正方形的极点,那么∠ABC 的度数为 ( )A. 90° B . 60° C .45° D .30°8 .四边形ABCD 的两条对角线AC 与 BD 互相垂直,那么以下结论正确的选项是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD 是菱形C.当AB=AD=BC时,四边形ABCD 是菱形D.当AC=BD,AD=AB时,四边形ABCD 是正方形9 .如图,矩形ABCD 中, AD= 2, AB = 3,过点 A, C 作相距为 2 的平行线段AE , CF ,分别交CD,AB 于点 E, F,那么 DE 的长是 ()13C . 15A. 5B. D.66, 第9 题图), 第10 题图)110 .如图,在矩形ABCD中,点E, F分别在边AB,BC上,且AE =AB ,将矩形沿直线EF折叠,点B3恰好落在AD边上的点P 处,连接BP交EF于点Q,关于以下结论:①EF = 2BE ;②PF = 2PE;③FQ=4EQ ;④△ PBF是等边三角形.其中正确的选项是()A .①②B .②③C .①③D .①④二、填空题(每题3 分,共 18 分 )11 .菱形的两条对角线长分别为2 cm ,3 cm ,那么它的面积是 ___cm2.12 .如图,点P 是正方形 ABCD 对角线 BD 上一点,且 BP = BC ,那么ACP ∠ 的度数是 ___度. 13 .以以下图, 将△ABC AC 绕 的中点 O 顺时针旋180转 °获取 △ CDA ,增加一个条件__ __,使四边形ABCD 为矩形.,第12题图) ,第13图题),第 14题图), 第 15图题)BCF , 14 .矩形 ABCD , AB = 3 cm , AD = 4于点 E , F ,那么AE 的长为 _cm.15 .如图,菱形ABCD 的边长为 4,过点AE = 3,那么四边形 AECF 的周长为 ____. cm ,过对角线A , C 作对角线 BDAC的中点 O 作 BD的垂线,分别交CB的垂直均分线EF ,分别交AD ,和 AD 的延长线于点E ,AB16 .矩形 OABC 在平面直角坐标系中的地址以以下图,点上,当 △ CDE 的周长最小时,那么点E 的坐标为 __(_)_三、解答题(共 72 分 ).B 的坐标为(3,4), D是OA的中点,点E 在17 .(10分 )如图,矩形ABCD被两条对角线分成四个小三角形,若是四个小三角形的周长的和是86 cm ,对角线长是13 cm ,那么矩形的周长是多少?18 . (10 分 ) 如图,在△ ABC 中, AB= AC ,点 D 为边BC 上一点,以AB , BD 为邻边作 ?ABDE ,连接AD,EC.(1)求证:△ ADC ≌ △ECD ;(2) 假设 BD = CD ,求证:四边形ADCE 是矩形.19 . (10 分 ) 如图,菱形ABCD 的对角线订交于点O,延长AB 至点E,使BE = AB,连接CE.(1)求证: BD=EC;(2)假设∠E= 50°,求∠ BAO 的大小.20 . (10 分 ) 如图,在 ?ABCD 中,点 E, F 分别是边 AB , CD 的中点, BD 是对角线, AG ∥BD 交 CB 的延长线于点 G.(1)求证:△ ADE ≌ △CBF ;(2) 假设四边形BEDF 是菱形,那么四边形AGBD 是什么特别四边形?证明你的结论.21 . (10 分 ) 如图,菱形ABCD , AB = AC ,点E, F 分别是BC , AD 的中点,连接AE, CF.(1)求证:四边形 AECF 是矩形;(2)假设 AB= 8 ,求菱形的面积.22 . (10 分 ) 如图,在正方形ABCD 中,点 E, F 分别在边 AB, BC 上,∠ADE =∠CDF.(1)求证: AE= CF ;(2)连接DB 交 EF 于点 O,延长OB 至 G,使 OG = OD ,连接EG, FG ,判断四边形DEGF 是否是菱形,并说明原由.23 . (12 分 ) 如图,在矩形ABCD 中,点M, N 分别是AD , BC 的中点,点P, Q 分别是BM, DN 的中点.(1)求证:△ MBA ≌ △NDC ;(2)四边形 MPNQ 是什么特别四边形?请说明原由.第二章检测题( 时间: 120 分钟总分值:120分)一、选择题( 每题 3 分,共30 分)1 .以下方程中,关于x 的一元二次方程是()A. 3( x+ 1)2=2(x+1) B.11- 2 2+= 0-2=0 x xC.ax2+bx+c=0 D.x2+2x=x 2-12 .方程 (x - 2)(x+3)=0的解是 ()A.x= 2B.x=- 3C.x=- 2,x= 3D.x= 2 ,x2=- 3121233 .假设 x=- 2是关于 x 的一元二次方程x2+2ax - a = 0的一个根,那么 a 的值为 ( )A.-1或4 B .-1或-4 C.1或-4 D.1或44 .用配方法解一元二次方程x2-2x-3=0时,方程变形正确的选项是()2222A.(x-1)= 2 B . ( x- 1) = 4 C . ( x- 1) = 1 D . ( x- 1) =75 .以下一元二次方程中,没有实数根的是()2222A.x+ 2x+ 1 = 0 B .x+x+ 2= 0 C .x- 1 = 0 D .x- 2x- 1= 06 .解方程 (x + 1)(x+ 3) = 5 较为合适的方法是()A.直接开平方法 B .配方法C.公式法或配方法 D .分解因式法227 .一元二次方程x - 2x - 1= 0 的两个根分别是x 1, x 2,那么x1- x 1+ x 2的值为 ()A.-1 B.0 C.2 D.38 .关于 x 的方程 x2 -ax+2a=0的两根的平方和是5,那么 a 的值是 () A.-1或5 B.1 C.5 D.-19 .某县政府2021 年投资亿元用于保障性住所建设,方案到2021 年投资保障性住所建设的资本为 0.98 亿元,若是从2021 年到 2021 年投资此工程资本的年增加率相同,那么年增加率是( ) A. 30%B.40%C.50%D. 10%10 .有一块长32cm ,宽24cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,盒子的底面积是原纸片面积的一半,那么盒子的高是()A. 2 cm B . 3 cm C . 4 cm D . 5 cm二、填空题( 每题 3 分,共18 分)211 .一元二次方程2x + 6x = 9 的二次项系数、一次项系数、常数项和为___.212 .方程 (x + 2)= x + 2 的解是 ____.2213 .假设代数式4x - 2x- 5 与 2x + 1的值互为相反数,那么x 的值是 __.14 .写一个你喜欢的实数k 的值 ___,使关于x 的一元二次方程( k+ 1) x2+2x-1=0有两个不相等的实数根.15 .某制药厂两年前生产 1 吨某种药品的本钱是100 万元,随着生产技术的进步,现在生产 1 吨这种药品的本钱为81万元.那么这种药品的本钱的年平均下降率为___.2216 .设 m, n 分别为一元二次方程x + 2x - 2021 = 0 的两个实数根,那么m + 3m + n = __.三、解答题(共 72分 )17 . (12 分 ) 解方程:22(1) x + 4x - 1= 0;(2)x + 3x+ 2= 0;2(3)3x -7 x+4=0.O 的三个点,且点O 为AB的中点,点 B 为AC的中18 . (10 分 ) 如图,A, B, C 是数轴上异于原点点.假设点B 对应的数是x ,点 C 对应的数是x2-3x,求x 的值.592219 . (8 分 ) 一元二次方程x - 2x-= 0 的某个根,也是一元二次方程x - (k + 2)x +44= 0 的根,求 k 的值.20 . (10 分 ) 某种商品的标价为 400 元 / 件,经过两次降价后的要价为 324 元 / 件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2) 假设该种商品进价为300 元 / 件,两次降价共售出此种商品100 件,为使两次降价销售的总利润很多于 3 210元.问第一次降价后最少要售出该种商品多少件?21 . (10 分 ) 小林准备进行以下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?2(2)小峰对小林说:“ 这两个正方形的面积之和不能能等于48 cm,〞他的说法对吗?请说明原由.22 . (10 分 ) 某市电解金属锰厂从今年元月起安装了回收净化设施又节约原料本钱,据统计使用回收净化设施后1~ x 月的利润的月平均值多少个月后的利润和为1620 万元?(安装时间不计 )W(万元 ) 满足,这样既保护环境,W= 10 x + 90. 请问23 . (12 分 ) 为丰富居民业余生活,某居民区组建筹委会,该筹委会发动居民自觉集资建立一个书刊阅览室.经估计,一共需要筹资30 000元,其中一局部用于购置书桌、书架等设施,另一局部用于购置书刊.(1) 筹委会方案,购置书刊的资本很多于购置书桌、书架等设施资本的3倍,问最多用多少资本购置书桌、书架等设施?(2) 经初步统计,有200 户居民自觉参加集资,那么平均每户需集资150元.镇政府认识情况后,赠送了一批阅览室设施和书籍,这样,只需参加户共集资20 000 元.经筹委会进一步宣传,自觉参加的户数在200 户的基础上增加了a%( 其中 a>0) .那么每户平均集资的资本在10 150 元的基础上减少了9值 .a% ,求 a的第三章检测题( 时间: 120 分钟总分值:120分)一、选择题( 每题 3 分,共30 分)1 .事件 A:翻开电视,它正在播广告;事件B:扔掷一个平均的骰子,向上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A) , P(B) , P(C) ,那么 P(A) ,P(B) ,P(C) 的大小关系正确的选项是( )A.P( C) <P( A)=P( B)B.P(C)<P( A) <P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)2 .从-5, 0, 4 ,π,这五个数中,随机抽取一个,那么抽到无理数的概率是( )1234A.5555B. C. D.3 .如图,在 2× 2 的正方形网格中有9个格点,已经取定点 A 和 B,在余下的 7个点中任取一点C,使△ ABC 为直角三角形的概率是()1 2A. B.2 53 4C.D.774.袋子里有 4 个球,标有2, 3 , 4, 5,先抽取一个并记住,放回,尔后再抽取一个,问抽取的两个球数字之和大于 6 的概率是 ()1753A. 2B.12C.8D.45.掷两枚一般正六面体骰子,所得点数之和为11 的概率为 ( )1B.1C.11A.3612D.18156.用图中两个可自由转动的转盘做“配紫色〞游戏:分别旋转两个转盘,假设其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )1B.31D.1A. C.2 443,第6题图),第7题图)7 .以以下图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是 ( )19 10 6 5A. B. C. D.25 25 25 258 .有三张正面分别写有数字- 1 ,1 , 2 的卡片,它们反面完满相同,现将这三张卡片反面向上洗匀后 随机抽取一张,以其正面的数字作为a 的值,尔后再从节余的两张卡片中随机抽取一张,以其正面的数字作为 b 的值,那么点 (a , b) 在第二象限的概率是( )1 1 1 2A. 6B.3 C.2 D. 39 .从长为 10cm , 7 cm , 5 cm , 3 cm 的四条线段中任选三条能够组成三角形的概率是 ( )1 B. 1C. 1D. 3A.3 24 410 .如图,在平面直角坐标系中,点A , A 在 x 轴上,点B , B 在 y 轴上,其坐标分别为A(1 ,0),12121A 2(2 ,0) ,B 1(0 , 1) , B 2(0 , 2) ,分别以 A 1, A 2 , B 1, B 2 其中的任意两点与点 O 为极点作三角形,所作三角形是等腰三角形的概率是 ( )3 1 2 1 A. B. C. D. 24 3 3二、填空题 ( 每题 3 分,共 18 分 )11 .一个布袋中装有 3 个红球和 4 个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12 .在一个不透明的袋子中有10 个除颜色外均相同的小球,经过屡次摸球试验后,发现摸到白球的频率约为 40% ,估计袋中白球有____个.13 .有两把不相同的锁和三把钥匙,其中两把钥匙能翻开同一把锁,第三把钥匙能翻开另一把锁.任意拿出一把钥匙去开任意一把锁,一次能翻开锁的概率是 ___. 14 .一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差异,从袋子中随机摸出一 个小球后,放回并摇匀,再随机摸出一个小球,那么两次摸出的小球都是白球的概率是15 .假设同时扔掷两枚质地平均的骰子,那么事件 “两枚骰子向上的点数互不相同〞的概率是__.__.16 .一包糖果共有五种颜色( 糖果仅有颜色差异) ,如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,那么拿出的糖果的颜色为绿色或棕色的概率是__.三、解答题(共 72 分)17 . (10 分 ) 小明有 2 件上衣,分别为红色和蓝色,有 3 条裤子,其中 2 条为蓝色、 1 条为棕色.小明任意拿出 1 件上衣和 1 条裤子穿上.请用画树状图或列表的方法列出全部可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18 . (10分 )在一个不透明的口袋中装有 4 张相同的纸牌,它们分别标有数字1, 2,3, 4.随机地摸取一张纸牌记下数字尔后放回,再随机摸取一张纸牌.(1) 计算两次摸取纸牌上数字之和为 5 的概率;(2)甲、乙两人进行游戏,若是两次摸取纸牌上数字之和为奇数,那么甲胜;若是两次摸取纸牌上数字之和为偶数,那么乙胜.这是个公正的游戏吗?请说明原由.19 . (10 分 ) 甲、乙两个袋中均装有三张除所标数值外完满相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,- 1, 3. 乙袋中的三张卡片所标的数值为- 2 , 1 , 6. 先从甲袋中随机拿出一张卡片,用x 表示拿出的卡片上的数值,再从乙袋中随机拿出一张卡片,用y 表示拿出卡片上的数值,把x, y 分别作为点 A 的横坐标和纵坐标.(1) 用合适的方法写出点A(x , y) 的全部情况;(2)求点 A 落在第三象限的概率.( 1) 列表:20 . (10 分 ) 分别把带有指针的圆形转盘 A, B 分成 4 等份、 3 等份的扇形地域,并在每一个小地域内标上数字( 以以下图 ) .欢欢、乐乐两个人玩转盘游戏,游戏规那么是:同时转动两个转盘,当转盘停止时,假设指针所指两地域的数字之积为奇数,那么欢欢胜;假设指针所指两地域的数字之积为偶数,那么乐乐胜;假设有指针落在切割线上,那么无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规那么对欢欢、乐乐双方公正吗?试说明原由.21 . (10 分 ) 某小学学生很多,为了便于学生赶忙就餐,师生约定:早餐一人一份,一份两样,相同一个,食堂师傅在窗口随机发放( 发放的食品价格相同) .食堂在某天早餐供应了猪肉包、面包、鸡蛋、油饼四样食品.(1) 按约定,“小李同学在该天早餐获取两个油饼〞是________事件; ( 可能,必然,不能能)(2)请用列表或画树状图的方法,求出小张同学该天早餐恰好获取猪肉包和油饼的概率.22 . (10 分 ) 某景区 7 月 1 日~ 7 月 7 日一周天气预告如图,小丽打算选择这期间一天或两天去该景区旅游.求以下事件的概率:(1)随机选择一天,恰晴日气预告是晴;(2)随机选择连续的两天,恰晴日气预告都是晴.23 . (12 分 ) 有四张正面分别标有数字2, 1,- 3,- 4 的不透明卡片,它们除数字外其他全部相同,现将它们反面向上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m , n) 全部可能的结果;(2)求所选出的 m, n 能使一次函数y= mx + n 的图象经过第二、三、四象限的概率.( 1)① 画树状图得:第四章检测题( 时间:120 分钟总分值:120 分 )一、选择题(每题3 分,共 30分 )1.以下说法正确的选项是()A.对应边都成比率的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似 D .矩形都相似2.△ ABC ∽△DEF ,相似比为3∶ 1,且△ ABC 的周长为 18 ,那么△DEF 的周长为 ( ) A. 2B. 3C. 6D. 543.如图,BC ∥DE ,那么以下说法不正确的选项是( C )A.两个三角形是位似图形 B .点A是两个三角形的位似中心C.AE∶AD是相似比 D .点B与点E,点C与点D是对应位似点4.如图,身高为m 的小红想测量学校旗杆的高度,当她站在 C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =m,BC=m,那么旗杆的高度是( C )A. 6.4 m B . 7.0 m C. 8.0 m D . 9.0 m,第3题图),第4图题),第5题图), 第6图题 )5 .如图,为估计某河的宽度,在河对岸选定一个目标点,在近岸点取BC ,点 E 在 BC 上,并且点A, E, D 在同一条直线上.假设测得BE= 20度AB等于(B )A. 60 m B . 40 m C . 30 m D . 20 m116 .如图,矩形ABCD 的面积是 72 , AE 22=DC, BF AD ,那么矩形A.24 B .18 C .12 D .9=( B )7 .如图,点A, B, C, D 的坐标分别是(1 ,7) ,(1,1),(4 ,1) ,(6角形与△ ABC 相似,那么点 E 的坐标不能能是( B )B, C, D,使得AB⊥BC, CD ⊥m,CE=10 m,CD=20m,那么河的宽EBFG 的面积是, 1) ,以点C, D, E 为极点的三A.(6,0) B.(6,3) C.(6,5) D.(4,2),第 7图题) ,第 8题图) ,第 9图题),第10图题)DE1S1ADOE8 .如图, 在 △ABC 中, 中线 BE ,CD 订交于点 O ,连接DE ,以下结论:①△DOE=;②=;BC2S = 2;③ABOB△COBS1④△ODE= . 其中正确的个数有( B )S3△ADCA.1个 B .2个 C .3个 D .4个9 .如图,在△ABC 中,∠A= 36 °, AB = AC ,AB 的垂直均分线OD 交 AB 于点 O,交 AC 于点 D,连接BD.以下结论错误的选项是( C)A.∠C= 2∠A B .BD均分∠ABCC.S△BCD=S△BOD D .点D为线段AC的黄金切割点10.如图,在直角梯形ABCD 中, AD∥BC,∠ABC = 90°, AB= 8, AD= 3, BC= 4,点 P 为 AB 边上一动点,假设△ PAD 与△PBC 是相似三角形,那么满足条件的点P的个数是 ( C )A.1个 B .2个 C .3个 D .4个二、填空题(每题3 分,共18 分)11.假设x m 4x - m4y= (y ≠n) ,那么= __ __.= n5y - n512.如图是两个形状相同的红绿灯图案,那么依照图中给出的部分数值,获取x 的值是 __16__ .13.如图,在△ ABC 中,点 P 是 AC 上一点,连接BP.要使△ ABP ∽△ACB ,那么必定有∠ ABP = __∠C__或∠APB =__∠ABC__或AB AC= __ __.AP AB,第12题图),第13题图),第14图题),第15题图)1214 .如图,在矩形ABCD 中, AB = 2, BC = 3,点 E 是 AD 的中点,CF ⊥BE 于点 F,那么CF = __ __.515 .如图,一条河的两岸有一段是平行的,在河的南岸边每隔 5 米有一棵树,在北岸边每隔50 米有一根电线杆,小丽站在离南岸边15 米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,那么河宽为__22.5 __ 米.16 .如图,以点 O 为位似中心,将△ ABC 减小后得△ A′B′C′, OB = 3OB ′,那么△A′B′C与′△ABC 的面积之比为 __1∶ 9__ .三、解答题(共 72 分 )17 . (10 分 ) 如图,点 D 是△ABC 的边 AC 上的一点,连接BD,∠ ABD =∠C, AB = 6 , AD = 4,求线段 CD 的长.AB AD 在△ABD 和△ACB 中,∠ABD =∠C,∠A=∠A,∴△ABD ∽△ACB ,∴=,∵AB=6,AD=4,∴ACAC AB2=AB 36== 9,那么 CD = AC- AD= 9- 4=5AD418 . (10 分 ) 一个钢筋三角架三边长分别是20 厘米、 50 厘米、 60 厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和 50 厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两(段赞同有余料 ) 作为两边,那么不相同的截法有多少种?写出你的设计方案,并说理明由.两种截法:①30厘米与60 厘米的两根钢筋为对应边,把 50厘米的钢筋按10 厘米与 25 厘米两局部截,那么有1025301② 30 厘米与 50 厘米的两根钢筋为对应边,把50 厘米的钢筋2050=,从而两个三角形相似;== 6022050605截出12 厘米和 36 厘米两局部,那么有===,从而两个三角形相似123036319 . (10 分 ) 如图,在平面直角坐标系中,△ABC 三个极点的坐标分别为A(- 1, 2),B(-3,4) ,C(- 2, 6) .(1)画出△ABC 绕点 A 顺时针转旋90 °后获取的△ A1B1 C1;(2) 在网格内以原点O 为位似中心,画出将△A1B1C1三条边放大为原来的 2 倍后的△ A2B2C2.20 . (10 若是小丁瞄准了分 )如图,矩形BC 边上的点ABCD 为台球桌面.AD = 260 cm,F 将球打进去,经过反弹后,球刚好弹到AB =D130 cm . 球目前在点地址.E 点地址,AE= 60cm .(1)求证:△ BEF ∽△CDF ;(2)求 CF 的长.( 1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B=∠C= 90°,∴△BEF ∽△CDF( 2)设 CF = x,那么 BF = 260 - x ,∵AB = 130 , AE = 60 , BE = 70,由 ( 1) 得,△ BEF ∽△CDF ,∴BE BF=,70260 - xCD CF 即,∴x = 169 ,即 CF = 169 cm=130x21 . (10 分 ) 如图,在 △ ABC 中, AD 是中线,且 CD 2= BE ·BA. 求证: ED ·AB = AD ·BD.∵AD 是中线, ∴ BD = CD ,又 CDBE BD= ,又 ∠B = ∠B ,∴△BED ∽△BDA , 2= BE ·BA , ∴BD 2= BE ·BA ,即BD AB2=BE ·BA ,∴BD 2= BE ·BA ,即ED BD∴ =,∴ED ·AB = AD ·BD AD AB22 . (10 分 ) 如图,在平行四边形ABCD 中,过点A 作 AE ⊥BC ,垂足为点 E ,连接DE ,点F 为线段DE上一点,且 ∠ AFE =∠B.(1)求证:△ ADF ∽△DEC ;(2) 假设 AB= 8, AD= 6 3, AF= 4 3,求AE 的长.( 1) ∵四边形ABCD 是平行四边形,∴AB ∥CD , AD ∥BC ,∴∠C+∠B=+∠AFE = 180 °,∠AFE =∠B,∴∠AFD =∠C,∴△ADF ∽△DEC( 2) ∵四边形180 °,∠ADF =∠DEC. ∵∠AFD ABCD 是平行四边形,∴ CD= AB= 8.由 ( 1 ) 知△ADF ∽△DEC ,∴AD AF AD ·CD63×8=== 12. 在 Rt △ADE 中,由勾股定理得AE ,∴DE=AF43DE CD= DE2- AD2= 122-〔 6 3〕2=623 . (12 分 ) 将一副三角尺如图①摆放( 在Rt△ABC 中,∠ ACB = 90 °,∠B= 60°;在Rt△DEF中,∠EDF = 90 °,∠E= 45°) ,点 D 为AB 的中点,DE 交 AC 于点 P, DF 经过点 C.(1) 求∠ADE 的度数;(2) 如图②,将△ DEF 绕点 D 顺时针方向旋角转α(0 °<α<60 °) ,此时的等腰直角三角尺记△为DE F′′,PM PMDE ′交 AC 于点 M, DF ′交 BC 于点 N,试判断的值;的值可否随着α的变化而变化?若是不变,央求出CNCN反之,请说明原由.( 1) 由题意知, CD 是 Rt△ABC 斜边 AB 上的中线,∴ AD = BD = CD ,∵在△BCD 中, BD= CD 且∠B= 60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC = 60 °,∴∠ADE = 180 °-∠BDC -∠EDF = 180 °- 60°- 90°=PM30 ° ( 2)的值不会随着α的变化而变化,原由以下:∵△APD 的外角∠MPD =∠A+∠ADE = 30 °+ 30 °CN=60 °,∴∠MPD =∠BCD = 60 °,∵在△ MPD 和△NCD 中,∠MPD =∠NCD = 60 °,∠PDM =∠CDN =α,∴△PM PD PD MPD ∽△NCD ,,∵∠ACB = 90 °,∠BCD = 60 °,∴∠PCD = 30 °. 在 Rt△PCD 中,∠PCD = 30 °,∴=CD CD CN=13PM PD3=,∴==333CN CD第五章检题测( 时间: 120 分钟总分值: 120 分 )一、选题择(每题 3 分,共30 分)1 .将一包卷筒卫生纸按以以下图的方式摆放在桌面上,它的视俯图是( D)2 .如图是由 4 个相同的正方体组成的几何体,那么这个几何体的俯视图是( A)3 .如图是一个几何体的实物图,那么其主视图是( C)4 .如图是一支架( 一种小零件) ,支架的两个台阶的高度和宽度都是同一长度,那么它的三视图是( A)5.木棒的长为 1.2 m,那么它的正投影的长必然(D )A.大于 1.2 m B.小于 1.2 m C.等于 1.2 m D.小于或等于 1.2 m6.以下四个几何体中,俯视图为四边形的是( D)7.如图是一个由多个相同小正方体积聚而成的几何体的俯视图,图中所示数字为该地址小正方体的个数,那么这个几何体的左视图是( A)8 .小琳过 14 周岁寿辰,父亲母亲为她预定的寿辰蛋糕以以下图,当投影线由寿辰蛋糕的前面射到前面时,它的正投影应该是 ( B )9 .有两个完满相同的长方体,按以以下图方式摆放,其主视图是( C)10 .如图,小轩同学在夜晚由路灯AC 走向路灯BD ,当他走到点P 时,发现他身后影子的顶部恰好接触到路灯AC 的底部,当他向前再步行20m 到达Q点时,发现他身前影子的顶部恰好接触到路灯BD 的底部,小轩同学的身高是m,两个路灯的高度都是9 m,那么两路灯这间的距离是( D) A. 24 m B . 25 m C . 28 m D . 30 m二、填空题( 每题 3 分,共18 分)11 .太阳光形成的投影是__平行投影__,电动车灯所发出的光辉形成的投影是__中心投影__.12.如图,在常有的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图必然完满相同的几何体有 __①②③ __. ( 填编号 )13.以以下图是由假设干个完满相同的小正方体搭成的几何体的主视图和俯视图,那么这个几何体可能是由 __6 或 7 或 8__个小正方体搭成的., 第13 题图), 第15题图 ), 第16题图 )14 .小刚和小明在太阳光下行走,小刚身高m,他的影长为m,小刚比小明矮9cm ,现在小明的影长是__2.12_m__ .15 .一个长方体的主视图和左视图如图(单位:cm ),那么其俯视图的面积是__6_cm2__.16 .如图是一束平行的光辉从教室窗户射入教室的平面表示图,测得光辉与地面所成的角30 °,窗户的高在教室地面上的影长MN = 2 3 米,窗户的下沿到教室地面的距离同素来线上) ,那么窗户的高AB 为 __2 米 __.三、解答题(共 72 分)17 . (10 分 ) 依照以下主视图和俯视图,指出其对应的物体.∠BC =1米(点AMC =M,N,C在a — D, b— A, c— B, d— C18 . (10 分 ) 如图,是一个小正方体所搭几何体从上面看获取的平面图形,正方形中的数字表示在该地址小正方体的个数.请你画出它从正面和从左面看获取的平面图形.19 .(10分 )小亮在某一时辰测得小树高为m,其影长为m,当他测量授课楼旁的一棵大树影长时,因大树凑近授课楼,它的一局部影子便落在了授课楼的墙上,经测量,地面局部影长为m,墙上影长为 2 m,那么这棵大树高为多少米?设大树影长为x 米,大树高为y 米,那么x- 6.4 = 1.2 ,解得x= 8. ∵y=∴y = 10,答:这棵大树高82为10米20 . (10 分 ) 在长、宽都为 4 m,高为 3 m的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,以以下图,灯罩深8 cm,灯泡离地面 2 m,为了使光辉恰好照在墙脚,问灯罩的直径应为多少? ( 结果精确到 0.01 米 )如图,由题意知,DE 为地面上墙脚的对角线连线.过点 A 作 AM ⊥DE 交 DE 于点M,交BC 于点N.∵DE ∥BC ,∴△ABC ∽△ADE ,∴AN BC42×=. ∵AN= 0.08 , AM= 2, DE= 42,∴BC =≈ 0.23 m AM DE221 . (10 分 ) 如图,某居民小区内A, B 两楼之间的距离MN = 30 m,两楼的高度都是20 m, A 楼在 B 楼正南, B 楼窗户朝南. B 楼内一楼住户的窗台离小区地面的距离DN = 2 m,窗户高CD =m.当正正午刻太阳光辉与地面成30°角时, A 楼的影子可否影响 B 楼的一楼住户采光?假设影响,挡住该住户窗户多高?假设不影响,请说明原由.( 参照数据:2= 1.414 ,3= 1.732 ,5= 2.236)如图,设光辉FE影响到 B 楼的E处,作 GE⊥FM 于点G,EG = MN = 30,∠FEG = 30°, FG= 10 3, MG =FM - GF= 20-10 3≈ 2.68.又DN=2,CD = 1.8 ,∴DE = 2.68 - 2= 0.68<1.8.∴A楼的影子影响到 B 楼一楼采光,挡住该住户窗户0.68 m22 . (10分)如图是一个密封纸盒的三视图,请你依照图中数据计算这个密封纸盒的表面.积( 结果保留根号 )依照该密封纸盒的三视图知道它是一个六棱柱.∵其高为12 cm ,底面边长为 5 cm ,∴其侧面积为23126×5×12 = 360( cm) ,密封纸盒的上、下底面的面积和为 12:×5 ××5×= 753( cm) ,∴其表面积为222( 75 3 + 360) cm23 . (12分 ) 如图,王乐同学在夜晚由路灯 A 走向路灯B,当他行到 P 处时发现,他在路灯 B 下的影长为 2m,且恰好位于路灯 A 的正下方,接着他又走了m 到Q处,此时他在路灯 A 下的影子恰好位于路灯 B 的正下方( 王乐身高m m,路灯 B高 9) .(1)标出王乐站在 P 处时,在路灯 B 下的影子;(2)计算王乐站在Q 处时,在路灯 A 下的影长;(3)计算路灯 A 的高度.EP ( 1) 线段CP 为王乐在路灯 B 下的影子.( 2) 由题意得Rt △CEP ∽Rt △CBD. ∴==9,∴BD CD 2QD =m.所以王乐站在Q 处时,在路灯 A 下的影长为 1.5 m( 3) 路灯 A 的高度为 12,解得2++ QDm第六章检题测( 时间:120 分钟总分值:120 分 )一、选题择 ( 每题 3 分,共 30 分)1.反比率函数的图象经过点(- 2 , 3) ,那么此函数的图象也点过经(A)A. (2 ,- 3)B.(-3,- 3)C. (2 ,3)D. ( - 4,6)2.如图,是我们学过的反比率函数的图象,它的函数表达式可是能( B)4A.y=x2B .y=x31C.y=-D .y=xx233 .为了更好的保护水资源,造福人类,某工厂方案积容个一建V(m) 必然的污水办理池,池的底面积S(m2 )与其深度h( m) 满足关系式:V= Sh(V ≠0) ,那么 S 关于h 的函数图象大体是( C)4 .反比率函数y=k3的图象经过点( - 2, ) ,那么它的图象位于( B ) x2A.第一、三象限 B .第二、四象限C.第一、二象限 D .第三、四象限5 .假设在同素来角坐标系中,直线y= k1x 与双曲线y =k 2 xA.k1+k2 >0 B .k1+k2<0有两个交点,那么有( C ) C.k1k2>0 D .k1k2<06 .反比率函数y=2x(x 1, y 1) , (x2,y 2),且x 1<x2,那么以下关系建立的是( D )的图象上有两个点为A.y>y2B.y<y2C.y=y D.不能够确定11127 .在反比率函数y=4x的图象上,阴影局部的面积不等于4的是(B)k8 .如图,菱形OABC 的极点 C 的坐标为(3 , 4) ,极点 A 在 x 轴的正半轴上.反比率函数y =(x>0)的x图象经过极点B,那么k 的值为( D)A.12 B .20 C .24 D .32,第8题图),第9题图),第10题图 )49 .如图,函数 y=- x 与函数y =-xA, B 两点,过A, B 两点分别作y 轴的垂线,垂的图象订交于足分别为点 C, D,那么四边形ACBD 的面积为 ( D )A.2 B.4 C.6 D.8m10.反比率函数y =的图象以以下图,以下结论:①常数m< - 1;②在每个象限内,y 随 x 的增大而。
北师大版九年级数学上册试卷全套下载
学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)班级 姓名 学号 成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ( )2、两个等腰三角形一定是全等的三角形. ( )3、等腰三角形的两条中线一定相等. ( )4、两个三角形若两角相等,则两角所对的边也相等. ( )5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.( )二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答 案的番号填在括号内.1、在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A 、∠A=∠DB 、∠C=∠FC 、∠B=∠ED 、∠C=∠D2、下列命题中是假命题的是( )A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形3、如图(一),已知AB=AC ,BE=CE ,D 是AE 上的一点,则下列结论不一定成立的是( )A 、∠1=∠2B 、AD=DEC 、BD=CD D 、∠BDE=∠CDE4、如图(二),已知AC 和BD 相交于O 点,AD ∥BC ,AD=BC ,过O (一)任作一条直线分别交AD 、BC 于点E 、F ,则下列结论:①OA=OC②OE=OF ③AE=CF ④OB=OD ,其中成立的个数是( )A 、1B 、2C 、3D 、45、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)A 、5,8B 、6.5,6.5C 、5,8或6.5,6.5D 、8,6.56、下列长度的线段中,能构成直角三角形的一组是( )A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图(三),AC=AD BC=BD ,则下列结果正确的是( ) (三)A 、∠ABC=∠CAB B 、OA=OBC 、∠ACD=∠BDCD 、AB ⊥CD8、如图(四),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是( )A 、AD=DB B 、DE=DCC 、BC=AED 、AD=BC (四)9、如图(五),在梯形ABCD 中,∠C=90°,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,则∠MAB 是( )A 、35°B 、55°C 、70°D 、20°10、如图(六),在Rt △ABC 中,AD 平分∠BAC ,AC=BC , (五)∠C=Rt ∠,那么,DCAC 的值为( ) A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ (六)三、填空题,(每空2分,共20分)A B1、如图(七),AD=BC,AC=BD AC与BD相交于O点,则图中全等三角形共有对. (七)2、如图(八),在△ABC和△DEF中,∠A=∠D,AC=DF,若根据“ASA”说明△ABC≌△DEF,则应添加条件 = . (八)或∥ .3、一个等腰三角形的底角为15°,腰长为4cm,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是.6、用反证法证明:“任意三角形中不能有两个内角是钝角”的第一步:假设 .7、如图(九),一个正方体的棱长为2cm,一只蚂蚁欲从A点处沿正方体侧面到B点处吃食物,那么它需要爬行的最短路径的长是 .8、在Rt△ABC中,∠ACB=90°,AB=8cm, BC的垂直平分线DE交AB (九)于D,则CD= .9、如图(十)的(1)中,ABCD是一张正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A角翻折,使得点A落在(2)中EF上,折痕交AE于点G,那么∠ADG= .四、作图题(保留作图的痕迹,写出作法)(共6分)(十)如图(十一),在∠AOB内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)1、已知:如图(十三),AB∥CD,F是AC的中点,求证:F是DE中点.(十三)2、已知:如图(十四),AB=AD, CB=CD,E,F分别是AB,AD的中点.求证:CE=CF .(十四)新课标第一网x k b1.co m3、如图(十五),△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:(1)AD⊥EF ;(2)当有一点G从点D向A运动时,DE⊥AB于E,DF⊥AC于F,此时上面结论是否成立?(十五)4、如图(十六),△ABC、△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM 为等边三角形.(十六)2009~2010学年度上期目标检测题九年级 数学第二章 一元二次方程班级 姓名 学号 成绩一、填空题(每小题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 ,常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,则a 的值是 .6.已知322--x x 与7+x 的值相等,则x 的值是 .7.(1)22___)(96+=++x x x ,(2)222)2(4___p x p x -=+-. 8.如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 ,b 是 .9.若1x 、2x 为方程0652=-+x x 的两根,则21x x +的值是,21x x 的值是. 10.用22cm 长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是__ __.11.甲、乙两人同时从A 地出发,骑自行车去B 地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A 、B 两地相距30千米,则乙每小时 千米.二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、已知关于的方程,(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0;(4)(k 2+1)x 2 + kx + 1= 0中,一元二次方程的个数为( )个A 、1B 、2C 、3D 、42、如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是 ( )A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是( )A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、如果022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 ( )A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法)3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法)四、适当的方法解方程(每小题4分,共8分)1.036252=-x 2. 0)4()52(22=+--x x五、完成下列各题(每小题5分,共15分)1、已知函数222a ax x y --=,当1=x 时,0=y , 求a 的值.2、若分式1|3|432----x x x 的值为零,求x 的值.3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根. (1)若方程只有一个实根,求出这个根; (2)若方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值.六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.2009~2010学年度上期目标检测题九年级 数学第三章 证明(Ⅲ)班级 姓名 学号 成绩一、选择题(每题4分,共40号内. 1、如图1中,O 为对角线AC 、BD 则图中共有相等的角( )A 、4对B 、5对C 、6对D 、8对 2、如图2,已知E 、F 的中点, 连接AE 、CF 所形成的四边形AECF 的面 的面积的比为( )A 、1:1B 、1:2C 、1:3D 、1:43、过四边形ABCD 的顶点A 、B 、C 、D 作BD 、AC 的平行线围成四边形EFGH,若EFGH 是菱形,则四边形ABCD 一定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形ABCD 中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是BC 、CD 的中点,那么=∠EAF ( )A 、075B 、055C 、450D 、0605、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )A 、56B 、55C 、54D 、356、矩形的内角平分线能够组成一个( )A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形ABCD 的一组邻边AD 、CD 向形外作等边三角形ADE 、CDF ,则下列结论中错误的是( )A 、BD 平分EBF ∠B 、030=∠DEFC 、BD EF ⊥ D 、045=∠BFD8、已知正方形ABCD 的边长是10cm ,APQ ∆是等边三角形,点P 在BC 上,点Q 在CD 上,则BP 的边长是( )A 、55cmB 、3320cm C 、)31020(-cm D 、)31020(+cm 9、若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是( )A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是( )新 课 标 第一 网A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角二、填空题(每空1分,共11分)1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .4、在ABC ∆中,D 为AB 的中点,E 为AC 上一点,AC CE 31=,BE 、CD 交于点O ,cm BE 5=,则=OE . 5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD 沿对角线AC 对折后,AD 与BC 交于点E ,则DE 的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、已知四边形ABCD 是菱形,AEF ∆是正三角形,E 、F 分别在BC 、CD 上,且CD EF =,则=∠BAD .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)1、如图3,AB//CD ,090=∠ACB ,E 是ABCE=CD ,DE 和AC 相交于点F.求证:(1)AC DE ⊥; (2)ACE ACD ∠=∠.2、如图4,ABCD 为平行四边形,DFEC 和BCGH 为正方形.求证:EG AC ⊥.3、证明:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.图54、从菱形钝角的顶点向对边作垂线,且垂线平分对边,求菱形各角的度数?四、(第1、2小题各6分,第3小题7分,共19分)1、如图5,正方形纸片ABCD 的边BC 上有一点E ,AE=8cm ,若把纸片对折,使点A 与点E 重合,则纸片折痕的长是多少?2、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD ,又AE DF ⊥于点F ,证明:EC=EF.3、如图7,已知P 是矩形ABCD 的内的一点.求证:2222PD PB PC PA +=+.2009~2010学年度上期目标检测题 九年级 数学半期检测题(总分120分,100分钟完卷)班级 姓名 学号 成绩新课 标 第一网 一、选择题(每小题3分,共36内.1、下列数据为长度的三条线段可以构成直角三角形的是((A )3、5、6 (B )2、3、4(C ) 6、7、9 (D )9、12、15 2、如图(一):AB=AC ,D 、E 、F 分别是三边中点,则图中全等三角形共有( )(A ) 5对 (B ) 6对 (C ) 7对 (D ) 8对 3、△ABC 中,∠A=150º,AB=10,AC=18,则△ABC (A )45 (B )90 (C )180 (D )不能确定4、已知△ABC 中,∠C=90º,∠A=30º,BD 平分∠B 交AC 于点D ,则点D ( )(A )是AC 的中点 (B )在AB 的垂直平分线上(C )在AB 的中点 (D )不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( )(A )1 (B ) -1 (C ) 1或-1 (D )21 6、方程x x 52=的根是( )(A )5=x (B )0=x (C ) 5,021==x x (D ) 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为( )(A )100)2(2++x (B )100)2(2--x (C )100)2(2-+x (D ) 100)2(2+-x8、两个连续奇数的乘积是483,则这两个奇数分别是( )(A ) 19和21 (B ) 21和23 (C ) 23和25 (D ) 20和229、根据下列条件,能判定一个四边形是平行四边形的是( )(A )两条对角线相等 (B )一组对边平行,另一组对边相等(C )一组对角相等,一组邻角互补 (D )一组对角互补,一组对边相等10、能判定一个四边形是矩形的条件是( )(A )对角线相等 (B )对角线互相平分且相等(C )一组对边平行且对角线相等 (D )一组对边相等且有一个角是直角11、如果一个四边形要成为一个正方形,那么要增加的条件是( )(A )对角线互相垂直且平分 (B )对角互补(C )对角线互相垂直、平分且相等 (D )对角线相等12、矩形的四个内角平分线围成的四边形( )(A )一定是正方形 (B )是矩形 (C )菱形 (D )只能是平行四边形 二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm 和12cm ,则斜边长是 ,斜边上的高是 cm.2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△ABC 中,AB=AC ,∠BAC=120AD ⊥AC ,DC=8,则BD= .5、已知:如图(三),△ABC 中,AB=AC ,∠AB 的中垂线交AC 于点D ,交AB 于点E , 则∠C= ,∠DBC= .6、若关于x 的方程42322-=+x x kx 是一元二次方程,则k 的取值范围是 . (三)7、关于x 的方程124322+-=-a ax x x ,若常数项为0,则a = .8、如果m x x ++32是一个完全平方式,则m = .9、已知9)2(222=++y x ,则=+22y x .10、方程012=--x x 的根是 .11、已知04322=--y xy x ,则yx 的值是 . 12、如图(四),平行四边形ABCD 中,AD=6cm ,AB=9cm,AE 平分∠DAB ,则CE= cm. (四)13、已知矩形ABCD 的周长是24 cm,点M 是CD 中点,∠AMB=90°,则AB= cm, AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)1、0862=--x x (用配方法).2、23142-=--x x x (用公式法).3、04)5(=+-x x x (用因式分解法).4、02)12(2=++-x x .。
(word完整版)最新北师大版九年级数学上册单元测试题全套与答案,推荐文档
最新北师大版九年级数学上册单元测试题全套及答案( 最新北师大版,2017 年秋配套试题)第一章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.菱形的对称轴的条数为( )A.1 B.2 C.3 D.42.下列说法中,正确的是( )A.相等的角一定是对顶角 B .四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分 D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0) ,B(0 ,2) ,C(3,0) ,D(0,-2) ,则四边形ABCD是( )A.矩形 B .菱形 C .正方形 D .平行四边形4.下列命题是假命题的是( )A.四个角相等的四边形是矩形 B .对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿AE对折,使得点 B 落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )A.6 cm B .4 cm C .2 cm D .1 cm6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( A )A.245B.125C .5D .4, 第6 题图) , 第7 题图)7.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为( )A.90° B .60° C .45° D .30°8.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形9.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为 2 的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )A. 5B.136C .1 D.56, 第9 题图) ,第10 题图)110.如图,在矩形ABCD中,点E,F 分别在边AB,BC上,且AE=AB,将矩形沿直线EF 折叠,点B3恰好落在AD边上的点P 处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B .②③ C .①③ D .①④二、填空( 每小3 分,共18 分)11.已知菱形的两条对角线长分别为 2 cm,3 cm,则它的面是___cm2.12.如图,已知点P 是正方形ABCD对角线BD上一点,且BP=BC,则ACP的度数是___度.13.如图所示,将△ ABCAC的中点O顺时旋180°得到△CDA,添加一个条件__ __ ,使四边形ABCD为矩形., 第12图 ) , 第13图 ) , 第14图 ), 第15图 )14.已知矩形ABCD, AB=3 cm,AD=4 cm,过对角线BD的中点O作BD的垂直平分线EF,分别AD,BC于点E,F,则AE的长为_ cm.15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为____.16.矩形OABC在平面直角坐标系中的位置如图所示,点 B 的坐标为(3 ,4) ,D是OA的中点,点 E 在AB上,当△CDE的周长最小时,则点 E 的坐标为__(_)_ .三、解答( 共72 分)17.(10 分) 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?18.(10 分) 如图,在△ABC中, AB=AC,点D为边BC上一点,以AB,BD为边作?ABDE,连AD,EC.(1) 求证:△ADC≌△ ECD;(2) 若 BD=CD,求证:四边形ADCE是矩形.19.(10 分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连CE.(1) 求证: BD=EC;(2) 若∠ E=50°,求∠BAO的大小.20.(10 分) 如图,已知在?ABCD中,点E,F 分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1) 求证:△ADE≌△ CBF;(2) 若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的21.(10 分) 如图,已知菱形ABCD,AB=AC,点E,F 分别是BC,AD的中点,连AE,CF.(1) 求证:四边形AECF是矩形;(2) 若 AB=8,求菱形的面积.22.(10 分) 如图,在正方形ABCD中,点E,F 分别在边AB,BC上,∠ ADE=∠ CDF.(1) 求证: AE=CF;(2) 连DB交EF 于点O,延长OB至G,使OG=OD,连EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12 分) 如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN的中点.(1) 求证:△MBA≌△ NDC;(2) 四边形MPNQ是什么特殊四边形?请说明理由.第二章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.下列方程中,关于x 的一元二次方程是( )A.3( x+1)2=2( x+1) B.1 12+-2=0-2=0 x xC.ax2+bx+c=0 D .x2+2x=x2-12.方程(x -2)(x +3) =0 的解是( )A.x=2 B.x=-3 C.x1=-2,x2=3 D.x1=2,x2=-32 3.若x=-2 是关于x 的一元二次方程x+322ax-a =0 的一个根,则 a 的值为( )A.-1 或4 B .-1 或-4 C .1 或-4 D .1 或44.用配方法解一元二次方程x2-2x-3=0 时,方程变形正确的是( )A.( x-1)2=2 B .( x-1)2=4 C .( x-1)2=1 D .( x-1)2= 75.下列一元二次方程中,没有实数根的是( )2 2 2 2A.x +2x+1=0 B .x +x+2=0 C .x -1=0 D .x -2x-1=06.解方程(x +1)(x +3) =5 较为合适的方法是( )A.直接开平方法 B .配方法C.公式法或配方法 D .分解因式法2 27.已知一元二次方程x -2x-1=0 的两个根分别是x1,x2,则x1 -x1+x2 的值为( )A.-1 B .0 C .2 D .38.关于x 的方程x2-ax+2a=0 的两根的平方和是5,则 a 的值是( )A.-1 或5 B .1 C .5 D .-19.某县政府2015 年投资0.5 亿元用于保障性住房建设,计划到2017 年投资保障性住房建设的资金为0.98 亿元,如果从2015 年到2017 年投资此项目资金的年增长率相同,那么年增长率是( ) A.30% B.40% C.50% D.10%10.有一块长32 cm,宽24 cm的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A.2 cm B .3 cm C .4 cm D .5 cm二、填空题( 每小题 3 分,共18 分)211.一元二次方程2x +6x=9 的二次项系数、一次项系数、常数项和为___.212.方程(x +2) =x+2 的解是____.2 213.若代数式4x -2x-5 与2x +1 的值互为相反数,则x 的值是__.14.写一个你喜欢的实数k 的值__ _ ,使关于x 的一元二次方程( k+1) x2+2x-1=0 有两个不相等的实数根.15.某制药厂两年前生产 1 吨某种药品的成本是100 万元,随着生产技术的进步,现在生产 1 吨这种药品的成本为81 万元.则这种药品的成本的年平均下降率为___.2 216.设m,n 分别为一元二次方程x +2x-2018=0 的两个实数根,则m+3m+n=__.三、解答题( 共72 分)17.(12 分) 解方程:2(1) x +4x-1=0; (2)x 2+3x+2=0;2(3)3 x -7x+4=0.18.(10 分) 如图,已知A,B,C是数轴上异于原点O的三个点,且点O为AB的中点,点 B 为AC的中点.若点B对应的数是x,点C对应的数是x2-3x,求x 的值.52 219.(8 分) 一元二次方程x -2x-=0 的某个根,也是一元二次方程x -(k +2)x +494=0 的根,求k的值.20.(10 分) 某种商品的标价为400 元/ 件,经过两次降价后的要价为324 元/ 件,并且两次降价的百分率相同.(1) 求该种商品每次降价的百分率;(2) 若该种商品进价为300 元/ 件,两次降价共售出此种商品100 件,为使两次降价销售的总利润不少于3 210 元.问第一次降价后至少要售出该种商品多少件?21.(10 分) 小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1) 要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?2(2) 小峰对小林说:“这两个正方形的面积之和不可能等于48 cm,”他的说法对吗?请说明理由.22.(10 分) 某市电解金属锰厂从今年元月起安装了回收净化设备( 安装时间不计) ,这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月的利润的月平均值W(万元) 满足W=10 x +90. 请问多少个月后的利润和为1620 万元?23.(12 分) 为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000 元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1) 筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的 3 倍,问最多用多少资金购买书桌、书架等设施?(2) 经初步统计,有200 户居民自愿参与集资,那么平均每户需集资150 元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000 元.经筹委会进一步宣传,自愿参与的户数在200 户的基础上增加了a%(其中a>0) .则每户平均集资的资金在150 元的基础上减少了值.109a%,求a 的第三章检测题( 时间:120 分钟满分:120 分)一、选择题( 每小题 3 分,共30 分)1.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3 个事件的概率分别记为P(A) ,P(B) ,P(C),则P(A) ,P(B) ,P(C) 的大小关系正确的是( )A.P( C) <P( A)=P( B) B.P( C) <P( A) <P( B)C.P( C) <P( B)<P( A) D .P( A) <P( B) <P( C)2.从-5,0,4,π,3.5 这五个数中,随机抽取一个,则抽到无理数的概率是( )A.1525B.35C.45D.3.如图,在2× 2 的正方形网格中有9 个格点,已经取定点 A 和B,在余下的7 个点中任取一点C,使△ABC为直角三角形的概率是( )A.12B.25C.37D.474.袋子里有 4 个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于 6 的概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11 的概率为( )A.118B.136C.112D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.12, 第6 题图) , 第7 题图) 7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5258.有三张正面分别写有数字-1,1,2 的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为 a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为 b 的值,则点(a ,b) 在第二象限的概率是( )A.16B.13C.12D.239.从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能够组成三角形的概率是( )A.14B.13C.12D.3410.如图,在平面直角坐标系中,点A1,A2 在x 轴上,点B1,B2 在y 轴上,其坐标分别为A1(1 ,0) ,A2 (2 ,0) ,B1(0 ,1) ,B2(0 ,2) ,分别以A1,A2,B1,B2 其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )A.34B.13C.23D.12二、填空题( 每小题 3 分,共18 分)11.一个布袋中装有 3 个红球和 4 个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12.在一个不透明的袋子中有10 个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__.15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__.16.已知一包糖果共有五种颜色( 糖果仅有颜色差别) ,如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__.三、解答题( 共72 分)17.(10 分) 小明有 2 件上衣,分别为红色和蓝色,有 3 条裤子,其中 2 条为蓝色、 1 条为棕色.小明任意拿出 1 件上衣和 1 条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10 分) 在一个不透明的口袋中装有 4 张相同的纸牌,它们分别标有数字1,2,3,4. 随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1) 计算两次摸取纸牌上数字之和为 5 的概率;(2) 甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10 分) 甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3. 乙袋中的三张卡片所标的数值为-2,1,6. 先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x,y 分别作为点 A 的横坐标和纵坐标.(1) 用适当的方法写出点A(x ,y) 的所有情况;(2) 求点A 落在第三象限的概率.( 1) 列表:20.(10 分) 分别把带有指针的圆形转盘A,B 分成 4 等份、3 等份的扇形区域,并在每一个小区域内标上数字( 如图所示) .欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1) 试用列表或画树状图的方法,求欢欢获胜的概率;(2) 请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10 分) 某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放( 发放的食品价格一样) .食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1) 按约定,“小李同学在该天早餐得到两个油饼”是________事件;( 可能,必然,不可能)(2) 请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.22.(10 分) 某景区7 月1 日~7 月7 日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1) 随机选择一天,恰好天气预报是晴;(2) 随机选择连续的两天,恰好天气预报都是晴.23.(12 分) 有四张正面分别标有数字2,1,-3,-4 的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1) 请画出树状图并写出(m,n) 所有可能的结果;(2) 求所选出的m,n 能使一次函数y=mx+n 的图象经过第二、三、四象限的概率.( 1) ①画树状图得:第四章测题( 时120 分满分120 分)一、选题( 每小3 分,共30 分)1.下列说法正确的是( )A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似 D .矩形都相似2.已知△ABC∽△ DEF,相似比为3∶1,且△ABC的周为18,则△ DEF的周为( )A.2 B.3 C.6 D. 543.如图,已知BC∥DE,则下列说法不正确的是( C )A.两个三角形是位似图形 B .点A是两个三角形的位似中心C.AE∶AD是相似比 D .点B与点E,点C与点D是对应位似点4.如图,身高为 1.6 m的小红想测量学校旗杆的高度,当她在 C 处时,她头顶端的影子正与旗杆顶端的影子重合,并测得AC=2.0 m,BC=8.0 m,则旗杆的高度是( C )A.6.4 m B .7.0 m C .8.0 m D .9.0 m, 第3图 ) , 第4图 ) , 第5图 ), 第6图 )5.如图,为估算某河的宽度,在河对岸选定一个目标点,在岸点B,C,D,使得AB⊥BC,CD⊥BC,点E 在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于 ( B )A.60 m B .40 m C .30 m D .20 m6.如图,矩形ABCD的面积是72,AE=A.24 B .18 C .12 D .912DC,BF=12AD,那么矩形EBFG的面积是( B )7.如图,点A,B,C,D的坐标分是(1 ,7) ,(1 ,1) , (4 ,1) ,(6 ,1) ,以点C,D,E 为顶点的三角形与△ABC相似,则点 E 的坐标不可能是( B )A.(6 ,0) B .(6 ,3) C .(6 ,5) D . (4 ,2),第7图 ) , 第8图 ) , 第9图 ), 第10图 )8.如图,在△ ABC中,中线BE,CD相交于点O,连DE,下列结:①DE=BC1;②2S△DOE=S△COB12;③AD=ABOE;OB④S 1△ ODE=. 其中正确的个数有( B ) S 3△ ADCA.1 个 B . 2 个 C .3 个 D .4 个9.如图,在△ ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交 AB于点O,交AC于点D,连BD.下列结论误的是( C )A.∠C= 2∠A B .BD平分∠ABCC.S△BCD=S△BOD D .点D为线段AC的黄金分割点10.如图,在直角梯形ABCD中, AD∥BC,∠ ABC=90°, AB=8, AD=3, BC=4,点P 为AB边上一动点,若△PAD与△ PBC是相似三角形,则满足条件的点P 的个数是( C )A.1 个 B . 2 个 C .3 个 D .4 个二、填空( 每小3 分,共18 分)11.若xy=m 4=(y ≠n) ,则n 5x-m 4= __ __.y-n 512.如图是两个形状相同的红绿灯图案,则根据图中给出的分数值,得x 的值是 __16__.13.如图,在△ABC中,点P 是AC上一点,连BP.要使△ABP∽△ ACB,则必须有∠ABP=__∠C__或∠APB=__∠ABC__或AB AC=__ __.AP AB,第12图 ) , 第13图 ) , 第14图 ) , 第15图 )1214.如图,在矩形ABCD中, AB= 2,BC= 3,点E 是AD的中点,CF⊥BE于点F,则CF=__ __.5 15.如图,一条河的两岸有一段是平行的,在河的南岸边每5 米有一棵树,在北岸边每50 米有一根电线杆,小丽站在南岸边15 米的点P 处看北岸,发现北岸相邻的两根电线杆恰好南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河为__22.5 __米.16.如图,以点O为位似中心,将△ABC缩小后得△ABC′,已知OB=3OB′,则△AB C与△ABC的面积之比为__1∶9__.三、解答( 共72 分)17.(10 分) 如图,点D是△ ABC的边AC上的一点,连BD,已知∠ABD=∠ C,AB=6,AD=4,求线段CD的长.在△ABD和△ACB中,∠ ABD=∠C,∠ A=∠A,∴△ ABD∽△ ACB,∴AB=ACAD,∵ AB=6,AD=4,∴ AC AB=2AB 36==9,则CD=AC-AD=9-4=5AD 418.(10 分) 一个钢筋三角架三边长分是20 厘米、 50 厘米、 60 厘米,现在再做一个与其相似的钢筋三角架,而只有长为30 厘米和50 厘米的两根钢筋,要求以其中一根为一边,从另一根上截两( 允许有余料) 作为两边,则不同的截法有多少种?写出你的设计方案,说理由.两种截法:①30 厘米与60 厘米的两根钢筋为应边,把50 厘米的钢筋10 厘米与25 厘米两部分截,则有1020=2550=30 1=,从而两个三角形相似;②30 厘米与50 厘米的两根钢筋为应边,把50 厘米的钢筋60 2截出12 厘米和36 厘米两部分,则有20 50==12 3060 5=,从而两个三角形相似36 319.(10 分) 如图,在平面直角坐标系中,已△ABC三个顶点的坐标分为A(-1,2) ,B( -3,4) ,C(-2,6) .(1) 画出△ ABC绕点 A 顺针转90°后得到的△A1B1C1;(2) 在网格内以原点O为位似中心,画出将△A1B1C1 三条边放大为原的 2 倍后的△A2B2C2.20.(10 分) 如图,矩形ABCD为台球桌面.AD=260 cm,AB= 130 cm. 球目前在 E 点位置,AE=60 cm.如果小丁瞄准了BC边上的点 F 将球打进去,经过反弹后,球好弹到D点位置.(1) 求证:△BEF∽△ CDF;(2) 求 CF的长.( 1) ∵FG⊥BC,∠ EFG=∠D FG,∴∠BFE=∠CFD,又∵∠ B=∠C=90°,∴△BEF∽△ CDF( 2) 设CF= x,则BF=260-x,∵ AB=130,AE=60,BE=70,由 ( 1) 得,△BEF∽△ CDF,∴BE BF=,CD CF即70=130260-x,∴ x=169,即CF=169 cmx21.(10 分) 如图,在△ABC中, AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.∵AD是中线,∴BD= CD,又 CD2 =BE· BA,∴BD2=BE· BA,即2 =BE· BA,∴BD2=BE·BA,即BE BD=,又∠ B=∠ B,∴△ BED∽△ BDA,BD AB∴ED=ADBD,∴ ED· AB=AD·BDAB22.(10 分) 如图,在平行四边形ABCD中,过点 A 作AE⊥BC,垂足为点E,连DE,点F 为线DE上一点,且∠AFE=∠ B.(1) 求证:△ADF∽△ DEC;(2) 若 AB=8,AD=6 3, AF=4 3,求AE的长.( 1) ∵四边形ABCD是平行四边形,∴AB∥CD,AD∥ BC,∴∠ C+∠B=180°,∠ADF=∠ DEC.∵∠ AFD +∠AFE=180°,∠ AFE=∠B,∴∠ AFD=∠C,∴△ ADF∽△ DEC ( 2) ∵四边形ABCD是平行四边形,∴CD=AB=8. 由( 1)知△ADF∽△ DEC,∴AD AF=,∴ DE=DE CDAD·CD=AF6 3× 8=12. 在Rt △ADE中,由勾股定理得AE4 3=DE2-AD2=122-( 6 3)2=623.(12 分) 将一副三角尺如图①摆放( 在Rt△ABC中,∠ACB=90°,∠B= 60°;在Rt△DEF中,∠EDF= 90°,∠ E=45°) ,点DAB的中点,DE交AC于点P,DF经点 C.(1) 求∠ ADE的度数;(2) 如图②,将△DEF绕点D顺时针方旋角α(0 °<α<60°) ,此时的等腰直角三角尺DEF,PMDE′交AC于点M,DF′交BC于点N,试判断的值是否随α的变化而变化?如果不变,请求出CN反之,请说明理由.PM的值;CN( 1) 由题意知,CD是Rt△ABC斜边AB上的中线,∴AD= BD=CD,∵在△BCD中,BD=CD且∠ B=60°,∴△ BCD是等边三角形,∴∠ BCD=∠BDC=60°,∴∠ ADE=180°-∠BDC-∠EDF=180°- 60°- 90°=30° ( 2)PM的值不会随α的变化而变化,理由如:∵△ APD的外角∠MPD=∠A+∠A DE=30°+ 30°CN=60°,∴∠MPD=∠B CD=60°,∵在△MPD和△ NCD中,∠ MPD=∠NCD=60°,∠ PDM=∠CDN=α,∴△PM MPD∽△ NCD,=CN PD PD ,∵∠ ACB=90°,∠ BCD=60°,∴∠ PCD=30°. 在Rt△PCD中,∠PCD=30°,∴CD CD=1=33,∴3PM=CNPD=CD33第五章( 时: 120 分满分:120 分)一、( 每小题 3 分,共30 分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,的视图是( D ) 2.如图是由 4 个相同的正方体组成的几何体,则这个几何体的视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.如图是一支架( 一种小零件) ,支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A )5.木棒的长为 1.2 m,则它的正投影的长一定( D )A.大于 1.2 m B.小于 1.2 m C.等于 1.2 m D.小于或等于 1.2 m6.下列四个几何体中,俯视图为四边形的是( D )7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14 周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.有两个完全相同的长方体,按如图所示方式摆放,其主视图是( C )10.如图,小轩同学在晚上由路灯AC走向路灯BD,当他走到点P 时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD的底部,已知小轩同学的身高是 1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D ) A.24 m B .25 m C .28 m D .30 m二、填空题( 每小题 3 分,共18 分)11.太阳光形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.( 填编号)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6 或7 或8__个小正方体搭成的., 第13 题图) , 第15 题图) , 第16题图)14.小刚和小明在太阳光下行走,小刚身高 1.5 m,他的影长为 2.0 m,小刚比小明矮9 cm,此刻小明的影长是__2.12_m__.15.一个长方体的主视图和左视图如图( 单位:cm) ,则其俯视图的面积是__6_cm2__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30° ,窗户的高在教室地面上的影长MN=2 3米,窗户的下沿到教室地面的距离BC=1 米( 点M,N,C 在同一直线上) ,则窗户的高AB为__2 米__.三、解答题( 共72 分)17.(10 分) 根据下列主视图和俯视图,指出其对应的物体.a—D,b—A,c—B,d—C18.(10 分) 如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你画出它从正面和从左面看得到的平面图形.19.(10 分) 小亮在某一时刻测得小树高为 1.5 m,其影长为 1.2 m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为 6.4 m,墙上影长为 2 m,那么这棵大树高为多少米?x-6.4设大树影长为x 米,大树高为y 米,则2=1.21.5,解得x=8. ∵y 1.5=8 1.2∴y=10,答:这棵大树高为10 米20.(10 分) 在长、都为 4 m,高为 3 m的房间的正中央的天花板上悬挂一只白炽灯泡,为了中光线,加上了灯罩,如图所示,已知灯罩8 cm,灯泡离地面 2 m,为了使光线恰好照在墙脚,问灯罩的直径应为多?( 结果精确到0.01 米)如图,由题意知,DE为地面上墙脚的对角线线.点 A 作AM⊥ DE交 DE于点M,交BC于点N.∵DE∥BC,∴△ ABC∽△ ADE,∴AN=AMBC 4 2×0.08. ∵AN=0.08 ,AM=2,DE=4 2,∴ BC=DE 2≈0.23 m21.(10 分) 如图,某居民小区内A,B 两楼之间的距离MN=30 m,两楼的高度都是20 m,A楼在B 楼正南,B 楼窗户朝南. B 楼内一楼住户的窗台离小区地面的距离DN=2 m,窗户高CD= 1.8 m.当正午时刻太阳光线与地面30°角时,A 楼的影子是否影响 B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.( 参考数据:2=1.414 ,3=1.732 ,5= 2.236)如图,设光线FE 影响到B楼的 E 处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°, FG=10 3,MG=FM-GF=20-10 3≈ 2.68. 又DN=2,CD=1.8 ,∴ DE=2.68 -2=0.68<1.8. ∴A楼的影子影响到 B 楼一楼采光,挡住该住户窗户0.68 m22.(10 分) 如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的面.( 结果保留根号)根据该密封纸盒的三视图知道它是一个棱.∵其高为12 cm,底面长为 5 cm,∴其侧面为26×5×12=360( cm) ,密封纸盒的上、下底面的面积为12×5×3 12× 5× =75 3( cm),∴其表面积为2 22( 75 3+360) cm23.(12 分) 如图,王乐同学在晚上由路灯 A 走向路灯B,当他行到P 处时发现,他在路灯 B 下的影长为2 m,且恰好位于路灯 A 的正下方,接着他又走了 6.5 m到Q处,此时他在路灯 A 下的影子恰好位于路灯B 的正下方( 已知王乐身高 1.8 m,路灯 B 高 9 m) .(1) 标出王乐站在P 处时,在路灯 B 下的影子;(2) 计算王乐站在Q处时,在路灯 A 下的影长;(3) 计算路灯A的高度.EP CP ( 1) 线CP 为王乐在路灯 B 下的影子.( 2) 由题意得Rt△ CEP∽ Rt △CBD.∴=,∴BD CD 1.39=2,解得QD=1.5 m.所以王乐站在Q处时,在路灯 A 下的影长为 1.5 m ( 3) 路灯A 的高度为12 2+6.5 +QDm第六章( 时120 分满分120 分)一、( 每小题 3 分,共30 分)1.反比例函数的图象过( -2,3) ,则此函数的图象( A )A.(2 ,- 3) B.( -3,- 3) C.(2 ,3) D.( -4,6)2.如图,是我们学过的反比例函数的图象,它的函数表达式( B )4A.y=x2 B .y=xC.y=-3x1D .y=x233.为了更好的保护水资源,造福人类,某工厂计V(m) 一定的污水处理池,池的底面积S(m2) 与其深度h( m) 满足关系式V=Sh(V≠0) ,则S 关于h 的函数图象大致是( C )4.反比例函数y=k 3的图象经过点( -2,) ,则它的图象位于( B ) x 2A.第一、三象限 B .第二、四象限C.第一、二象限 D .第三、四象限5.若在同一直角坐标系中,直线y=k1x 与双曲线y=A.k1+k2 >0 B .k1+k2<0C.k1k2>0 D .k1k2<0k2x有两个交点,则有( C )6.反比例函数y=2x的图象上有两个点为(x1,y1) ,(x 2,y2) ,且x1<x2,则下列关系成立的是( D )A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定7.在反比例函数y=4x的图象上,阴影部分的面积不等于 4 的是( B )k8.如图,菱形OABC的顶点C的坐标为(3 ,4) ,顶点 A 在x 轴的正半轴上.反比例函数y=(x>0) 的x图象经过顶点B,则k 的值为( D )A.12 B .20 C .24 D .32, 第8 题图) , 第9 题图) , 第10 题图)9.如图,函数y=-x 与函数y=-4x的图象相交于A,B两点,过A,B两点分别作y 轴的垂线,垂足分别为点C,D,则四边形ACBD的面积为( D ) A.2 B .4 C .6 D .810.反比例函数y=m的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y 随x 的增大而x增大;③若A( -1,h) ,B(2 ,k) 在图象上,则h<k;④若P(x ,y) 在图象上,则P′( -x,-y) 也在图象上.其中正确的是( C )A.①② B .②③ C .③④ D .①④二、填空题( 每小题 3 分,共18 分)11.反比例函数y=kx的图象经过点(1 ,-2) ,则k 的值为__-2 __.k12.已知正比例函数y=-2x 与反比例函数y=的图象的一个交点坐标为( -1,2) ,则另一个交点的x坐标为__( 1,-2)__ .k13.已知反比例函数y=(k ≠0) 的图象经过点(3 ,-1) ,则当1<y<3 时,自变量x 的取值范围是__x-3<x<-1__.14.在某一电路中,保持电压不变,电流I( 安) 与电阻R(欧) 成反比例,其图象如图所示,则这一电路的电压为__12__伏., 第 14图 ) , 第 15图 ) , 第 16图 )15.如图,直x=2 与反比例函数y=2x,y=-1x的图象分别交于A,B两点,若点P是y 轴上任意一3点,则△PAB的面积是__ __.216.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C 分别在x 轴、 y 轴上,反比例函数的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x 轴,垂为D,连接OM,ON,MN.下列结论:①△OCN≌△ OAM;② ON= MN;③四边形DAMN与△ MON面积相等;④若MON=45°, MN=2,则点C的坐标(0 ,2+1) .其中正确结论的序是__①③④__.三、解答( 共72 分)17.(10 分) 已知反比例函数的图象与直y=2x 相交于点A(1 ,a) ,求这个反比例函数的表达式.k 将点A( 1,a)代入直y=2x 得a=2×1=2,∴点 A 的坐标( 1,2) ,将A(1,2) 代入y=中,可得x2反比例函数的表达式y=x18.(10 分) 已知反比例函数的图象点A(-2,3) .(1) 求这个反比例函数的表达式;(2) 这个函数的图象分布在哪些象限y 随 x 的增大如何变化?(3) 点 B(1 ,- 6) ,C(2,4) 和D(2,- 3) 是否在这个函数的图象上?( 1) y=-6 x( 2) 分布在第二、四象限,在每个象限内y 随x 的增大而增大( 3) ∵函数的表达式是y=-6x,∴x= 1 时, y=- 6,x=2 时, y=- 3,∴点 B 和点D在这个函数图象上,点C不在这个函数图象上k 19.(10 分) 如图,已知直y1=x+m与x 轴、 y 轴分别交于A,B 两点,与反比例函数y2=(k ≠ 0,x x<0) 交于C,D两点,且C点的坐标( -1,2) .(1) 分别求出直AB及反比例函数的表达式;(2) 求出点D的坐标;(3) 利用图象直接写出:x 在什么范围内取时,y1>y2.( 1) y1=x+3,y2=-( 2) D(-2,1)2 x( 3) 由图象知-2<x<-1 时, y1>y2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009~2010学年度上期目标检测题九年级数学第一章证明(Ⅱ)班级姓名学号成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ()2、两个等腰三角形一定是全等的三角形. ()3、等腰三角形的两条中线一定相等. ()4、两个三角形若两角相等,则两角所对的边也相等. ()5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.()二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A、∠A=∠DB、∠C=∠FC、∠B=∠ED、∠C=∠DBC,AD=BC,过O (一)OA=OC)4则其他两边的长是()(二),6.5 D、8,6.5);52,42)(三)∠BDC D、AB⊥CD8、如图(四),△ABC中,∠A=30°,∠C=90°AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A、AD=DBB、DE=DCC、BC=AED、AD=BC (四)9、如图(五),在梯形ABCD 中,∠C=90°,M 是BC 的中点, DM 平分∠ADC ,∠CMD=35°,则∠MAB 是( ) A 、35° B 、55° C 、70° D 、20° 10、如图(六),在Rt △ABC 中,AD 平分∠BAC ,AC=BC , (五) ∠C=Rt ∠,那么,DCAC 的值为( )A 、112∶)(-B 、()112∶+C 、12∶D 、 12∶ (六)三、填空题,(每空2分,共20分)1、如图(七),AD=BC ,AC=BD AC 与BD 相交于O 点,则图中全等三角形共有 对. (七) 2、如图(八),在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,若根据“ASA ”说明△ABC ≌△DEF ,则应添加条件 = . (八) 或 ∥ .3、一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是 (十)距离相等,(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)1、已知:如图(十三),AB∥CD,F是AC的中点,求证:F是DE中点.(十三)2、已知:如图(十四),AB=AD, CB=CD,E,F分别是AB,AD的中点.求证:CE=CF .(十四)新课标第一网x k b1.co m3、如图(十五),△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:(1)AD⊥EF ;(2)当有一点G从点D向A运动时,DE⊥AB于E,DF⊥AC于F,此时上面结论是否成立?(十五)4、如图(十六),△ABC、△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM为等边三角形.(十六)的值是 .7.(1)22___)(96+=++x x x ,(2)222)2(4___p x px -=+-.8.如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 ,b 是 .9.若1x 、2x 为方程0652=-+x x 的两根,则21x x +的值是,21x x 的值是.10.用22cm 长的铁丝,折成一个面积为228cm11.甲、乙两人同时从A 地出发,骑自行车去B 果比乙早到0.5小时,若A 、B 两地相距30二、选择题(每小题3分,共18案的番号填在括号内.1、已知关于的方程,(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0; (4)(k 2+1)x 2 + kx + 1= 0中,一元二次方程的个数为( )个A 、1B 、2C 、3D 、4 2、如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且 3、已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是 ( )A 、1±=mB 、1-=mC 、1=mD 、0=m 4、将方程0982=++x x 左边变成完全平方式后,方程是( )A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x 5、如果022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 ( )A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )A 、 5%B 、 10%C 、15%D 、 20%三、按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法)3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法)四、适当的方法解方程(每小题4分,共8分)1.036252=-x 2. 0)4()52(22=+--x x五、完成下列各题(每小题5分,共15分)1、已知函数222a ax x y --=,当1=x 时,0=y , 求a 的值.2、若分式1|3|432----x x x 的值为零,求x 的值.3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根.(1)若方程只有一个实根,求出这个根; (2)若方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值.六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.2009~2010学年度上期目标检测题九年级 数学 第三章 证明(Ⅲ)班级 姓名 学号 成绩一、选择题(每题4分,共40答案的番号填在括号内. 1、如图1中,O 为对角线AC 、BD 则图中共有相等的角( )A 、4对B 、5对C 、6对D 、8对2、如图2,已知E 、F 的中点,连接AE 、CF 所形成的四边形AECF 的面的面积的比为( ) A 、1:1 B 、1:2 C 、1:3 D 、1:4 3、过四边形ABCD 的顶点A 、B 、C 、D 作 BD 、AC 的平行线围成四边形EFGH,若EFGH 是菱形,则四边形ABCD 一定是( )A 、平行四边形B 、菱形、F 分别是BC 、CD 的中点,、06036,5 D 、35 、平行四边形ADE 、CDF ,则下列结论中错、BD EF ⊥ D 、045=∠BFD P 在BC 上,点Q 在CD )310-cm D 、)31020(+cmD 、不确定 10、正方形具有而菱形不具有的性质是( )新 课 标 第一 网 A 、四个角都是直角 B 、两组对边分别相等 C 、内角和为360 D 、对角线平分对角二、填空题(每空1分,共11分)1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .4、在ABC ∆中,D 为AB 的中点,E 为AC 上一点,AC CE 31=,BE 、CD 交于点O ,cm BE 5=,则=OE .5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD 沿对角线AC 对折后,AD 与BC 交于点E ,则DE的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 . 8、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 . 9、正方形的一条对角线和一边所成的角是 度. 10、已知四边形ABCD 是菱形,AEF ∆是正三角形,E 、F 分别在BC 、CD 上,且CD EF =,则=∠BAD .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)1、如图3,AB//CD ,090=∠ACB ,E 是AB 的中点,CE=CD ,DE 和AC 相交于点F. 求证:(1)AC DE ⊥;(2)ACE ACD ∠=∠.2、如图4,ABCD为平行四边形,DFEC和BCGH为正方形.求证:EGAC .4、从菱形钝角的顶点向对边作垂线,且垂线平分对边,求菱形各角的度数?四、(第1、2小题各6分,第3小题7分,共19分)1、如图5,正方形纸片ABCD 的边BC 上有一点E ,AE=8cm ,若把纸片对折,使点A 与点E 重合,则纸片折痕的长是多少?2、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD ,3、如图7,已知P 是矩形ABCD 的内的一点.求证:2222PD PBPC PA +=+.2009~2010学年度上期目标检测题九年级 数学 半期检测题(总分120分,100分钟完卷)班级 新课 标 第一网 一、选择题(每小题3分,共36案的番号填在括号内.1(A )3、5、6 (B ) 2、3、4(C ) 6、7、9 (D )9、12、15 2、如图(一):AB=AC ,D 、E 、F 则图中全等三角形共有( )(A ) 5对 (B ) 6对 (C ) 7对 (D 3、△ABC 中,∠A=150º,AB=10,AC=18,则△(A )45 (B )90 (C )180 (D 4、已知△ABC 中,∠C=90º,∠A=30º,BD 平分∠(A )是AC 的中点 (B )在AB 的垂直平分线上 (C )在AB 的中点 (D )不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( ) (A )1 (B ) -1 (C ) 1或-1 (D )216、方程x x 52=的根是( )(A )5=x (B )0=x (C ) 5,021==x x (D ) 0,521=-=x x 7、用配方法将二次三项式9642-+x x 变形,结果为( )(A )100)2(2++x (B )100)2(2--x (C )100)2(2-+x (D ) 100)2(2+-x 8、两个连续奇数的乘积是483,则这两个奇数分别是( ) (A ) 19和21 (B ) 21和23 (C ) 23和25 (D ) 20和22 9、根据下列条件,能判定一个四边形是平行四边形的是( )(A )两条对角线相等 (B )一组对边平行,另一组对边相等 (C )一组对角相等,一组邻角互补 (D )一组对角互补,一组对边相等 10、能判定一个四边形是矩形的条件是( )(A )对角线相等 (B )对角线互相平分且相等(C )一组对边平行且对角线相等 (D )一组对边相等且有一个角是直角 11、如果一个四边形要成为一个正方形,那么要增加的条件是( ) (A )对角线互相垂直且平分 (B )对角互补 (C )对角线互相垂直、平分且相等 (D )对角线相等 12、矩形的四个内角平分线围成的四边形( )(A )一定是正方形 (B )是矩形 (C )菱形 (D )只能是平行四边形二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm 和12cm ,则斜边长是 ,斜边上的高 是 cm.2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△AD ⊥AC ,DC=85、已知:如图(三)AB 的中垂线交AC 则∠C= ,∠6、若关于x 的方程则k7、关于x 的方程3x8、如果x x ++329、已知(22++y x 10、方程12--x x 11、已知32-xy x y的值是 .12、如图(四),平行四边形ABCD 中,AD=6cm ,AB=9cm,AE 平分∠DAB ,则CE= cm. (四)13、已知矩形ABCD 的周长是24 cm,点M 是CD 中点,∠AMB=90°,则AB= cm,AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)1、0862=--x x (用配方法).2、2-xx-x(用公式法).=1342-3、0xx(用因式分解法).-x)54(=+四、解答题(每小题5分,共15分)1、为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校准备在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较合适?新课标第一网xk 3、如图(五),ΔABC中,AB=20,AC=12,AD是中线,且AD=8,求BC的长.五、证明(计算)(每小题5分,共15分)1、已知:如图(六),点C、D在BE上,BC=DE,AB∥EF,AD∥CF.求证:AD=CF.(2、如图(七),正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=600,求∠EFD的度数.(七)3、已知:如图(八),在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=BC, 又AE⊥BC于E.求证:CD=CE.(八)2009~2010学年度上期目标检测题九年级数学第四章视图与投影班级姓名学号成绩一、选择题(每小题4分,共32分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是相同的长方形,府视图为圆,则这个几何体为()A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A、先变长,后变短B、先变短,后变长C、方向改变,长短不变D、以上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是()A、20米B、16米C、18米D、15米4、下列说法正确的是()A、物体在阳光下的投影只与物体的高度有关B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D、物体在阳光照射下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的是()图17、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为()图 2A、0.36πm2B、0.81πm2C、2πm2D、3.24πm28、如图(三)是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是()(三)A、(1)(2)(3)(4)B、(4)(3)(1)(2)C、(4)(3)(2)(1)D、(2)(3)(4)(1)二、填空题(每小题3分,共21分)1、主视图、左视图、府视图都相同的几何体为(写出两个).2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.5、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .三、解答题(本题7个小题,共47分)1、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.图 7,两楼间的距离AC=30m,现需了30°角时,求甲楼的影)若要甲楼的影子刚好不落在乙楼的图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子[如图(9)所示],已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值)图 97、一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗?图 102009~2010学年度上期目标检测题九年级 数学 第五章 反比例函数班级 姓名 学号 成绩一、填空题(每小题3分,共30分)1、近视眼镜的度数y (度)与镜片焦距x 成反比例.0.25米,则眼镜度数y 与镜片焦距x2、如果反比例函数xk y =的图象过点(2,-3),那么k 3、已知y 与x 成反比例,并且当x=2时,4、已知y 与(2x+1)成反比例,且当x=15、若点A (6,y 1)和B (5,y 2系是 .6、已知函数xy 3=,当x <0时,12--m mm 的值是 .图 1 图 2.) 、xy 2=D 、xy 2-=y=3时,x 的值等于( ) 、3 D 、-3 3、若点A (-1,y 1),B(2,y 2),C (3,y 3)都在反比例函数xy 5=的图象上,则下列关系式正确的是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( )A 、m <0B 、m >0C 、m <5D 、m >5 5、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( ) A 、(-1,-2) B 、(-1,2) C 、(1,-2) D 、(-2,1) 6、若一次函数bkx y+=与反比例函数xk y=的图象都经过点(-2,1),则b 的值是( )A 、3B 、-3C 、5D 、-57、若直线y=k 1x(k 1≠0)和双曲线xky 2=(k 2≠0)在同一坐标系内的图象无交点,则k 1、k 2的关系是( )A 、k 1与k 2异号B 、k 1与k 2同号C 、k 1与k 2 8、已知点A 是反比例函数图象上一点,3,若点A A 、xy 12=B 、xy 12-= C 、y =x121-9、如果点P 为反比例函数y 6=Q ,那么、1.5 y 随x 的增大而增大,那么一次函数x 之间的函数关系式,并在直角坐标)是它的体积v (m 3)的反比例函数,当(2)求当v =2m 3时,氧气3、(7分)某蓄水池的排水管每时排水8m3,6小时(h)可将满水池全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的关系式(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?.若物价局规x定为多少5、(7分)如图3,点A是双曲线xk y =与直线y=-x-(k+1)在第二象限内的交点,AB⊥x 轴于B ,且S△ABO =23.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.图 3y=2x-1,其中一次函数的图象经过个函数的图象上,求点A 的坐标; P ,使△AOP 为等腰三角形?若. 图 42009~2010学年度上期目标检测题九年级 数学 第六章 频率与概率班级 姓名 学号 成绩一、选择题(每小题4分,共40分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事件发生的概率不可能是( ) A 、0 B 、1 C 、2132、下列说法正确的是( )A 、投掷一枚图钉,钉尖朝上、朝下的概率一样B C 、投掷一枚均匀的硬币,正面朝上的概率是2161,所以每投6次,一定会出) 、无法确定 ) 、无法确定150次,其中.由此估计口袋中大约有多A 、10个 B 、20个 C 、30个 D 、无法确定7、某商场举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是( )A 、100001 B 、1000050 C 、10000100 D 、100001518、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( ) A 、21 B 、31 C 、41 D 、619、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A 、至少有两名学生生日相同B 、不可能有两名学生生日相同C 、可能有两名学生生日相同,但可能性不大D 、可能有两名学生生日相同,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001行车,其牌照编号大于9000的概率是( ) A 、101 B 、109 C 、1001二、填空题(每小题3分,共24分)1、在装有6个红球、42、某电视台综艺节目组接到热线电话3000个.概率1/5,是 .三、解答题(本题有5个小题,共36分)1、(7分)有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、(7分)一则广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这则广告后,想:“50%=21,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖”.你认为小明的想法对吗?请说明理由.3、(7分)桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?请说明理由.4、(7分)为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,又捕捞了两次,第一次捕捞了200条鱼,其中有24条有标记,第二次捕捞了220条,其中有18条有标记.请问你能否估计出鱼塘中鱼的数量?若能,鱼塘中大约有多少条鱼?若不能,请说明理由.5、(8分)小红计划到外婆家度暑假,为此她准备了一件粉色衬衣,一件白色衬衣,又买了三条不同款式的裙子:一步裙、太阳裙和牛仔裙.(1)她一共有多少种搭配方法?(2)如果在30天中她每天都变换一种搭配,她有几天穿白衬衣?几天穿牛仔裙?有几天白衬衣配牛仔裙?新课标第一网新课标第一网九年级数学·第31 页共31 页。