2017-2018年广东省惠州市博罗实验学校九年级(上)期中数学试卷和答案

合集下载

广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果,那么下列比例式变形正确的是A .B .C .D .2. (2分)(2017·河北模拟) 在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A . 3a+b﹣cB . ﹣a﹣3b+3cC . a+3b﹣3cD . 2a3. (2分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A . =B . =C . =D . =4. (2分)方程x2=4的解为()A . x=2B . x=﹣2C . x1=4,x2=﹣4D . x1=2,x2=﹣25. (2分)若二次根式在实数范围内有意义,则x的取值范围是()A . x≥﹣1B . x≠2C . x≥﹣1且x≠2D . 以上都不正确6. (2分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形与矩形OABC关于点O位似,且矩形与矩形OABC的相似比为,那么点的坐标是A .B .C . 或D . 或7. (2分)一元二次方程x2-ax-2=0,根的情况是()A . 方程有两个不相等的实数根B . 方程有两个相等的实数根C . 方程没有实数根D . 以上都不对8. (2分)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,DC=4,BC=9,则AC为()A . 5B . 6C . 7D . 89. (2分) (2019九上·双台子月考) 如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A . 4B . ﹣4C . 8D . ﹣810. (2分) (2018九上·河南期中) 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为()A . 4B . 4C . 6D . 4二、填空题 (共5题;共5分)11. (1分) (2019九上·高邮期末) 已知m为一元二次方程x2﹣3x+5=0的一根,则代数式2m2﹣6m+2029的值为________ .12. (1分)(2019·广州模拟) 若x1、x2是一元二次方程x2﹣2x﹣=0的两根,则x12+x22的值是________.13. (1分) (2018九上·扬州期末) 如图,已知矩形纸片ABCD中,AB=1,剪去正方形ABEF,得到的矩形ECDF与矩形ABCD相似,则AD的长为________.14. (1分) (2018九上·紫金期中) 如图,某中学准备围建一个矩形面积为72m2的苗圃园,其中一边靠墙,另外三边周长为30m的篱笆围成.设这个苗圃园垂直于墙的一边长为xm,可列方程为________.15. (1分) (2020九上·普宁期末) 如图,在中,,,,则的长为________.三、解答题 (共8题;共67分)16. (10分) (2017七下·金乡期中) 阅读材料:将等式 =5反过来,可得到5= .根据这个思路,我们可以把根号外的因式“移入”根号内,用于根式的化简.例如:5 = = .请你仿照上面的方法,化简下列各式:(1) 3(2) 7(3) 8 .17. (10分) (2019九上·海珠期末) 解方程:(1) x2+5x=0;(2) x(x﹣2)=3x﹣618. (10分) (2016九上·丰台期末) 如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若AB=6,tan∠CDA= ,依题意补全图形并求DE的长.19. (2分) (2019九上·丹东期末) 我市某旅行社为吸引我市市民组团去长白山风景区旅游,推出了如下的收费标准:如果人数不超过25人,人均旅游费用为800元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于650元,某单位组织员工去长白山风景区旅游,共支付给旅行社旅游费用21000元,请问该单位这次共有多少员工去长白山风景区旅游?20. (10分)如图,正方形ABCD边长为2cm,以各边中心为圆心,1cm为半径依次作圆,将正方形分成四部分.(1)这个图形________旋转对称图形(填“是”或“不是”);若是,则旋转中心是点________,最小旋转角是________度.(2)求图形OBC的周长和面积.21. (5分)(2020·西安模拟) 西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.22. (5分) (2017九上·德惠期末) 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG 分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.23. (15分) (2019九上·西安月考) 阅读:如图1,G是四边形ABCD对角线AC上一点,过G作GE∥CD交AD于E,GF∥CB交AB于F,若EG=FG,则有BC=CD成立,同时可知四边形ABCD与四边形AFGE相似.解答问题:有一块三角形空地,如图2,△ABC,BC靠近公路,现需在此空地上修建一个正方形广场,其地为草坪,要使广场一边靠公路,且面积最大,如何设计?请你在下面的图中画出此正方形,(不写画法,保留痕迹)参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共67分)答案:16-1、答案:16-2、答案:16-3、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:。

人教部编版九年级数学上册期中测试卷

人教部编版九年级数学上册期中测试卷

2017-2018学年广东省惠州市博罗实验学校九年级(上)期中数学试卷一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣22.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=65.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+310.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=度.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为.13.(4分)将一个正六边形绕着其中心,至少旋转度可以和原来的图形重合.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB 为多少?五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.2017-2018学年广东省惠州市博罗实验学校九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣2【解答】解:x2﹣4=0,∴x2=4,开平方得:x=±2.故选:B.2.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)【解答】解:根据中心对称的性质,得点P(﹣2,3)关于原点对称点P′的坐标是(2,﹣3).故选:A.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、是中心对称图形,也是轴对称图形.故选:B.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.5.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大【解答】解:由二次函数y=2(x﹣3)2+1,可知:A:∵a>0,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线x=3,故此选项错误;C.其最小值为1,故此选项正确;D.当x<3时,y随x的增大而减小,故此选项错误.故选:C.6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选:A.8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3【解答】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2;由“上加下减”的原则可知,抛物线y=(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=(x﹣1)2+3.故选:D.10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=AE×AG×sinA=x(2﹣x);故y=S△ABC ﹣3S△AEG=﹣3×x(2﹣x)=(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.故答案为:35.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为x(x﹣1)=132.【解答】解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=132,故答案为:x(x﹣1)=132.13.(4分)将一个正六边形绕着其中心,至少旋转60度可以和原来的图形重合.【解答】解:∵正六边形的中心角==60°,∴一个正六边形绕着其中心,至少旋转60°可以和原来的图形重合.故答案60.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是x1=﹣3,x2=1.【解答】解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是250m.【解答】解:设半径为r,则OD=r﹣CD=r﹣50,∵OC⊥AB,∴AD=BD=AB,在直角三角形AOD中,AO2=AD2+OD2,即r2=(×300)2+(r﹣50)2=22500+r2+2500﹣100r,r=250m.答:这段弯路的半径是250m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.【解答】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.【解答】解:过点O作OC⊥AB于点C,连接OB,则AC=BC=AB∵AB=8cm,OC=3cm∴BC=4cm在Rt△BOC中,OB==5cm即⊙O的半径是5cm.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.【解答】解:(1)如图所示,△AB′C′即为所求;(2)由(1)可知,点C′的坐标为(﹣2,5).四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【解答】解:设剪去的小正方形的边长为xcm,根据题意得:(20﹣2x)(10﹣2x)=56,整理得:(x﹣3)(x﹣12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.【解答】(1)证明:由题意得,BC=B1C,∠B=∠B1=60°,又∵∠BCE+∠ECF=90°,∠B1CF+∠ECF=90°,∴∠BCE=∠B1CF,在△BCE和△B1CF中,,∴△BCE≌△B1CF(ASA);(2)当旋转角等于30°时,AB与A1B1垂直.理由如下:证明:∵∠ECF=30°,∴∠BCE=60°,∴△BCE是等边三角形,∴∠BEC=60°,得∠A1EO=60°,又∵∠A1=30°,∴∠A1EO=60°,即AB与A1B1垂直.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB 为多少?【解答】解:连接OA、OC,∵由题意知:AB∥CD,OE⊥AB,OF⊥CD,CD=20cm,∴CG=CD=10cm,在Rt△OGC中,由勾股定理得:OC2=CG2+OG2,OC2=102+(OC﹣2)2,解得:OC=26(cm),则OE=26cm﹣2cm﹣2cm=22cm,∵在Rt△OEA中,由勾股定理得:OA2=OE2+AE2,∴262=222+AE2,∴AE=8,∵OE⊥AB,OE过O,∴AB=2AE=16cm.五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵OC=3OB,B(1,0),∴C(0,﹣3).把点B,C的坐标代入y=ax2+2ax+c,得a=1,c=﹣3,∴抛物线的解析式y=x2+2x﹣3.(2)由A(﹣3,0),C(0,﹣3)得直线AC的解析式为y=﹣x﹣3,如图1,过点D作DM∥y轴分别交线段AC和x轴于点M,N.设M(m,﹣m﹣3)则D(m,m2+2m﹣3),DM=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∴﹣1<0,∴当x=时,DM有最大值,=S△ABC+S△ACD=×4×3+×3×DM,此时四边形A BCD面积有最大值为6+×=.∴S四边形ABCD(3)存在.讨论:①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,﹣3),令﹣3=x2+2x﹣3∴x1=0,x2=﹣2.∴P1(﹣2,﹣3).②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形,∵C(0,﹣3),∴可令P(x,3),3=x2+2x﹣3,得x2+2x﹣6=0解得x1=﹣1+,x2=﹣1﹣,此时存在点P2(﹣1+,3),P3(﹣1﹣,3),综上所述,存在3个点符合题意,坐标分别是:P1(﹣2,﹣3),P2(﹣1+,3),P3(﹣1﹣,3).24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边长为xm,则鸡场平行于墙的一边长为(40﹣2x)m,根据题意得:x(40﹣2x)=200,解得:x1=x2=10,∴40﹣2x=20.答:鸡场平行于墙的一边长为20m.(2)假设能,设鸡场垂直于墙的一边长为ym,则鸡场平行于墙的一边长为(40﹣2y)m,根据题意得:y(40﹣2y)=250,整理得:y2﹣20y+125=0.∵△=(﹣20)2﹣4×1×125=﹣100<0,∴该方程无解,∴假设不成立,即养鸡场面积不能达到250m2.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.【解答】解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

广东省惠州市九年级上学期数学期中考试试卷

广东省惠州市九年级上学期数学期中考试试卷

广东省惠州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2017·自贡) 下列成语描述的事件为随机事件的是()A . 水涨船高B . 守株待兔C . 水中捞月D . 缘木求鱼2. (1分)(2017·绍兴) 矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2 ,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A . y=x2+8x+14B . y=x2-8x+14C . y=x2+4x+3D . y=x2-4x+33. (1分)已知⊙O的半径为5,点P到圆心O的距离为7,那么点P与⊙O的位置关系是()A . 点P在⊙O上B . 点P在⊙O内C . 点P在⊙O外D . 无法确定4. (1分) (2020九上·萧山期中) 如图,在⊙O中,弦,AB=6,BC=8,D是上一点,弦AD 与BC所夹锐角度数是72°,则的长为()A .B .C .D .5. (1分)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A .B .C .D .6. (1分) (2019九上·呼和浩特期中) 如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD =1,则⊙O的半径为()A . 8.5B . 7.5C . 9.5D . 87. (1分)图中∠BOD的度数是()A . 55°B . 110°C . 125°D . 150°8. (1分) (2017九上·鞍山期末) 已知二次函数的与的部分对应值如下表:…-1013……-3131…则下列判断中正确的是()A . 拋物线开口向上B . 拋物线与轴交于负半轴C . 当时,D . 方程的正根在3与4之间9. (1分)(2018·济宁) 如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A . (2,2)B . (1,2)C . (﹣1,2)D . (2,﹣1)10. (1分) (2019九上·绍兴期中) 如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c <0,其中正确的序号是()A . ①②④B . ②③④C . ②④D . ③④二、填空题 (共10题;共10分)11. (1分)抛物线y= (x+3)2的顶点坐标是________.对称轴是________。

广东省惠州市 九年级(上)期中数学试卷

广东省惠州市 九年级(上)期中数学试卷

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.观察下列图案,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.下列方程中,一元二次方程有()①3x2+x=20;②2x2-3xy+4=0;③x2−1x=4;④x2=1;⑤x2−x3+3=0A. 2个B. 3个C. 4个D. 5个3.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A. (1,3)B. (−1,3)C. (1,−3)D. (−1,−3)4.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ∠E=∠CC. ADAB=AEACD. ADAB=DEBC5.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A. y=3(x−2)2−1B. y=3(x−2)2+1C. y=3(x+2)2−1D. y=3(x+2)2+16.抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是()A. k>−74B. k≥−74且k≠0C. k≥−74D. k>−74且k≠07.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B.C. D.8.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=100°,AD∥OC,则∠AOD=()A. 20∘B. 60∘C. 50∘D. 40∘9.如图,在Rt△ABC中,∠ACB=Rt∠,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为()A. 36B. 15C. 95D. 3+3510.如图,若将△ABC绕点C顺时针旋转90°后得到△A′B′C′,则A点的对应点A′的坐标是()A. (−3,−2)B. (2,2)C. (3,0)D. (2,1)二、填空题(本大题共6小题,共24.0分)11.已知方程ax2+7x-2=0的一个根是-2,则a的值是______.12.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为______.13.如图,D是等腰直角三角形ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠DAD′的度数是______.14.在相同时刻物高与影长成比例,如果高为1.5 m的测竿的影长为2.5m,那么影长为30m的旗杆的高度是______m.15.如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,则CD的长是______.16.如图,DF∥EG∥BC.AD=DE=EB,则DF、EG把△ABC分成三部分的面积比S1:S2:S3为______.三、解答题(本大题共9小题,共66.0分)17.用合适的方法解下列方程(1)x2-2x-3=0(2)(x+3)2=2(x+3)18.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.19.如图,在平面直角坐标系中,网格中每个小正方形的边长为1,已知△ABC(1)将△ABC绕点O顺时针旋转90画出旋转后得到的△A1B1C1;(2)画出△ABC以坐标原点O为位似中心的位似图形△A2B2C2,使△A2B2C2在第二象限,与△ABC的位似比是12.20.如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.(1)求DE的长度;(2)指出BE与DF的关系如何?并说明由.21.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.22.已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积.23.如图,在▱ABCD中,AB⊥AC,AB=1,BC=5,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.24.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<103),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.25.如图,抛物线y=ax2+bx+3与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)答案和解析1.【答案】C【解析】【分析】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:A.不是轴对称图形,是中心对称图形.故错误;B.是轴对称图形,不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,也不是中心对称图形.故错误.故选C.2.【答案】B【解析】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选:B.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.3.【答案】A【解析】解:二次函数y=-2(x-1)2+3的图象的顶点坐标为(1,3).故选:A.根据二次函数顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.4.【答案】D【解析】解:A和B符合有两组角对应相等的两个三角形相似;C、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选:D.根据∠1=∠2,可知∠DAE=∠BAC,因此只要再找一组角或一组对应边成比例即可.此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.5.【答案】C【解析】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(-2,-1),所得抛物线为y=3(x+2)2-1.故选:C.先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.6.【答案】B【解析】解:∵抛物线y=kx2-7x-7的图象和x轴有交点,即y=0时方程kx2-7x-7=0有实数根,即△=b2-4ac≥0,即49+28k≥0,解得k≥-,且k≠0.故选:B.抛物线y=kx2-7x-7的图象和x轴有交点,即一元二次方程kx2-7x-7=0有解,此时△≥0.考查抛物线和一元二次方程的关系.7.【答案】B【解析】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选:B.设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.此题主要考查学生对相似三角形的判定方法的理解及运用.8.【答案】A【解析】解:∵∠BOC=100°,∠BOC+∠AOC=180°,∴∠AOC=80°,∵AD∥OC,OD=OA,∴∠D=∠A=∠AOC=80°,∴∠AOD=180°-2∠A=20°.故选:A.根据三角形内角和定理可求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.本题考查平行线性质、三角形内角和定理、等腰三角形的性质、圆的有关知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】B【解析】解:∵∠ACB=∠ADC=90°,∠A=∠A∴△ADC∽△ACB∴AD:AC=AC:AB∵AD=3,AC=3∴AB=15故选:B.先确定△ADC与△ACB相似,再根据相似三角形对应边成比例求出AB的长.此题考查学生对相似三角形的性质的理解及运用,其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.10.【答案】C【解析】解:由图知A点的坐标为(-1,2),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(3,0).故选:C.根据旋转的概念结合坐标系内点的坐标特征解答.本题涉及图形的旋转,体现了新课标的精神,应抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.11.【答案】4【解析】解:根据题意知,x=-2满足方程ax2+7x-2=0,则4a-14-2=0,即4a-16=0,解得,a=4.故答案是:4.根据一元二次方程的解的定义,将x=-2代入已知方程,通过一元一次方程来求a的值.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.【答案】7【解析】解:∵点P(-20,a)与点Q(b,13)关于原点对称,∴b=20,a=-13,∴a+b=20-13=7,故答案为:7.首先根据关于原点对称的点的坐标特点可得a、b的值,然后在计算a+b的值.此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.13.【答案】90°【解析】解:∵D是等腰直角三角形ABC内一点,BC是斜边,∴∠BAC=90°,∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴∠DAD′=∠BAC=90°.故答案为90°.先由等腰直角三角形的性质得出∠BAC=90°,再根据对应点与旋转中心所连线段的夹角等于旋转角即可作答.本题考查旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.14.【答案】18【解析】解:∵,∴,解得旗杆的高度==18m.故答案为:18.根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.本题考查相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.15.【答案】8【解析】解:连接OA,∵OC⊥AB,AB=24,∴AD=AB=12,在Rt△AOD中,∵OA=13,AD=12,∴OD===5,∴CD=OC-OD=13-5=8.故答案为:8.连接OA,先根据垂径定理求出AD的长,再在Rt△AOD中利用勾股定理求出OD的长,进而可得出CD的长.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.【答案】1:3:5【解析】解:∵DF∥EG∥BC,∴△ADF∽△AEG∽△ABC,∵AD=DE=EB ,∴得到三角形的相似比是1:2:3,因而面积的比是1:4:9,设△ADF 的面积是x ,则△AEG ,△ABC 的面积分别是4x ,9x ,则S 四边形DEGF =3x ,S 四边形EBCG =5x ,∴S 1:S 2:S 3=1:3:5.故答案为:1:3:5.由题可知△ADF ∽△AEG ∽△ABC ,因而得到相似比,从而推出面积比.本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.17.【答案】解:(1)(x -3)(x +1)=0,x -3=0或x +1=0,解得x =3或x =-1;(2)移项,得(x +3)2-2(x +3)=0,∴(x +3)(x +3-2)=0∴(x +3)(x +1)=0∴x 1=-3,x 2=-1.【解析】(1)用因式分解的十字相乘法求解比较简便;(2)用因式分解的提公因式法求解比较简便.本题考查了一元二次方程的解法,选择适当的方法解一元二次方程可事半功倍.解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.18.【答案】(1)证明:∵AD ∥BC ,∴∠ADB =∠DBC .∵∠A =∠BDC ,∴△ABD ∽△DCB ;(2)∵△ABD ∽△DCB ,AB =12,AD =8,CD =15,∴DBAD =CDAB ,即DB8=1512,解得DB =10,DB 的长10.【解析】(1)根据平行线的性质,可得∠ADB 与∠DBC 的关系,根据两个角对应相等的两个三角形相似,可得答案;(2)根据相似三角形的性质,可得答案.本题考查了相似三角形的判定与性质,利用了两个角对应相等的两个三角形相似,利用相似三角形的对应边成比例是解题关键.19.【答案】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.【解析】(1)根据旋转变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得;(2)根据位似变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得.本题主要考查作图-位似变换与旋转变换,解题的关键是熟练掌握位似变换与旋转变换的定义与性质.20.【答案】解:(1)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD-AE=7-4=3;(2)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°-90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【解析】(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD-AE计算即可得解;(2)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.本题考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.【答案】解:(1)设每千克应涨价x元,根据题意得:(10+x)(500-20x)=6000,解得:x1=10,x2=5,∵要让顾客得到实惠,∴x=10舍去,即x=5,答:每千克应涨价为5元;(2)设每千克应涨价x元,利润为w元,根据题意得:w=(10+x)(500-20x)=-20x2+300x+5000,w=-20(x-7.5)2+6125,∵-20<0,∴w有最大值,即当x=7.5时,w有最大利润为6125元,答:若该商场单纯从经济角度看,每千克应涨价7.5元,商场获利最多为6125元.【解析】(1)设每千克应涨价x元,则每千克盈利(10+x)元,每天可售出(500-20x)千克,根据利润=每千克盈利×日销售量,列方程解出即可,根据要让顾客得到实惠,所以涨价要选择最小的,即每千克应涨价为5元;(2)设每千克应涨价x元,利润为w元,根据(1)的等量关系列函数解析式,配方求最值即可.本题考查了一元二次方程和二次函数的应用,属于销售利润问题,明确利润=每千克盈利×日销售量是本题的关键,重点理解“每千克涨价一元,日销售量将减少20千克”根据所设的未知数表示此时的销售量,与二次函数的最值结合,求出结论.22.【答案】解:(1)解方程x2-6x+5=0,解得:x1=1,x2=5,则m=1,n=5.A的坐标是(1,0),B的坐标是(0,5).代入二次函数解析式得:−1+b+c=0c=5,解得:b=−4c=5,则函数的解析式是y=-x2-4x+5;(2)解方程-x2-4x+5=0,解得:x1=-5,x2=1.则C的坐标是(-5,0).y=-x2-4x+5=-(x2+4x+4)+9=-(x+2)2+9,则D的坐标是(-2,9).作DE⊥y轴于点E,则E坐标是(0,9).则S梯形OCDE=12(OC+DE)•OE=12×(2+5)×9=632,S△DEB=12BE•DE=12×4×2=4,S△OBC=12OC•OB=12×5×5=252,则S△BCD=S梯形OCDE-S△DEB-S△OBC=632-4-252=15.【解析】(1)首先解方程求得m和n的值,得到A和B的坐标,然后利用待定系数法即可求得解析式;(2)首先求得C和D的坐标,作作DE⊥y轴于点E,根据S△BCD=S梯形-S△DEB-S△OBC求解.OCDE本题考查了待定系数法求函数的解析式以及图形的面积的计算,正确作出辅助线转化为易求面积的图形的和、差是关键.23.【答案】(1)证明:当旋转角为90°时,∵∠BAC=90°,∴EF∥AB∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴OA=CO,AD∥BC,∴∠FAO=∠ECO,在△AFO和△CEO中∠FAO=∠ECOAO=CO∠AOF=∠COE∴△AFO≌△CEO(ASA),∴AF=CE;(3)解:可以成菱形,当EF⊥BD时,四边形BEDF为菱形,理由是:∵由(2)知:△AFO≌△CEO,∴OE=OF,∵四边形ABCD是平行四边形,∴OB=OD,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形;∵AB⊥AC,∴∠BAO=90°,∵在Rt△ABC中,AB=1,BC=5,由勾股定理得:AC=2,∴AO=CO=1=AB,∴∠AOB=∠ABO=45°,∵EF⊥BD,∴∠FOB=90°,∴∠FOA=90°-45°=45°,∴此时AC绕点O顺时针旋转的角度是45°.【解析】(1)求出EF∥AB根据平行四边形的性质得出AF∥BE,根据平行四边形的判定得出即可;(2)根据平行四边形的性质得出OA=CO,AD∥BC,求出∠FAO=∠ECO,根据ASA推出△AFO≌△CEO,即可得出答案;(3)可以成菱形,当EF⊥BD时,四边形BEDF为菱形,根据菱形的判定得出即可;求出∠AOB=45°,即可得出答案.本题考查了平行四边形的性质和判定,勾股定理,旋转的性质,菱形的判定的应用,能综合运用知识点进行推理是解此题的关键.24.【答案】解:(1)由运动知,BM=3t,在Rt△ABC中,AC=6,BC=8,∴AB=10,∵MG⊥BC,∴∠MGB=90°=∠ACB,∵∠B=∠B,∴△BGM∽△BCA,∴MGCA=BMAB,∴MG6=3t10,∴MG=95t;(2)由运动知,CN=2t,∴BN=BC-CN=8-2t,由(1)知,MG=95t,∴S四边形ACNM=S△ABC-S△BNM=12BC×AC-12BN×MG=12×8×6-12(8-2t)×95t=95(t-2)2+845,∵0<t<103,∴t=2秒时,S四边形ACNM最小=845cm2;(3)由(1)(2)知,BM=3t,BN=8-2t,∵△BMN与△ABC相似,∴①当△BMN∽BAC时,BMAB=BNBC,∴3t10=8−2t8,∴t=2011秒,②当△BMN∽△BCA时,BMBC=BNAB,∴3t8=8−2t10,∴t=43秒,即:△BMN与△ABC相似,t的值为2011秒或43秒.【解析】(1)先利用勾股定理求出AB=10,再判断出△BGM∽△BCA,得出比例式即可得出结论;(2)先表示出MN,最后利用三角形的面积差即可建立函数关系式,即可得出结论;(3)先表示出BM,BN,再分两种情况,利用相似三角形得出比例式建立方程求解即可得出结论.此题是相似形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的判定和性质,用方程是思想解决问题是解本题的关键.25.【答案】解:(1)∵点A(-1,0)、B(3,0)在抛物线y=ax2+bx+3上,∴a−b+3=09a+3b+3=0,解得a=-1,b=2,∴抛物线的解析式为:y=-x2+2x+3.(2)在抛物线解析式y=-x2+2x+3中,令x=0,得y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:3k+b=0b=3,解得k=-1,b=3,∴y=-x+3.设E点坐标为(x,-x2+2x+3),则P(x,0),F(x,-x+3),∴EF=y E-y F=-x2+2x+3-(-x+3)=-x2+3x.∵四边形ODEF是平行四边形,∴EF=OD=2,∴-x2+3x=2,即x2-3x+2=0,解得x=1或x=2,∴P点坐标为(1,0)或(2,0).(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与▱ODEF对称中心的直线平分▱ODEF的面积.①当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(12,2).设直线AG的解析式为y=kx+b,将A(-1,0),G(12,2)坐标代入得:−k+b=012k+b=2,解得k=b=43,∴所求直线的解析式为:y=43x+43;②当P(2,0)时,点F坐标为(2,1),又D(0,2),设对角线DF的中点为G,则G(1,32).设直线AG的解析式为y=kx+b,将A(-1,0),G(1,32)坐标代入得:−k+b=0k+b=32,解得k=b=34,∴所求直线的解析式为:y=34x+34.综上所述,所求直线的解析式为:y=43x+43或y=34x+34.【解析】(1)利用待定系数法求出抛物线的解析式;(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标;(3)本问利用中心对称的性质求解.平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与▱ODEF对称中心的直线平分▱ODEF的面积.本题是二次函数的综合题型,考查了二次函数的图象与性质、待定系数法、平行四边形的性质、中心对称的性质等知识点.第(3)问中,特别注意要充分利用平行四边形中心对称的性质,只要求出其对称中心的坐标,即可利用待定系数法求出所求直线的解析式.。

2017-2018学年新人教版九年级上期中数学试卷含答案解析

2017-2018学年新人教版九年级上期中数学试卷含答案解析

九年级(上)期中数学试卷一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=06.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.914.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣216.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是,顶点坐标.三、解答题20.解方程:x2﹣2x=x﹣2.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.九年级(上)期中数学试卷参考答案与试题解析一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【考点】解一元二次方程﹣配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.6.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化﹣旋转.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.9【考点】抛物线与x轴的交点.【分析】根据二次函数y=ax2+bx的图象可知,开口向下,a<0,二次函数有最大值y=3,知,一元二次方程ax2+bx+m=0有实数根,知b2﹣4am≥0,从而可以解答本题.【解答】解:∵由二次函数y=ax2+bx的图象可知,二次函数y=ax2+bx的最大值为:y=3,∴.∴.∵一元二次方程ax2+bx+m=0有实数根,∴b2﹣4am≥0.∵二次函数y=ax2+bx的图象开口向下,∴a<0.∴m≥.∴m≥﹣3.即m的最小值为﹣3.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.14.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,能与原来图形重合,故错误;B、不是中心对称图形,不能与原来图形重合,故正确;C、是中心对称图形,能与原来图形重合,故错误;D、是中心对称图形,能与原来图形重合,故错误.故选B.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣2【考点】二次函数图象上点的坐标特征.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.16.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数图象与系数的关系.【分析】只需运用顶点坐标公式求出顶点坐标,然后根据b<0就可确定顶点所在的象限.【解答】解:二次函数y=x2﹣bx﹣1的图象的顶点为(﹣,),即(,),∵b<0,∴<0,<0,∴(,)在第三象限.故选C.二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是直线x=1,顶点坐标(1,3).【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=﹣x2+2x+2=﹣(x﹣1)2+3,∴抛物线对称轴为x=1,顶点坐标为(1,3),故答案为:直线x=1;(1,3).三、解答题20.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.【考点】抛物线与x轴的交点;二次函数的最值.【分析】(1)先计算判别式的值得到△=m2﹣4m+8,然后配方得△=(m﹣2)2+4,利用非负数的性质得△>0,于是根据抛物线与x轴的交点问题即可得到结论;(2)根据二次函数的最值问题得到=﹣,解方程得m1=1,m2=3,然后把m的值分别代入原解析式即可.【解答】(1)证明:y=x2﹣mx+m﹣2,△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)=﹣,整理得m2﹣4m+3=0,解得m1=1,m2=3,当m=1时,函数解析式为y=x2﹣x﹣1;当m=3时,函数解析式为y=x2﹣3x+1.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.【考点】二次函数的三种形式.【分析】(1)运用配方法把一般式化为顶点式,根据二次函数的性质求出对称轴和顶点坐标;(2)根据题意得到一元二次方程,解方程得到答案.【解答】解:(1)∵y=﹣0.5x2+4x﹣3.5,∴y=﹣0.5(x﹣4)2+4.5,对称轴是直线x=4,顶点坐标为(4,4.5);(2)﹣0.5x2+4x﹣3.5=0,解得,x1=7,x2=1,则函数图象与x轴的交点坐标是(7,0)、(1,0).24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程﹣因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m 的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x <0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.2017年3月1日。

广东省惠州市九年级上学期期中数学试题

广东省惠州市九年级上学期期中数学试题

广东省惠州市九年级上学期期中数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·汝州期末) 下列说法正确的是()A . 任意掷一枚质地均匀的硬币10次,一定有5次正面向上B . “等腰三角形的一个角是80度,则它的顶角是80度”是必然事件C . “篮球队员在罚球线上投篮一次,投中”为随机事件D . “ 是有理数,”是不可能事件2. (2分)(2017·哈尔滨) 抛物线y=﹣(x+ )2﹣3的顶点坐标是()A . (,﹣3)B . (﹣,﹣3)C . (,3)D . (﹣,3)3. (2分) (2018九上·扬州期中) 已知⊙O的直径为6cm,点A不在⊙O内,则OA的长()A . 大于3cmB . 不小于3cmC . 大于6cmD . 不小于6cm4. (2分) (2019九上·宁波期末) 下列四条圆弧与直角三角板的位置关系中,可判断其中的圆弧为半圆的是()A .B .C .D .5. (2分) (2019九上·大冶月考) 将抛物线y=2x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为()A .B .C .D .6. (2分) (2019九上·江夏期末) 已知正△ABC的中心为O,边长为1.将其沿直线l向右不滑动的翻滚一周时,其中心O经过的路径长是()A . πB . πC . 4πD . 2π7. (2分) (2020七下·五大连池期中) 如图,在四边形ABCD中,∠α、∠β分别是与∠BAD、∠BCD相邻的补角,且∠B+∠CDA=140°,则∠α+∠β=().A . 260°B . 150°C . 135°D . 140°8. (2分) (2017九上·宣化期末) 一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数解析式:h=﹣3(t﹣2)2+5,则小球距离地面的最大高度是()A . 2米B . 3米C . 5米D . 6米9. (2分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A . 0个B . 1个C . 2个D . 3个10. (2分) (2019九上·武汉月考) 如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2018·辽阳) 一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是________.12. (2分)(2020·南京模拟) 如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为________.13. (1分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x轴的下方,那么这个二次函数的解析式可以为________ .14. (1分) (2020八上·柯桥开学考) 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=________.15. (1分)(2020·广元) 如图所示,均为等边三角形,边长分别为,B、C、D三点在同一条直线上,则下列结论正确的________.(填序号)① ② ③ 为等边三角形④ ⑤CM平分16. (1分) (2019九下·衡水期中) 如果直线y=kx+b与抛物线y= x2交于A(x1 , y1),B(x2 , y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=-1]三、解答题 (共8题;共58分)17. (6分) (2019九上·凤山期末) 如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(-4,1),B(-1,1),C(-1,3)请解答下列问题:①画出△ABC关于原点0的中心对称图形△A1B1C1并写出点C的对应点C1的坐标;②画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2 ,并直接写出点A2的坐标。

广东省惠州市九年级上学期数学期中考试试卷

广东省惠州市九年级上学期数学期中考试试卷

广东省惠州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A .B .C .D . 12. (2分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,若∠OBC=45°,则下列各式成立的是()A . b+c﹣1=0B . b+c+1=0C . b﹣c+1=0D . b﹣c﹣1=03. (2分) (2019八上·南浔月考) 如图,∠MON=30°,点在射线ON上,点在射线OM上, ...均为等边三角形,依此类推,若的边长为()A . 2016B . 4032C .D .5. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④6. (2分)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为A .B .C .D .7. (2分) (2019九上·阳新期末) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A . (-1,)B . (- ,1)C . (-2,1)D . (-1,2)8. (2分) (2017九上·西湖期中) 已知坐标平面上有两个二次函数,的图形,其中、为整数.判断将二次函数的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A . 向左平移单位B . 向右平移单位C . 向左平移单位D . 向右平移单位9. (2分)(2015·义乌) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A . 2πB . πC .D .10. (2分)(2018·万全模拟) 已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:其中所有正确叙述的个数是()①过点(2,1),②对称轴可以是x=1,③当a<0时,其顶点的纵坐标的最小值为3.A . 0B . 1C . 2D . 3二、填空题 (共5题;共5分)11. (1分) (2016九上·苏州期末) 已知抛物线( <0)过A(,0)、O(0,0)、B (,)、C(3,)四点.则 ________ (用“<”,“>”或“=”填空).12. (1分)(2018·苏州) 如图,在Rt△ABC中,∠B=90°,AB=2 ,BC= .将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=________.13. (1分)(2019·乌鲁木齐模拟) 在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色,从袋中随机摸出个,则摸到的是蓝色小球的概率为________14. (1分) (2019八下·淮安月考) 若连续抛掷一枚质地均匀的骰子两次得到的点数分别为、,则最大值是________;15. (1分) (2020九上·嘉陵期末) 将抛物线y=-x2-4x(-4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为________。

广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共46分)1. (3分) (2018九上·防城港期末) 下列方程是一元二次方程的是()A . x﹣2=0B . x2﹣4x﹣1=0C . x3﹣2x﹣3=0D . xy+1=02. (3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A .B .C .D .3. (2分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则等于()A .B .C .D . 14. (3分)方程(x-1)(x-2)=1的根是()A . x1=1,x2=2B . x1=-1,x2=-2C . x1=0,x2=3D . 以上都不对5. (3分)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A . S△ADF=2S△BEFB . BF=DFC . 四边形AECD是等腰梯形D . ∠AEB=∠ADC6. (3分)(2017·宝安模拟) 定义一种新运算:a♣b=a(a-b),例如,4♣3=4(4-3)=4.若x♣2=3,则x的值是()A . x=3B . x=-1C . x1=3,x2=1D . x1=3,x2=-17. (3分)如图,菱形ABCD的边长为1,BD=1,E,F分别是边AD,CD上的两个动点,且满足AE+CF=1,设△BEF的面积为s,则s的取值范围是()A . ≤s≤1B . ≤s≤C . ≤s≤D . ≤s≤8. (3分)如图,△ABC中,∠ACB=90°,CD⊥AB于点D,若BD:AD=1:4,则tan∠BCD的值是()A .B .C .D . 29. (3分)已知反比例函数y=,下列结论中不正确的是()A . 图象经过点(1,1)B . 当x>0时,y随着x的增大而减小C . 当x>0时,0<y<1D . 图象位于第一、三象限10. (3分)(2018·青海) 若,是函数图象上的两点,当时,下列结论正确的是()A .B .C .D .11. (3分)下列函数中,当x>0时,y值随x值增大而减小的是()A . y=x2B . y=x﹣1C .D . y=12. (3分)(2020·抚顺模拟) 正方形ABCD的边长为4,P 为BC上的动点,连接PA,作PQ⊥PA,PQ交CD 于Q,连接AQ ,则AQ的最小值是()A . 5B .C .D . 413. (3分) (2016九上·潮安期中) 已知关于x的一元二次方程2x2﹣3mx﹣5=0的一个根是﹣1,则m=________.14. (3分)直角坐标系中,已知点A(-4,2),B(-2,-2),以原点O为位似中心,把△ABO放大为原来的2倍,则点A的对应点A′的坐标是________.15. (2分) (2018七上·无锡月考) 已知、互为倒数,、互为相反数,则代数式的值为________.16. (3分) (2017八下·丽水期末) 在△ABC中,已知两边a=3,b=4,第三边为c.若关于x的方程有两个相等的实数根,则该三角形的面积是________二、解答题 (共7题;共52分)17. (8分) (2020九下·江阴月考)(1)解方程:;(2)解不等式组:18. (6分) (2016九上·昌江期中) 已知关于x的一元二次方程x2﹣4x+k+1=0(1)若x=﹣1是方程的一个根,求k值和方程的另一根;(2)设x1 , x2是关于x的方程x2﹣4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.19. (6分) (2018八上·兴义期末) 如图,E、F分别为线段AC上的两个点。

人教出版2017-2018年度九年级(上)期中专业考试数学试卷(含内容规范标准答案)

人教出版2017-2018年度九年级(上)期中专业考试数学试卷(含内容规范标准答案)

2017-2018学年上学期 期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。

1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。

广东省2018届九年级数学上学期期中试题新人教版含答案

广东省2018届九年级数学上学期期中试题新人教版含答案

广东省2018届九年级数学上学期期中试题【说明】1.全卷满分为120分。

考试用时为100分钟。

2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目的指定区域内相应位置上;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

一、选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.2、一元二次方程的二次项系数、一次项系数、常数项分别是A.,, B.,, C.,, D.,,3、若将抛物线y=x2-2x+1沿着x轴向左平移1个单位,再沿y轴向下平移2个单位,则得到的新抛物线的顶点坐标是( )A.(0,2 ) B.(0,-2) C.(1,2) D.(-1,2)4、关于x的一元二次方程有两个相等的实数根,则m的值是()A. 不存在B、4;C、0; D、0或4;5、二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C. D.6、甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙 C.丙 D.一样7、若点A(﹣4,y1),B(﹣1,y2),C(1,y3)在抛物线y=﹣(x+2)2﹣1上,则()A.y1<y3<y2 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y28、在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是()A. B. x(x﹣1)=90 C.D. x(x+1)=90 9、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x) B.y=(60﹣x)(300+20x)C.y=300(60﹣20x) D.y=(60﹣x)(300﹣20x)10、定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程. 已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分.请将下列各题的正确答案填写在答题卡相应位置上)11、方程有两个不等的实数根,则a的取值范围是________。

广东省惠州市初三数学上册期中达标试卷及答案

广东省惠州市初三数学上册期中达标试卷及答案

广东省惠州市初三数学上册期中达标试卷班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.下列运算正确的是( )A.a2⋅a4=a6B.a6÷a2=a3C.(a3)2=a5D.a2+a2=2a4答案:A2.下列函数中,是正比例函数的是( )A.y=2xB.y=2x−1C.y=x2D.y=x2答案:C,若扇形的圆心角为3.已知圆的半径为r,圆心角为n∘的扇形面积公式为S=nπr236045∘,半径为3,则这个扇形的面积是( )A.4.5ππB.34πC.32D.1.5π答案:D4.下列命题中,是假命题的是( )A. 平行于同一条直线的两条直线平行B. 邻补角互补C. 三角形的一个外角大于任何一个内角D. 两条直线被第三条直线所截,同位角相等答案:C5.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根,则k的取值范围是( )A.k<2B.k>2C.k≠2D.k<2且k≠−1答案:A二、多选题(每题4分)1.下列说法中,正确的是()A. 射线AB与射线BA是同一条射线B. 两点之间的所有连线中,线段最短C. 连接两点的线段叫做两点之间的距离D. 过一点有且只有一条直线与已知直线平行答案:B2.下列计算正确的是()A.3a+2b=5abB.5a2−2b2=3C.7a+a=7a2D.x2+x2=2x2答案:D3.下列关于x的方程中,是一元一次方程的是()A.x2+1=0+2=0B.1xC.x+y=1D.3x−1=0答案:D4.下列各数中,是负有理数的是()A.−23B.0C.3.14D.227答案:A5.下列关于角的说法正确的是()A. 角的两边越长,角就越大B. 两个锐角的和一定大于直角C. 射线旋转形成的图形叫做角D. 角的平分线是一条射线答案:C, D注意:第5题中的D选项,虽然通常我们讨论角的平分线时,其本质是射线,但在严格意义上,角的平分线应指从一个角的顶点出发,将该角分为两个相等的角的射线所在的直线(但在这个问题的语境下,我们可以理解为特指那条射线,因此D 选项也被视为正确)。

【初三英语试题精选】博罗实验学校2018年九年级数学上册期中检测(新人教含答案)

【初三英语试题精选】博罗实验学校2018年九年级数学上册期中检测(新人教含答案)

博罗实验学校2018年九年级数学上册期中检测(新人教含
答案)
博罗实验学校1 D、以上答案都不对
9.若x=-2为一元二次方程x2-2x-m=0的一个根,则m的值为()
(A)0(B)4(C)-3(D)8
10.小明把如图所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过,然后小明很快辨认出被倒过的那张扑克牌是( )
颠倒前颠倒后
A.方块5B.梅花6C.红桃7D.黑桃8
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填在答题卡相应的位置上
11 已知点和点是关于原点O的对称点,则 ___________
12 已知一元二次方程的一个根为1,则
13 已知代数式的值为3,则代数式的值是__________
14已知点关于原点对称的点的坐标是
15已知⊙O最长的弦为16cm,则⊙O的一半径为_________cm 16.请写出二次项系数为,且顶点坐标为(-2,3)的抛物线解析式。

三、解答题(一)(本大题3小题,每小题6分,共18分)
17解方程
18 如图所示,△ABC和点O,请用尺规作出与△ABC关于点O对称的△ (不写作法,保留作图痕迹)
19 如图所示,在⊙O中直径AB垂直于弦CD,垂足为E,若AB =10cm,CD=6cm,求OE的长
四、解答题(二)(本大题3小题,每小题7分,共21分)。

2017-2018学年人教版九年级(上册)期中数学试卷及答案

2017-2018学年人教版九年级(上册)期中数学试卷及答案

2017-2018学年人教版九年级(上册)期中数学试卷及答案2017-2018学年九年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x^2-2(3x-2)+(x+1)=0的一般形式是()A。

x^2-5x+5=0B。

x^2+5x-5=0C。

x^2+5x+5=0D。

x^2+5=02.目前我国建立了比较完善的经济困难学生资助体系。

某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A。

438(1+x)^2=389B。

389(1+x)^2=438C。

389(1+2x)^2=438D。

438(1+2x)^2=3893.观察下列图案,既是中心对称图形又是轴对称图形的是()A。

B。

C。

D。

4.把二次函数y=-x^2-x+3用配方法化成y=a(x-h)^2+k的形式时,应为()A。

y=-(x-2)^2+2B。

y=-(x-2)^2+4C。

y=-(x+2)^2+4D。

y=-(x+2)^2+35.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,下列结论正确的是()A。

a<0___<0C。

当-12D。

-2<c<06.对抛物线:y=-x^2+2x-3而言,下列结论正确的是()A。

与x轴有两个交点B。

开口向上C。

与y轴的交点坐标是(0,-3)D。

顶点坐标是(1,-2)7.以3和-1为两根的一元二次方程是()A。

x^2+2x-3=0B。

x^2+2x+3=0C。

x^2-2x-3=0D。

x^2-2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图像可能是()A。

B。

C。

D。

9.将抛物线y=3x^2向左平移2个单位,再向下平移1个单位,所得抛物线为()A。

y=3(x-2)^2-1B。

y=3(x-2)^2+1C。

y=3(x+2)^2-1D。

【初三数学】惠州市九年级数学上期中考试测试卷及答案

【初三数学】惠州市九年级数学上期中考试测试卷及答案

新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D)A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D)A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH ⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°.∴四边形CBEG 是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( ) A.40° B.50° C.130° D.140° 答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④ 答案 B3.下面说法:①线段AC=BC,则C 是线段AB 的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大. 其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D 是线段AB 上两点,若CB=4 cm,DB=7 cm,且D 是AC 的中点,则AC 的长等于( )A.3 cmB.6 cmC.11 cmD.14 cm答案 B6.小明由点A 出发向正东方向走10 m 到达点B,再由点B 向东南方向走10 m 到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.1()2αβ-90αβ︒-答案1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于.答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.答案 1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于 .1()2αβ-90αβ︒-答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”) 答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN 的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. B. C. D.2.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.3.x=2不是下列哪一个方程的解()A. B. C. D.4.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.5.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零6.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 17.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1610.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. △ ≌△D. △与△关于点B中心对称11.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个12.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.14.在直角坐标系中,点(-3,6)关于原点的对称点是______.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.16.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.17.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)19.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.20.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)21.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=022.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?23.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22-2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.把x=2分别代入各个方程的两边,根据方程的解的定义判断即可.本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.4.【答案】A【解析】解:∵一元二次方程3x2-2x+a=0有实数根,∴△≥0,即22-4×3×a≥0,解得a≤.故选:A.根据△的意义得到△≥0,即22-4×3×a≥0,解不等式即可得a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】B【解析】解:当m≥0时,一元二次方程x2=m有解.故选:B.利用平方根的定义可确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.【答案】D【解析】解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,解得:m=1.故选:D.直接利用二次函数的定义分析得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.7.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A、D错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:把(0,-3)代入y=x2-2x+c中得c=-3,抛物线为y=x2-2x-3=(x-1)2-4=(x+1)(x-3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为-4,与x轴的交点为(-1,0),(3,0);C错误.故选:C.把(0,-3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.要求掌握抛物线的性质并对其中的a,b,c熟悉其相关运用.9.【答案】A【解析】解:∵x2-5x+6=0,∴(x-3)(x-2)=0,解得:x1=3,x2=2,∵三角形的两边长分别是4和6,当x=3时,3+4>6,能组成三角形;当x=2时,2+4=6,不能组成三角形.∴这个三角形的第三边长是3,∴这个三角形的周长为:4+6+3=13故选:A.首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.10.【答案】D【解析】解:A、点B和点E关于点O对称,说法正确;B、CE=BF,说法正确;C、△ABC≌△DEF,说法正确;D、△ABC与△DEF关于点B中心对称,说法错误;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可知△ABC≌△DEF,再根据全等的性质可得EC=BF,进而可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.11.【答案】C【解析】解:∵△ABC绕着点A旋转能够与△ADE完全重合,∴△ABC≌△ADE,∴AE=AC,故正确;∠CAB=∠EAD,AB=AD,∴∠CAB-∠EAB=∠EAD-∠EAB,∴∠EAC=∠BAD,故正确;连接BD,则△ABD为等腰三角形,故正确,故选:C.根据旋转的性质得到△ABC≌△ADE,根据全等三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的判定,正确的识别图形是解题的关键.12.【答案】C【解析】解:由图象可得,c>0,a>0,b>0,故正确,当x=1,y=a+b+c>0,故正确,函数图象与x轴两个不同的交点,故b2-4ac>0,故错误,∵b=4a,<0,a>0,解得,4a>c,故正确,∵c>0,a>0,b>0,∴abc>0,故错误,故选:C.根据函数图象可以判断a、b、c的正负,根据b=4a可以得到该函数的对称轴,从而可以判断各个小题是否正确,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13.【答案】-3【解析】解:∵一元二次方程2x2+x+m=0的一个根为1,∴2×12+1+m=0,解得m=-3.故答案是:-3.把x=1代入已知方程列出关于m的一元一次方程,通过解该一元一次方程来求m 的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.【答案】(3,-6)【解析】解:点(-3,6)关于原点的对称点为(3,-6).故答案为:(3,-6).根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.【答案】50(1-x)2=32【解析】解:由题意可得,50(1-x)2=32,故答案为:50(1-x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.16.【答案】-16【解析】解:∵抛物线y=-x2-8x+c的顶点在x轴上,∴=0,解得,c=-16,故答案为:-16.根据题意,可知抛物线顶点的纵坐标等于0,从而可以求得c的值.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】y=(x-2)2-3【解析】解;将二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位后,所得图象的函数表达式是y=(x-2)2+2-5,即y=(x-2)2-3,故答案为:y=(x-2)2-3.根据函数图象向右平移减,向下平移减,可得答案.本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.18.【答案】65【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.【答案】解:由题意得,,解得,,则抛物线的解析式为y=-3x2-6x-1.【解析】利用待定系数法求出抛物线的解析式.本题考查的是待定系数法求二次函数解析式,掌握二次函数的性质,待定系数法求解析式的一般步骤是解题的关键.20.【答案】解:(1)把A(-1,0)代入y=-x+m得1+m=0,解得m=-1,∴一次函数解析式为y=-x-1;把A(-1,0)、B(2,-3)代入y=ax2+bx-3得,解得,∴抛物线解析式为y=x2-2x-3;(2)当-1<x<2时,y2>y1.【解析】(1)利用待定系数法求一次函数和抛物线解析式;(2)利用函数图象,写出一次函数图象在二次函数图象上方所对应的自变量的范围即可.本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围或利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.21.【答案】解:(1)(y+3)2-81=0y+3=±9,解得:y1=-12,y2=6;(2)2x(3-x)=4(x-3)2x(3-x)-4(x-3)=0,2(3-x)(x+2)=0,解得:x1=3,x2=-2;(3)x2+10x+16=0(x+2)(x+8)=0,解得:x1=-2,x2=-8;(4)x2-x-=0∵△=b2-4ac=3+1=4,∴x=,解得:x1=,x2=.【解析】(1)利用直接开平方法解方程得出答案;(2)直接利用提取公因式法分解因式进而得出答案;(3)直接利用十字相乘法分解因式解方程即可;(4)利用公因式法解方程得出答案.此题主要考查了一元二次方程的解法,正确掌握相关解方程的方法是解题关键.22.【答案】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=21,即=21,。

广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列命题中,正确的是()A . 关于x的方程x2=k,必有两个互为相反数的实数根B . 关于x的方程(x-c)2=k,必有两个实数根C . 关于x的方程ax2+bx=0(a≠0),必有一根是0D . 关于x的方程x2=1-a2 ,一定没有实根2. (2分)(2017·大冶模拟) 如图的几何体的俯视图是()A .B .C .D .3. (2分)在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A .B .C .D .4. (2分)下列判断不正确的是()A . 所有等腰直角三角形都相似B . 所有直角三角形都相似C . 所有正六边形都相似D . 所有等边三角形都相似5. (2分) (2019八下·越城期末) 如图,点A在双曲线上,点B在双曲线,轴,分别过点A,B向轴作垂线,垂足分别为D,C.若矩形ABCD的面积是8,则k的值为()A . 12B . 10C . 8D . 66. (2分)将方程x2+8x+9=0左边变成完全平方式后,方程是()A . (x+4)2=25B . (x+4)2=7C . (x+4)2=-9D . (x+4)2=-77. (2分) (2019九上·深圳期末) 按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O ,连AO、BO、CO ,并取它们的中点D、E、F ,得△DEF ,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2④△ABC与△DEF的面积比为4:1.A . 1B . 2C . 3D . 48. (2分)(2019·天河模拟) 要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A . x(x﹣1)=30B . x(x+1)=30C . =30D . =309. (2分)已知反比例函数y=,当2.5<x<5时,y的取值范围是()A . 2<y<4B . 5<x<5C . 5<y<10D . y>1010. (2分)(2020·平阳模拟) 如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为().A .B .C .D .11. (2分)下列命题中,是真命题的是()A . 两条直线被第三条直线所截,同位角相等B . 若a⊥b,b⊥c则a⊥cC . 同旁内角相等,两直线平行D . 若a∥b,b∥c,则a∥c12. (2分) (2017九上·上蔡期末) 如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E 、F ,连结BD 、DP ,BD与CF相交于点H. 给出下列结论:①△BDE ∽△DPE;② ;③DP 2=PH ·PB;④ . 其中正确的是().A . ①②③④B . ①②④C . ②③④D . ①③④二、填空题 (共8题;共11分)13. (1分)(2017·西秀模拟) 若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第________象限.14. (2分)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要________个小立方体,王亮所搭几何体的表面积为________.15. (1分) (2019九上·长春期末) 在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为________km.16. (2分) (2019九上·香坊期末) 上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米17. (1分) (2019八下·贵池期中) 如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是________.18. (2分)(2020·广东模拟) 如图,△ABC内接于⊙O,BD⊥AC于点E,连接AD,OF⊥AD于点F,∠D=45°.若OF=1,则BE的长为________.19. (1分) (2017八下·常州期末) 已知反比例函数y=﹣,下列结论:①图象必经过点(﹣1,2);②y 随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>﹣2.其中正确的有________.(填序号)20. (1分)(2018·吉林) 如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=________m.三、解答题 (共6题;共44分)21. (10分) (2018九上·南召期中) 解方程:.22. (10分)(2018·高邮模拟) 如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;23. (2分)(2019·重庆) 某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少 a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少 a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少 a%,求a的值.24. (10分)为倡导“低碳生活”,常选择以自行车作为代步工具.如图1所示是一辆自行车的实物图,车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,车轮半径28cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2(1)求车座点E到地面的距离;(结果精确到1cm)(2)求车把点D到车架档直线AB的距离.(结果精确到1cm).25. (10分)(2018·普宁模拟) 如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图(2),当AC过点E时,求t的值;(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.26. (2分)(2017·襄阳) 如图,直线y1=ax+b与双曲线y2= 交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共8题;共11分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共44分)答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:。

广东省惠州市九年级上学期数学期中考试试卷

广东省惠州市九年级上学期数学期中考试试卷

广东省惠州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共33分)1. (2分) (2018八上·徐州期末) 下列图形中对称轴最多的是()A . 线段B . 等边三角形C . 等腰三角形D . 正方形2. (2分)方程x(x-1)=2的两根为()A . x1=0,x2=1B . x1=0,x2=-1C . x1=1,x2=2D . x1=-1,x2=23. (5分) (2016九上·平定期末) 一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A . x-6=-4B . x-6=4C . x+6=4D . x+6=-44. (2分)将一元二次方程x2-6x-5=0化成(x+a)2=b的形式,则b等于A . -4B . 4C . -14D . 145. (2分)已知关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,则下列关于判别式n2﹣4mk的判断正确的是()A . n2﹣4mk<0B . n2﹣4mk=0C . n2﹣4mk>0D . n2﹣4mk≥06. (2分)(2019·天宁模拟) 在平面直角坐标系中,点P(–2,3)关于原点对称的点Q的坐标为()A . (2,–3)B . (2,3)C . (3,–2)D . (–2,–3)7. (2分)将抛物线y=2x2经过怎样的平移可得到抛物线 y=2(x+3)2 -4 ()A . 先向左平移3个单位,再向上平移4个单位B . 先向左平移3个单位,再向下平移4个单位C . 先向右平移3个单位,再向上平移4个单位D . 先向右平移3个单位,再向下平移4个单位8. (2分) (2019九上·滨江竞赛) 如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A . 60°B . 90°C . 120°D . 150°9. (2分)一副三角板按图所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A . 75cm2B . 25cm2C . (25+)cm2D . (25+)cm210. (2分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论:①当m =" –" 3时,函数图象的顶点坐标是(,);②当m >0时,函数图象截x轴所得的线段长度大于;③当m <0时,函数在x >时,y随x的增大而减小;④当m= 0时,函数图象经过同一个点.其中正确的结论有A . ①②③④B . ①②④C . ①③④D . ②④11. (2分) (2018九上·仙桃期中) 下列说法①直径是弦②半圆是弧③弦是直径④弧是半圆,其中正确的有()A . 个B . 个C . 个D . 个12. (2分)抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是()A . (, 0)B . (1,0)C . (2,0)D . (3,0)13. (2分)若一次函数y=kx+b的图象经过一、三、四象限,则k,b应满足()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<014. (2分)如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占面积是图案面积的,则竖彩条宽度为()A . 1cmB . 2cmC . 19cmD . 1cm或19cm15. (2分)已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是A .B .C .D .二、解答题 (共9题;共78分)16. (5分) (2017九上·徐州开学考) 解下列方程:(1) x2﹣4x+4=0(2) x(x﹣2)=3(x﹣2)(3)(2y﹣1)2﹣4=0(4)(2x+1)(x﹣3)=0(5) x2+5x+3=0(6) x2﹣6x+1=0.17. (5分) (2019九上·利辛月考) 已知二次函数y=x2-bx+c的图象经过点(-2,3)和(1,6),试确定二次函数的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年广东省惠州市博罗实验学校九年级(上)期中数学试卷一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣22.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=65.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3 10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=度.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为.13.(4分)将一个正六边形绕着其中心,至少旋转度可以和原来的图形重合.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.2017-2018学年广东省惠州市博罗实验学校九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣2【解答】解:x2﹣4=0,∴x2=4,开平方得:x=±2.故选:B.2.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)【解答】解:根据中心对称的性质,得点P(﹣2,3)关于原点对称点P′的坐标是(2,﹣3).故选:A.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、是中心对称图形,也是轴对称图形.故选:B.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.5.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大【解答】解:由二次函数y=2(x﹣3)2+1,可知:A:∵a>0,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线x=3,故此选项错误;C.其最小值为1,故此选项正确;D.当x<3时,y随x的增大而减小,故此选项错误.故选:C.6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选:A.8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3【解答】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2;由“上加下减”的原则可知,抛物线y=(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=(x﹣1)2+3.故选:D.10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=AE×AG×sinA=x(2﹣x);故y=S△ABC ﹣3S△AEG=﹣3×x(2﹣x)=(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.故答案为:35.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为x(x﹣1)=132.【解答】解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=132,故答案为:x(x﹣1)=132.13.(4分)将一个正六边形绕着其中心,至少旋转60度可以和原来的图形重合.【解答】解:∵正六边形的中心角==60°,∴一个正六边形绕着其中心,至少旋转60°可以和原来的图形重合.故答案60.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是x1=﹣3,x2=1.【解答】解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是250m.【解答】解:设半径为r,则OD=r﹣CD=r﹣50,∵OC⊥AB,∴AD=BD=AB,在直角三角形AOD中,AO2=AD2+OD2,即r2=(×300)2+(r﹣50)2=22500+r2+2500﹣100r,r=250m.答:这段弯路的半径是250m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.【解答】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.【解答】解:过点O作OC⊥AB于点C,连接OB,则AC=BC=AB∵AB=8cm,OC=3cm∴BC=4cm在Rt△BOC中,OB==5cm即⊙O的半径是5cm.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.【解答】解:(1)如图所示,△AB′C′即为所求;(2)由(1)可知,点C′的坐标为(﹣2,5).四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【解答】解:设剪去的小正方形的边长为xcm,根据题意得:(20﹣2x)(10﹣2x)=56,整理得:(x﹣3)(x﹣12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.【解答】(1)证明:由题意得,BC=B1C,∠B=∠B1=60°,又∵∠BCE+∠ECF=90°,∠B1CF+∠ECF=90°,∴∠BCE=∠B1CF,在△BCE和△B1CF中,,∴△BCE≌△B1CF(ASA);(2)当旋转角等于30°时,AB与A1B1垂直.理由如下:证明:∵∠ECF=30°,∴∠BCE=60°,∴△BCE是等边三角形,∴∠BEC=60°,得∠A1EO=60°,又∵∠A1=30°,∴∠A1EO=60°,即AB与A1B1垂直.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?【解答】解:连接OA、OC,∵由题意知:AB∥CD,OE⊥AB,OF⊥CD,CD=20cm,∴CG=CD=10cm,在Rt△OGC中,由勾股定理得:OC2=CG2+OG2,OC2=102+(OC﹣2)2,解得:OC=26(cm),则OE=26cm﹣2cm﹣2cm=22cm,∵在Rt△OEA中,由勾股定理得:OA2=OE2+AE2,∴262=222+AE2,∴AE=8,∵OE⊥AB,OE过O,∴AB=2AE=16cm.五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵OC=3OB,B(1,0),∴C(0,﹣3).把点B,C的坐标代入y=ax2+2ax+c,得a=1,c=﹣3,∴抛物线的解析式y=x2+2x﹣3.(2)由A(﹣3,0),C(0,﹣3)得直线AC的解析式为y=﹣x﹣3,如图1,过点D作DM∥y轴分别交线段AC和x轴于点M,N.设M(m,﹣m﹣3)则D(m,m2+2m﹣3),DM=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∴﹣1<0,∴当x=时,DM有最大值,=S△ABC+S△ACD=×4×3+×3×DM,此时四边形ABCD面积有最大值∴S四边形ABCD为6+×=.(3)存在.讨论:①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x 轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,﹣3),令﹣3=x2+2x﹣3∴x1=0,x2=﹣2.∴P1(﹣2,﹣3).②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形,∵C(0,﹣3),∴可令P(x,3),3=x2+2x﹣3,得x2+2x﹣6=0解得x1=﹣1+,x2=﹣1﹣,此时存在点P2(﹣1+,3),P3(﹣1﹣,3),综上所述,存在3个点符合题意,坐标分别是:P1(﹣2,﹣3),P2(﹣1+,3),P3(﹣1﹣,3).24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边长为xm,则鸡场平行于墙的一边长为(40﹣2x)m,根据题意得:x(40﹣2x)=200,解得:x1=x2=10,∴40﹣2x=20.答:鸡场平行于墙的一边长为20m.(2)假设能,设鸡场垂直于墙的一边长为ym,则鸡场平行于墙的一边长为(40﹣2y)m,根据题意得:y(40﹣2y)=250,整理得:y2﹣20y+125=0.∵△=(﹣20)2﹣4×1×125=﹣100<0,∴该方程无解,∴假设不成立,即养鸡场面积不能达到250m2.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.【解答】解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.。

相关文档
最新文档