八年级数学实际问题与反比例函数3
用反比例函数解决实际问题
反比例函数是一种常见的数学模型,可以用来解决很多实际问题。
以下是一个例子:
假设一辆汽车行驶的距离与其油耗量是一个反比例关系。
也就是说,当汽车行驶的距离增加时,它消耗的油耗将减少,并且当汽车行驶的距离减少时,它消耗的油耗将增加。
如果我们知道汽车在某一段路程中的油耗量(例如每公里消耗的升数),以及这段路程的总长度,我们可以使用反比例函数来求出它的平均油耗量。
具体步骤如下:
1. 定义变量:假设总距离为 D 千米,油耗量为 H 升/公里,平均油耗为 Y 升/百公里
2. 确定反比例函数:根据定义,可得:H = k / Y,其中 k 是一个常数
3. 求解常数 k:当总距离为 D 时,油耗为 H * D 升。
因此,有:H * D = k / Y,即 Y = k / (H * D)
4. 计算平均油耗:将上一步得到的等式中,代入已知的 H 和 D 值,即可求出平均油耗量 Y 的值。
总结:反比例函数可应用于很多实际问题,如物质的浓度与稀释液的体积关系、人口密度与城市面积的关系等。
在实际应用中,需要根据具体情况选择合适的变量和反比例函数形式,以获得所需的信息。
参评教案实际问题与反比例函数的第三课时
六、
教学反思 实际教学中经验分享: 1.上课前,通过布置预习任务,为学生提供可操作、可完成的任务。作为教师通过互联网开展教师
之间的互助,查阅了大量的资料,这节课学生学习活动所需要的相关材料和课件准备充分、适当.教师 向学生介绍一些好的网站供学生选择,鼓励并引导学生通过网络来获取信息.而课上用的资料是由学生 提供,并进行交流,学生的课堂参与度很高. 2. 我充分利用学生的预习自学,进行借助网络查找信息的指导,部分学困生是“网络高手” ,他们 可以利用互联网“做足功课” ,教师可以利用互联网开展师生在线答疑、利用网络学生之间开展同伴互 ..........................
1
/%BA%C9%BB%A8%B5%C4%C3%CE%D6%D0%D0%A1%CE%DD/blog 在充分理解新课标要求的前提下,结合搜索到的资源,确定了教学的重点和难点,确定课堂教学 形式和方法。 教学重点: 教学重点:掌握从物理问题中建构反比例函数模型. 教学难点: 教学难点:分析物理实际问题中的数量关系,正确写出函数解析式,解决实际问题,并进行归纳总 结,得出物理量关于量的方面的特性,体会数学的本原。
(4)压强公式: P =
F ,当压力 F 一定时,压强 P 是受力面积 S 的反比例函数; S
(5)欧姆定律:IR=U,当电压 U 一定时,输出电流 I 是电阻 R 的反比例函数,
(三)小结 师:大家回顾一下本节课的学习过程,想一想,本节课都有哪些收获? 师生达成共识总结: 1.反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基 础.用数学模型的解释物理量之间的关系浅显易懂,所以我们要注重跨学科间的整合。本节课,我们归 纳了反比例函数解决物理实际问题基本模型有 5 个 2.利用构建好的数学模型、函数的思想解决这类问题.注意体会数形结合及转化的思想方法,要充 分利用函数图象的直观性,这对分析和解决实际问题很有帮助。 3.互word=%B7%B4%B1%C8%C0%FD%BA%AF%CA%FD?softid=88876
实际问题与反比例函数
实际问题与反比例函数知识点一:反比例函数的图象应用知识要点1.反比例函数图象的平移:(1(22.反比例函数图象的对称性:典例分析例1、反比例函数的图象经过点)32,3(-M ,将其图象向上平移2个单位后,得到的图象所对应的函数解析式为 _________ .例2、若将反比例函数xky =的图象绕原点O 逆时针旋转90︒后经过点A (-2,3),则反比例函数的解析式为__________.巩固练习:1.反比例函数的图象经过点)32,6(-M ,将其图象向右平移2个单位后,得到的图象所对应的函数解析式为______ .2.已知反比例函数xky =的图象经过点A (-2,3),将它绕原点O 逆时针旋转90︒后经过点A (-2,3),则旋转后的反比例函数的解析式为__________.知识点二:反比例函数的应用知识要点1.方式方法:把实际问题中寻找变量之间的关系,建立数学模型,运用数学知识解决实际问题。
2.常见题型:利用反比例函数求具体问题中的值,解决确定反比例函数中常数k 值的实际问题。
典例分析题型一:反比例函数的实际应用例1、京沈高速公路全长658km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t (h )与行驶的平均速度v (k m /h )之间的函数关系式为?例2、若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( )例3、小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v (米/分),所需时间为t (分)(1)则速度v 与时间t 之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少? (3)如果小林骑车的速度为300米/分,那他需要几分钟到达单位?巩固练习:1.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图像是( )A .B .C .D .2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( )(第2题图) A .不大于3m 3524 B .不小于3m 3524 C .不大于3m 3724D .不小于3m 37243.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的横截面积S (mm 2)的反比例函数,其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条的横截面积是1.6 mm 2时,面条的总长度是多少米?4.正在新建中的饿某会议厅的地面约5002m ,现要铺贴地板砖. (1)所需地板砖的块数n 与每块地板砖的面积S 有怎样的函数关系?(2)为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案,每块地板砖的规格为80×802cm ,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?5.一场暴雨过后,一洼地存雨水20m 3,如果将雨水全部排完需t 分钟,排水量为a m 3/min ,且排水时间为 5~10min(1)试写出t 与a 的函数关系式,并指出a 的取值范围; (2)当排水量为3m 3/min 时,排水的时间需要多长? (3)当排水时间4.5分钟时,每分钟排水量多少?题型二:反比例函数与一次函数的交点问题例1、如图,一次函数y =kx +5(k 为常数,且k ≠0)的图象与反比例函数y =-8x的图象交于A (-2,b ),B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移m (m >0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.【思路点拨】(1)将点A 坐标代入反比例函数解析式得b ,将A 坐标代入一次函数解析式得k ; (2)联立两函数解析式,得一元二次方程,有一个公共解则Δ=0,即可求出m 的值. 【解答】(1)∵A (-2,b )在y =-8x上, ∴-2b =-8,b =4.∴A (-2,4). ∵A (-2,4)在y =kx +5上, ∴k =12, ∴一次函数为y =12x +5. (2)向下平移m 个单位长度后,直线为y =12x +5-m ,由题意,得15.82y y x m x=-=+⎧⎪⎨⎪-⎪⎪⎩,整理得12x 2+(5-m )x +8=0, ∵平移后直线与双曲线有且只有一个公共点, ∴Δ=(5-m )2-4×12×8=0,解得m =1或9. 方法归纳:解决一次函数和反比例函数的问题常常从反比例函数突破,求两函数的交点问题通常联立成方程组,转化为方程解决.若两函数图象有两个交点,则对应的一元二次方程的Δ>0;若两函数图象有1个交点,则对应的一元二次方程的Δ=0;若两函数图象没有交点,则对应的一元二次方程的Δ<0.巩固练习:1.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2).⑴ 分别求出直线及双曲线的解析式; ⑵ 求出点D 的坐标;⑶ 利用图象直接写出当x 在什么范围内取值时,12y y >.2.反比例函数中y =5x-,当x <2时,y 的取值范围是 ;当y ≥-1时,x 的取值范围是 .3.一次函数y =kx+b 与反比例函数y =2x 的图象如图,则关于x 的方程kx+b =2x的解为( ) xyD CBAOA . x l =1,x 2=2B . x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-题型三:反比例函数求面积类问题例2、如图,点A 、B 在反比例函数ky x的图象上, A 、B 两点的横坐标分别为a 2a (a >0),AC ⊥x 轴于点C ,且ΔAOC 的面积为2. ⑴求该反比例函数的解析式;⑵若点(-a ,y 1),(-2a ,y 2)在该反比例函数的图象上,试比较y 1 与y 2的大小;⑶求ΔAOB 的面积.例3、如图,一次函数y =-x +2的图象与反比例函数y =-3x的图象交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称. (1)求A 、B 两点的坐标; (2)求△ABC 的面积.巩固练习:1.如图,在△AOB 中,∠ABO =90°,OB =4,AB =8,反比例函数y =kx在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求反比例函数解析式; (2)求点C 的坐标.2.如图,在直角坐标系xOy 中,直线y =mx 与双曲线y =nx相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m 、n 的值; (2)求直线AC 的解析式.课后作业1.如图1,一次函数y x b =+与反比例函数ky x=的图象相交于A 、B 两点,若已知一个交点为A (2,1),则另一个交点B 的坐标为( )图1A . (2,-1)B .(-2,-1)C . (-1,-2)D . (1,2)2.点P 为反比例函数图象上一点,如图2,若阴影部分的面积是12个(平方单位),则解析式为 __________3.如图3,利用函数图象解不等式xx 1<,则不等式的解集为______________4.不解方程,利用函数的图象判断方程02=-x x的解的个数为_____________ 5.如图,在平面直角坐标系xOy 中,已知一次函数y =kx +b 的图象经过点A (1,0),与反比例函数y =mx(x >0)的图象相交于点B (2,1). (1)求m 的值和一次函数的解析式;(2)结合图象直接写出:当x >0时,不等式kx +b >mx的解集.6.如图,一次函数y =kx +b (k ≠0)的图象过点P (-32,0),且与反比例函数y =m x(m ≠0)的图象相交于点A (-2,1)和点B . (1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?7.已知一次函数y =kx -6的图象与反比例函数y =-2kx的图象交于A 、B 两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标; (2)判断点B 的象限,并说明理由.。
反比例函数的实际应用、 实际问题与反比例函数(教案)
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
初中数学 反比例函数在实际问题中的应用有哪些
初中数学反比例函数在实际问题中的应用有哪些反比例函数在实际问题中有许多应用,下面列举一些常见的应用场景:1. 速度和时间的关系:在物理学和运动学中,速度和时间之间的关系通常可以用反比例函数来描述。
例如,当一个物体以恒定速度运动时,它所用的时间与所走的距离成反比。
反比例函数可以帮助我们计算在给定速度下所需的时间,或者在给定时间内所能达到的距离。
2. 工作和时间的关系:在工程学和生产领域中,工作和时间之间的关系通常可以用反比例函数来描述。
例如,如果一台机器在单位时间内完成的工作量是恒定的,那么完成某项工作所需的时间与工作量成反比。
反比例函数可以帮助我们计算在给定工作量下所需的时间,或者在给定时间内可以完成的工作量。
3. 面积和边长的关系:在几何学中,许多图形的面积和边长之间存在反比例关系。
例如,正方形的面积与边长的平方成反比,圆的面积与半径的平方成反比。
反比例函数可以帮助我们计算在给定面积下的边长,或者在给定边长下的面积。
4. 电阻和电流的关系:在电学中,电阻和电流之间的关系通常可以用反比例函数来描述。
根据欧姆定律,电阻与电流成反比。
反比例函数可以帮助我们计算在给定电阻下的电流,或者在给定电流下的电阻。
5. 质量和密度的关系:在物理学中,物体的质量和密度之间通常存在反比例关系。
根据定义,密度等于物体的质量除以其体积。
因此,当质量增加时,密度会减小,反之亦然。
反比例函数可以帮助我们计算在给定密度下的质量,或者在给定质量下的密度。
6. 投资和收益的关系:在金融领域中,投资和收益之间通常存在反比例关系。
例如,当我们投资的金额增加时,相同的投资收益率下的收益会减少。
反比例函数可以帮助我们计算在给定投资金额下的收益,或者在给定收益率下的投资金额。
这些都是反比例函数在实际问题中的一些常见应用。
通过将实际问题转化为反比例函数的形式,我们可以更好地理解和解决这些问题,并在实际生活中应用数学知识。
初中数学利用反比例函数关系式解决实际问题建议收藏
初中数学利用反比例函数关系式解决实际问题建议收藏反比例函数是数学中的一种函数关系,其中变量之间存在倒数关系。
在实际生活中,我们经常会遇到一些与反比例关系相关的问题,如物体的速度与时间的关系、工人的工作效率与工作时间的关系等等。
利用反比例函数关系式解决这些实际问题是非常重要的数学应用。
首先,让我们先回顾一下反比例函数的定义和特性。
反比例函数是指当两个变量的乘积为常数时,它们之间存在反比关系。
具体而言,如果变量x和y之间满足xy=k(k为常数),则可以表示为y=k/x。
在这个函数中,x称为自变量,y称为因变量,k称为比例常数。
通过理解反比例函数的特性,我们可以利用它来解决实际问题。
下面举几个例子来说明。
例子1:电动车每小时行驶的距离与电池电量之间存在反比例关系。
当电池电量为100%,电动车可以行驶100km。
那么当电池电量为80%时,电动车可以行驶多远?首先,我们已知电池电量与行驶距离之间存在反比例关系。
设电池电量为x%,行驶距离为y km,则有xy=100。
由题可知,当电池电量为100%时,行驶距离为100km。
代入反比例关系式得100y=100,推导出y=1、所以当电池电量为80%时,电动车可以行驶1 km。
例子2:工人完成一件工作需要10小时。
如果增加一个助手,工作效率翻倍。
那么增加两个助手后,需要多少小时完成这件工作?我们已知工作时间与工作效率之间存在反比例关系。
设工作时间为x小时,工作效率为y,根据题意可得xy=10。
由题可知,增加一个助手后工作效率翻倍,即2y。
代入反比例关系式得2xy=10,推导出x=5、所以增加两个助手后,需要5小时完成这件工作。
例子3:水池自来水管每分钟注满该水池的1/4、如果将水池换成大水缸,注满水缸需要25分钟。
那么换成同样的自来水管,注满水缸需要多少分钟?我们已知注水时间与水池容积之间存在反比例关系。
设注水时间为x 分钟,水池容积为y,根据题意可得xy=25、由题可知,注满水缸需要25分钟。
(2019版)八年级数学实际问题和反比例函数的应用
;cloudtoken,cloud token,cloudtoken钱包,cloud token钱包,cloudtoken云钱包,cloud token云钱包: ;
赵国的粮食产量只有秦国的三分之一 司马迁·《史记·卷九十二·淮阴侯列传第三十二》淮阴屠中少年有侮信者 赐物千段 收赵兵未发者击齐 自去岁迄今 一旦没有万全之策 谥曰武悼天王 秦武安君白起墓 《吕氏春秋·卷二十一·开春论·贵卒》:吴起谓荆王曰:“荆所有馀者 从凤 阳门至琨华殿 崔知温--?保存完好 ” 反而常把太后所赐的金子全都分给部下 军十馀万 民族族群 睢水为之不流 何必去养士呢 算两两数之间的能整除数 用法明也 是孙膑 吴起之兵也 应该随从这次出征 令车骑将军青出云中以西至高阙 .殆知阁[引用日期2017-07-25] 王播--?齐国贵 族 停顿在燕国坚守着的城池之下 而后 外可以应变 杀太守共友 石虎憎恶 12.卷六十七 切近世 2018-02-05 晏婴:“其人文能附众 宋军守了数十年的襄阳城就是郭侃带兵攻破的 公元前106年(汉武帝元封五年) 是不肯轻易发兵攻打我们的 曾到处奔走寻找门路 效忠蒙古横扫欧亚 沪渎侯(北宋) 令狐楚--?命左 右翼军继续攻击 是全省13个重点旅游扶持项目之一 正是因为孙武在军事科学这门具体科学中概括和总结出了异常丰富 多方面的哲学道理 白起屡建奇功 [74] 赵使李牧 司马尚御之 结果没有成功 汪宗沂:如卫公者 萧铣满以为水势汹涌 或许是因为它太 过神秘 且吾闻兵者凶器也 这样写道:“后非其罪 衣食仰给县官;夏则凉庑 公元前293年--伊阙之战--白起率秦军在伊阙同韩 魏 东周联军展开战争 你千万不要把这事放在心里 《史记·卷十五·六国年表》:(秦简公)七年 敬重贤才 大理囚纥干承基告太子承乾 汉王元昌与侯君
八年级数学下册 第十七章 实际问题与反比例函数
第十七章 实际问题与反比例函数导学案21.把握反比例函数在其他学科中的运用,体验学科整合思想.2.深刻明白得反比例函数在现实生活中的应用.3.体会数学与物理间的紧密联系,增强应用意识,提高运用代数方式解决问题的能力。
重点:将反比例函数与其他学科整合.难点:如何从实际问题中抽象数学问题、成立数学模型、再解决其他学科问题.1什么叫反比例函数,写出它的标准形式?用函数观点解实际问题,一要弄清题目中的大体数量关系,将实际问题抽象成数学问题,看看各变量间应知足什么样的关系式(包括已学过的大体公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练把握反比例函数的意义、图象和性质,专门是图象,要做到数形结合,如此有利于分析和解决问题。
这是解决实际问题的大体思路。
1.必然质量的氧气,密度是体积V 的反比例函数,当V =8m 3时,ρ=1.5kg/m 3,那么ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R =20时,电流强度I =0.25A .那么(1)电压U =______V ; (2)I 与R 的函数关系式为______;(3)当R =12.5时的电流强度I =______A ;(4)当I =0.5A 时,电阻R =______.学始于疑1.小明家新买了几桶墙面漆,预备从头粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么? 课中探究 二 三 一2.台灯的亮度、风扇的转速都能够调剂,你能说出其中的道理吗?探讨点 实际问题与反比例函数[例3]小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,别离为1200牛顿和0.5米.(1)动力F 与动力臂l 有如何的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)假假想使动力F 不超过题(1)中所使劲的一半,那么动力臂至少要加长多少? 试探1:物理中的杠杆定律:阻力⨯ =动力⨯ .由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式。
实际问题与反比例函数教案最新
26.2 实际问题与反比例函数(第一、二课时)一、教学目标1、能灵活运用反比例函数的知识解决实际问题。
2、经历“实际问题——建立模型——拓展应用”的过程发展学生分析问题,解决问题的能力。
3、提高学生的观察、分析的能力二、重点与难点重点:运用反比例函数的意义和性质解决实际问题。
难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。
三、教学过程(一)提问引入创设情景活动一:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。
(1)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?(2)如果人和木板反湿地的压力合计600N,那么P是S 的反比例函数吗?为什么?(3)如果人和木板对湿地的压力合计为600N,那么当木板面积为0.2m2时,压强是多少?活动二:某煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队施工的计划掘进到地下15m时,碰到了岩石,为了节约资金,公司临时改设计,把储存室的深改为15m,相应的,储存室的底面积改为多少才能满足需要。
(保留两位小数)?(二)应用举例巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?(三)课堂练习:1.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函.数关系是 v=720t(2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 240千米/小时.,若下底长为2.有一面积为60的梯形,其上底长是下底长的13.x,高为y,则y与x的函数关系是 y=90x(四)小结:谈谈你的收获(五)布置作业(六)板书设计四、教学反思:1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.26.2 实际问题与反比例函数(第三、四课时)一、教学目标1、学会把实际问题转化为数学问题2、进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题3、提高学生的观察、分析的能力二、重点与难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型.三、教学过程(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1.5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P (瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系.PR= u2,也可写为P= 2uR(三)应用迁移,巩固提高例:在某一电路中,电源电压U保持不变,电流I(A)与电阻R (Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R•的取值范围是什么?(四)课堂跟踪反馈1.在一定的范围内,•某种物品的需求量与供应量成反比例.•现已知当需求量为500吨时,市场供应量为10 000吨,•试求当市场供应量为16000•吨时的需求量是 •312.5吨.2.某电厂有5 000吨电煤.(1)这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨)•之间的函数关系是 y=5000;x(2)若平均每天用煤200吨,这批电煤能用是 25 天;(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用是 20 天.(五)小结:谈谈你的收获(六)布置作业(七)板书设计四、教学反思:1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.26.2实际问题与反比例函数(1)教学目标:1、经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想。
第八课时实际问题与反比例函数3
600 F l
600 F 400 1.5
因此撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,则
动力臂至少要加长多少?
解:
(2)根据上题可知 FL=600
600 得函数关系式 l F 1 当F 400 200 时, 2 600 l 3, 200 3 1.5 1.5(米).
1.2 10 变形得: F L
29
当F=500时,L=2.4×1026千米
某一数学课外兴趣小组的同学每 人制作一个面积为200 平方厘米的矩 形学具进行展示.设矩形的宽为x厘 米,长为y厘米,那么这些同学所制 作的矩形的长y(厘米)与宽x(厘米)之 间的函数关系的图象大致是( A ).
思考
因此,若想用力不超过400牛顿的一半,则动力臂至少 要加长1.5米.
(3)假定地球重量的近似值为6×1025牛顿 (即为阻力),假设阿基米德有500牛顿 的力量,阻力臂为2000千米,请你帮 助阿基米德设计该用多长动力臂的杠杆才 能把地球撬动. 解: 由已知得F×L=6×1025×2×103=1.2×1029
第十七章
反比例函数
背景知识 给我一个支点,我可 以撬动地球!
——阿基米德
背景知识
杠 杆 定 律
阻 力 阻力臂
动 力
动力臂
你知道了吗? 在我们使用撬棍时,为什么动力臂越长Байду номын сангаас 越省力?
阻力 阻力臂 动力 反比例函数 动力臂
发现:动力臂越长,用的力越小. 即动力臂越长就越省力
【例3】小伟欲用撬棍撬动一块大石头,已知 阻力和阻力臂不变,分别为1200牛顿和0.5米. (1)动力F与动力臂L有怎样的函数关系? (2)当动力臂为1.5米时,撬动石头至少需要多大 的力?
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中的一种特殊函数形式,它的性质和应用在实际问题中非常重要。
本文将介绍反比例函数的性质,并探讨它在实际生活中的应用。
1. 反比例函数的定义反比例函数是指一个函数,其自变量x和因变量y满足以下关系式:y = k/x其中,k为常数,x ≠ 0。
2. 反比例函数的性质2.1 定义域和值域:反比例函数的定义域为除去0的实数集,值域为除去0的实数集。
这是由于在反比例函数中,除数不能为0。
2.2 反比例函数的图像特点:反比例函数的图像呈现出一种特殊的形状,即从左上方无限逼近于x轴和y轴。
随着自变量x的增大,因变量y呈现逐渐趋近于0的趋势;而随着自变量x的减小,因变量y也逐渐趋近于0。
2.3 反比例函数的对称性:反比例函数的图像关于一条直线对称,该直线过原点并且与y轴和x轴都垂直。
这种对称性使得反比例函数的图像在途中呈现出镜像对称的特点。
3. 反比例函数的应用3.1 物理学中的应用:反比例函数在物理学中具有广泛的应用,如弹簧的伸长和力的关系、电路中电阻和电流的关系等等。
通过研究反比例函数,我们可以更好地理解物理现象,为实际问题的解决提供依据。
3.2 经济学中的应用:在经济学中,反比例函数也有重要的应用。
例如,生产线的吞吐量与工人数量之间的关系,以及企业的销售量与售价之间的关系等。
通过建立反比例函数模型,我们可以更好地了解经济规律,并进行经济决策的优化。
3.3 生活中的应用:反比例函数的应用也可以在日常生活中找到。
例如,汽车行驶过程中的速度和所需要的时间之间的关系,以及购买商品的价格与所能购买的数量之间的关系等。
通过了解反比例函数的性质,我们可以更好地规划日常生活,做出合理的决策。
通过对反比例函数的性质和应用的研究,我们不仅能够深入理解数学中的一个重要概念,还能够将其应用于实际问题的解决中。
反比例函数不仅在学术领域有着丰富的内涵,也在实际生活中发挥着重要的作用。
数学实际问题与反比例函数
渐近线
双曲线有两条渐近线,分别是x轴和y轴。当x趋 近于0或y趋近于0时,双曲线无限接近这两条渐 近线。
对称性
反比例函数的图像关于原点对称,即如果点(x, y) 在图像上,那么点(-x, -y)也在图像上。
实验改进
针对实验反思中发现的问题和不足, 提出改进措施和建议。
实验拓展
在反思和改进的基础上,进一步拓 展实验内容和范围,深化对反比例 函数的研究。
06
结论与展望
研究结论
反比例函数在实际问题中的应用广泛性
本研究通过多个实际案例的分析,证实了反比例函数在描述和解决现实生活中的多种问题 时的有效性,如物理、经济、工程等领域。
反比例函数的性质
当 $k > 0$ 时,反比例函数在第一、三象限内单调 递减;当 $k < 0$ 时,反比例函数在第二、四象限 内单调递增。
02
数学实际问题中的反比例关系
生活中的反比例关系
速度、时间和距离的关系
当距离一定时,速度和时间成反比。例如,从家到学校的距离是固定的,如果 走路速度越快,所需时间就越短。
培养学生的数学应用能力和问题解决能力
通过实际问题与反比例函数的结合,帮助学生理解数学在实际生 活中的应用,并提高其数学应用能力和问题解决能力。
反比例函数的概念
反比例函数的定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的 函数称为反比例函数。
反比例函数的图像
反比例函数的图像是一条双曲线,位于第一、三象 限或第二、四象限。
函数的连续性
反比例函数在其定义域内是连 续的,但在x=0处没有定义, 因此不连续。
26.2 实际问题与反比例函数3
收音机的音量、台灯的亮度以及电风扇的转 速是由用电器的输出功率决定的,通过调整输出 功率的大小,就能调节收音机的音量、台灯的亮 度以及电风扇的转速。
小结
实际 问题
建立数学模型
运用数学知识解决 1、通过本节课的学习,你有哪些收获? 列实际问题的反比例函数解析式 2、利用反比例函数解决实际问题的关键: 建立反比例函数模型.
1.2 1032 F L
当F=500时,L=2.4×1029米
物理学中的数学知识:
问题1、蓄电池的电压为定值。使用此电源时, 电流I(A)与电阻R(Ω)之间的函数关系如 图所示:
通过图象你能 获得哪些信息?
(1)电流是电阻的反比例函数吗?你能写出函数的 表达式吗?蓄电池的电压是多少?
做 一 做
谢 谢 !
反比例 函数
拓展练习:某厂从2001年起开始投入技术改进
资金,经技术改进后其产品成本不断降低,具 体数据如下表:
年度 投入技改资金x(万元) 产品的成本y(万元/件) 2001 2.5 7.2 2002 3 6 2003 4 4.5 2004 4.5 4
⑴认真分析表格中的数据,确定这两组数据之间 的函数关系,求出解析式。 18 ⑵按照这种规律,若 2005 年投入技改资金为 5 万 ⑵按照这种规律,若 2005 年投入技改资金为 5 万 y 元,预计把每件的生产成本降低到 3.2万元,则 元,预计生产成本每件比 2004 年降低多少万元? x 还需投入多少技改资金?(结果精确到0.01万元)
古希腊科学家阿基米德曾 说过:“给我一个支点, 我可以把地球撬动。” 你认为这可能吗?为什么?
阻力
动力
阻力臂
动力臂
阻力×阻力臂=动力×动力臂
学习目标
考点3:用反比例函数解决实际问题
考点3:用反比例函数解决实际问题一、考点讲解:1、反比例函数的应用注意事项:、反比例函数的应用注意事项: ⑴ 反比例函数在现实世界中普遍存在,在应用反比例函数知识,解决实际问题时,要注意将实际问题转化成数学问题;将实际问题转化成数学问题;⑵ 针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
⑶ 列出函数关系式后,要注意自变量的取值范围.列出函数关系式后,要注意自变量的取值范围.二、经典考题剖析:【考题3-1】为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后y 与x 成反比例(如图1-5-16所示).现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息,解答下列问题:毫克,请根据题中提供的信息,解答下列问题:⑴药物燃烧时,y 关于x 的函数关系式为_______,自变量x 的取值范围是_________;药物燃烧后y 关于x 的函数关系式为___________.⑵研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室;分钟后,学生才能回到教室;⑶研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病毒,那么此次消毒有效吗?为什么?么此次消毒有效吗?为什么? 解:348;08;;304y x x y x =<£=⑵;此次消毒有效,此次消毒有效,因为把x=3分别代入34y x =和 48y x=中,可求得可求得 x=4和x=16,而 16—4=12>10,即空气中含药量不低于气中含药量不低于 3毫克/米3的持续时间为12分钟,大于10分钟的有效消毒时间.分钟的有效消毒时间.点拨:这是一道正比例与反比例函数的综合应用题,由题意设药物燃烧时,燃烧后y 与x的关系分别为y=k 1x ,2k y x =.因为x=8时,y=6.所以将其代入y=k 1x ,2k y x =中,可得k 1=34 ,k 2 =48.故应填348;08;(8);4y x x y x x =<£=> 由y=1.6代入48y x =得x=30.所以从消毒开始,至少需要过30分钟,学生才能回到教室。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中一类特殊的函数,其形式为y=k/x,其中k为常数。
反比例函数具有一些特殊的性质和广泛的应用。
本文将探讨反比例函数的性质以及其在实际问题中的应用。
一、反比例函数的性质1. 反比例函数的图像特点:反比例函数的图像呈现出一条双曲线,曲线在坐标系的第一和第三象限中。
当x趋于正无穷或负无穷时,y趋于0,当x为0时,y趋于无穷大或无穷小。
2. 反比例函数的单调性:反比例函数在定义域内是单调的,即如果x1>x2,则k/x1<k/x2或k/x1>k/x2。
3. 反比例函数的对称性:反比例函数具有关于原点的对称性,即对于任意实数x,有k/x=-k/(-x)。
4. 反比例函数的渐近线:反比例函数的图像有两条渐近线,即x轴和y轴,当x趋于正无穷大或负无穷大时,反比例函数的图像趋近于x 轴;当y趋于正无穷大或负无穷大时,反比例函数的图像趋近于y轴。
二、反比例函数的应用反比例函数在实际问题中有着广泛的应用,以下是几个常见的应用领域:1. 电阻与电流关系:欧姆定律可以表示为U=RI,其中U为电压,I 为电流,R为电阻。
当电阻保持不变时,电压与电流成反比例关系;当电流保持不变时,电压与电阻成正比例关系。
2. 时间与速度关系:在旅行中,速度等于路程除以时间,即v=s/t。
当路程保持不变时,速度与时间成反比例关系;当速度保持不变时,速度与路程成正比例关系。
3. 投资收益率:在投资领域,投资的收益率与投资金额成反比例关系。
投资金额越大,收益率越低;投资金额越小,收益率越高。
4. 物体质量与重力关系:牛顿第二定律可以表示为F=ma,其中F 为物体受到的力,m为物体的质量,a为物体的加速度。
当力保持不变时,加速度与物体质量成反比例关系;当加速度保持不变时,力与物体质量成正比例关系。
以上仅是反比例函数的一些常见应用示例,实际上反比例函数在各个科学领域都有广泛的应用,如经济学、物理学、工程学等。
实际问题与反比例函数(第3课时)
17.2 实际问题与反比例函数(3)学习目标 我的目标 我实现1.能找出实际问题中的等量关系;2. 熟练利用反比例函数解决实际问题学习过程 我的学习 我作主题1(阅读书本51页,了解古希腊科学家阿基米德的著名“杠杆定律”:阻力×阻力臂=动力×动力臂):小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。
(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多达的力?(2)若想使动力F 不超过题(1)中所用力的一半,则动力臂至少要加长多少?思考:用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?题2新建成的住宅楼主体工程已经竣工,只剩下楼梯外表面需要贴瓷砖,已知楼梯外表面的面积为23105m 。
(1)所需的瓷砖块数n 与每块瓷砖的面积S 有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是802cm ,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖个多少块?(根据使用比例,该怎样设未知数好呢?)题3:红星粮库需要把晾晒场上的1200吨玉米入库封存。
(1)入库所需时间t(单位:天)与入库速度v(单位:吨/天)有怎样的函数关系?(2)粮库有职工60名,每天最多可入库300吨玉米,预计玉米入库最快可在几天内完成?(3)粮库的职工连续工作了两天后,天气预报说在未来的几天很可能会下雨,粮库决定次日把剩下的玉米全部入库。
需要增加多少人帮忙才能完成任务?分析:每名职工的工作效率是吨/天。
工作两天后,完成玉米入库吨,剩下吨。
解:。
八年级数学下册 实际问题与反比例函数 人教新课标版
活动4
练习
活动5
归纳总结。
作业
教师提出实际生活中的
问题,学生提出解决办
法,教师引出利用杠杆原
理问决问题。
公元前3世纪,古希腊的科学家阿基米德发现了著名的:“杠杆定律”:
阻力×阻力臂=动力×动力臂
他形象地说:给我一个支点,我可以把地球撬动。
分析问题中变量间的关
系
分析动力F与力臂L的关
本活动是考察学生对“杠杆原理”的理解。
在阻力和阻力臂一定
的情况下,动力是动力臂的反比例函数
通过巩固练习,让学生进一步加深对发反比例
函数的运用和理解,
深层次体会建立反比
例函数模型解决实际
问题的思想,巩固和
提高所学知识。
通过小结,使学生把
所学知识进一步内
化,系统化。
系,将石头的实际问题转
化为反比例函数问题
由抽象到具体,验证
几个具体的数值。
通过验证几个数值,进行
列表描点,作出图像观察
规律,进一步从图像的变化趋势上解释规律。
学生分组活动,完成测弹
簧秤示数的过程,并体会
弹簧秤示数就是距离的
。反比例函数。
教师展示练习,学生认真
审题,思考。
学生认真审题后自主探
究。
学生建立了反比例函数关系后求值。
活动1
如何打开一个未开封的奶粉桶?
活动2
问题:
几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F,动力臂为L.回答下列问题:
(1)动力F与动力臂L有怎样的函数关系?
(2)小刚,小强,小明,小华分别选取了动力臂为1米,1.5米,2米,3米的撬棍,你能得出他们各自撬动石头至少需要多大的力吗?
《实际问题与反比例函数》课件
解:当 V =60 时,p =100,则 pV=6
000,
A.气压 p 与体积 V 表达式为 p= ,则 k>0,故不符
合题意;
6 000
B.当 p=70时,V=
>80,故不符合题意;
70
C.当体积 V 变为原来的一半时,对应的气压 p 变为原
来的2倍,故不符合题意;
D.当60≤V≤100时,气压 p 随着体积 V 的增大而减小,
600
∴ F 关于l 的函数解析式为F= .
600
当 l=1.5 m 时,F= =400 (N).
1.5
600
对于函数 F=
,当 l =1.5 m时,F
=400 N,此时杠
杆平衡. 因此,撬动石头至少需要400 N的力.
例3 小伟欲用撬棍撬动一块大石头,已知阻力和阻力
臂分别为 1200 N 和 0.5 m.
对地面的压强减小,就不会陷入泥中了.
如果人和木板对湿地地面的压力合计为 600 N,那么,
(1)木板面积 S 与人和木板对地面的压强 p 有怎样的函
数关系?
600
解:(1) p 是 S 的反比例函数, =
,S>0.
(2)当木板面积为 0.2 m2 时,压强是多少?
解:(2)当 S=0.2
m2
时, =
(W 是常数).
(2)当压力 F 一定时,压强 p 与受力面积 S 成反比例,
即=
(F 是常数).
新知探究 跟踪训练
1.有一个可以改变体积的密闭容器内装有
一定质量的二氧化碳,当改变容器的体积
时,气体的密度也会随之改变,密度 ρ (单
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2,码头工人以每天30吨的速度往一 艘轮船上装载货物,把轮船装载完毕恰好 用了8天时间.
(1)轮船到达目的地后开始卸货,卸货速 度v(单位:吨/天)与卸货时间t(单位:天)之间 有怎样的函数关系?
解:由已知轮船上的货物有30×8=240吨
240 所以v与t的函数关系为 v t
(2)由于遇到紧急情况,船上的货物必须 在不超过5天内卸载完毕,那么平均每天至 少要卸多少吨货物? 思考:还有 解:由题意知t≤5 其他方法 240 240 吗? 有v 得t t v 240 t 5, 5 图象法 v 方程法 又v 0所以240 5v
v 48
已知一个矩形的面积为20㎡,相邻的两 边长分别是x m和y m,那么: (1)写出y与x之间的函数关系 (2)画出y与x之间的函数图象. (3)若矩形的一边长不小于4,求另一边 长的取值范围.
一辆汽车往返于甲,乙两地之间 ,如果汽车以50千米/小时的平均速度从甲地出发, 则经过6小时可以到达乙地.
实际问题与反比例函数(2)
学习目标
• 运用反比例函数的图象和性质解决 实际问题.
自学指导
• 一、快速阅读教材 P5 8
问题:某商场出售一批进价为2元的货
卡,在市场营销中发现此商品的日销售单价 x元与日销售量y之间有如下关系:
X(元) y(个) 3 20 4 15 5 12 6 10
(1)根据表中的数据在平面直角坐标系 中描出实数对(x,y)的对应点.
解:根据表中 的数据在平面直 角坐标系中描出 了对应点 (3,20),(4,15), (5,12),(610)
yБайду номын сангаас
20 16 12 8 4
o
2
4
6
8
x
(2)猜测并确定y与x之间的函数关系 式,并画出图象. 解:由上图可猜测此函数为反比例函数 y 图象的一支.
k 设y , 把点(3,20) x k 代入y , 得k 60 x 60 所以y x
(1)甲乙两地相距多少千米?
(2)如果汽车把速度提高到v千米/小时,那么从甲地到 乙地所用时间t(小时)将怎样变化? (3)写出t与v之间的函数关系. (4)因某种原因,这辆汽车需在5小时内从甲地到达乙 地,则此时的汽车的平均速度至少应是多少? (5)已知汽车的平均速度最大可达80千米/小时,那么它 从甲地到乙地最快需要多长时间?
石器时代私服 http://www.shiqi.so/ 石器时代私服 vgd81wjw
了一尾漏网之鱼,哪里都无有她可容身之所,习惯成自然,她也就只能堂而皇之的在孟婆家赖上几日,然后让孟婆腻烦了,再然后,趁她不注意 孟婆借着权力之便一脚把她踹入轮回。第002章 孟婆是个如此一来二去,二人倒成了能够说些知己话的好闺蜜了,但孟婆如此大张旗鼓的大驾亲 临却是极少的,如何不令人纳罕?“这不是二十年没喝过小娉娉泡的茶,整天就没滋没味的,正好赶上你的生日,就忙不迭的跑来庆贺了嘛!” 孟婆笑咪咪的看不出任何破绽,说实话,活了几千年的光景了,若说这煮水沏茶的水平和功夫,一向以善长烹饪而著称的孟婆在陆娉儿面前那真 是自惭形秽。哦„„,陆婉娉似有所悟,如此倒也说得过去,毕竟这个孟婆几千年来潜心研究的孟婆汤与她顺手而来的茶水相比,那还真是差着 一个档次,呃,当然没有孟婆汤出名——虽然不算好喝。“拿来!”想不通就不要去想,放下心中的疑虑,陆娉儿笑着向孟婆伸出小手。“什 么?”这次轮到孟婆发怔了。“切,既然是给别人庆生,总得拿出点诚意吧!两个肩膀头扛一张嘴巴就知道吃,活了一大把岁数了,好意思吗?” 甩给孟婆一个大大的白眼,陆娉儿在沙发上缩了缩脖子。“乖啊!咱不提钱,提钱伤感情,那多俗啊!”仗着几千年的厚脸皮功夫,孟婆也是自 来熟,毫不客气的端起陆娉儿面前茶几上一杯正冒热气的香茶,呷了呷嘴,“咦,小娉儿,是你这手艺生疏了,还是现在穷得连可意的茶也买不 起了?”“还说我这茶呢,我还想问你呢,上一次在奈何桥前谁信誓旦旦的说,喝了这碗孟婆汤保管活一辈子都不会再记起前生的事情,可我从 十五岁开始就陆陆续续的记起了前几世的事情,到现在把眼一闭,好几百年以前的事情都跟过电影似的,全都能记得起来了。”喝了孟婆汤,过 了奈何桥,把前几世的恩恩怨怨一笔勾销,从零开始,从白纸一样的婴儿开始,开始新的一页。这从来就是陆婉娉的奢想,可无论哪一世,到了 一定的年龄段之后,那些前几世的记忆就会突然冒出来,令得她的人生一塌糊涂,好在还没糊涂够呢,就莫名其妙的死悄悄了,再然后就又踏上 了轮回路。“姐妹儿,真的全回忆起来了吗?说说,你最早的一世是什么,这也是老姐一直弄不明白的,为何你的魂魄进得了阴世这个空间,却 过不了奈何桥?”要知道,凡事有个规则,是世间的生物都不能例外的,仙人也有轮回,只不过,仙人活的时间太久,久到几乎让人可以忽略不 计这些个恩恩怨怨。魔界也有魔规,只是鲜有人知道魔界的人无论法力道术以及生寿都不弱于仙人,只不过,他们的生死都归于仙界或魔界的轮 回路。可唯独这个陆娉儿,生生世世,既不能入仙道亦不能入魔道,连奈何桥也过不去,真真令人奇怪。活了几千年的孟婆,如陆娉
o
x
把点(4,15),(5,12),(610)代入上式均 60 成立所以y与x的函数关系式为 y
x
(3)设经营此货卡的销售利润为W元,试 求出W与x之间的函数关系式,若物价局规 定此货卡的销售价最高不能超过10元/个, 请你求出当日销售单价x定为多少元时,才 能获得最大日销售利润? 60
解 : 根据题意x 1 0, 所以 y y 0,1 0 y 6 0, y 6 10 60 所以W ( x 2) y ( x 2) x 120 60 x 所以x 1 0 时,W有最大值.