2015-2016学年度人教版六年级数学上册知识整理与复习

合集下载

2015年人教版小学六年级上册数学知识点整理归纳

2015年人教版小学六年级上册数学知识点整理归纳

六上数学知识点归纳班级:姓名:第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单的分数)。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

人教版六年级上册数学全册知识点归纳

人教版六年级上册数学全册知识点归纳

一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。

2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。

3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。

4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。

6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。

二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。

2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。

3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。

4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。

2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。

3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。

2015最新人教版六年级上册数学知识点(概念)归纳与整理(人教版)[1] (1)

2015最新人教版六年级上册数学知识点(概念)归纳与整理(人教版)[1] (1)

2015六年级数学上册知识点整理第一单元分数乘法(一)、分数乘整数。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数乘几分之几表示的是求这个数的几分之几是多少。

3、一半就是二分之一。

4、求几个相同加数的和的简便运算用乘法。

5、一个数的几分之几都可用这个数乘上几分之几表示。

6、一个整数乘分数有时表示几个相同的分数相加,有时表示这个整数的几分之几。

7、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

结果要变成最简分数或整数。

8、分子能同分母约分,整数能同分母约分。

9、分母与整数不能相乘,分子不能同整数约分。

(二)、分数乘整数。

1、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

27×512,表示:27的512是多少。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、一个数乘分数的意义就是求一个数的几分之几是多少4、注意:能约分的先约分,然后再乘,得数必须是最简分数或整数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5、整数可以看成分母是1的假分数,整数相当于分数的分子,整数与分数相乘时,要与分数的分子相乘的积作分子,分母不变。

在计算时,能约分的要先约分。

(三)、小数乘分数。

小数乘分数的方法:方法1、小数和分数能约分的先约分,再计算比较简便。

方法2、把小数化成分数计算。

方法3、如果分数能化成有限小数,也可以把分数化成小数进行计算。

(四)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

人教版六年级上册数学重点知识归纳

人教版六年级上册数学重点知识归纳

人教版六年级上册数学重点知识归纳一、整数1. 整数的概念:整数是正整数、零、负整数的统称。

2. 整数的比较:可以利用数轴上数的相对位置进行比较。

3. 整数的加减法:同号两数相加/减,异号两数相减/加,差的符号与绝对值大的数一致。

二、分数1. 分数的概念:分数是一个整数除以另一个整数的结果。

2. 分数的大小比较:通分后比较分子的大小。

3. 分数的加减法:通分,按照分子进行加减法计算。

三、小数1. 小数的概念:有限小数和无限循环小数的概念。

2. 小数的大小比较:补0后比较大小。

3. 小数的加减法:按位相加/减,注意进位和借位。

四、长度1. 厘米、分米、米、千米之间的换算:1米=100厘米,1米=10分米,1千米=1000米。

2. 分米、厘米转换:1分米=10厘米。

3. 毫米、厘米转换:1毫米=0.1厘米。

五、容积1. 升与毫升:1升=1000毫升。

2. 升、毫升之间的换算。

3. 升、毫升的加减法。

六、质量1. 千克与克之间的换算:1千克=1000克。

2. 公斤、克之间的换算。

3. 公斤、克的加减法。

七、图形1. 平行四边形的特点及应用。

2. 正方形、长方形的计算。

3. 三角形的计算和特点。

八、时、刻表1. 时、分、秒之间的换算:1小时=60分钟,1分钟=60秒。

2. 时、分、秒的加减法。

3. 用时、刻、表表示时间。

以上为人教版六年级上册数学的一些重点知识归纳,希望同学们能够加强练习,巩固这些知识,做到理论通联实际,灵活运用。

接下来我们将继续扩展上述数学知识的内容,并进一步加深对六年级上册数学重点知识的理解和掌握。

九、约数和倍数1. 约数的概念:对于整数a和b,如果存在一个整数c,使得a=bc,则称c是a的约数。

2. 倍数的概念:如果存在整数m,使得a=mb,则称a是b的倍数,b是a的约数。

3. 最大公约数和最小公倍数:对于两个整数a和b,它们公有的约数中最大的称为最大公约数,它们公有的倍数中最小的称为最小公倍数。

(完整版)人教版六年级数学上册要记、背的知识点

(完整版)人教版六年级数学上册要记、背的知识点

六年级数学上册要记、背的知识点一、分数乘法(一)分数乘法的意义和计算法则1、分数乘整数的意义 112×3 表示:① 求3个112是多少? ② 求112的3倍是多少?2、分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(能约分的要先约分再乘)3、一个数乘分数的意义:就是求这个数的几分之几是多少。

53×41 表示:求53的41是多少。

4、分数乘分数的的计算方法分数乘分数,用分子乘分子,分母乘分母。

(能约分的要先约分再乘) (二)求一个数的几分之几是多少的问题1、找单位“1”的方法(1)是谁的几分之几,就把谁看作单位“1”。

(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

注意:① 找单位“1”在分率句里找,有分率的句子称为分率句。

② 分率不带单位,具体数量带有单位。

2、求一个数的几倍、几分之几是多少,用乘法计算。

15的53是多少? 15×53=93、已知单位“1”用乘法计算单位“1”×分率=分率的对应量注意:(1) 乘上什么样的分率就等于什么样的数量。

(2) 乘上谁占的分率就等于谁的数量。

(3) 是谁的几分之几,就用谁乘上几分之几。

4、已知A 比B 多(或少)几分之几,求A 的解题方法5、积与因数的大小关系大于1的数,积大于A 。

A(0除外)乘上小于1的数,积小于A 。

二、位置与方向1、确定物体的位置:(上北下南,左西右东) (1)北偏东30°就是从北向东移,夹角靠北。

(2)东偏北30°就是从东向北移,夹角靠东。

+-B ×(1 几分之几)=A2、物体位置的相对性(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)南对北 东对西则学校在少年宫北偏西35°的方向上,相距250米。

人教版小学数学六年级上册知识点总结整理归纳

人教版小学数学六年级上册知识点总结整理归纳

六年级上册数学知识点 第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)行号2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

2016新人教版六年级数学上册知识点总复习总结备课

2016新人教版六年级数学上册知识点总复习总结备课

六年级数学上册知识点总复习第一单元 分数乘法(一)分数乘法的意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如: 53×7表示:求7个53 的和是多少?或表示:53 的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以) 例如:53×61 表示: 求53的61是多少? 9 × 61 表示: 求9的61是多少? a × 61 表示: 求a 的61 是多少? (二)分数乘法计算法则:1注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)如:27 ×14 = 143×2=注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)如:12×34 = 3×231= (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

【人教版】小学数学六年级上册【知识点】归纳总结

【人教版】小学数学六年级上册【知识点】归纳总结

六年级上册数学知识点 第一单元 位臵1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位臵。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?行号A ×61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

2015年新人教版六年级数学上册知识点整理归纳

2015年新人教版六年级数学上册知识点整理归纳

2015年新人教版六年级数学上册知识点整理归纳2015年新人教版六年级数学上册知识点整理归纳第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

人教版六年级上册数学知识点整理(个人整理资料)

人教版六年级上册数学知识点整理(个人整理资料)

书 香 浸 润, 励 志 成 长!第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓ ↓竖排叫列 横排叫行(从左往右看) (从前往后看)2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。

3、 图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少?(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

人教版六年级上册数学知识点

人教版六年级上册数学知识点

人教版六年级上册数学知识点
人教版六年级上册数学主要涵盖以下知识点:
1.数的读写和数的大小比较:阿拉伯数字和读法,数的大小比较等。

2.整数的加减法:大数的加减法,整数的加减混合运算等。

3.乘法与除法的混合运算:乘法与除法的基本概念,乘除法混合运算的应用等。

4.分数的引入和认识:分数的基本概念、分数的读法和表示法等。

5.分数的加减法:同分母分数的加减法和不同分母分数的加减法等。

6.小数的认识和读法:小数的介绍,小数点的作用和读法等。

7.小数的加减和乘法:小数的加减法和乘法运算等。

8.几何图形的认识和性质:平行线和垂直线,多边形的分类和性质等。

9.图形的表示和刻画:图形的坐标、图形的表示与刻画等。

10.图形的周长和面积:等边三角形的周长和面积,矩形的周长和面积等。

以上是人教版六年级上册数学的主要知识点,具体的内容可根据教材的安排来学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年度人教版六年级数学上册知识整理与复习领域一数与代数一,分数乘法(一)分数乘整数1,分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。

2,计算方法:分母不变,分子乘整数。

(二)分数乘分数1,意义:表示求一个分数的几分之几是多少。

2,计算方法:分子乘分子,分母乘分母,能约分的要先约分。

(三)分数乘加、乘减混合运算及简算1,分数混合运算的运算顺序与整数混合运算的运算顺序相同。

2,整数乘法的运算定律对于分数乘法也同样适用。

3,合理地应用运算定律,可以使一些分数计算变得简便。

(四)求一个数的几分之几是多少的问题解题规律:一个数×几分之几二,分数除法(一)倒数的认识1,乘积是1的两个数互为倒数。

2,求一个数(0除外)的倒数的方法:把这个数的分子、分母调换位置;也可以用1除以这个数来求。

(二)分数除法1,意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2,计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。

(三)已知一个数的几分之几是多少,求这个数的问题的解法1,除法:多少÷一个数2,方程解法:设这个数为x,几分之几×x = 多少(四)已知比一个数多(或少)几分之几的数是多少,求这个数的问题的解法1,组合除法:多少÷(1±几分之几)2,方程解法:设这个数为x,x ±几分之几×x = 多少三,比(一)比的意义1,比的意义:两个数相除又叫两个数的比。

2,比与分数、除法的关系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商。

3,求比值:用比的前项除以后项,求出商。

(二)比的基本性质1,比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2,化简比:把两个数的比化成最简单的整数比。

(三)比的应用按比例分配问题的解题方法:先求出总份数,再求各部分量占总量的几分之几,最后求出各部分量。

四,百分数(一)百分数的意义表示一个数是另一个数的百分之几的数叫百分数。

百分数也叫百分率或百分比。

(二)百分数与小数的互化“添右去左”(三)百分数与分数的互化1,百分数化成分数的方法:先把百分数改写成分母是100的分数,再化成最简分数。

2,分数化成百分数的方法:一般是先把分数化成小数,再把小数化成百分数,除不尽的小数要保留三位小数,百分数的分子保留一位小数。

有的分数,当分母是100的因数或倍数时,可把分数先改写成分母是100的分数,再改写成百分数。

(四)百分数解决问题1,例1,课本p84,求命中率等常见的百分率方法:命中率=投篮次数投中的次数×100%, 成活率=种植的总棵树成活的棵树×100%, 发芽率=试验种子数发芽种子数×100%, 出勤率=应出勤人数出勤人数×100% 合格率=产品总数合格的产品数×100%, 及格率=考试总人数及格人数×100% 2,例2,课本p85,求一个数的百分之几是多少(此类型对分数同样适用)单位“1”:一个数。

方法:一个数×百分之几3,例3,课本p89,求一个数比另一个数多(或少)百分之几,即求增减幅度。

(此类型对分数同样适用)单位“1”:另一个数。

方法:差量÷单位“1”4,例4,课本p90,求比一个数多(或少)百分之几的数是多少。

(此类型对分数同样适用) 单位“1”:一个数。

方法:一个数±一个数×百分之几一个数×(1±百分之几)5,例5,课本p90,求一个数连续两次增减变化。

单位“1”:有两个。

方法:有设数法和设1法。

即:一个数×(1±百分之几)×(1±百分之几)6,补充例1,已知一个数的百分之几是多少,求这个数?(此类型对分数同样适用) 单位“1”:一个数。

方法(简单除法):多少÷百分之几7,补充例2,已知两个数,求一个数是(或占或相当于)另一个数的百分之几?(此类型对分数同样适用)单位“1”:另一个数。

方法:一个数÷另一个数。

8,补充例3,已知比一个数多(或少)百分之几的数是多少,求这个数?(此类型对分数同样适用)单位“1”:一个数。

方法(组合除法):多少÷(1±百分之几)方程解法:设这个数为x , x ± 百分之几×x = 多少领域二 图形与几何一 位置与方向(一)在平面图上标出物体位置的方法1、面对地图,上北下南,左西右东。

2、在平面图上标出物体位置的方法,先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。

(二)描述简单的行走路线每走一步,都要说清从哪里走(观测点),向哪个方向走多远的距离。

(三)绘制简单的路线图1、确定方向标和单位长度。

2、以起点为观测点,从起点出发,根据描述确定所走的方向和距离。

每走一段路,都要重新确定新的观测点。

二 圆(一)圆的各部分名称1、圆心:圆中心的一点叫做圆心,一般用字母O 表示。

2、半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r 表示。

3、直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d 表示。

(二)圆的特征1、圆具有对称性,圆是轴对称图形,圆有无数条对称轴。

2、在同圆或等圆中,半径的长度都相等,直径的长度都相等,直径的长度是半径长度的2倍。

d=2r ,或r=2d 。

(三)用圆规画圆的方法1、先把圆规的两脚分开,定好两脚间的距离;2、再把带有针尖的一只脚固定在一点上;3、然后把装有铅笔的一只脚旋转一周,就画出一个圆。

(四)圆的周长1、圆的周长:围成圆的曲线的长叫做圆的周长。

一般用字母C 表示。

2、圆周率:圆的周长和它的直径的比值叫做圆周率。

一般用字母π表示。

3、圆的周长计算公式:C=πd ,或C=2πr 。

4、半圆的周长=πr+d 或=πr+2r5、圆周长的一半=πr(五)圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积,一般用字母S 表示。

2、圆的面积计算公式:S=πr 23、圆的面积公式的推导:把一个圆切成若干偶数等分,拼成一个长方形。

拼成的长方形的长等于圆周长的一半,宽等于圆的半径。

4、半圆的面积=πr 2÷2(六)圆环的面积1、圆环的面积公式:S 环=πR 2-πr 2或S 环=π(R 2-r 2)2、扇环的面积 = n1(πR 2-πr 2) (七)扇形1、弧:圆上任意两点之间的部分叫做弧。

2、扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

3、圆心角:由两条半径组成,顶点在圆心的角叫做圆心角。

4、扇形的大小与这个扇形的圆心角和半径的大小有关。

5、扇形的面积=n1πr 2 (n 取决于扇形的圆心角的大小) (八)圆的半径、直径、周长、面积的变化1、一个圆的半径扩大或缩小多少倍,它的直径、周长也扩大或缩小多少倍,而它的面积扩大或缩小平方倍。

2、两个圆的半径之比=直径之比=周长之比,面积之比=半径之比的平方倍。

(九)求图形阴影部分的面积的方法加法、减法、切割法、平移法。

领域三 统计与概率(扇形统计图)(一)扇形统计图的表示方法用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。

(二)扇形统计图的特点可以很清楚的表示出各部分数量与总数之间的关系。

(三)解决问题1、能读懂扇形统计图,并能根据统计图的信息,应用百分数知识解决问题。

2、基本公式:总数×百分比=部分,变化公式:总数=部分÷百分比,百分比=部分÷总数3、画扇形统计图的步骤(1)把一个圆平均分成100份或10份的扇形。

(2)在相应的扇形内填上部分的名称和百分数(四)选择合适的统计图1、常用的统计图有条形统计图、折线统计图和扇形统计图。

2、用统计图表示数据时,要根据实际情况选择合适的统计图:(1)要表示出各种数量的多少时,选用条形统计图;(2)既要表示出各种数量的多少,又要表示出数量增减变化的情况时,选用折线统计图;(3)要表示出各部分数量与总数之间的关系时,选用扇形统计图。

附录重量级解决问题1、一个长方形的周长是84cm ,它的长和宽的比是4:3。

此长方形的面积是多少?2、一个圆形花坛的直径是6m ,在它的周围铺一条1m 宽的小路,这条小路的面积是多少平方米?3、一项工程,甲、乙两队合作需要12天完成,乙、丙两队合作需要15天完成,甲、丙两队合作需要20天完成。

如果由甲、乙、丙三队合作需要几天完成?4、一台洗衣机,如果按定价的90%卖出,可赚80元;如果按定价的75%卖出,要亏70元。

这台洗衣机的定价是多少元?。

相关文档
最新文档