人教版小学六年级数学上册知识点归纳
人教版小学数学六年级上册知识点归纳
人教版小学数学六年级上册知识点归纳
本文将对人教版小学数学六年级上册的知识点进行归纳和总结,帮助学生们更好地掌握课本内容。
一、整数的认识
整数是由自然数、0和负数组成,可以在数轴上表示。
正整数用红色表示,负整数用蓝色表示。
二、小数的认识
小数是用分数形式表示的有限小数和无限小数,可以通过数轴来表示。
三、数的倍数和因数
一个数可以被另一个数整除,那么前者就是后者的倍数,后者就是前者的因数。
四、质数和合数
质数只有1和自身两个因数的数,而合数有多个因数。
五、图形的认识
了解矩形、正方形、三角形和梯形等各种图形的特点,并能根据给出的条件进行判断和分类。
六、一百以内的加减法
加法和减法是最基本的运算,通过练习一百以内的加减法,能够提高计算能力和思维能力。
七、一百以内的乘法和除法
通过掌握一百以内的乘法和除法,培养学生的快速计算能力和数学思维能力。
八、长度、面积和体积的认识
通过实物和图形的比较,了解长度、面积和体积的概念,能够进行简单的计算和转换。
九、时间的认识
学习时钟的使用,能够准确地读取时间和计算时间的过程。
十、钱币和价格的认识
认识各种钱币的面值和常见商品的价格,能够进行简单的货币换算和价格比较。
十一、数据的收集和整理
通过观察和统计,能够对数据进行收集和整理,并用图表的形式进行展示和分析。
以上是人教版小学数学六年级上册的主要知识点归纳。
希望同学们能够认真学习和掌握这些知识,为接下来的学习打下坚实的基础。
人教版六年级数学上册 知识点归纳
分数乘法知识点一、分数乘以整数1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘以整数的运算:①能约分的先约分。
让分母与整数约分了,再计算。
②用分子乘以整数的积作为分子,分母保持不变。
知识点二、分数乘以分数1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。
2、分数乘以分数的运算:①能约分的先约分。
让分子与分母约分了,再计算。
②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。
温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。
3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。
知识点三、乘法定律1、乘法交换律:a×b=b×a2、乘法结合律:a×b×c=a×(b×c)3、乘法分配律(a+b)×c=a×c+b×c知识点四、乘法规律1、一个正数乘以一个大于1的数,积比原来大。
2、一个正数乘以一个小于1的数,积比原来小。
3、一个正数乘以一个1,积等于它本身。
4、0乘以任何数都等于0 。
知识点五、分数乘法应用题1、要求一个数的几分之几是多少,就可以用乘法。
2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。
位置与方向(二)知识点一、方位角的概念1、要确定物体的位置,先要确定观测点,然后确定方位角和距离。
2、方位角是从观测点起,东南西北的一条方向线与目标方向线的夹角。
例如北偏西20°,南偏东30°都是方位角。
知识点二、画出物体位置的步骤①确定观测点。
②根据方向角,从观测点开始向该方向画一条射线。
③将观测点与目标的距离换算成图上的长度,从而确定目标的位置。
④标上距离、角度、目标的名称。
知识点三、方位角的性质1、如果甲在乙的北偏东...30°方向400m 处;则乙在甲的南偏西...30°方向400m 处2、如果甲在乙的南偏西...20°方向500m 处;则乙在甲的北偏东...20°方向500m 处总结:如果观测点交换了,则方位角的方向相反了,但角度不变,距离也不变知识点四、绘制路线图先确定第一个观测点,然后画出十字方向标,再确定下一个目的地。
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。
2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数.所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。
的27×512.27 表示: 512 是多少。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
人教版六年级上册数学知识点汇总
人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。
都是求几个一样加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。
〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。
一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。
一个数〔0除外〕乘1,积等于这个数。
〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。
〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。
用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。
〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。
〔4〕、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
六年级上册数学知识点(人教版)
六年级上册数学知识点(人教版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!六年级上册数学知识点(人教版)小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面本店铺为大家带来六年级上册数学知识点,希望对您有帮助,欢迎参考阅读!六年级上册数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。
六年级上册数学人教版知识点归纳总结
六年级上册数学知识点归纳总结一、整数1. 整数的概念整数组成了正整数、负整数和0三部分。
整数的定义包括自然数和自然数的相反数。
2. 整数的比较与加减整数比较时,绝对值大的整数可能正也可能负,需要根据正负号进行判断。
整数的加减法根据正负数的规律进行计算,同号相加为同号,异号相加为取绝对值相减并确定正负号。
3. 整数的乘除整数的乘法和除法同样遵循正负数的规律,同号相乘和除得正,异号相乘和除得负。
二、分数1. 分数的概念分数由分子和分母组成,分子表示几等份中的几份,分母表示被分为几等份。
2. 分数的加减和乘除分数的加减需要先通分,再按照通分后的分母进行计算。
分数的乘除则可以将其转化为乘法或除法进行计算,最后将结果化成最简形式。
三、小数1. 小数的概念小数是分数的一种表示方法,是指在整数部分以外还有小数部分表示的数。
2. 小数的加减和乘除小数的加减需要对齐小数点,然后按照小学数学四则运算进行计算。
小数的乘除可以先将小数化成分数,再按照分数的乘除法进行计算。
四、时间1. 时间的基本单位时间的基本单位包括年、月、日、小时、分钟、秒等。
2. 时间的计算时间的计算分为同年处理和跨年处理两种情况,需要根据具体情况进行计算。
五、长方形、正方形与三角形1. 长方形、正方形和三角形的周长和面积计算长方形的周长和面积分别为2×(长+宽)和长×宽,正方形的周长和面积分别为4×边长和边长的平方,三角形的周长为三条边的和,面积为底边乘以高后再除以2。
六、平行线与相交线1. 平行线的特性平行线是指不相交的两条直线,它们之间的距离始终相等。
2. 相交线的特性相交线是指相交的两条直线,相交形成角的种类有直角、钝角和锐角等。
以上就是六年级上册数学人教版的知识点归纳总结,学生需要认真学习这些知识点,并且进行不同类型的练习,才能更好地掌握数学知识。
希望大家在学习过程中能够加强对这些知识点的理解和掌握,夯实基础,为学习更深层次的数学知识打下坚实的基础。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理第一单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
人教版六年级数学上册(全)复习知识点【精品】
小学数学六年级上册期末复习知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版六年级数学上册各单元知识点汇总
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
人教版六年级上册数学知识点归纳笔记
一、整除和余数1. 整除的概念整数a除以整数b(b≠0),当结果为整数时,称a能整除b,记作b|a。
2. 余数的概念整数a除以整数b(b≠0),所得到的未被整除的部分叫做余数,记作a mod b。
17÷5=3(余2),则5|17,17 mod 5=2。
二、最小公倍数和最大公约数1. 最小公倍数的概念两个以上整数公有的倍数中最小的一个叫做这些整数的最小公倍数,记作a和b的最小公倍数=lcm(a,b)。
2. 最大公约数的概念两个以上整数公有的约数中最大的数叫做这些整数的最大公约数,记作a和b的最大公约数=gcd(a,b)。
三、分数1. 分数的概念形如a/b(b≠0)的数叫做分数,a叫做分子,b叫做分母。
2. 分数的大小比较分数大小比较的方法:(1)分子相等,分母越小,分数越大;(2)分母相等,分子越大,分数越大。
四、质数和合数1. 质数的概念在大于1的自然数中,除了1和它本身以外,没有其他因数的数叫做质数。
2. 合数的概念大于1的自然数中,除了1和它本身以外,还有其他因数的数叫做合数。
五、数字的读法1. 十进位和百进位的读法十进位以上的数字读法遵循“顺读”和“倒读”的规则,例如23读作“二十三”,32读作“三十二”。
2. 小数点后数字的读法小数点后的数字读法遵循“分”的规则,例如0.32读作“三十二分”。
六、加法和减法1. 加法的概念两个数进行相加的运算叫做加法,加法运算遵循交换律和结合律。
2. 减法的概念两个数进行相减的运算叫做减法,减法运算是加法运算的逆运算。
七、乘法和除法1. 乘法的概念两个数进行相乘的运算叫做乘法,乘法运算遵循交换律和结合律。
2. 除法的概念两个数进行相除的运算叫做除法,除法运算是乘法运算的逆运算。
八、计算顺序1. 加减乘除的顺序在进行多种运算时,应按照“先乘除后加减”的顺序进行运算,也可以通过加括号改变计算的顺序。
九、数学应用题1. 数学应用题的解题步骤解题步骤包括问题分析、列式、算式、检验等环节,解决数学应用问题需要灵活运用所学知识。
人教版六年级上册数学知识点总结
人教版六年级上册数学知识点总结学好数学要善于总结自己掌握的数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。
做到总结和归纳是学会数学的关键。
下面是整理的人教版六年级上册数学知识点,仅供参考希望能够帮助到大家。
人教版六年级上册数学知识点一、圆的特征1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π = 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
人教版六年级数学上册知识点归纳
一、数的认识1.1 自然数自然数是人们用来计数的数,是由0、1、2、3……无限延伸下去的数列。
自然数包括0和正整数。
1.2 整数在自然数的基础上,再加上负整数和0,组成了整数集合。
1.3 分数分数是由两个整数的比所得到的数,分数包括真分数和假分数。
1.4 小数小数是指介于两个整数之间的数,可以表示为有限小数或无限循环小数。
1.5 负数负数是表示比零小的数,负数在数轴上位于零的左边。
二、整数计算2.1 加法加法是将两个或多个数相加以求和的数学运算。
2.2 减法减法是把一个数从另一个数中减去,求差的数学运算。
2.3 乘法乘法是将两个或多个数相乘以得到积的数学运算。
2.4 除法除法是将一个数分成若干份的数学运算,可以得到商和余数。
2.5 整数的加减乘除混合运算整数的混合运算包括加减混合运算、乘除混合运算等,需要遵循“先乘除后加减”的运算法则。
三、分数3.1 分数的加法分数的加法是求两个分数的和,通过通分后进行分子相加得到结果。
3.2 分数的减法分数的减法是求两个分数的差,通过通分后进行分子相减得到结果。
3.3 分数的乘法分数的乘法是求两个分数的积,通过分子相乘分母相乘得到结果。
3.4 分数的除法分数的除法是求两个分数的商,通过将除法转化为乘法,然后进行分子相乘分母相乘得到结果。
四、小数4.1 小数的加减法小数的加减法是通过小数点对齐后进行个位、十分位、百分位等相应位数的数值相加或相减得到结果。
4.2 小数的乘除法小数的乘法是将小数进行数位对齐,然后进行普通的数乘运算,最后根据位数进行小数点的位置确定。
4.3 小数的整数乘法小数的整数乘法是通过整数与小数相乘,然后移动小数点相应位数得到结果。
4.4 小数的整数除法小数的整数除法是通过将小数乘以适当的倍数使其成为整数,然后进行整数除法运算,最后根据小数点的位置确定。
五、图形和分数5.1 长方形和平行四边形长方形和平行四边形是最基本的四边形图形,其面积计算公式为底边乘以高度。
人教版六年级上册数学知识点归纳总结
目录第一单元负数 (2)第二单元百分数二 (4)第三单元圆柱和圆锥 (6)第四单元比例 (12)第五单元数学广角-鸽巢问题 (17)第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
人教版小学数学六年级上册知识点归纳全册
六年级上册数学知识点 第一单元 位置 1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法 (一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
新人教版数学六年级上册总复习知识点整理归纳整理
新人教版数学六年级上册总复习知识点整理归纳整理研究必备,欢迎下载。
第一单元分数乘法一、分数乘法意义:1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。
分数乘整数指的是第二个因数必须是整数,不能是分数。
例如,333/555×7表示求7个333/555的和是多少?或者表示333/555的7倍是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。
一个数乘分数指的是第二个因数必须是分数,不能是整数。
第一个因数是什么都可以。
例如,×A/B表示求A的分之B是多少?二、分数乘法计算法则:1.分数乘整数的运算法则是分子与整数相乘,分母不变。
2.分数乘分数的运算法则是用分子相乘的积做分子,分母相乘的积做分母。
为了计算简便,能约分的先约分再计算。
3.分数的基本性质是分子、分母同时乘或者除以一个相同的数(除外),分数的大小不变。
三、积与因数的关系:1.一个数(除外)乘大于1的数,积大于这个数。
即a×b=c,当b>1时,c>a。
2.一个数(除外)乘小于1的数,积小于这个数。
即a×b=c,当b<1时,c<a(b≠0)。
3.一个数(除外)乘等于1的数,积等于这个数。
即a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
四、分数混合运算:1.分数合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的。
2.整数乘法运算定律对分数乘法同样适用。
运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、分数乘法应用题——用分数乘法解决问题:已知单位“1”的量,求它的几分之几是多少,用单位“1”的量与分数相乘。
人教版新课标六年级数学上册重点知识归纳
人教版新课标六年级数学上册重点知识归纳第一单元:位置1、列、行的意义:横、竖成排有规则的排列,竖排称为列,横排称为行。
列从左往右数,行从前往后数。
2、数对:两个有顺序的数组成的且表示一个确定的位置。
3、用数对表示物体位置的方法:先表示列数,再表示行数。
4、用数对确定物体位置的方法:看数对中的两个数表示的是哪一列、哪一行,确定出物体的位置。
第二单元:分数乘法分数乘整数1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算:2、分数乘整数计算法则:分数乘整数用分数的分子和整数相乘的积作分子,分母不变。
3、分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
4、温馨提示:计算分数乘整数时只能是整数和分子相乘的积作分子,分数的分母不能和整数相乘作分母。
分数乘分数1、分数乘分数的意义就是求一个数的几分之几是多少。
2、分数乘分数的计算方法:用分子相乘的积作分子,分母相乘的积作分母。
3、分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
4、(1)当一个因数大于1时,积大于另一个因数(0除外);当一个因数小于1时,积小于另一个因数(0除外);当一个因数等于1时,积等于另一个因数。
(2)用字母表示因数与积的关系:a×b=c ○1b﹥1, c﹥a(0除外);○2b=1,c=a;○3b<1,c<a(0除外)。
5、温馨提示:运用约分对分数乘分数进行简便运算时,约分后分子和分母必须不再含有公因数,计算后的结果才是最简分数。
6、温馨提示:在进行因数与积的大小比较时,要考虑因数为0时的特殊情况。
7、形如:的分数可以拆成(一)×8、温馨提示:在具体数和一个数的几分之几进行大小比较时,不要轻易下结论,要从多方面考虑,才能做出正确判断。
分数乘法的混合运算和简便运算1、分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。
没有括号的先算乘法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
人教版六年级上册数学全册知识点归纳
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
人教版六年级上册数学知识点归纳总结
人教版六年级上册数学知识点归纳总结目录第一单元负数。
2第二单元百分数二。
4第三单元圆柱和圆锥。
6第四单元比例。
12第五单元数学广角-鸽巢问题。
17第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的13.42/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。
2、负数:小于零的数叫负数(不包括零),数轴上左边的数叫做负数。
若一个数小于零,则称它是一个负数。
负数有无数个,其中包括负整数、负分数和负小数。
负数的写法:数字前面加负号“-”号,不可以省略。
例如:-2,-5.33,-45,-2/5.正数:大于零的数叫正数(不包括零),数轴上右边的数叫做正数。
若一个数大于零,则称它是一个正数。
正数有无数个,其中包括正整数、正分数和正小数。
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5.4、零是正数和负数的分界限。
负数都小于零,正数都大于零。
负数都比正数小,正数都比负数大。
5、数轴:6、比较两数的大小:①利用数轴:负数<<正数或左边<右边。
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
例如:1/3>1/6,-1/3<-1/6.第二单元百分数二一)、折扣和成数折扣是指商品现价与原价的比值,通常以百分数或分数表示。
例如,八折意味着商品现价是原价的80%,六折五则是65%。
解决打折问题的关键在于将折数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
成数是指十分之几或百分之几十,例如一成相当于10%,八成五则是85%。
解决成数问题的关键在于将成数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
税率是指应纳税额与各种收入的比率,纳税是根据国家税法规定,按照一定比率缴纳一部分收入给国家。
人教版小学六年级上册数学知识点总结
人教版小学六年级上册数学知识点总结一、数与代数(一)分数的运算1.分数的加减法•同分母分数:分母保持不变,分子进行加减运算。
例如:2/5 + 3/5 = 5/5 或1;4/7 - 2/7 = 2/7。
•异分母分数:首先找到两个分母的最小公倍数,然后进行通分,使两个分数具有相同的分母,接着进行加减运算。
例如:1/2 + 1/3 = 3/6 + 2/6 =5/6;3/4 - 1/5 = 15/20 - 4/20 = 11/20。
2.分数的乘法•分子乘分子,分母乘分母。
例如:2/3 × 4/5 = 8/15。
•分数与整数相乘,整数可以看作是分母为1的分数,然后与另一个分数相乘。
例如:2 × 3/4 = 6/4 = 3/2。
3.分数的除法•将除数颠倒后与被除数相乘。
例如:4/5 ÷ 2/3 = 4/5 × 3/2 = 12/10 = 6/5。
4.带分数与假分数的互化•带分数转化为假分数:分母不变,分子为整数部分与分母的乘积加上原分数的分子。
例如:2(1/2) = 2 × 2 + 1 = 5/2。
•假分数转化为带分数:分母不变,分子除以分母得到的商为整数部分,余数作为新分数的分子。
例如:7/3 = 2...1,所以7/3 = 2(1/3)。
5.分数与小数的互化•分数转化为小数:直接进行除法运算,得到的结果即为小数形式。
例如:1/2 = 0.5;3/4 = 0.75。
•小数转化为分数:将小数表示为分数形式,能简化的要简化。
例如:0.5 = 1/2;0.75 = 3/4。
(二)百分数1.百分数的概念•百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。
2.百分数与小数、分数的互化•百分数转化为小数:去掉百分号,小数点左移两位。
例如:75% = 0.75。
•小数转化为百分数:加上百分号,小数点右移两位。
人教版六年级上册数学重点知识点归纳
人教版六年级上册数学重点知识点归纳人教版六年级上册数学重点知识点归纳篇1小数1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
分数1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
约分和通分1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
数学0的性质1、0既不是正数也不是负数,而是介于—1和+1之间的整数。
2、0的相反数是0,即—0=0。
3、0的绝对值是其本身。
4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级数学上册知识点归纳姓名__________ 第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少?1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b ×a乘法结合律:(a×b)×c=a ×(b×c)乘法分配律:(a+b)×c=ac+bc二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1:”单位“1”在分率句中分率的前面;或在“占、”“是、”“比“相”当于”的后面。
3、写数量关系式的技巧:(1)“的”相当于“×”,“占、”“相当于“”是”、“比”是“=”(2)分率前是“的”字:用单位“1”的量×分率=具体量例如:甲数是20,甲数的1/3是多少?列式是:20×1/34、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;第2页共24页例如:甲数是50,乙数比甲数少1/2,乙数是多少?列式是:50×(1-1/2)(比多):单位“1”的量×(1+分率)=具体量例如:小红有30元钱,小明比小红多3/5,小红有多少钱?列式是:50×(1+3/5)3、求一个数的几倍是多少:用一个数×几倍;4、求一个数的几分之几是多少:用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)第二单元位置与方向(二)第3页共24页一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法第4页共24页一、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。
把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:乘法:因数×因数=积除法:积÷一个因数=另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题1、解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X(一定要解设),再列方程用X×分率=具体量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。
列方程为:X×1/3=20(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率=单位“1”的量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/32、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量÷(1-分率)=单位“1”的量;例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)(比多):具体量÷(1+分率)=单位“1”的量例如:一种商品现在是80元,比原价增加了1/7,原价多少?列式是:80÷(1+1/7)3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/44、求一个数比另一个数多几分之几的方法:用两个数的相差量÷单位“1”的量=分数即①求一个数比另一个数多几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”合做多长时间完成一,项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:善教者必有善学者善学者必能赢未来1÷(1/5+1/10+1/3)第四单元比(一)比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如15:10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)15 ∶10 =3/2 前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15∶10=15÷10=15/10=3/2(二)比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:第10页共24页(2)用求比值的方法。
注意:最后结果要写成比的形式。
例如:15∶10=15÷10=15/10=3/2=3∶2还可以15∶10=15 ÷10=3/2最简整数比是3∶25、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6、按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
一般有两种解题法用分率解:按比例分配通常把总量看作单位一,即转化成分率。
要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占1/5 用25×1/5得到糖的数量,水占4/5 用25×4/5得到水的数量。
用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4第五单元圆的认识第11页共24页一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。