2014年浙江省温州市中考数学试卷参考答案与试题解析

合集下载

2014年浙江省温州市中考数学模拟试卷及答案

2014年浙江省温州市中考数学模拟试卷及答案

2014年温州市中考数学模拟试题卷一、选择题(本大题有10小题,每小题4分,共40分。

请选出每个小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1、在0,1,2, 3.5---这四个数中,最小的负整数是( ▲ )A 、0B 、1-C 、2-D 、 3.5-2、如图,直线a ,b 被直线c 所截,已知a ∥b ,∠1=35°,则∠2的度数为( ▲ )A 、35°B 、55°C 、145°D 、165°3、已知点M ()2,3-在双曲线k y x=上,则下列各点一定在该双曲线上的是( ▲ ) A 、()3,2- B 、()2,3-- C 、()2,3 D 、()3,24、图1所示的物体的左视图(从左面看得到的视图)是( ▲ )图1 A 、 B 、 C 、 D 、 (第2题)5、抛物线()2y x 11=--+的顶点坐标是( ▲ )A 、()1,1B 、()1,1-C 、()1,1-D 、()1,1-6、在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如表所示:则这些运动员成绩的中位数是( ▲ )A 、1.66B 、1.67C 、1.68D 、1.757、已知⊙O 1和⊙O 2内切,它们的半径分别为2cm 和5cm ,则O 1O 2的长是( ▲ )A 、2cmB 、3cmC 、5cmD 、7cm8、如图是某校九年级部分男生做俯卧撑的成绩进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ▲ )A 、100,55%B 、100,80%C 、75,55%D 、75,80%9、如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( ▲ )A 、35°B 、55°C 、65°D 、70°(第8题) (第9题) (第10题)10、如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将△BCE 沿着CE 折叠至△FCE ,若CF 、CE 恰好与正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为( ▲ )A 、B 、5CD 、以上都不对 二、填空题(本题有6小题,每小题5分,共30分)11、分解因式:()2x 14--= ▲12、母线长为3cm ,底面直径为4cm 的圆锥侧面展开图的面积是 ▲ cm 213、若一次函数y kx b =+(k ,b 都是常数,k ≠0)的图象如图所示,则不等式kx b 0+>的解为 ▲(第13题) (第14题) (第16题)14、如图,已知D 为BC 上一点,∠B =∠1,∠BAC=78°,则∠2= ▲15、目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x 个人,那么可列方程为 ▲ .16、5个正方形如图摆放在同一直线上,线段BQ 经过点E 、H 、N ,记△RCE 、△GEH 、 △MHN 、△PNQ 的面积分别为s 1,s 3,s 2,s 4,已知s 1+s 3=17,则s 2+s 4= ▲2011年温州市中考数学模拟答题卷(一)班级 姓名一、选择题(40分)1、 2、 3、 4、 5、6、 7、 8、 9、 10、二、填空题(30分)11、 12、 13、14、 15、 16、三、解答题(本题有8小题,共80分,各小题都必须写出解答过程)17、(本题10分)(1)计算:002cos 45+-(2)解方程:(选择其中一小题解答)①212x 1x 1=-- ②22x 0=18、(本题7分)数学课上,老师让甲、乙、丙三位同学分别计算当x=1-、2、4时,二次函数2y x mx n =++的函数值,甲、乙两同学正确算得当x=1-时,y=6;当x=2时,y=3;丙同学由于看错了n 而算得当x=4时,y=5。

浙江省温州市2014年中考数学试题(word版) (10)

浙江省温州市2014年中考数学试题(word版) (10)

温州地区2013-2014学年第二学期第一次模拟考试九年级数学试卷(本卷满分为150分,考试时间为120分钟)温馨提示:用心思考,细心答题,相信你一定会有出色的表现!参考公式:二次函数cbxaxy++=2(a≠0)图象的顶点坐标是(2ba-,244ac ba-).一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1、若使代数式1-2x有意义,则字母x的取值范围是……………………()A、1≠x B、21≥x C、1≥x D、21≠x2、如图1所示是几何体的主视图与左视图,那么它的俯视图是………………()图13、禽流感病毒呈球形,其最小直径约为0.000 000 08米,用科学记数法表示为()A、80×190-米B、0.8×170-米C、8×180-米D、8×190-米4、如图2,在直角坐标系中,点A的坐标是(2,3),则tanα的值是…………()A、32B、23C、13132D、131335、如图3,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=…………()A、40°B、50°C、60°D、80°6、不等式组图4AB CD图3OA BCD 1D 2B 2B 3B 4B 1A 4A 3A 2A 1BA C图5图6⎩⎨⎧>-≤-x x x 32201解集在数轴上表示为……………………………………( ) A .B .C .D .7、已知抛物线3)1(22-+-=x y ,则它的顶点坐标是…………………………( ) A 、(1,3) B 、(-1,3) C 、(1,-3) D 、(-1,-3)8、如图4所示,△ABC 中,点D 、E 分别是AC 、BC 边上的点,且DE ∥AB ,AD :DC=1:2,△ABC 的面积是18,则△DEC 的面积是………………………………………………( ) A 、8 B 、9 C 、12 D 、159、如图5,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ).若y 1< y 2,则x 的取值范围是……( )A 、x <-1或0<x <2B 、x <-1或x >2C 、-1<x <0或0<x <2D 、-1<x <0或x >2 10、如图6,Rt △ABC 中,∠ACB=Rt ∠,AC=2BC=2,作内接正方形 A 1B 1D 1C ;在Rt △AA 1B 1中,作内接正方形A 2B 2D 2A 1;在Rt △A A 2B 2 中,作内接正方形A 3B 3D 3A 2;……;依次作下去,则第n 个正方 形A n B n D n A n-1的边长是………………………………( ) A 、131-n B 、 n 31C 、1132--n n D 、n n 32二、填空题(本题有6小题,每小题5分,共30分)11、分解因式:92-a =_______________12、我校开展的“好书伴我成长”读书活动,为了解九年级200名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:册数 0 1 2 3 4册及以上 人数31316a5则全校九年级学生的读书册数等于3册的有_______名图7图813、已知圆锥的母线是3cm ,底面半径是1cm ,则圆锥的表面积是_____________cm 214、某商店为尽快清空往季商品,采取如下销售方案:将原来商品每件m 元,加价50%,再做降价40%.经过调整后的实际价格为___________元(结果用含m 的代数式表示)15、如图7,在平面直角坐标系中,点A 是抛物线b x a y +-=2)1(与y 轴的交点,点B 是这条抛物线上的另一点,且AB∥x 轴,则以AB 为边的等边△ABC 的周长为 .16、如图8,在Rt △ABC 中,∠ACB=90°,以点C 为圆心做弧,分别交AC 、CB 的延长线于点D 、F ,连结DF ,交AB 于点E ,已知S △BEF =9,S △CDF =40,tan ∠DFC=2,则BC=________, S △ABC =____________三、解答题(本题有8小题,共80分): 17、(本题10分)(1)计算:()021845sin 2---+⨯-π(2)先化简,再求值:⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1),其中x =2 18、(本题8分)如图9,AB 是CD 的垂直平分线,交CD 于点M ,过点M 作ME ⊥A C , MF ⊥AD ,垂足分别为E 、F 。

浙江省温州市2014年中考数学试题(word版) (11)

浙江省温州市2014年中考数学试题(word版) (11)

浙江省温州地区2013-2014学年上学期期末模拟学业水平检测八年级数学试卷考生注意:1.本试卷满分100分,考试时间为90分钟;2.答题时,用0.5毫米的黑色或蓝色中性笔在试卷上作答;3.请在试卷的密封线内写上自己所在的学校、班级及姓名和考号。

一、细心选一选(本题共10小题,每小题3分,共30分)【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】1、点(-1,2)位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2、若∠1和∠3是同旁内角,∠1=78度,那么下列说法正确的是( )(A )∠3=78度 (B ) ∠3=102度 (C )∠1+∠3=180度(D )∠3的度数无法确定 3.如图,已知∠1=∠2,则下列结论一定正确的是( )(A )∠3=∠4 (B ) ∠1=∠3 (C ) AB//CD (D ) AD//BC4.小明、小强、小刚家在如图所示的点A 、B 、C 三个地方,它们的连线恰好构成一个直角三角形,B ,C 之间的距离为5km ,新华书店恰好位于斜边BC 的中点D ,则新华书店D 与小明家A 的距离是( )(A)2.5km (B)3km (C)4 km (D)5km 5.下列能断定△ABC 为等腰三角形的是( )题号 1 2 3 4 5 6 7 8 9 10 答案学校 班 级________________ 姓 名________________ 学 号_______________封线 密答 题 请 不 要 超 过 此 密 封 线 学校 班 级________________ 姓 名________________ 考 号_______________ ADBC (第8题)第3题DB AC第4题(A )∠A=30º、∠B=60º (B )∠A=50º、∠B=80º (C )AB=AC=2,BC=4 (D )AB=3、BC=7,周长为136.某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

浙江省温州市2014年中考数学试题(word版) (14)

浙江省温州市2014年中考数学试题(word版) (14)

九年级数学试卷温馨提示:同学们:全卷满分为150分,考试时间120分钟,请仔细审题。

参考公式:)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2ab ac a b -- 一.选择题(本题共10题,每题4分,共40分.每小题只有一个选项是正确的,不选,多选,错选,均不得分) 1.反比例函数xy 5-= 的图象位于-------------------------------------------------------( ) A .第一、二象限 B .第一、三象限C .第二、三象限D .第二、四象限2.若34a b =,则a bb +=------------------------------------------------------------------( ) A .2 B .74 C . 54 D . 323.把抛物线y =(x +1)2向下平移3个单位,所得到的抛物线是-----------------------( )A . y =x 2-3B . y =(x +1)2-3C . y =(x +3)2+1D . y = (x -3)2+14.如图,点A 、B 、C 都在⊙O 上,若∠A=44°,则∠BOC 的度数为--------------( )A .22oB .44oC .46oD .88o5.如图,C 是以AB 为直径的⊙O 上一点,已知AB =10,BC =6,则圆心O 到弦BC 的距离是-------------------------------------------------------------------------------------------- -( )A .3B .4C .5D .2.56.如图,A 、B 、C 三点在正方形网格线的交点处.若将△ACB绕着点A 逆时针旋转得到△''AC B ,则tan 'B 的值为-----------------------------( ) A .1 B .12C .13D .147.对于抛物线y=-x 2+2x -3,下列结论正确的是---------------------------------------( )A .与x 轴有两个交点B .开口向上C .与y 轴交点坐标是(0,—3)D .顶点坐标是(1,2)8.如图,点C 是线段AB 的黄金分割点(AC >BC )则下列结论中正确的是-- ( )BA第5题图O第4题图第6题图第5题图FE CBADA .222BC AB AC +=B . AB AC BC ⋅=2C .25=AC AB D .215-=ACBC第8题图 第9题图 第10题图9.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F , 25:4:=∆∆ABF DEF S S ,则DE : EC 为---------------------------------------------------------- ( ) A .2:3 B .2:5 C .4:21 D .4:2510.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是--------------------( )A .2≤k ≤5B .2≤k ≤8C .2≤k ≤9D .5≤k ≤8 二、填空题(本题共6题,每小题5分,共30分.) 11.已知二次函数y=x 2+3x -5,当x=2时,y= . 12.已知线段a =3,b =16,则a 、b 的比例中项为 . 13.某校九年级二班50名学生的年龄情况如下表所示:年龄 14岁 15岁 16岁 17岁 人 数720167从该班随机地抽取一人,抽到学生的年龄恰好是15岁的概率是 .14.如图,小华用一个半径为6cm ,面积为218πcm 的扇形纸板,制作一个圆形的玩具帽,则帽子的底面半径r= cm .15.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =2,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好 与⊙O 相切于点C ,则OC = .第15题图BEDFxOA Cy16.如图,Rt △OAB ∽Rt △BCD ,斜边都在x 轴上,tan ∠AOB=2,AB =56,双曲线xky =(x >0)与AO 交于点E 、交BC 于点F ,且 OE =2AE , CF =2BF ,,则反比例函数解析式是 , 点C 的坐标是 .三、解答题:(本题有8小题,共80分) 第16题图 17.(本题8分)已知二次函数的图象经过点( —1, —8 ),顶点为( 2, 1 ).(1)求这个二次函数的解析式; (2)求图象与x 轴的交点坐标.18.(本题8分) 如图,小山岗的斜坡AC 的坡度是43tan =α,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6○,求小山岗的高AB (结果取整数;参考数据:sin 26.6○=0.45, cos 26.6○=0.89, tan 26.6○=0.50 )。

2014年浙江省温州市中考数学试卷-答案

2014年浙江省温州市中考数学试卷-答案

16.【答案】4 或 12
【解析】当 O 与 AD 相切于点 M 时,如图 1, O 与 CD 相切于点 G ,连接 OG ,则 OG CD ,延长 GO
交 AB 于点 H ,则 OH EF ,设 EH x .则 EF 2x , EG : EF 5 : 2 ,EG 5x , GH 2x , AD 8 ,
t 3 在1 t 9 范围内
2
4
27 S 9
8
2
当 9 t 5 时, S t(2t 6) 2(t 3)2 9
2
22
27 S 20 2
【考点】图形与坐标、平行四边形的判定、相似三角形的判定和性质及二次函数的综合应用.
9/9
又 S五边形ACBED S△ACB S△AED S△BDE 1 ab 1 c2 1 a(b a) 2 22
1 ab 1 b2 1 ab 1 ab 1 c2 1 a(b a) 2 22 2 22
a2 b2 c2
证法二:连接 BD ,过点 B 作 DE 边上的高 BF ,
浙江省温州市 2014 年初中毕业生学业考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】C 【解析】异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值,(3) 4 4 3 1 , 故选 C. 【考点】有理数的运算. 2.【答案】C 【解析】捐款 15~20 元的人数最多.故选 C. 【考点】频数分布直方图. 3.【答案】D 【解析】主视图是从正面看到的几何体的视图,故选 D. 【考点】几何体的三视图. 4.【答案】A 【解析】要使分式 x 2 意义,只需满足分母 x 2 0 , x 2 即可,故选 A

2014年浙江省温州市数学中考试题述评

2014年浙江省温州市数学中考试题述评
的顶 点 A在 第 一 象 限 , A B∥
。 J j

由 于s 边 删 ∞ = s c D + s 。 = 寻 6 + 寻 口 6 ,
又 因为 S 口 边 聊D c 口= S A a 册 +I s △ D ∞=
图 3
轴, A D∥y轴 , 且对 角线的交点与原点 0重合. 在 边A B从 小于 A D 到大 于 A D的 变化过程 中 , 若矩 形

4 0・
中学教研 ( 数学)
A B C D的周长 始终 保持不 变 , 则 经 过 动点 A的反 比
看最 近 5年来 , 温州 市数学 中考压轴题 都在考
例函数 Y = ( 其中 ≠ O ) 中k 值的变化情况是
( A. 一直增 大
B . 一 直减 小
“ 动” . 以方 程 、 函数 和几何 图形 的综合 运 用作 为 主 要方 式 , 用到三 角形 、 四边形 、 相似形 和 圆等有关 知
表示 出五 边形 面积 , 建 立 等式 . 首先 联 结 B D, 过 点


B作 D E边 上 的 高 B F , 则 B F =b—n , 表示 出 S 五 边 黝㈣ , 进 而得 出答 案. 从勾 股定 理 的根 源 人 手 , 探 究 它 的证 明方 法 , 这 在往年 的考 试 中并 不常 见. 这道题让 学生更 加深 刻地 理解 勾股 定理 , 不 仅使 学 生知其 然而且更 深入 地 知其所 以然. 在渗透数学文化的同时, 引导 学生 探 索勾股 定 理 的证 明过程 , 让 学生近距 离地 感受到 图形 变换 的魅 力. 考 试 不再 是 简 单 的 “ 考考 你 ” , 更 多 的是让 你 “ 试试 ”, 你 会 学 到更 多 , 一 场考 试 也是 节“ 学 习课 ” ! 源 于教 材 , 取 题 教材 , 进行 改编 和再造 , 这一直 以来受 到大 家 的喜爱 和拥 护 , 相信 必能有 效遏制题 海 战术 , 回归到对 数 学 本 质 的研 究. 考 查学 生 对 核 心 知识 的掌 握 , 突 出数 学重 要 思 想 与 方法 , 研 究解 决 问题 的通 性通 法 , 这些 基本 溢满 整份试 卷. 2 试卷 出题原意与考生考场发挥的契合度 如今 一 份 地 方 中考 卷 , 肩 \ B 负着 双 重 身 份 , 即 毕 业 考 核 和

2014年浙江温州高级中等学校招生考试数学试卷

2014年浙江温州高级中等学校招生考试数学试卷

2014年浙江省初中毕业生学业考试(温州市试卷) 数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(-3)+4的结果是()A.-7B.-1C.1D.72.下图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元3.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()有意义,则x的取值应满足()4.要使分式-A.x≠2B.x≠-1C.x=2D.x=-15.计算:m6·m3的结果是()A.m18B.m9C.m3D.m26.小明记录了一星期每天的最高气温如下表,则这个星期每天的最高气温的中位数是()A.22℃B.23℃C.24℃D.25℃7.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)8.如图,已知点A,B,C在☉O上,为优弧,下列选项中与∠AOB相等的是()A.2∠CB.4∠BC.4∠AD.∠B+∠C9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人.根据题意,列方程组正确的是()A. B. C. D.10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大第Ⅱ卷(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2+3a=.12.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.13.不等式3x-2>4的解是.14.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.15.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题.你举的反例是x= (写出一个x的值即可).16.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.☉O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相交于另一点F,且EG∶EF=∶2.当边AD或BC所在的直线与☉O相切时,AB的长是.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:+2×(-5)+(-3)2+20140;(2)化简:(a+1)2+2(1-a).18.(本题8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.19.(本题8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是.求从袋中取出黑球的个数.20.(本题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(本题10分)如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(-1,0).(1)求该抛物线的解析式及顶点M的坐标;(2)求△EMF与△BNF的面积之比.22.(本题8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°.求证:a2+b2=c2.图1证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab,又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),∴b2+ab=c2+a(b-a).∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.图2证明:连结.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.23.(本题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).24.(本题14分)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO.设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M、N分别在一、四象限.在运动过程中,设▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.答案全解全析:一、选择题1.C原式=+(4-3)=1,故选C.2.C根据题图所给出的数据可得捐款15~20元的有20人,人数最多,则捐款人数最多的一组是15~20元.故选C.3.D从几何体的正面看,可得此几何体的主视图是,故选D.4.A由题意得x-2≠0,解得x≠2.故选A.5.B同底数幂相乘,底数不变,指数相加,∴m6·m3=m9.故选B.6.B将数据从小到大排列:21,22,22,23,24,24,25,中位数是23℃.故选B.7.B令x=0,得y=2×0+4=4,则函数图象与y轴交点的坐标是(0,4).故选B.8.A由圆周角定理可得∠AOB=2∠C.故选A.9.D因为男生有x人,女生有y人,根据题意得,故选D.10.C在矩形ABCD中,设AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值,设a+b=t,则b=t-a.∵矩形ABCD的对角线的交点与原点O重合,∴k=AB·AD=ab=a(t-a)=-a2+ta.∴k关于a的函数图象是开口向下的抛物线,且当a=,即a=b时,k最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.评析本题考查了矩形的性质,反比例函数中比例系数k的几何意义及不等式的性质,属中等难度题.根据题意得出k=AB·AD=ab是解题的关键.二、填空题11.答案a(a+3)解析a2+3a=a(a+3).12.答案80解析∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.评析本题考查了平行线的性质及三角形外角的性质,解此题的关键是求出∠C的度数,进而得出∠3的度数.13.答案x>2解析移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.14.答案解析tan A==.15.答案-2(答案不唯一)解析当x=-2时,原式=4-10+5=-1,不是正数.16.答案4或12解析如图,连结EO,连结GO并延长,交EF于N点,则GN⊥AB.∴EN=NF.又∵EG∶EF=∶2,∴EG∶EN=∶1.又∵GN=AD=8,∴设EN=x,则GE=x,根据勾股定理得(x)2-x2=64,解得x=4,∴GE=4.设☉O的半径为r,由OE2=EN2+ON2得r2=16+(8-r)2,∴r=5.设BC所在的直线与☉O相切于K点,连结OK.∴OK=NB=5,∴EB=9.又AE=AB,∴AB=12.当AD与☉O相切时,同理可求出AB=4.评析本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于正确添加辅助线,并进行分类讨论,利用勾股定理求出对应圆的半径.三、解答题17.解析(1)原式=2-10+9+1=2.(2)原式=a2+2a+1+2-2a=a2+3.18.解析(1)如图甲所示.(2)如图乙所示.图甲图乙19.解析(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为=.(2)设从袋中取出x个黑球,=,根据题意得--解得x=2,经检验,x=2是原分式方程的解.∴从袋中取出黑球的个数为2.20.解析(1)∵△ABC是等边三角形,∴∠B=60°.∵DE∥AB,∴∠EDC=∠B=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2.∵∠DEF=90°,∠F=30°,∴DF=2DE=4.21.解析(1)由题意可得-(-1)2+2×(-1)+c=0,解得c=3.∴y=-x2+2x+3.∵y=-x2+2x+3=-(x-1)2+4,∴顶点的坐标为M(1,4).(2)∵A(-1,0),抛物线的对称轴为直线x=1,∴点B(3,0).∴EM=1,BN=2.易知EM∥BN,∴△EMF∽△BNF.∴===.22.证明连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),∴ab+b2+ab=ab+c2+a(b-a),∴a2+b2=c2.评析本题主要考查了勾股定理的证明,表示出五边形面积是解题关键.23.解析(1)=-=82.5(分).答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题.-由题意得解得答:E同学答对12题,答错1题.②C同学.他实际答对14题,答错3题,未答3题.评析本题考查加权平均数的求法、二元一次方程组的解法,注意理解题意,正确列式解答.24.解析(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3,即t=,∴OE=+3=,∴E.(2)证明:如图,连结CD交OP于点G,在平行四边形PCOD中,CG=DG,OG=PG,∵AO=PE,∴AG=EG,∴四边形ADEC为平行四边形.(3)①(i)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,=,∴=,即-∴t=1.第二种情况:如图,当点N在DE边上时,∵NF∥PD,∴△EFN∽△EPD,∴===,-∴t=.(ii)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴△EMF∽△EDP.=,∴=,即-∴t=.第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,=,∴=,即-∴t=5.②<S≤或<S≤20.提示:当1≤t<时,S=t(6-2t)=-2-+,∵t=在1≤t<范围内,∴<S≤.当<t≤5时,S=t(2t-6)=2--,∴<S≤20.评析本题主要考查了平行四边形的知识,解题的关键是分几种不同的情况讨论.。

最新温州市中考数学试卷及答案(word版)

最新温州市中考数学试卷及答案(word版)

2014年浙江省初中毕业生学业考试(温州市卷)数学试题卷满分150分,考试时间为120分钟一、选择题(本题有10小题,每小题4分,共40分) 1. 计算4)3(+-的结果是A. -7B. -1C. 1D. 7 2. 右图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一个组是A. 5~10元B. 10~15元C. 15~20元D. 20~25元3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是4. 要使分式21-+x x 有意义,则x 的取值应满足 A. 2≠x B. 1-≠x C. 2=x D. 1-=x 5. 计算36m m ⋅的结果是A. 18m B. 9m C. 3m D. 2m6. 小明记录了一星期每天的最高气温如下表,则这个星期每天最高气温的中位数是星期 一 二 三 四 五 六 日 最高气温(℃)22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7. 一次函数42+=x y 的图像与y 轴交点的坐标是A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)(2014.温州.8.本题4分) 如图,已知点A ,B ,C 在⊙O 上,为优弧,下列选项中与∠AOB 相等的是A. 2∠CB. 4∠BC. 4∠AD. ∠B+∠C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是 A. ⎩⎨⎧=+=+202352y x y x B.⎩⎨⎧=+=+203252y x y x C. ⎩⎨⎧=+=+523220y x y x D.⎩⎨⎧=+=+522320y x y x 10. 如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点重合,在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数)0(≠=k xky 中,k 的值的变化情况是 A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:=+a a 32▲12. 如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= ▲ 度 13. 不等式423>-x 的解是 ▲14. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 ▲15. 请举反例说明“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是x = ▲ (写出一个x 的值即可)(2014.温州.16. 本题5分)如图,在矩形ABCD 中,AD=8,E 是边AB 上一点,且AE=41AB ,⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线相较于另一点F ,且EG :EF=2:5。

【五年中考】2010-2014年温州中考数学试题及参考答案(精校版)

【五年中考】2010-2014年温州中考数学试题及参考答案(精校版)

D、外离
9、已知二次函数的图像 (0 x 3) 如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是
()
A、有最小值 0,有最大值 3
B、有最小值-1,有最大值 0
C、有最小值-1,有最大值 3
D、有最小值-1,无最大值
10、如图,O 是正方形 ABCD 的对角线 BD 上一点,⊙O 与边 AB,BC 都相切,点 E,F 分别在 AD,DC 上,现将
(1)求 CD 的长;(2)求 BF 的长。
第 12 页 共 44 页
21、(本题 10 分)一个不透明的布袋里装有 3 个球,其中 2 个红球,1 个白球,它们除颜色外其余都相同。 (1)求摸出 1 个球是白球的概率; (2)摸出 1 个球,记下颜色后放回,并搅均,再摸出 1 个球。求两次摸出的球恰好颜色不同的概率(要
卷Ⅱ
二、填空题(本题有 6 小题。每小题 5 分,共 30 分)
11.分解因式:m2—2m=

12.在“情系玉树献爱心”捐款活动中,某校九(1)班同学人人拿出自己的零花钱,现将同学们的捐款数
整理成统计表,则该班同学平均每人捐款
元.
捐 款 数 5 10 20 50
13.当 x=
x3 时,分式 x 1 的值等于 2.
(1)计算: 8 2010 3 0 1 1 . 2
(2)先化简,再求值:(n+6)(a-b)+a(2b-a),其中 n=1.5,b=-2.
第 3 页 共 44 页
18.(本题 6 分)由 3 个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.
19.(本题 8 分)2010 年上海世博会某展览馆展厅东面有两个入口 A,B,南面 j 西面、北面各有一个出口, 示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.

浙江省温州地区2014届九年级下学期期中学业水平检测数学试题

浙江省温州地区2014届九年级下学期期中学业水平检测数学试题

温州地区2013-2014学年第二学期期中学业水平检测九年级数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。

答题时,请注意以下几点: 1.全卷共4页,有三大题,24小题,满分为150分,考试时间为120分钟. 2.答案必须做在答题纸相应的位置上,写在试题卷、草稿纸上均无效. 3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.一、精心选一选(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1. -4的倒数是 A .4B .-4C .14D .-142.在“百度”搜索引擎中输入“马航失联最新消息”,能搜索到与之相关的结果个数约为5640000,这个数用科学记数法表示为 ( ▲ )A .5.64×104B .5.64×105C .5.64×106D .5.64×107 3.下面四个几何体中,主视图与俯视图相同的几何体共有( ▲ )4.如图,数轴上所表示的不等式组的解集是( ▲ )A .x ≤2B .-1≤x ≤2C .-1<x ≤2D .x >-15.下列事件是必然事件的是( ▲ ). A .直线y =3x +b 经过第一象限 B .当a 是一切实数时,a a =2C .两个无理数相加和为无理数D .解方程0222=-+-xxx 得x =2 6.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:第4题这此测试成绩的中位数和众数分别为( ▲ )A. 47, 49B. 47.5, 49C. 48, 49D. 48, 507.如图,A ,B ,C ,D 是⊙O 上的四点,CD 是直径,∠AOD =30°,则∠ABC 的度数为( ▲ ) A .55° B .65° C .75° D .85° 8.两圆相交,圆心距为12,则两圆半径可以是( ▲ ) A .15,20 B . 10,30C .1,10D . 5,79.如图,在Rt △ABC 中, AB=AC ,∠A=90,BD 是角平分线,DE ⊥BC , 垂足为点E 若AD 的长是( ▲) A B . C .52 D .510.如图,点A 、B 、C 、D 在一次函数y=-2x+m 的图像上,它们的横坐标分别是-1、0、3、7,分别过这些点作x 轴、y 轴的垂线,得到三个矩形,那么这三个矩形的周长和为( ▲ )A. 6m-14B. 52C. 48D. 8m-72二、耐心填一填(本题有6小题,每小题5分,共30分)11.因式分解:244a a ++= ▲ .12.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 ▲ .13. 如图,已知直线a ∥b ,∠1=40°,∠2=60°.则∠3等于▲ .第10题图第7题图A第13题(第12题)14. 甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是▲ .15.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′ ,即如图①,∠BAB′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF 中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n = ▲ .16.如图,在平行四边形ABCD 中,以对角线AC 为直径的⊙O 分别交BC,CD 于M ,N ,若AB=13,AD=14,CM=9,则直径AC 的长度为▲ ,MN 的长度为▲ .三、用心做一做(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程) 17.(本小题满分10分)(1)计算:(2)化简:xx x x x x -+-÷+-222121118.(本小题满分8分)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连结CE . (1)求证:BD =EC ;(2)若∠E =50° ,求∠BAO 的大小.19.(本小题满分8分)在如图所示的方格纸中,ABC ∆的顶点都在边长为单位1的小正方形的顶点上,以小正方形互相垂直的两边所在直线为坐标轴建立直角坐标系。

最新浙江省温州市中考数学试卷

最新浙江省温州市中考数学试卷

2014年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()A.﹣7 B.﹣1 C. 1 D.7考点:有理数的加法.分析:根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答:解:原式=+(4﹣3)=1,故选:C.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得此几何体的主视图是,故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)(2014•温州)要使分式有意义,则x的取值应满足()A.x≠2B.x≠﹣1C.x=2D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≠0,解得x≠2.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.(4分)(2014•温州)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:解:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.6.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22242325242221A.22℃B.23℃C.24℃D.25℃考点:中位数.分析:将数据从小到大排列,根据中位数的定义求解即可.解答:解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k 的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a= a(a+3).考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.考点:平行线的性质.分析:根据平行线的性质求出∠C,根据三角形外角性质求出即可.解答:解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠∠2+∠C=35°+45°=80°,故答案为:80.点评:本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.(5分)(2014•温州)不等式3x﹣2>4的解是x>2 .考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x= (写出一个x的值即可).考点:命题与定理.专题:开放型.分析:能使得x2+5x+5的值不是整数的任意实数均可.解答:解:当x=时,原式=+5=5,不是整数,故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12 .考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.18.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.考点:作图—应用与设计作图.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.考点:等边三角形的判定与性质;含30度角的直角三角形.分析:(1)根据平行线的性质可得∠EDC=∠B=60,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解答:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED= S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED= S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.考点:勾股定理的证明.分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,进而得出答案.解答:证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.点评:此题主要考查了勾股定理得证明,表示出五边形面积是解题关键.23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A1901B1721C1523D1712E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:二元一次方程组的应用;加权平均数.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是E,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,一元二次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.24.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.青岛市高三统一质量检测数学(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数i i+12的实部为A .2B .2-C .1D .1-2. 设全集R U =,集合{}2|lg(1)M x y x ==-,{}|02N x x =<<,则()U N M =A .{}|21x x -≤<B .{}|01x x <≤C .{}|11x x -≤≤D .{}|1x x <3. 下列函数中周期为π且为偶函数的是A .)22sin(π-=x y B. )22cos(π-=x y C. )2sin(π+=x y D .)2cos(π+=x y4. 设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =A .90B .54C .54-D .72-5. 已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是A .若l m ⊥,l n ⊥,且,m n α⊂,则l α⊥B .若平面α内有不共线的三点到平面β的距离相等,则βα//C .若n m m ⊥⊥,α,则α//nD .若α⊥n n m ,//,则α⊥m6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是A .16πB .14πC .12πD .8π7. 已知抛物线x y 42=的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =,则直线AF 的倾斜角等于正视图 俯视图左视图。

2014年温州市中考数学真题及答案解析

2014年温州市中考数学真题及答案解析

2014年浙江省初中毕业生学业考试(温州市卷)数学试题卷满分150分,考试时间为120分钟参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥0)卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分) 1. 计算4)3(+-的结果是A. -7B. -1C. 1D. 72. 右图是某班45名同学爱心捐款额的频数分布直方图(每组含前一 个边界值,不含后一个边界值),则捐款人数最多的一个组是A. 5~10元B. 10~15元C. 15~20元D. 20~25元 3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是4. 要使分式21-+x x 有意义,则x 的取值应满足 A. 2≠x B. 1-≠x C. 2=x D. 1-=x 5. 计算36m m ⋅的结果是A. 18m B. 9m C. 3m D. 2m6. 小明记录了一星期每天的最高气温如下表,则这个星期每天最高气温的中位数是星期 一 二 三 四 五 六 日 最高气温(℃)22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7. 一次函数42+=x y 的图像与y 轴交点的坐标是A. (0,-4)B. (0,4)C. (2,0)D. (-2,0) 8. 如图,已知点A ,B ,C 在⊙O 上,为优弧,下列选项中与∠AOB 相等的是A. 2∠CB. 4∠BC. 4∠AD. ∠B+∠C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是 A. ⎩⎨⎧=+=+202352y x y x B.⎩⎨⎧=+=+203252y x y x C. ⎩⎨⎧=+=+523220y x y x D. ⎩⎨⎧=+=+522320y x y x 10. 如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点重合,在边AB从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数)0(≠=k xky 中,k 的值的变化情况是 A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:=+a a 32▲12. 如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= ▲ 度 13. 不等式423>-x 的解是 ▲14. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 ▲15. 请举反例说明“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是x = ▲ (写出一个x 的值即可)16. 如图,在矩形ABCD 中,AD=8,E 是边AB 上一点,且AE=41AB ,⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线相较于另一点F ,且EG :EF=2:5。

浙江省温州市2014年中考数学试卷及答案(解析版)

浙江省温州市2014年中考数学试卷及答案(解析版)

浙江省温州市2014年中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()2.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()B解:从几何体的正面看可得此几何体的主视图是,4.(4分)(2014•温州)要使分式有意义,则x的取值应满足()636.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()(8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB 相等的是()9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,人,女生有yB10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()AB AD=ab•AB AD=ab二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a=a(a+3).12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.13.(5分)(2014•温州)不等式3x﹣2>4的解是x>2.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.)求出即可.tanA==故答案为:.,cosA=.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).x==,不是整数,故答案为:.题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.EF=:EN=,依据勾股定理即可求得EF=::,则,解得:,OAB三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)=218.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.=,继而求得答案.从袋中摸出一个球是黄球的概率为:=)设从袋中取出x=,20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.∴((.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.=ab++ab+c∴ab++ab+c a23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)根据对错共)=,同学答对1224.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B 出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.时和当OB=3t=,+3=(∴=,即=∴==,t=的延长线上时,∴==t=∴=,∴=5②或<时,﹣,t=<∴,<,∴。

浙江省温州市2014年中考数学试题(word版) (2)

浙江省温州市2014年中考数学试题(word版) (2)

浙江省桐乡市实验中学2013-2014学年上学期基础调研九年级数学试卷一、选择题(每小题3分,共27分)1、对右图的对称性表述,正确的是( ).(A )轴对称图形 (B )中心对称图形(C )既是轴对称图形又是中心对称图形 (D )既不是轴对称图形又不是中心对称图形 2、已知数轴上三点A 、B 、C 分别表示有理数a 、1、-1,那么1+a 表示( )(A )A 、B 两点的距离 (B )A 、C 两点的距离(C )A 、B 两点到原点的距离之和 (D )A 、C 两点到原点的距离之和 3、已知点P (x , x ),则点P 一定 ( )(A )在第一象限 (B )在第一或第二象限 (C )在x 轴上方 (D )不在x 轴下方 4、已知三角形的周长是c ,其中一边是另一边2倍,则三角形的最小边的范围是( ) (A )6c 与4c 之间 (B )6c 与3c 之间 (C )4c 与3c 之间 (D )3c 与2c之间 5、如图,∠XOY =90°,OW 平分∠XOY ,P A ⊥OX ,PB ⊥OY ,PC ⊥OW .若OA +OB +OC =1,则OC =( )A .2-2B .2-1C .6-33D .32-36、直线b kx y +=经过点A (-1,m )与点B (m ,1),其中m >1,则直线b kx y +=不经过( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7、若解分式方程22111x m x x x x x++-=++产生增根,则m 的值是( ) (A ) --12或 (B ) -12或 (C ) 12或 (D ) 12或-8、 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个ACXPW 第5题 第1题9、如图,△AOB 为等边三角形,点A 在第四象,点B 的坐标为(4,0),过点C (-4,0)作直线l 交AO 于D ,交AB 于E ,且点E 在某反比例函数x 图象上,当△ADE 和△DCO 的面积相等时,k 的值为( ) A 、-33B 、-3C 、-33D 、-66二、填空(每小题4分,共20分)10、已知圆心角为120°的扇形面积为12π,那么扇形的弧长为11、若关于x 函数1)3(2+--=x a ax y 的图像与x 轴有唯一公共点,则a =__________.12、已知反比例函数12y x=-,当6y <时,x 的取值范围是 13、如图,A 、B 、C 为⊙O 上三点,∠BAC=120°,∠ABC=45°,M ,N 分别是BC ,AC 的中点,则OM:ON=14、已知点E 11(,)x y 、F 22(,)x y 在抛物线2y ax bx c =++的对称轴的同侧(点E 在点F 的左侧),过点E 、F 分别作x 轴的垂线,分别交x 轴于点B 、D ,交直线y =2ax +b 于点A 、C ,设S 为直线AB 、CD 与x 轴、直线y=2ax+b 所围成图形的面积,.则S 与1y 2,y 的数量关系式为:S=三、解答题(共28分)15、(6分)(1)解方程:12136x x x -+-=-(2)x ,y 表示两个数,规定新运算“*”及“”如下:x *y =mx +n y ,x △y =kxy ,其中m ,n ,k 均为自然数(零除外),已知1*2=5,(2*3)△4=64,求(1△2)*3的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()A.﹣7B.﹣1 C. 1 D.7考点:有理数的加法.分析:根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答:解:原式=+(4﹣3)=1,故选:C.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A .B .C .D .考点: 简单组合体的三视图.分析: 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得此几何体的主视图是,故选:D .点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)(2014•温州)要使分式有意义,则x 的取值应满足( ) A . x ≠2 B . x ≠﹣1 C . x =2 D . x =﹣1考点: 分式有意义的条件.分析: 根据分式有意义,分母不等于0列式计算即可得解.解答: 解:由题意得,x ﹣2≠0,解得x ≠2.故选A .点评: 本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.(4分)(2014•温州)计算:m 6•m 3的结果( )A . m 18B . m 9C . m 3D . m 2考点: 同底数幂的乘法.分析: 根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答: 解:m 6•m 3=m 9.故选B .点评: 本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.6.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( ) 星期 一 二 三 四 五 六 日最高气温(℃) 22 24 23 25 24 22 21A . 22℃B . 23℃C . 24℃D . 25℃考点: 中位数.分析: 将数据从小到大排列,根据中位数的定义求解即可.解答: 解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a=a(a+3).考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.考点:平行线的性质.分析:根据平行线的性质求出∠C,根据三角形外角性质求出即可.解答:解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠∠2+∠C=35°+45°=80°,故答案为:80.点评:本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.(5分)(2014•温州)不等式3x﹣2>4的解是x>2.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).考点:命题与定理.专题:开放型.分析:能使得x2+5x+5的值不是整数的任意实数均可.解答:解:当x=时,原式=+5=5,不是整数,故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴O K=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.18.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.考点:作图—应用与设计作图.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.考点:等边三角形的判定与性质;含30度角的直角三角形.分析:(1)根据平行线的性质可得∠EDC=∠B=60,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解答:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF 是解题关键.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.考点:勾股定理的证明.分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S,进而得出答案.五边形ACBED解答:证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.点评:此题主要考查了勾股定理得证明,表示出五边形面积是解题关键.23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:二元一次方程组的应用;加权平均数.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是E,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,一元二次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.24.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.。

相关文档
最新文档