6.1《平方根》课件(人教新课标七年级下册)
合集下载
6.1_平方根(新人教版七年级下数学课件) (1)
![6.1_平方根(新人教版七年级下数学课件) (1)](https://img.taocdn.com/s3/m/837c6622453610661ed9f46e.png)
学以致用
计算:
(1) 196
解:196 14
(2) 121
解: 121 11
(3) 0.81
解:0.81 0.9
9 (4) 25 9 3 解: 25 5
2.已知:|x+2y|+ 3x 7 (5 y z) 0
2
求x-3y+4z的值. 解:由题意得:x+2y=0 3x-7=0 5y+z=0 7
2
探究活动
观察右图,每个小正方形的 边长均为1,我们可以得到小 正方形的面积为1. . (1)图中阴影正方形的面积 是多少?它的边长是多少? (2)估计 2 的值在哪两个 整数之间? .
2
课本47页1、2、3题 练习册:平方根
再 见!
(1) 0.01的平方根是 ( B ) (A)0.1 (B)±0.1 (C)0.0001 (D)±0.0001 (2)∵ (0.3) = 0.09
2
∴
( C
)
(A)0.09 是 0.3的平方根. (C)0.3 是0.09 的平方根.
(B)0.09是0.3的3倍. (D)0.3不是0.09的平方根.
平方根的表示方法、读法
(4)
4 16, 而 4 2 4 2 16,
2
2
4 的平方根是 4, 即
(5) (6)
4
2
4。
0的平方根是0。
1 3 1 3 9 2 , 2 的平方根是 , 4 2 4 4 2
已知底数、指数,求幂。
2
a
已知幂、指数,求底数。
乘方运算
乘方的逆运算
请认清:
人教版七年级数学下册 6.1 第1课时 算术平方根 课件(共20张PPT)
![人教版七年级数学下册 6.1 第1课时 算术平方根 课件(共20张PPT)](https://img.taocdn.com/s3/m/61fdfe3426284b73f242336c1eb91a37f011324c.png)
(x≥0)
互为 x a
逆运算 a的算术平方根
平方根号 读作:根号a
被开方数 (a≥0)
1. 一个正数的算术平方根有几个? 一个正数的算术平方根有1个.
2. 0的算术平方有几个? 0的算术平方根有1个,是0.
3. −1有算术平方根吗?负数有算术平方根? 负数没有算术平方根.
考 点 1 求一个数的算术平方根
(3)0.0001. 解:(3)因为0.012 = 0.0001,
所以0.0001的算术平方根是0.01 . 即 0.0001 0.01.
总结:从例题可以看出:被开方数越大,对应的算术 平方根也越大,这个结论对所有正数都成立.
知识点2:算术平方根的非负性 回忆正方形的面积公式: 边长(x) 面积(a)
求下列各数的算术平方根:
(1)100 ;
(2)6449 ;
(3)0.0001.
解:(1)因为 10²= 100 ,
所以100的算术平方根是10 .
即 100=10 .
(2) 49 ; 64
解:(2)因为(7)2 49 , 8 64
所以 49 的算术平方根是 7 .
64
8
即 49 7 .
64 8
一般地,如果一个正数 x 的平方等于 a,即x²= a, 那么这个正数 x 叫做 a 的算术平方根. a的算术平方根记 为 a ,读作“ 根号 a” .
规定:0的算术平方根是0,即 0 0.
(非负数 x )2 = a 非负数 x 是非负数 a 的算术平方根
用符号来表示一个数的算术平方根
x2 a
解:由于正方形的面积 = 边长×边长, 又因为 52 = 25 . 所以这个正方形画布的边长应取 5 dm.
填表:
互为 x a
逆运算 a的算术平方根
平方根号 读作:根号a
被开方数 (a≥0)
1. 一个正数的算术平方根有几个? 一个正数的算术平方根有1个.
2. 0的算术平方有几个? 0的算术平方根有1个,是0.
3. −1有算术平方根吗?负数有算术平方根? 负数没有算术平方根.
考 点 1 求一个数的算术平方根
(3)0.0001. 解:(3)因为0.012 = 0.0001,
所以0.0001的算术平方根是0.01 . 即 0.0001 0.01.
总结:从例题可以看出:被开方数越大,对应的算术 平方根也越大,这个结论对所有正数都成立.
知识点2:算术平方根的非负性 回忆正方形的面积公式: 边长(x) 面积(a)
求下列各数的算术平方根:
(1)100 ;
(2)6449 ;
(3)0.0001.
解:(1)因为 10²= 100 ,
所以100的算术平方根是10 .
即 100=10 .
(2) 49 ; 64
解:(2)因为(7)2 49 , 8 64
所以 49 的算术平方根是 7 .
64
8
即 49 7 .
64 8
一般地,如果一个正数 x 的平方等于 a,即x²= a, 那么这个正数 x 叫做 a 的算术平方根. a的算术平方根记 为 a ,读作“ 根号 a” .
规定:0的算术平方根是0,即 0 0.
(非负数 x )2 = a 非负数 x 是非负数 a 的算术平方根
用符号来表示一个数的算术平方根
x2 a
解:由于正方形的面积 = 边长×边长, 又因为 52 = 25 . 所以这个正方形画布的边长应取 5 dm.
填表:
6.1 平方根 第1课时 (教学课件)- 人教版七年级数学下册
![6.1 平方根 第1课时 (教学课件)- 人教版七年级数学下册](https://img.taocdn.com/s3/m/203100b305a1b0717fd5360cba1aa81145318f7a.png)
解: (1)因为302=900, 所以900的算术平方根是30,即 900 30 ;
(2)因为12=1, 所以1的算术平方根是1,即 1 1 ;
(3)因为
7 8
2
=
49 64
,所以
49 64
的算术平方根是 7
8
,即
49 = 7 64 8
;
(4)14的算术平方根是 14 .
四、典型例题
例2:已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求 a 2b 的值? 解:由题意可知:2a-1=9,3a+b-1=16, 解得:a=5,b=2, ∴ a 2b = 9 =3
【当堂检测】
1.求下列各数的算术平方根:
36 ,9 , 17, 0.81 , 10-4 16
解: 因为62=36, 所以36的算术平方根是6,即 36 6 ;
因为
3 4
2
=
9 16
,所以
9 16
的算术平方根是
3 4
,即
9 =3 ;
16 4
17的算术平方根是 17 ;
因为0.92=0.81, 所以0.81的算术平方根是0.9,即 0.81 0.9 ;
叫做 a 的算术平方根,a 的算术平方根记作“ a ”,读作“根号 a ”,a
叫做被开方数.
特别地,我们规定:0的算术平方根是0,即 0 0 .
三、概念剖析
(二)算术平方根的估算
思考:你能计算出 2 的值吗?
夹值法:即两边无限 逼近,逐渐确定真值
方法一:
因为12=1,22=4,所以1< 2 <2,
5 dm 因为52=25
三、概念剖析
(一)算术平方根
6.1平方根第1课时(课件)七年级数学下册(人教版)
![6.1平方根第1课时(课件)七年级数学下册(人教版)](https://img.taocdn.com/s3/m/9253d81a68eae009581b6bd97f1922791688beec.png)
人教版数学七年级下册
谢谢聆听
数的问题.
探究新知
人教版数学七年级下册
一般地,如一个正数x的平方等于a,即x2=a ,那么这个
正数x就叫做a的算术平方根. a的算术平方根记为
“根号a”,a叫做被开方数.
规定: 0的算术平方根是0. 记作: 0=0
a ,读作
例题讲解
人教版数学七年级下册
例1
求各数的算术平方根:
49
(1)100;
(2)
课堂小结
人教版数学七年级下册
算术平方根: 一般地,如一个正数x的平方等于a,即x2=a ,
那么这个正数x就叫做a的算术平方根.
0的算术平方根是0,负数没有算数平方根.
a 0
中的双重非负性:
a≥0
课后作业
人教版数学七年级下册
1.填空:
1.若|a+4|=0 , 则a= -4
2.若 (m 7) 0 ,则m=
2
⑸ 13 12
2
Байду номын сангаас
2
拓展训练
人教版数学七年级下册
1.已知:x 2 y 3x 7 (5 y z) 0, 求X-3Y+4Z的值.
2
解:由题意得:
3x 7 0, x 2 y 0,5 y z 0,
7
7
35
,
解得 x , y , z
3
6
6
7
C.±
D.-
随堂检测
人教版数学七年级下册
3.填空:
(1) 一个数的算术平方根是4,则这个数是 16 .
(2) 一个自然数的算术平方根为m,则这个自然数是___;
人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2
![人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2](https://img.taocdn.com/s3/m/ef558edc680203d8cf2f2402.png)
0的平方根是( 0 );
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.
人教初中数学七下 6.1 平方根(第1课时)算术平方根课件 【经典初中数学课件】
![人教初中数学七下 6.1 平方根(第1课时)算术平方根课件 【经典初中数学课件】](https://img.taocdn.com/s3/m/04d1e098d0f34693daef5ef7ba0d4a7302766c20.png)
选择身高在哪个范围内的学生参加呢?
为了使选取的参赛选手身高比较整齐, 需要知道数据的分布情况,即在哪些身高范 围的学生比较多,哪些身高范围内的学生人 数比较少.为此可以通过对这些数据适当分 组来进行整理.
1.计算最大值和最小值的差
在上面的数据中,最小值是149, 最大值是172,它们的差是23,说明身 高的变化范围是23 cm.
身高/㎝
2.易于显示各组之间频数之间的差别
等距分组的频数分布直方图
小长方形面积= 组 频组距 数距 =频数
频数 (学生人数)
20
15
身高/㎝
2.易于显示各组之间频数之间的差别
等距分组的频数分布直方图
小长方形面积= 组 频组距 数距 =频数
频数 (学生人数)
20
15
10
5
0 149 152 155 158 161 164 167 170 173 身高/㎝
等距分组的频数分布直方图 如上
•
频数分布直方图是以小长方形的面
积来反映数据落在各个小组内的频数的大
计,
评估数学考试情况,经过整
理得到如下频数分布直方图, 60 学生人数
60
请回答下列问题:
50
(1)此次抽样调查 的样本容量是_____
40
30
28
28
20
15 10 10
14
5
0
分
0~35 36~47 48~59 60~71 72~83 84~95 96~107 108~120
小结
通过本节学习,我们了解了频数分布的意义及 获得一组数据的频数分布的一般步骤: (1)计算极差; (2) 决定组距和组数; (3) 决定分点; (4) 列出频数分布表; (5)画出频数分布直方图和频数折线图。
人教版数学七年级下册6.1-平方根(2)-课件
![人教版数学七年级下册6.1-平方根(2)-课件](https://img.taocdn.com/s3/m/7d5f396f3868011ca300a6c30c2259010202f39d.png)
(√) (× )
7) (﹣10)2没有平方根
( ×)
8) 如果x2 = a,则 a 一定是正数 ( × )
有一个正数的两个平方根是2m-3和5m,求m的值。
解:由题意得 (2m-3)+(5-m)=0
∴ m=-2
练习:如果 x 2 2 ,求2x+5的算术平方根.
能力提升 (1)3-m有平方根,求m的取值范围 (2)a-4无平方根,求a的取值范围 (3) 3x 5 有意义,求x的取值范围
(2) 0.0036
=-0.06
(4) 25 36
=5+6 =11
判断下面的说法是否正确,如不正确,
说明理由,并加以改正.
1) ﹣3的平方根是 9
( ×)
2) 9的平方根是﹣3
( ×)
3) 3是9的平方根 4) 4的平方根是±2
( √) (√ )
5) ﹣5是25的平方根 6) ﹣1的平方根是±1
如(±5)2=25,则±5是25的平方根,
记作 25= 5
2.认识开平方运算
填空: 求平方
1 1
1
2 2
4
3
9
3
求平方根
1
1 1
4
2 2
9
3
3
两图中的运算有什么关系呢?
求一个数的平方根的运算,叫做开平方。
±3的平方等于9,9的平方根是±3, 所以平方与开平方互为逆运算.
初中所学的六种运算: 加法、减法、乘法、除法、乘方、开方. 对应的运算结果分别为: 和、 差、 积、 商、 幂、 方根.
学习小结:
1、平方根的概念. 2、开平方. 3、平方根的特征. 4、平方根的表示法:
a (a 0)
6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)
![6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)](https://img.taocdn.com/s3/m/d089d9490640be1e650e52ea551810a6f524c885.png)
−0.3 2 =0.3.
迁移应用
1.计算:(1) 9 =_____;
(4) (−6)2 =_____;
(2) 0.25=_____;
.
(3)﹣
64
=______;
−
49
(5) 36+ 16- 25=_____.
2.已知 + 4=3,则x=______.
3.若单项式2xmy3与3xym+n是同类项,则 2 + 的值为______.
解:因为(x-2)2+ + 1+|z-3|=0,
(x-2)2≥0, + 1≥0,|z-3|≥0,
所以(x-2)2=0, + 1=0,|z-3|=0.
所以x-2=0,y+1=0,z-3=0.
所以x=2,y=-1,z=3.
所以(x+3y)z=[2+3×(-1)]3=(-1)3=-1.
迁移应用
所以|3x-3|=0, − 2 =0.
所以3x-3=0,y-2=0,即x=1,y=2.
所以x+4y=1+4×2=9.
因为 9=3,所以x+4y的算术平方根为+ + 3=0,求a(b+c)的值.
解:因为(a+1)2+|b-2|+ + 3=0,
所以a+1=0,b-2=0,c+3=0,
4.若4是3x-2的算术平方根,则x的值是______.
迁移应用
5.求下列各数的算术平方根:
121
(2) ;
100
(1)0.64;
人教版初1数学7年级下册 第6章(实数)6.1平方根的定义及性质 课件 (共41张PPT)
![人教版初1数学7年级下册 第6章(实数)6.1平方根的定义及性质 课件 (共41张PPT)](https://img.taocdn.com/s3/m/62e7490f32687e21af45b307e87101f69e31fba0.png)
Fra bibliotek 填表x2
4a 1 9 16 36 25 (a > 0)
x
±1 ±3
±4 ±6
2 5
平方根的定义
一般地,如果一个数的平方等于 a ,那么这 个数叫做 a 的平方根或二次方根.这就是说,如 果 x2 = a,那么 x 叫做 a 的平方根.
求一个数 a 的平方根的运算,叫做开平方.
例如:32 = 9,(-3)2 = 9, 3 和 -3 是 9 的平方根, 简记为 ±3 是 9 的平方根.
数的平方根: (1) 1 24 ;
解: 25
(2) 81 ; (3) 0 ; (4) -16 .
(2)因为(±9)2 = 81,
所以81有平方根,81的平方根是±9;
巩固练习 下列各数是否有平方根,如果有,请你求出这个 数的平方根: (1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 . 解: 25
巩固练习
下列各数是否有平方根,如果有,请你求出这个
数的平方根:
(1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 .
解: 25
(1)因为(±
7)2=
49 = 1 24,
5 25 25
所以1 24 有平方根,1 24 的平方根是± 7;
25
25
5
巩固练习
下列各数是否有平方根,如果有,请你求出这个
(3)因为 02 = 0,
所以0有平方根, 0 的平方根是 0 ;
巩固练习 下列各数是否有平方根,如果有,请你求出这个 数的平方根: (1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 . 解: 25 (4)因为 x2 0 ,
4a 1 9 16 36 25 (a > 0)
x
±1 ±3
±4 ±6
2 5
平方根的定义
一般地,如果一个数的平方等于 a ,那么这 个数叫做 a 的平方根或二次方根.这就是说,如 果 x2 = a,那么 x 叫做 a 的平方根.
求一个数 a 的平方根的运算,叫做开平方.
例如:32 = 9,(-3)2 = 9, 3 和 -3 是 9 的平方根, 简记为 ±3 是 9 的平方根.
数的平方根: (1) 1 24 ;
解: 25
(2) 81 ; (3) 0 ; (4) -16 .
(2)因为(±9)2 = 81,
所以81有平方根,81的平方根是±9;
巩固练习 下列各数是否有平方根,如果有,请你求出这个 数的平方根: (1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 . 解: 25
巩固练习
下列各数是否有平方根,如果有,请你求出这个
数的平方根:
(1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 .
解: 25
(1)因为(±
7)2=
49 = 1 24,
5 25 25
所以1 24 有平方根,1 24 的平方根是± 7;
25
25
5
巩固练习
下列各数是否有平方根,如果有,请你求出这个
(3)因为 02 = 0,
所以0有平方根, 0 的平方根是 0 ;
巩固练习 下列各数是否有平方根,如果有,请你求出这个 数的平方根: (1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 . 解: 25 (4)因为 x2 0 ,
七年级数学下册6.1.1算术平方根新版新人教版精选教学PPT课件
![七年级数学下册6.1.1算术平方根新版新人教版精选教学PPT课件](https://img.taocdn.com/s3/m/5b7145df998fcc22bcd10d8d.png)
-1 3
二 、师生互动,课堂探究 (二)导入知识,解释疑难
(4)已知9的算术平方根为a,b的绝对值为4, 求a-b的值.
解:由题意知: a2=9,|b|=4, 则 a=3,b= ±4, 所以a-b=-1或7.
二 、师生互动,课堂探究
(三)创新提升 已知2a-1的算术平方根是3,3a+b-1的算术
0.16 , 111 , ( 3)2 , 0.25 .
25
=0.4 = 36 6 =3
25 5
=0.5
二 、师生互动,课堂探究
(二)导入知识,解释疑难
(3)3x-4为25的算术平方根,求x的值.
解:由题意知: (3x-4)2=25,
则 3x-4=±5,
即3x-4=5或3x-4=-5,
所以x=3,或x=
二 、师生互动,课堂探究 (一)提出问题,引发讨论
1.你能求出下列各数的平方吗?
0,-1.5,2.3,
1 5
,-3,3,1,1
2
.
(-3)2=9
32=9
(-3)2=32
二 、师生互动,课堂探究 (一)提出问题,引发讨论
2.若已知一个数的平方为下列各数,你能 把这个数的取值说出来吗?
25,0,4,4 , 1 , 1 ,1.69. 25 144 4
二 、师生互动,课堂探究
(二)导入知识,解释疑难
3.巩固练习
(1)求下列各式的值:
① 1.44 ;
=1.2
③ 0.81 0.04 ;
=0.9-0.2=0.7
② (0.1)2 ; =0.1
④ 12 1 . 4
= 49 7 42
二 、师生互动,课堂探究 (二)导入知识,解释疑难 (2)求下列各式的值:
人教版七年级数学下册第六章《平方根--算术平方根》公开课课件
![人教版七年级数学下册第六章《平方根--算术平方根》公开课课件](https://img.taocdn.com/s3/m/8182ef33ce2f0066f4332269.png)
§6.1 平方根
身边小事
为了趣味接力比赛,要在运动 场上圈出一个面积为100平 方米的正方形场地,这个正方
形场地的边长为多少? 10米
因为 10 2=100
§6.1 平方根
身边小事
学校要举行美术作品比赛,小欧很 高兴,他想裁出一块面积为25dm2 的正 方形画布,画上自己的得意之作参比 赛,这块正方形画布的边长应取多少?
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
5 dm
因为 5 2=25
§6.1 平方根 (第一课时) 算术平方根
正方形 的面积
边长
1
9
学 科网
1
3
16 36
0.25
4
6 0.5
已知一个正数的平方, 求这个正数的问题.
概念引入
象5 2=25, 那么5叫做25的算术平方根;
10 =2100, 那么10叫做100的算术平方根;
x a x a 一般地,如果一个正数 的平方等于 , 即 =2 = , x a 那么这个正数 叫做 的 算术平方根.
≥0 ≥0
算术平方根的非负双重性.
试一试
2.你知道下列式子表示什么意思吗? 你能求出它们 的值吗?
25 =5
1 4
=
1 2
0.81 =0.9
0 =0
试一试
身边小事
为了趣味接力比赛,要在运动 场上圈出一个面积为100平 方米的正方形场地,这个正方
形场地的边长为多少? 10米
因为 10 2=100
§6.1 平方根
身边小事
学校要举行美术作品比赛,小欧很 高兴,他想裁出一块面积为25dm2 的正 方形画布,画上自己的得意之作参比 赛,这块正方形画布的边长应取多少?
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
5 dm
因为 5 2=25
§6.1 平方根 (第一课时) 算术平方根
正方形 的面积
边长
1
9
学 科网
1
3
16 36
0.25
4
6 0.5
已知一个正数的平方, 求这个正数的问题.
概念引入
象5 2=25, 那么5叫做25的算术平方根;
10 =2100, 那么10叫做100的算术平方根;
x a x a 一般地,如果一个正数 的平方等于 , 即 =2 = , x a 那么这个正数 叫做 的 算术平方根.
≥0 ≥0
算术平方根的非负双重性.
试一试
2.你知道下列式子表示什么意思吗? 你能求出它们 的值吗?
25 =5
1 4
=
1 2
0.81 =0.9
0 =0
试一试
人教版《平方根》演示课件
![人教版《平方根》演示课件](https://img.taocdn.com/s3/m/cdf655d30722192e4436f6d0.png)
习题6.1 题2、题3
数a的正的平方根就是数a的算术平方根;
必做题: 书P47 习题6.
一般地,如果一个数的平方等于a,
选做题: 一般地,如果一个数的平方等于a,
平方与开平方互为逆运算
1.若一个数x的平方根是2-2a和 根据平方与开平方的互逆关系,可以求一个数的平方根.
已知一个数的平方,求这个数.
4a,求a和x的值.
问题3 完成下图
求平方
+1
1
–1
+2 –2
4
+3
9
–3
平方
平方 与 开平方 互为 逆运算
求平方根
1
+1 -1
4
+2 -2
+3
9
-3
开平方
例1 求下列各数的平方根:
(1)100
(2) 9 16
解:(1)因为(10)2 100,
(3)
所以10 0的平方根是 10.
观察例题中 给的三个数
(2)因为( 3)2 9 ,
(2)1的平方根是1;
这就是说 x2 = a,那么x叫做a的平方根.
(3)-1的平方根是-1;
平方根的概念及数的平方根的特征.
()
必做题: 书P47 习题6.
一、你学习了哪些数学知识?
(2)1的平方根是1;
音乐能激发或抚慰情怀, 绘画使人赏心悦目, 诗歌能动人心弦, 哲学使人获得智慧, 科学可改善物质生活, 但数学能给予以上的一切。
人教版数学七年级下册
第六章 实数 平方根
6.1.3 平方根
学习目标
1.了解平方根的概念,会用根号表示数的平方根; 2.掌握利用平方与开平方互为逆运算求数的平方根的方法; .
(人教版)七年级下册数学:6.1《平方根》(第2课时)ppt教学课件
![(人教版)七年级下册数学:6.1《平方根》(第2课时)ppt教学课件](https://img.taocdn.com/s3/m/e698aca94028915f814dc208.png)
3. 12 m 8有 __最__大_值(填最大或最小) 是 ____12__,此时m ___8.
七、作业:P76 习题13.1
5、6、11
课后思考题: 试用“逼近法”
3 确定 的大小?
,
我会用了:若 3 1.732,则 300=
30000 = 173.2, 0.0003= 0.01,7若32 a 1732 ,则a=__3_0_0_00_00
17.32
六、练一练: 1. 38介于整数 6 和
7 之间 ,它的小数
数部分是 38 。 6
2. x 7 6的最小值是 __6_____,此时x=__-__7__.
a 是一个无限不循环小数。
我们可以用逼近法求它的近似值 也可用计算器求它的近似值
3、 例2 用计算器求下列各式的值:
(1) 3136 (2) 2 (精确到0.001)
解:(1) 3136 56
(2) 2 1.414
注意:计算器的用法,(不同的计算器按说明操作)
计算器上显示的也只是近似值,但我们可以利用 计算器方便地求出一个正数的算术平方根的近似值.
探究: 怎样用两个面积为1的小正方形拼
成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开,
将所得的4个直角三角形拼在一起,就
得到一个面积为2的大正方形。你知道
这个大正方形的边长是多少吗?
设大正方形的边长为x,则
=2. 由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x=
三、感受新知:
四、练习:课本P72的练习 1、2Fra bibliotek五、探究:
1 ___1__, 100 ____1_0_, 10000 __1_0_0____,
人教版七年级数学下册教学课件-6.1平方根62-
![人教版七年级数学下册教学课件-6.1平方根62-](https://img.taocdn.com/s3/m/ea03dbc583c4bb4cf6ecd1a6.png)
(2)∵ 92 81,
∴81的算术平方根是9,即 81 9;
(3) ∵32 32,
∴ 3 2 的算术平方根是3,即 32 3;
(4)1 11 = 36
。
∵
6
2
36
,
25
∴ 36
25
5
的算术平方根是
25
6 ,即
1 11 6。
25
5
25 5
第十二页,编辑于星期一:一点 四分。
当堂练习
3.求下列各式的值:
05,即
;
(3)
.
(2) ;
1 1
;
(2) 9 3
25 5
32=
52=
∴0.
解:(2)因为
∵
,
, (3)
1、判断下列说法是否正确:
规定:0的算术平方根是0!
22 2 ;
(4) 2 1 3
42
我家买了张新桌子,需要铺一块面积
例1 求下列各数的算术平方根:
解:(1)∵
,
; .
第十三页,编辑于星期一:一点 四分。
解:(2)因为
,
,
即
49 7 .
64 8
第九页,编辑于星期一:一点 四分。
例1 求下列各数的算术平方根:
(1)1 0 0
;(2)64
9 4
;(3) 0.0001.
解:(3)因为 0.0120.0001,
所以0.0001的算术平方根是0.01 .
即 0.00010.01 被.开方数的大小与对应的算
术平方根的大小之间有什么 关系呢?
被开方数越大,对应的算术平方根也越大
第十页,编辑于星期一:一点 四分。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)±√64/81
达标训练:
(1)49的平方根是( ±7 ),算术平方根是(7 ); 0.3 (2)0.09的平方根是( ),算术平方根是( ); ±0.3 (3)若- 3 是x的一个平方根,那么x的另一个平方根是 ( ); 3 (4)平方根等于它本身的数是( 0),算术平方根等于 它本身的数是(0,); 1 (5) 一个数的平方等于 0.01 ,这个数是( ); ±0.1 (6) √(-5)2= 5 25 ,0,√81 (7)求下列各数的平方根:0.81, 49
本节课你有哪些收获?
平方根的概念(二次方根) 开平方运算 平方根的性质 正数a的平方根可以用符号“±√ a”表示, 读作“正.负根号a” 5 符号“±√ a ” 只有a≧0时有意义, a≦0时无意义。 6 平方根与算术平方根的联系与区别。 1 2 3 4
作业:
注 意:
• 正数a的算术平方根可以用√ a表示, • 正数a的负的平方根可以用符号“-√ a”表示, • 正数a的平方根可以用符号“±√ a”表示, 读作“正.负根号a”。 (例如±√9= ±3, ±√25= ±5) 符号“±√ a ” 只有a≧0时有意义, a≦时 无意义。
观察 -2 +3 -3 9 4 1
两种运算有什么不同?
x
2
x
2
X
+1
1 -1 +2 4 -2 +3 9 -3
平方运算
这是什么运算?
求一个数a的平方根的运算,叫做开平方, 其中a叫做被开方数。
(可以看的出,平方与开平方互为逆运算, 根据这种关系可以求出一个数的平方根.)
练一练 口算下列各数的平方根 (1)64 (4) (-9)
议一议
平方根与算术平方根有什么异同?
• 平方根与算术平方根的联系与区别:
联系 (1)具有包含关系:平方根包含算术平方根,算术平方 根是平方根的一种。 (2) 存在条件相同:平方根和算术平方根都具有非负 性 (3) 0的平方根和算术平方根都是0。 区别 (1) 定义不同: “如果一个数X的平方等于a,那么这 个数X叫做a的平方根”, “如果一个正数x的平方等于a, 即 x2 =a,那么这个正数x叫做a的算术平方根”。 (2)个数不同:一个正数有两个平方根,而一个正数 的算术平方根只有一个。 (3)表示方法不同:正数a的算术平方根表示为√ a, 而正数a的平方根表示为±√ a
2
49 ( 2) 121
(3)0.04
(5) 0
(6)11
例4 求下列各数的平方根
• (1)100 (2)9∕16
2
(3)0.25
解:(1) 因为(±10) =100, 所以100的平方根是±10 (2) 因为(±¾ ) = 9∕16 , 所以 9∕16 的平方根是±¾
2
(3)
因为(±0.5) =0.25, 所以0.25的平方根是±0.5
2
(1)正数有几个平方根? 他们有什么特点? (2)0 的平方根是多少? (3)负数有平方根吗?
一个正数有两个平方根,它们互为相反数; 0平方根是0本身; 负数没有平方根
例5
求下列各式的值 (2) -√0.81
(1) √144
(3)±√121/196 解 (1) 因为12 =144,所以√144=12 (2) 因为0.9 =0.81,所以-√0.81=-0.9 (3) 因为(±11/
14 2 121 )= / 196, 2 2
所以±√121/196=±11/14
• 练一练:(看谁做的又对又快)
(一)求下列各数的平方根:
(1) 36 (2) 0.49 (4)
1 (3) 2 4
(5) 102 (7)(-4)2
16 25
(6)-9
(二)计算下列各式的值
(1)√169 (2)-√0.0049
思考
问题
如果一个数的平方等于9, 那么这个数是多少?
想 一 想
• 完成下表
X2 1 16 36 0.49
4/ 25
X ±1 ±4 ±6 ±0.7 ±2/5
一般的,如果一个数X的平方等于a,即
x2=a那么这个数X叫做a的平方根(也叫 做二次方根)。
例如,因为3和-3的平方都等于9, 我们就说3和-3是9的平方根。 也可以说:9的平方根是±3.