材料力学课件-弯曲内力
合集下载
《材料力学》课程讲解课件第四章弯曲内力
x
∴ 弯曲构件内力:Fs -剪力,M -弯矩。
若研究对象取m - m 截面的右段:
Y 0, Fs F FBY 0.
mC 0,
FBY
FBY (l x) F(a x) M 0.
Fs
F (l a) l
,
M F (l a) x 18 l
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
由 Fy 0, 得到:
A
FAy
a
Mc
C FSc
FAy q 2a FSc 0
FSc FAy q 2a qa
(剪力FS 的实际方向与假设方
向相反,为负剪力)
由 MC 0, 得到:
MC FAy 2a 2qa a M1 0
MC FAy 2a 2qa a M1 2qa2
F
M (x) FAY x M A
F(x L) (0 x l)
x
③根据方程画内力图
FL
x
41
§4-4 剪力方程和弯矩方程 剪力图和弯矩图
q
例题4-2
悬臂梁受均布载荷作用。
x
试写出剪力和弯矩方程,并
q
l
x
FS
M x
FS x
画出剪力图和弯矩图。
解:任选一截面x ,写出
剪力和弯矩方程
ql FS x=qx
变形特点——杆轴线由直线变为一条平面的曲线。
P
主要产生弯曲变形的杆--- 梁。
q
M
二、平面弯曲的概念:
RA
NB
3
F1
q
F2
M
纵向对称面
平面弯曲 受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在
第5章-弯曲内力 45页PPT文档
M C 0 ,M F 1 ( b a ) F A b 0 y 故 M F A b yF 1 (b a )
n
FS (Fi )一侧
n
M (mCi)一侧
i1
i1
在保留梁段上,方向与切开截面正 FS 相反 单辉祖,材料力学教的程外力为正,与正 M 相反的外力偶矩为正 12
F Sm , aF xS(0)F
dM d()F12l0
l 2
MmaxM2l F4l
单辉祖,材料力学教程
22
§5 载荷集度、剪力与弯矩间 的微分关系
FS , M 与 q 间的微分关系 利用微分关系画 FS 与 M 图 例题 微分关系法要点
单辉祖,材料力学教程
23
FS, M 与 q 间的微分关系
F y 0 ,F S q d x ( F S d F S ) 0(a)
M C 0 ,M d M q d x d 2 x F S d x M 0(b)
dFS q dx
dM dx
FS
41
曲梁内力
曲梁
轴线为平面曲线、且横截面的纵向对称轴均位于轴线 平面的杆件,称为平面曲杆。 以弯曲为主要变形的平面曲杆,称为平面曲梁。 曲杆内力
一般存在三内力分量-轴力FN; 剪力FS ; 弯矩M
FSFcos MFR sin FNFsin
单辉祖,材料力学教程
42
例题
例 5-9 试画刚架的弯矩图 解:在AB与BC段分别选取坐标, AB杆的弯矩方程为:
将上述二者结合,绘制梁的剪力与弯矩图 在集中载荷作用下,梁的剪力与弯矩图一定由直 线所构成
均布载荷作用梁段,剪力图为斜线,弯矩图为二 次抛物线,其凹凸性由载荷集度的正负而定
第4章弯曲内力-PPT课件
第 4章
§4.1 概 述
弯曲内力
§4.2 剪力与弯矩
剪力图与弯矩图
§4.3 弯矩、剪力与分布载荷集度间的 微分关系 §4.4 刚架的内力图
材料力学电子教案 C 机械工业出版社
§4.1 概 述
4.1.1 平面弯曲的概念 一、弯曲变形 在垂直于杆件轴线的外力作用下,使原为直线的 轴线成为曲线。这种变形称为弯曲。 二、以弯曲变形为主的杆件称为梁。
4.1.3 静定梁的基本形式 根据约束的不同,静定梁的基本形式有三种。 (1) 简支梁 一端为固定铰支,另 一端为可动铰支的梁
F q b)
(2) 外伸梁 简支梁的一端或两端 伸出支座之外的梁
(3) 悬臂梁 一端固定,另一端 自由的梁
b)
F b)
F
F
材料力学电子教案 C 机械工业出版社
§4.2 剪力与弯矩 剪力图与弯矩图
材料力学电子教案 C 机械工业出版社
§4.2 剪力与弯矩 剪力图与弯矩图
例 4-2 图4-9a所示简支梁受集中载荷F作用。试列出梁 的剪力方程和弯矩方程,并作剪力图和弯矩图。
材料力学电子教案 C 机械工业出版社
§4.2 剪力与弯矩 剪力图与弯矩图
4.2.2 梁横截面上的内力-剪力与弯矩 一、剪力方程和弯矩方程 以x表示横截面在梁轴线上的位置,各截面上的 剪力和弯矩可表示为x的函数。
F F ( x ) S S
M M ( x )
二、剪力图和弯矩图 根据剪力方程和弯矩方程,画出剪力和弯矩随截 面位置变化的图线,分别称为剪力图和弯矩图。
F 0计算剪力FS;
y
(4)由力矩平衡方程 截开截面的形心。
M 0 计算弯矩M,式中C为
C
材料力学电子教案 C 机械工业出版社
§4.1 概 述
弯曲内力
§4.2 剪力与弯矩
剪力图与弯矩图
§4.3 弯矩、剪力与分布载荷集度间的 微分关系 §4.4 刚架的内力图
材料力学电子教案 C 机械工业出版社
§4.1 概 述
4.1.1 平面弯曲的概念 一、弯曲变形 在垂直于杆件轴线的外力作用下,使原为直线的 轴线成为曲线。这种变形称为弯曲。 二、以弯曲变形为主的杆件称为梁。
4.1.3 静定梁的基本形式 根据约束的不同,静定梁的基本形式有三种。 (1) 简支梁 一端为固定铰支,另 一端为可动铰支的梁
F q b)
(2) 外伸梁 简支梁的一端或两端 伸出支座之外的梁
(3) 悬臂梁 一端固定,另一端 自由的梁
b)
F b)
F
F
材料力学电子教案 C 机械工业出版社
§4.2 剪力与弯矩 剪力图与弯矩图
材料力学电子教案 C 机械工业出版社
§4.2 剪力与弯矩 剪力图与弯矩图
例 4-2 图4-9a所示简支梁受集中载荷F作用。试列出梁 的剪力方程和弯矩方程,并作剪力图和弯矩图。
材料力学电子教案 C 机械工业出版社
§4.2 剪力与弯矩 剪力图与弯矩图
4.2.2 梁横截面上的内力-剪力与弯矩 一、剪力方程和弯矩方程 以x表示横截面在梁轴线上的位置,各截面上的 剪力和弯矩可表示为x的函数。
F F ( x ) S S
M M ( x )
二、剪力图和弯矩图 根据剪力方程和弯矩方程,画出剪力和弯矩随截 面位置变化的图线,分别称为剪力图和弯矩图。
F 0计算剪力FS;
y
(4)由力矩平衡方程 截开截面的形心。
M 0 计算弯矩M,式中C为
C
材料力学电子教案 C 机械工业出版社
材料力学-弯曲变形(内力)ppt课件
2021/4/23
任务一 计算梁的弯曲变形内力
❖ 知识目标 ❖ 能力目标 ❖ 任务描述 ❖ 任务分析 ❖ 相关知识 ❖ 任务实施 ❖ 任务拓展 ❖ 思考与练习
弯曲变形
3333
机械基础-材料力学-弯曲变形
20212/0241//42/233
任务拓展-做剪力图和弯矩图
弯曲变形
FRA
MO
a
b
A
C
x1
x2
桥梁
弯曲变形
55
机械基础-材料力学-弯曲变形
20212/0241//42/233
厂房吊运物料
弯曲变形
6
机械基础-材料力学-弯曲变形
2021/4/23
任务一 计算梁的弯曲变形内力
弯曲变形
❖ 知识目标 ❖ 能力目标 ❖ 任务描述 ❖ 任务分析 ❖ 相关知识 ❖ 任务实施 ❖ 任务拓展 ❖ 思考与练习
任务一 计算梁的弯曲变形内力
弯曲变形
❖ 知识目标 ❖ 能力目标 ❖ 任务描述 ❖ 任务分析 ❖ 相关知识 ❖ 任务实施 ❖ 任务拓展 ❖ 思考与练习
✓ 分析梁的变形。 ✓ 分析梁发生弯曲变形时受的内力。 ✓ 求出梁弯曲时的内力。
99
机械基础-材料力学-弯曲变形
20212/0241//42/233
相关知识
解:1、求支座反力
F x0, F A x0
MA0, FBF l a
MB0, FAyFb
l
弯曲变形
F
a
b
A
B
x
l
FAx
A FAy
F B
FB
21
机械基础-材料力学-弯曲变形
2021/4/23
相关知识-剪力和弯矩
材料力学_弯曲内力PPT课件
再如我们书中所举的火车轮轴的例子,也是一样的 情况。
2、定义: 当杆件上作用有垂直于杆件轴线的外力时,原先 为直线的轴线变形后就会成为曲线,这种形式的变形就称为 弯曲。
3、梁:以弯曲为主要变形的杆件,我们通常称之为梁。ቤተ መጻሕፍቲ ባይዱ
①轴线是直线的称为直梁,轴线是曲线的称为曲梁。 ②有对称平面的梁称为对称梁,没有对称平面的梁称为非对
q
F
纵向对称面
FA
FB
5、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面, 但外力并不作用在纵向对称面内的弯曲。
§5-2 受弯杆件的简化
一般情况下,梁的支座和载荷有多种多样的情况,比较复 杂,为了研究起来方便,我们必须对它进行一系列的简化,找 出它的计算简图,以简化理论分析和计算的过程。
一、支座的几种形式
(一)、 求支反力RA ,RB
由:
4 M B 0 RA 3 F
MA
0
RB
5 3
F
(二)、求截面m-m上的内力(采用截面法)
F
由上图可知:要保持左
M
半部分的平衡,在截面m-m 上必须有一个方向向下的力
RB
x
Q
Q.
由
y
0
Q
4 3
F
F
1 3
F
——(a)
同时还必须有一个逆时针方向转动的力偶M
由
Mo
§5-1 平面弯曲的概念
1.弯曲:
举例说明:我们在家洗衣服后,总是要拿到阳光下 去晒,在这种情况下,我们都是在有阳光的地方拉一根 铁丝(或绳子),在没有铁丝或绳子的情况下,一般都 喜欢在两个建筑物之间横上一根竹杆用来凉衣服。这些 绳子或竹杆在没有挂上衣物之前都保持在水平位置(它 的轴线自然也是一条水平直线)。当我们把衣服挂上去 之后,结果我们发现原来为直线的轴线变成了曲线,这 种形式的变形我们就称为弯曲变形。
2、定义: 当杆件上作用有垂直于杆件轴线的外力时,原先 为直线的轴线变形后就会成为曲线,这种形式的变形就称为 弯曲。
3、梁:以弯曲为主要变形的杆件,我们通常称之为梁。ቤተ መጻሕፍቲ ባይዱ
①轴线是直线的称为直梁,轴线是曲线的称为曲梁。 ②有对称平面的梁称为对称梁,没有对称平面的梁称为非对
q
F
纵向对称面
FA
FB
5、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面, 但外力并不作用在纵向对称面内的弯曲。
§5-2 受弯杆件的简化
一般情况下,梁的支座和载荷有多种多样的情况,比较复 杂,为了研究起来方便,我们必须对它进行一系列的简化,找 出它的计算简图,以简化理论分析和计算的过程。
一、支座的几种形式
(一)、 求支反力RA ,RB
由:
4 M B 0 RA 3 F
MA
0
RB
5 3
F
(二)、求截面m-m上的内力(采用截面法)
F
由上图可知:要保持左
M
半部分的平衡,在截面m-m 上必须有一个方向向下的力
RB
x
Q
Q.
由
y
0
Q
4 3
F
F
1 3
F
——(a)
同时还必须有一个逆时针方向转动的力偶M
由
Mo
§5-1 平面弯曲的概念
1.弯曲:
举例说明:我们在家洗衣服后,总是要拿到阳光下 去晒,在这种情况下,我们都是在有阳光的地方拉一根 铁丝(或绳子),在没有铁丝或绳子的情况下,一般都 喜欢在两个建筑物之间横上一根竹杆用来凉衣服。这些 绳子或竹杆在没有挂上衣物之前都保持在水平位置(它 的轴线自然也是一条水平直线)。当我们把衣服挂上去 之后,结果我们发现原来为直线的轴线变成了曲线,这 种形式的变形我们就称为弯曲变形。
材料力学第四章弯曲内力优秀课件
工程中的弯曲构件 梁的内力及其与外力的相互关系 剪力方程与弯矩方程 载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图 刚架的内力与内力图 结论与讨论
剪力方程与弯矩方程
•剪力、弯矩方程:剪力、弯矩沿梁轴(x轴)变化的解析表达式。
为了建立剪力方程和弯矩方程,必须首先建立Oxy坐标系,其
中O为坐标原点,x坐标轴与梁的轴线一致,坐标原点O一般取在梁
M C F A a a 2 q l0 a a 3 q 6 0 la q 6 0 a l3
思考:是否可以将梁上的分布荷载全部用静力等效后的合 力代替来求截面C的内力?
例题
建立剪力弯矩方程,并画 剪力弯矩图
q
qa2
A
B
C
a
a
x
可以不求支反力 建立坐标 建立剪力弯矩方程:
FS=-qx (0 x a) M=-qx2/2 (0 x < a)
工程中的弯曲构件
•常见静定梁
简支梁:一端固定铰支、另 一端可动铰支的梁
悬臂梁:一端固定、另一 端自由的梁
F F
外伸梁:具有一个或两个
外伸部分的简支梁
F
F
•静不定梁
约束反力数超过有效平衡方程数的梁( Ch12 研究)
常用梁截面
纵向对称面
P1
P2 纵向对称面 P1
P2 变形前
平面弯曲概念
变形后
例题
图示简支梁受到三角形分布荷载的作用,最大荷载集度为q0, 试求截面C上的内力。
y
q0l/2
q0
A
B
a
C
x
解:先求支反力 FA
l
FB
MA0 FBlq20l23l 0 MB0 FAlq20l3l 0
剪力方程与弯矩方程
•剪力、弯矩方程:剪力、弯矩沿梁轴(x轴)变化的解析表达式。
为了建立剪力方程和弯矩方程,必须首先建立Oxy坐标系,其
中O为坐标原点,x坐标轴与梁的轴线一致,坐标原点O一般取在梁
M C F A a a 2 q l0 a a 3 q 6 0 la q 6 0 a l3
思考:是否可以将梁上的分布荷载全部用静力等效后的合 力代替来求截面C的内力?
例题
建立剪力弯矩方程,并画 剪力弯矩图
q
qa2
A
B
C
a
a
x
可以不求支反力 建立坐标 建立剪力弯矩方程:
FS=-qx (0 x a) M=-qx2/2 (0 x < a)
工程中的弯曲构件
•常见静定梁
简支梁:一端固定铰支、另 一端可动铰支的梁
悬臂梁:一端固定、另一 端自由的梁
F F
外伸梁:具有一个或两个
外伸部分的简支梁
F
F
•静不定梁
约束反力数超过有效平衡方程数的梁( Ch12 研究)
常用梁截面
纵向对称面
P1
P2 纵向对称面 P1
P2 变形前
平面弯曲概念
变形后
例题
图示简支梁受到三角形分布荷载的作用,最大荷载集度为q0, 试求截面C上的内力。
y
q0l/2
q0
A
B
a
C
x
解:先求支反力 FA
l
FB
MA0 FBlq20l23l 0 MB0 FAlq20l3l 0
材料力学图文 (4)
a FS2 FBy l F
0x2 b
(c)
M
2
FBy
x2
bF l
x2
0x2 a
(d)
第4章 弯曲内力
(3)画剪力、弯矩图。根据式(a)、(c)画剪力图(见图
4-11(d));根据式(b)、(d)画弯矩图(见图4-11
(e))。由图可看出,横截面C处的弯矩最大,其值为
M
m
a
x
ab l
F
如果a>b,则CB段的剪力绝对值最大,其值为
3 4
qa,
FB
5 4
qa
第4章 弯曲内力
(2) 计算各指定截面的内力。 对于截面5-5,取该截
面右侧部分为研究对象, 其余各截面均取相应截面左侧部
分为研究对象。 根据静平衡方程可求得:
1-1截面:
FS1
FA
3 4
qa;
M1 FA0
(因为1-1截面从右端无限接近支座A,即Δ→0,以下同样理解。)
2-2截面:
4
如图 4-13c 所示。
第4章 弯曲内力
第4章 弯曲内力
4.1 引言 4.2 梁的计算简图 4.3 弯曲内力及内力图 4.4 剪力、 弯矩与载荷集度间的微分关系 4.5 平面刚架与曲杆的内力
第4章 弯曲内力
4.1 引 言
图 4-1
第4章 弯曲内力
图 4-2
第4章 弯曲内力
图 4-3
第4章 弯曲内力
一般来说, 当杆件承受垂直于轴线的外力, 或在其轴 线平面内作用有外力偶时, 杆的轴线将由直线变为曲线。 以轴线变弯为主要特征的变形形式称为弯曲。 以弯曲为主 要变形的杆件称为梁。
中载荷F的作用。试作梁的剪力图和弯矩图。
材料力学课件之弯曲内力
第4章 弯曲内力
4.1 弯曲的概念与实例 4.2 剪力和弯矩 4.3 剪力图和弯矩图 4.4 剪力、弯矩和分布载荷集度的关系
1
第4章 弯曲内力 工程实际中的弯曲问题
P
P
x
x
P
P
P
P
M=Px
2
第4章 弯曲内力 4.1 平面弯曲的概念与实例
弯曲的概念
弯曲是最常见的一 种基本变形,以弯曲为 主要变形的构件称为梁。
静定梁——仅用静力平衡方程即可求得反力的梁。
P
P外
伸
梁
P
P
9
4.1 平面弯曲的概念与实例
梁的简化以及静定梁的分类
第4章 弯曲内力 简 支 梁
10
4.1 平面弯曲的概念与实例
梁的简化以及静定梁的பைடு நூலகம்类
车床上的刀架和车刀
B
第4章 弯曲内力
P
悬
臂
A
梁
P B
A
11
第4章 弯曲内力
§4.2 剪力和弯矩
外力计算
c
4.2 剪力和弯矩 第4章 弯曲内力
FRA
A
FSE ME
E
c
取右段为研究对象
FSE
F1
ME
EC
F2
FRB
D
B
a-c b-c l-c
解得 18
总结:剪力等于截面左侧(或右侧)所有外力的投影代数和, 截面左侧向上(右侧向下)的外力前面取正号;
弯矩等于截面左侧(或右侧)所有外力矩的代数和, 截面左侧顺时针(右侧逆时针)的外力矩前面取正号;
B x 轴线
R1
受力特点: 外力(包括力偶)位于纵向对称面内。
4.1 弯曲的概念与实例 4.2 剪力和弯矩 4.3 剪力图和弯矩图 4.4 剪力、弯矩和分布载荷集度的关系
1
第4章 弯曲内力 工程实际中的弯曲问题
P
P
x
x
P
P
P
P
M=Px
2
第4章 弯曲内力 4.1 平面弯曲的概念与实例
弯曲的概念
弯曲是最常见的一 种基本变形,以弯曲为 主要变形的构件称为梁。
静定梁——仅用静力平衡方程即可求得反力的梁。
P
P外
伸
梁
P
P
9
4.1 平面弯曲的概念与实例
梁的简化以及静定梁的分类
第4章 弯曲内力 简 支 梁
10
4.1 平面弯曲的概念与实例
梁的简化以及静定梁的பைடு நூலகம்类
车床上的刀架和车刀
B
第4章 弯曲内力
P
悬
臂
A
梁
P B
A
11
第4章 弯曲内力
§4.2 剪力和弯矩
外力计算
c
4.2 剪力和弯矩 第4章 弯曲内力
FRA
A
FSE ME
E
c
取右段为研究对象
FSE
F1
ME
EC
F2
FRB
D
B
a-c b-c l-c
解得 18
总结:剪力等于截面左侧(或右侧)所有外力的投影代数和, 截面左侧向上(右侧向下)的外力前面取正号;
弯矩等于截面左侧(或右侧)所有外力矩的代数和, 截面左侧顺时针(右侧逆时针)的外力矩前面取正号;
B x 轴线
R1
受力特点: 外力(包括力偶)位于纵向对称面内。
材料力学弯曲内力课件
FS x
FA
qx
ql 2
qx
0 x l
M
x
FA x
qx
x 2
qlx 2
qx2 2
0 x l
23
2. 列剪力方程和弯矩方程
FS x
FA
qx
ql 2
qx
0 x l
M
x
FA x
qx
x 2
qlx qx2 0 x l
22
3. 作剪力图和弯矩图
24
例4-5 已知:简支梁如图 。求:剪力方程,弯矩 方程,并作剪力图和 弯矩图。
RAx x
RA Fs
80 kN
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
RC
x
40 kN
x
120 kN.m
M
160 kN.m
39
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
剪力
使其作用的一 段梁产生顺时 针转动的剪力 为正。
Fs Fs
弯矩 使梁产生上凹 (下凸)变形的 弯矩为正。
19
2、 剪力方程和弯矩方程.剪力图和弯矩图 剪力方程和弯矩方程实际上是表示梁的
横截面上的剪力和弯矩随截面位置变化的函 数式,它们分别表示剪力和弯矩随截面位置 的变化规律。显示这种变化规律的图形则分 别称为剪力图和弯矩图。
研究CB梁, 受力如图
12
研究CB梁, 受力如图
MC 0
20 103 N m 3 m 2.5 m 5103 N m FBy 5 m 0
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向M负向跃变 m
( 2. 2 ) 梁的积分方程
(Integral equations of beam)
a.
两个控制面 AB 之间只有分布荷载作用
q(x)
Q(A)
Q(B)
d Q q = d x
A
B
B
Q(B) = Q( A) +
∫ q(x)dx
A
结论1 : 直梁 B 截面上的剪力,等于 A 截面上 截面上的剪力, 结论
Result :
According to the integral equations , we can calculate the values of shearing force and bending moment at the special points of the beam .
结论: 结论 根据积分方程通过计算载荷图和剪力
的剪力与 AB 区间内载荷图面积的代数和。 区间内载荷图面积的代数和。
( 2. 2 ) 梁的积分方程
(Integral equations of beam)
a.
两个控制面 AB 之间只有分布荷载作用
M(B)
M(A) q(x)
d M Q = d x
B
A
B
M(B) = M( A) + Q( x)dx
A
Q Q(x) l l
剪力图
x ----called ----called diagram of shearing force
弯矩图
M(x) M
x ----called ----called diagram of bending moment
(2) 连续曲线法作梁的内力图
Using Continuous curve to draw the diagram of internal forces
5* 剪力图和弯矩图在梁的右端应回复到 零值. 零值
Diagram of Q(x) and M(x) will return to zero at the right end of the beam .
physical character of shearing force and bending moment ) Q(x) M ( x)
F
------called ------called concentrated loading ( force) (focus loaging or force) 集中载荷 ( 力 )
q(x) q m
------called ------called distributed loadings ( forces forces) 分布载荷 ------called ------called uniform distributed loadings ( forces) 均布载荷 ------called concentrated moment -----called ( couple ) 集中力偶 ------called ------called distributed moments 分布力偶
According to diffrential equations of the beam , we can know the Q(x) and M(x) how to vary along the axis x . Then drawing the diagram of Q(x) and M(x) by
∫
结论2: 直梁 B 截面上的弯矩,等 结论 截面上的弯矩,
于 A 截面上的弯矩与 AB 区间内剪力 图的面积的代数和。 图的面积的代数和。
S S A B
Q M
Attention:
the area of q(x) and Q(x) can be positive or negative . 载荷图和剪力图的面积可以是正面 积也可以是负面积
q M+dM Q+dQ dx
∑Fy = 0
Q + qdx −(Q + dQ) = 0
dQ q= dx
Q M
∑M = 0
1 M + dM − M − Qdx − q(dx)2 = 0 2 dM Q= dx
d Q ( x) = q( x) dx
d M ( x) = Q ( x) dx
d 2 M ( x) = q( x) 2 dx
纯弯曲 ( pure bending )
横力弯曲 ( transverse load bending )
(3) 梁的中性面 ( neutral surface )
受拉区 中性轴
(neutral axis)
中性面
受压区
梁的中性面,是梁的轴向纤维伸长 区和缩短区的界面。
1. 梁的内力
Internal forces in a beam
2* 剪力图和弯矩图在梁的左端从零开始 剪力图和弯矩图在梁的左端从零开始.
Diagram of Q(x) and M(x) begin from zero at the left end of the beam .
3* 根据微分方程判断剪力图和弯矩图的变 用连续曲线画剪力图和弯矩图. 化规律 , 用连续曲线画剪力图和弯矩图
1.2
内力的正负号规定 ( Positive
and
negative internal forces )
(1) 剪力的正负号规定 ( Positive and negative
shearing force )
Q(x)
(+) (-)
Positive shearing force negative shearing force
(2) 弯矩的正负号规定 ( Positive and
negative bending moment )
M(x)
(+) (-)
Positive bending moment
negative bending moment
1.3 内力图 ( Diagrams of internal forces )
四. 梁弯曲的基本概念
(1) 梁的平面弯曲 ( Plane bending )
在梁的平面弯曲 中,梁的轴线保持在 一个平面内。
(2) 纯弯曲和横力弯曲 纯弯曲 ( pure bending )
纯弯曲 ( pure bending )
横力弯曲 ( transverse load bending )
P
P
q q a a
a
a
对称梁(Symetrical
beam)
q q
反对称梁(Anti-symetrical
beam)
P
a qa
a
a
a
a
P
载荷对称梁(Loadings 载荷对称梁
symetrical beam)
载荷反对称梁(Loadings 载荷反对称梁
anti-symetrical beam)
(3) 简单刚架 ( frame ) 的内力图
图的面积确定剪力和弯矩在某些特殊点的值. 图的面积确定剪力和弯矩在某些特殊点的值
(2.3) 连续曲线法作梁内力图的步骤 1* 确定梁的支反力 并将其和外载荷一样看待 确定梁的支反力,并将其和外载荷一样看待 并将其和外载荷一样看待.
Determine the reactions of the beam and consider them like the external forces on the beam .
第四 章
梁的弯曲
背景材料 本章基本要求 前言 1. 梁的内力 梁的内力 2. 梁的应力 梁的应力 3. 梁的强度 4. 梁的变形 5. 梁的刚度 6. 梁的超静定问题 本章内容小结
本章基本要求
1. 熟练掌握作梁内力图的方法. 熟练掌握作梁内力图的方法 2. 了解梁的正应力和切应力的推导过程 , 熟 练应用正应力和切应力公式进行应力和强度 计算 . 3. 掌握积分法求梁的变形 ; 熟练掌握叠加 法计算梁的变形 ; 正确应用刚度条件计算梁 的刚度 . 4. 熟练掌握计算简单梁的超静定问题 .
习 题
5-2 (a)(c)(e) 5-5 5-8 5-10 5-13 5-14(d) 5-17(b) 5-6 (全部)
本节内容结束
b. 集中力和集中力偶矩情况(concentrated force and 集中力和集中力偶矩情况(
moment )
Q M
+ +
−Q
−
= F
−
= M
集中力使剪力突 变但不影响弯矩. 变但不影响弯矩
Q+ = Q− M
+
−M
−
= m
集中力矩使弯矩突 变但不影响剪力. 变但不影响剪力
Result :
According to the differential equations , we can know the internal forces how to vary in the beam along the axis 计算载荷图和剪力图的 面积确定剪力和弯矩在某些特殊点的值. 面积确定剪力和弯矩在某些特殊点的值
According to integral equations of the beam , we can calculate the values of Q(x) and M(x) at special points of the beam .
结论: 结论: 根据微分方程可以知道剪力
和弯矩随轴线坐标变化的规律
剪
Q=0
力
图
弯
M=C
矩
图
q=0 均布力 q q>0
Q>0 Q<0
凸性与 q 方向一致