【七年级教案设计】七年级数学两个数量之间关系的初步认识
北师大七年级数学教案
北师大七年级数学教案北师大七年级数学教案(6篇)作为一名老师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
教案应该怎么写呢?以下是小编精心整理的北师大七年级数学教案,希望对大家有所帮助。
北师大七年级数学教案1学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。
将结果记入书上的P128的表格。
引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
北师大七年级数学教案2【知识讲解】一、本讲主要学习内容1、代数式的意义2、列代数式的注意点3、代数式值的意义其中列代数式是重点,也是难点。
北师大版七年级数学下册《三章 变量之间的关系 1 用表格表示的变量间关系》公开课教案_0
第三章变量之间的关系一、课标与教材分析课标要求:探索现实生活中简单实例的数量关系和变化规律,了解常量、变量的意义。
结合实例,了解变量的概念和三种表示法——表格法、解析式法和图象法(本节为第一种即:表格法),能举出变量之间关系的实例。
在孩子们目前的知识基础上,本节的教学及学习任务是鼓励孩子用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。
孩子通过对表格中数据的分析,进一步体会变量之间的关系,明确自变量与因变量的概念,并能通过资料分析进行预测。
本节课是本章的起始课,与后面三个课时合起来分别呈现的是表示变量之间关系的三种方式——表格法、解析式法和图象法。
本章作为研究变量和函数的起始章节,重在让孩子感受和体会生活中的“变量”。
同时,在第一课时还要教给孩子用表格呈现实验中变量的数据的方法。
依据变量之间关系的数学表示(表格、解析式和图象)进行预测或推测已知中没有给出的量,也是研究变量之间关系的重要目标之一。
二、孩子们的学情分析孩子们已经知道的: 本节课是孩子们在北师大版七年级上册教材中学习了探索规律,从统计图中获取信息的基础上,通过表格形式来理解变量、自变量、因变量这些概念。
我们生活在变化的世界中,变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量,这对今后学习函数知识是非常重要的。
孩子们想知道的:通过表格形式来理解变量、自变量、因变量这些概念。
变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量。
孩子们能自己解决的:在以前的学习中,孩子们已经经历了分组学习、合作交流等形式,可以解决一些实际问题,具备了合作学习的能力。
三、教学任务分析在孩子们现有的知识基础上,本节的教学及学习任务是鼓励他们用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。
最新2024人教版七年级数学上册3.1 第1课时 字母表示数--教案
3.1 表示数量关系第1课时用字母表示数主要师生活动一、新课导入师生活动:教师介绍游戏规则——分小组往后接着说.教师起头,学生继续往后接.教师:大家回答的非常好,那如果有n只青蛙,空里应该填什么呢?学生预设:n只青蛙n张嘴,2n只眼睛4n条腿.二、探究新知知识点一:含字母式子的书写及意义题目探究:问题智能机器人的广泛应用是智慧农业的发展越势之一. 某品牌苹果采摘机器人可以1 s 完成 5 m2范围内苹果的识别,并自动对成熟的苹果进行采摘,它的一个机械手8 s 可以采摘一个苹果,根据这些数据回答下列问题:(1) 该机器人10 s 能识别多大范围内的苹果?60 s 呢? t s 呢?师生活动:教师提问,学生自主思考,并积极发言,教师再引导给出正确答案.预设学生可以完成10 s,60 s 问,t s 能答出5×t,此时教师出示书写要求——在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写.(2) 该机器人识别n m2范围内的苹果需要多少秒?(3) 若该机器人搭载了10 个机械手,它与采摘工人同时工作1 h,假设工人m s 可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?【教学建议】教学时通过设置的情境使学生明白,探究用字母代替数从而将数和数量关系一般而又简明地表达出来是必要的,能使应用更加广泛,从而为描述和研究问题带来方便.并通过这两个问题进一步引导学生归纳写出的式子的共性.提醒学生解题时注意单位要换算成一致.跟学生明确代数式的书写规范,这里尤其注意跟学生强调代数式中的运算符号不是关系符号,比如用“=”“>”“<”,抑或是以后将要学到的“≥”“≤”“≠”这些符号连接而成的式子不是代数式.有关代数式书写的具体要求教师可参看后面的解题大招,讲解时根据情况选讲即可.合作探究:(1) 一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;师生活动:教师通过播放视频的方式,直观的让学生感受船在顺水与逆水中的情况不同,引导学生理清数量关系,完成练习. 教师总结:行船问题:顺水时,船的速度=船在静水中的速度+水流速度;逆水时,船的速度=船在静水中的速度-水流速度.(2)一个正方形的边长是 a ,这个正方形的周长 l 是多少?面积 S 呢?解:由正方形的周长=4×边长,正方形的面积=边长×边长, 得 l =4a ,S =a 2.想一想:这些式子都有什么样的特点?知识要点 它们都是用运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式. 单独的一个数或字母也是代数式. 例1 用含有字母的式子表示下列数量 下列各式中哪些是代数式?哪些不是? (1)m + 5 (2)a + b = b + a(3)0 (4)x ² + 3x + 4 (5)x + y >1 (6)例2 (1) 苹果原价是 p 元/kg. 现在按九折优惠出售,用代数式表示苹果的售价:(2) 一个长方形的长是 0.9 m ,宽是 p m. 用代数式表示这个长方形的面积;(3) 某产品前年的产量是 n 件,去年的产量比前年产量的 2 倍少 10 件,用代数式表示去年的产量;(4) 一个长方体水池底面的长和宽都是 a m ,高是h m , 池内水的体积占水池容积的三分之一,用代数式表示池内水的体积.1x三、当堂练习1. 下列式子中,书写规范的是( )A. 1÷aB. x·3C. D.2. (东平县校级期末) 若x表示某件物品的原价,则式子(1 - 10%)x表示的意义是( )A.该物品价格上涨10% 时上涨的价格B.该物品价格下降10% 时下降的价格C.该物品价格上涨10% 后的售价D.该物品价格下降10% 后的售价3. 圆柱体的底面半径、高分别是r,h,用式子表示圆柱体的体积.1.有两片棉田,一片有m hm2 (公顷,1 hm2=104m2 ),平均每公顷产棉花a kg;另一片有n hm2,平均每公顷产棉花b kg,用式子表示两片棉田上棉花的总产量.设计意图:巩固这节课学习的书写规范要求.设计意图:回忆与加深用字母表示数的实际意义.设计意图:再次体会用含字母的式子在几何中的应用.设计意图:巩固用含字母的式子表示数量关系的能力.板书设计用字母表示数:1.含义2.书写规范课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.教学反思1.注重引导,培养数学意识在本节课的教学过程中,从实际情境出发,从数字计算抽象为含字母的式子,体现了符号的数学功能,教师需要适时引导,帮助学生形成符号意识,培养抽象能力.2.重视培养学生列式表示数量关系的能力这节课充分发挥实际问题的作用,结合实际问题学习,引导学生分析实际问题中数量关系,培养学生列式表示数量关系的能力,逐步让学生养成善于利用数学解决实际问题的习惯.。
人教版七年级数学上册教学设计(全册教案)
人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。
在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。
对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。
学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。
2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。
本章重点内容是有理数的概念,性质和运算。
本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。
本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。
本章难点在于理解合并同类项和去括号的法则。
3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。
本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。
本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
4、第4章几何图形初步:本章主要学习线段和角有关的性质。
本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。
本章的难点在于线段和角的有关计算。
二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。
体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
初中七年级数学教案【优秀8篇】
初中七年级数学教案【优秀8篇】七年级数学教案篇一教学目的让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点1、重点:通过分析图形问题中的数量关系,建立方程解决问题。
2、难点:找出“等量关系”列出方程。
教学过程一、复习提问1、列一元一次方程解应用题的步骤是什么?2、长方形的周长公式、面积公式。
二、新授问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时长方形的面积=18×12=216(平方厘米)当长方形的长为17厘米,宽为13厘米时长方形的面积=221(平方厘米)∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习教科书第14页练习1、2.第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业教科书第16页,习题6.3.1第1、2、3.七年级数学教案篇二内容:整式的乘法—单项式乘以多项式P58-59课型:新授时间:学习目标:1、在具体情景中,了解单项式和多项式相乘的意义。
七年级的数学教案简短(6篇)
七年级的数学教案简短(6篇)七年级的数学教案简短(6篇)七年级数学的教案很有意思。
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,进行的具体设计和安排的一种实用性教学文书。
下面小编给大家带来关于七年级的数学教案简短,希望会对大家的工作与学习有所帮助。
七年级的数学教案简短篇1教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
人教版七年级数学教案
人教版七年级数学教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!人教版七年级数学教案人教版七年级数学教案(集锦7篇)下面是本店铺整理的人教版七年级数学教案(集锦7篇)欢迎参阅。
七年级上册数学教案
七年级上册数学教案第一篇:人教版七年级上册数学教案人教版七年级上册数学教案第二章、一元一次方程:2.1 从算式到方程教学目标:1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
教学重点:1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程:一、游戏激趣同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;。
现在,我们就来“比一比,说儿歌” (屏幕出示)。
要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。
规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。
(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“某只青蛙某张嘴,2某只眼睛4某条腿,某声扑通跳下水” )(屏幕出示)这样,我们用字母某代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。
二、创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。
此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。
人教版七年级数学上册的教学计划(精选16篇)
人教版七年级数学上册的教学计划(精选16篇)人教版七年级数学上册的教学计划篇1一、学情分析:本学期我将担任七年级的数学教学工作。
通过上学期的教学,学生的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力也得到初步提升,学生由形象思维向抽象思维转变,特别是抽象思维得到了较好的发展。
从上学期的教学中,发现有以下问题:部分学生没有达到应有的水平,学生课外自主拓展知识的能力几乎没有,很少有学生具有课外阅读相关数学书籍的习惯,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面。
本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的创新精神和实践能力;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。
二、教材分析本学期的教学内容共计六章,第5章:相交线和平行线;第6章:平面直角坐标系;第7章:三角形;第8章:二元一次方程组;第9章:不等式和不等式组;,第10章:数据的收集、整理与描述整个教材体现了如下特点1.现代性——更新知识载体,渗透现代数学思想方法,引入信息技术。
2.实践性——联系社会实际,贴近生活实际。
3.探究性——创造条件,为学生提供自主活动、自主探索的机会,获取知识技能。
4.发展性——面向全体学生,满足不同学生发展需要。
5.趣味性——文字通俗,形式活泼,图文并茂,趣味直观。
三、教学目标知识技能目标:学平行线的有关知识,掌握平面直角坐标系的画法,学会二元一次方程组、不等式及不等式组的解法,能够绘制简单的统计图表。
同时进一步提高学生几何作图能力。
过程方法目标:学会观察和分析几何图形,发现图形的特征和图形之间存在的关联,学会总结规律。
初步建立方程思想,学会使用代数式表示数量及数量之间的关系。
态度情感目标:认识生活,感知生活,领悟数学是为生活服务。
《两个数量之间关系的初步认识》课件-02
0
60
10 20 30 40 50
0
60
10 20 30 40 50
0
60
10 20 30 40 50
0
60
10 20 30 40 50
开始耕地前 耕完第一块地 耕完第二块地 耕完第三块地
用心想一想:耕地面积a(公顷)和耗油量b(升)
之间的关系是什么?(用含a 的代数式表示 b)
两个数量之间关系的初步认识
两个数量之间关系的初步认识
两个数量之间关系的初步认识
感受两个数量之间的对应关系.
在实际问题情景中,进一步理解字母表示 数的意义.
通过简单的实例中两个数量之间的对应 关系,进一步发展符号感
提高观察能力和归纳概括能力.
两个数量之间关系的初步认识
回顾与反思
表示两个数量 之间的关系,常用 的方法有三种
开始耕地前 耕完第一块地 耕完第二块地 耕完第三块地
从图中可以 耕地面积a /公顷
看出:
耗油量b /升
0.4 0.6 1 10 15 25
耕地面积a(公顷)和耗油量b(升)之间的关系是: b = 25a
两个数量之间关系的初步认识
解决问题
耕地面积a(公顷)和耗油量b(升)之间的关系是: b = 25a
再见
一起探究:
小亮家
学校
小亮家离学校1280米,他
每天步行上学,速度约是80
a
b
米/分钟.,用字母t(分钟)表示小亮离开家的时间;
离开家的路程用a(米)表示;距学校的路程用b(米)表示
t / 分钟 1 2 3 4 5 6 … a /米 80 160 240 320 400 480 …
b /米 1200 1120 1040 960 880 800 …
七年级数学复习教案7篇
七年级数学复习教案7篇七年级数学复习教案7篇七年级数学的教案很重要的。
以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面小编给大家带来关于七年级数学复习教案,希望会对大家的工作与学习有所帮助。
七年级数学复习教案(篇1)教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。
如本课中梯形、圆的面积公式。
应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。
具体计算时,就是求代数式的值了。
有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。
用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。
整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
七年级数学教案(优秀6篇)
七年级数学教案(优秀6篇)七年级数学教案篇1教学目标1.使学生正确理解的意义,掌握的三要素;2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.难点:正确理解有理数与上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——.二、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个,并在上画出表示下列各数的点:例2 指出上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};课堂教学设计说明从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.教学中,的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等.七年级数学教案篇2教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
最新人教版《整式》七年级数学教学设计教案(第1课时)
第二章整式的加减2.1 整式第1课时一、教学目标【知识与技能】1.认识用字母表示数.2.会用含字母的式子表示数量关系.【过程与方法】会用字母表示一些简单问题情境中的数量关系和变化规律.【情感态度与价值观】初步培养学生观察、分析、抽象、概括等思维能力和应用意识.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】会用字母表示数量关系.【教学难点】用含字母的式子表示数量关系.五、课前准备教师:课件、三角尺、多边形架结构图等。
学生:三角尺、铅垂纸、小刀。
六、教学过程(一)导入新课1.路程、速度和时间的关系为:(出示课件2)路程=时间×速度.2.三角形的面积、底边长、底边上的高的关系为:三角形的面积=底×高÷2.能否用代数式表示实际问题中的数量关系呢?(二)探索新知1.师生互动,探究含字母式子的书写要求教师问1:一只青蛙一张嘴,两只眼睛四条腿,一声扑通跳下水;两只青蛙两张嘴,四只眼睛八条腿,两声扑通跳下水;三只青蛙三张嘴,六只眼睛……,a只青蛙a张嘴,2a只眼睛4a条腿,由此看出a是一个字母,它代表“很多只”的数量,用字母a可以清楚地表示出青蛙、嘴、眼睛、腿和跳水声之间的数量关系.这里的字母a表示的什么数呢?学生回答:表示正整数.教师问2:K先生正在看书,这里K表示什么?(出示课件4)学生回答:这里K表示人名.教师问3:从A地到B地要走3个小时,这里A、B表示什么?学生回答:字母可表示:地名教师问4:加法交换律:a+b=b+a,字母又可以表示什么?学生回答:表示运算定律学生问:含字母的式子如何书写呢?师生共同解答如下:含有字母的式子的书写要求:(1)在含有字母的式子中出现的乘号,通常简写成“·”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在含有字母的式子中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.思考并解答下面的问题,帮助理解书写要求。
华师版七年级下册的数学教学计划
华师版七年级下册的数学教学计划根据自己的实际情况,比如工作职责,确定一下工作目标,这样就可以有针对性的明确自己的工作计划,可以先确定一个总的方向,在按时间分段完成。
这里给大家分享一些关于华师版七年级下册的数学教学计划,方便大家学习。
华师版七年级下册的数学教学计划1一、教材分析全期共有六章。
新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算、轴对称图形、数据的分析与比较。
第一章一元一次不等式组本章主要使学生掌握一元一次不等式组的解法,以及怎样利用一元一次不等式组解决实际问题。
重点:一元一次不等式的解法及其简单应用.难点:了解一元一次不等式组的解集,准确利用不等式的基本性质.第二章二元一次方程组本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题第三章平面上直线的位置关系和度量关系本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计.第四章多项式的运算本章主要要求了解多项式的的有关概念,能进行简单的多项式的加、减、乘运算,以及乘法公式。
注重联系实际,为将来学函数奠定基础让课堂内容生动、趣味化,从学生熟悉的背景引出概念。
重点:对于每个概念的正确理解,以及各项法则的正确、灵活的应用。
难点:探索各项法则的形成原因。
第五章轴对称图形本章主要体会对称之美,利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用。
七年级上册数学冀教版【教案】3.3 数量之间的关系
课时目标1.会用代数式表示数与图形的变化规律;会从不同角度分析和解决问题,体会同一量可以用不同代数式来表示,代数式可以更简洁地表达规律.2.能发现特例中的变与不变,发现共性,寻找一般规律,解决问题,体会由特殊到一般、转化、数形结合等数学思想方法.3.进一步培养学生的独立思考、合作交流及观察分析等能力.学习重点用代数式表示数与图形的变化规律.学习难点掌握用代数式表示数量之间的关系.课时活动设计复习引入通过上节课的学习,我们应如何列出代数式,以解决较复杂的实际问题?有什么注意事项?在现实世界中,许多数量之间的关系都可以借助代数式表示出来.本节课我们就来研究怎样用代数式表示数量之间的关系.设计意图:开门见山,引出本节课的内容,为本节课的学习奠定基础.探究新知探究1用代数式表示数的变化规律问题1:仔细观察,按你发现的规律填空:(1)1,2,3,4,5,6,…,n(第n个数);(2)2,4,6,8,10,12,…,2n(第n个数);(3)2,4,8,16,32,64,…,2n(第n个数);(4)1,4,9,16,25,36,…,n2(第n个数);(5)1,3,6,10,15,21,…,n(n+1)(第n个数).2师生活动:小组合作,互相交流讨论,派小组代表展示交流成果,并给出思考过程,教师及时给予点评指导,共同探究规律.问题2:如图,这是一个由1~120的连续整数排成的“数阵”.如果用方框围住9个数,那么这9个数的和随方框位置的变化而变化.(1)如果设方框左上角的数为a,用含a的代数式表示这9个数的和;(2)如果设方框正中间的数为m,S表示这9个数的和,请写出用m表示S的关系式;(3)如果将方框由左向右平行移动一列,那么这9个数的和会有怎样的变化?如果方框由上向下平行移动一行,那么这9个数的和又有怎样的变化?分析:此题解决问题的关键是发现“数阵”中的数字是如何排列的,即左右相差1,上下相差6,然后用同一个字母分别表示不同的数,化简求和即得结果.学生先独立思考,写出解题过程,再小组交流解题思路,准备演讲.解:(1)设方框左上角的数为a,则其他8个数分别为a+1,a+2,a+6,a+7,a+8,a+12,a+13,a+14,这9个数的和为a+a+1+a+2+a+6+a+7+a+8+a+12+a+13+a+14=9a+63.(2)设方框正中间的数为m,则其他8个数分别为m-7,m-6,m-5,m-1,m+1,m+5,m+6,m+7,所以S为m-7+m-6+m-5+m-1+m+m+1+m+5+m+6+m+7=9m.即S=9m.(3)将方框由左向右平行移动一列,和增加9;方框由上向下平行移动一行,和增加54.探究2用代数式表示图形的变化规律问题3:图1是由点组成的n行n列的方阵,设其总点数为P.图2是由每条边上n个点围成的空心方阵,设其总点数为Q.图1图2(1)图1中方阵的总点数为多少?解:P=n2.(2)图2中方阵的总点数是多少?解:Q=n2-(n-2)2.追问:你还有其他的计算方法吗?学生分组讨论,自主探究,然后教师多媒体演示图2中总点数不同的计算方法.活动要求:(1)小组内讨论出不同的方法,并在图上做好标注,写出结论.(2)请小组代表展示讨论结果,并说明理由.(3)如有疑问,请小组内同学互助解答.预设结果:图1如图1分组,得4n-4图2如图2分组,得4(n-1)图3如图3分组,得4(n-2)+4图4如图4分组,得2n +2(n -2)设计意图:通过探究,让学生进一步感受代数式可以表示数量之间的关系,培养学生从不同角度分析问题、解决问题的能力.典例精讲例1 一列数12,49,38,825,…,按此规律排列,第n 个数是 2n(n+1)2 .例2 如图,已知大正方形的边长为1,连接对边中点,将大正方形分为4个边长相等的小正方形,并将其中的3个小正方形涂上阴影,得到如图1所示的图形:连接图1中空白正方形的对边中点,又得到4个边长相等的小正方形,再将其中的3个小正方形涂上阴影,得到如图2所示的图形……按照这样的方式继续分割下去,设阴影部分的面积为S.(1)在图1中,空白正方形的边长为 12 ,S = 34 .(2)在图2中,空白正方形的边长为 14 ,S = 1516 .(3)在第n 个图形中,S = 1-(12n )2 .(用含n 的代数式表示)设计意图:培养学生从不同角度分析问题、解决问题的能力,使学生发现代数式可以更简洁地表达规律.巩固训练1.观察:1×3=22-1,2×4=32-1,3×5=42-1,…请你试用一个公式表示出这些等式所反映的规律.解:这些等式所反映的规律是n×(n+2)=(n+1)2-1.2.按如图所示,用火柴摆图形(1)填写下表:(2)要拼出有n(n>1)个三角形的图形,需要多少根火柴?(3)要拼出有18个与40个三角形的图形,分别需要多少根火柴?解:(1)如表所示.(2)要拼出有n(n>1)个三角形的图形,需要(2n+1)根火柴.(3)当n=18时,2n+1=2×18+1=37;当n=40时,2n+1=2×40+1=81.所以要拼出有18个三角形的图形,需要37根火柴;要拼出有40个三角形的图形,需要81根火柴.设计意图:学生通过观察、分析,用代数式表示规律,并解决问题,感受代数式解决问题的优势.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,学生梳理本节所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第116,117页习题A组第1,2题,B组第3,4题,C组第5题.2.作业.教学反思。
2023年数学七年级上册教学教案
2023年数学七年级上册教学教案教案是以系统方法为指导。
教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
下面我给大家带来关于数学七年级上册教学教案,便利大家学习数学七年级上册教学教案1教学目标(一)通过复习一位数乘整百整十数不进位的口算,学生理解并驾驭一位数乘两位数进位乘法的口算方法,能正确地进行一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参加到学问的形成过程中,驾驭口算的方法,能够比较娴熟地进行口算.教学重点和难点重点:在理解的基础上,驾驭用一位数乘的口算过程.难点:理解并驾驭满十向前一位进“1”的算理.教学过程设计(一)复习打算投影出示口算题:(用纸板覆盖,一题一题出示)10×514×2100×7130×220×334×2200×4210×3老师提问:14×2请你说一说口算过程.(学生回答10×2=20,4×2=8,20+8=28)老师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小挚友相互说一说)然后请同学回答(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280) 老师揭示课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出示例1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)依据14×3的意义,用小棒摆出来.想口算的依次,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比较14×3与14×2两道口算的异同:(同桌或四人小组的同学相互启发进行探讨)然后请同学回答:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最终一步是整十加上两位数.做一做投影出示:16×2=26×3=25×2=要求同学在练习本上干脆写出结果.再把这几道题分别写在小黑板上,请几个同学干脆写在小黑板上.待同学写完后集体订正.分别请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分别请同学相互说,集体说,个人说.反复叙述口算过程.出示例2:板书:口算:140×3=请同学想一想应当怎样做,然后试做.(老师巡察,个别指导一下)做完后,小组同学相互说一说自己是怎样做的.集中起来说出不同的想法:因为14×3=42,那么140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420. 3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给确定,尤其第三种方法,赐予表扬和激励.做一做投影出示:130×5=380×2=150×6=每人在自己本上干脆写出结果.四人小组进行探讨,能用几种方法说出口算过程.小结今日我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要留意个位上、十位上满十向前一位进“1”.(三)巩固反馈1.基本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学相互说一说.最终集体订正.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程.3.找挚友嬉戏.15×318×212×514×435×2220×4240×325×4310×332×326×2160×612×416×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的挚友.45366056708807201009109652960489072424809004805204.文字叙述题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计说明本节课教学内容口算“一位数乘两位数、乘整百整十数”.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新学问做打算.讲授新课例1时,抓住满十进一这一难点,以旧学问引出新学问,通过新旧学问的比较,突出新旧学问的连接点,通过学生自己动手、动脑、动口获得学问,体现以学生为主体.使学生真正悟出新旧学问的内在联系.通过形式多样的练习,达到能精确、快速地口算的目的.板书设计数学七年级上册教学教案2【教学目标】1.使学生经验“提出问题—估算—口算—笔算”的计算过程,在多样化的算法中能自主最优化。
初一数学教案:认识与比较数的大小与大小关系
初一数学教案:认识与比较数的大小与大小关系一、教学目标通过本节课的学习,使学生能够了解什么是数以及数的大小和大小关系,掌握比较数的方法,并能够应用所学知识解决实际问题。
二、教学重点1.了解什么是数以及数的大小和大小关系。
2.掌握比较数的方法。
3.能够应用所学知识解决实际问题。
三、教学难点1.掌握比较数的方法。
2.能够应用所学知识解决实际问题。
四、教学准备1.粉笔、黑板、教具等。
2.教学课件。
五、教学过程1.导入通过一些实例,例如:“老师手里有两个苹果,现在给你一个,你有几个苹果了?”、“现在有三个人,你是第几个?”等,解释什么是数以及数的作用。
2.观察探究老师可以上黑板写出一些数字,如: 2 3 9 5 7 等,让学生观察比较这些数字的大小和大小关系,引导学生思考,问学生:哪个数比较大?哪个数比较小? 9 比 3 大,3 比 2 小等等。
3.归纳总结让学生将总结并归纳出比较大小的方法,例如:用大小符号 <、>、=表示大小关系等。
4.应用练习老师可以上黑板写出一些有关数的练习题,例如:“将 8、7、3、11、4 从小到大排序”、“比较两组数字大小:5、3、7和2、6、4”等,让学生积极参与,巩固所学知识。
5.拓展应用老师可以引导学生通过实际生活中的例子加深对数的大小和大小关系的理解,例如:“爸爸赚了 500 元,妈妈赚了 600 元,请问妈妈比爸爸多赚了多少钱?”等,培养学生的计算能力。
六、作业布置1.在家完成课上重点知识的复习和整理。
2.完成作业本上的相关练习。
七、板书设计认识与比较数的大小与大小关系八、教学反思本堂课中,我采用了提问法、让学生观察比较等不同的教学方法,激发了学生的兴趣,由浅入深,循序渐进地讲解了数的大小和大小关系,学生掌握了比较数的方法,并能够应用所学知识解决实际问题。
但在今后的教学中,我还需要更加注重多样化的教学方法和形式,给学生提供更丰富的学习体验。
最新2024人教版七年级数学上册3.1 第3课时 反比例关系--教案
3.1 表示数量关系第3课时反比例关系一、新课导入问题某品牌苹果采摘机器人机器人t s 能识别的范围是5t m2.这说明机器人能识别的范围与所用的时间具有什么样的关系?预设:机器人能识别的范围与所用的时间的比值总是一定的,因此机器人能识别的范围与所用的时间是成正比例关系的量,它们成正比例关系.提问:如果工作量保持不变,工作时间与工作效率之间的关系是什么呢?师生活动:先让学生独立思考,回答问题二、探究新知知识点:反比例关系合作探究问题北京是全球首个既举办过夏季奥运会又举办过冬季奥运会的城市,在冬季奥运会前,某赛场计划造雪260 000 m2. 解答下列问题:(1) 根据每天造雪量,计算所需的造雪天数,填写表提示:这个问题有哪些量?它们之间什么关系?(2) 每天造雪量和造雪天数这两个量是怎样变化的?它们之间有什么关系?1. 造雪天数随着每天造雪量的变大而变小.2. 造雪天数与每天造雪量的乘积一定,总是260 000.师生活动:这部分教学应采用启发式教学的方法,教师抛出问题,鼓励学生小组合作,共同探讨、交流,引导学生通过观察和对问题的探究,说出工作时间与工作效率的乘积为定值,再一次印证学生在活动一中已经得出的结论.教师提醒学生特别注意比例系数k 在当前学情下虽不做过多探讨,但k≠0仍需明确知晓,必要时可适当解释不为0的原因.知识要点两个相关联的量,一种量变化,另一种量也随着变化,且这两个量中的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.如果用字母x 和y 表示两个相关联的量,用k 表示它们的积(k 是一个确定的值,且k≠0 ),反比例关系可以用下面的式子表示:x y=k(一定)或 kyx( )2. 校绿色行动小组组织一批人参加植树活动,已知共有树苗 120 棵,完成任务的时间 t ( h ) 与参加植树人数 n (人) 成反比例关系.(1) 请用式子表示出 t 与 n 之间的关系.(2) 参加植树人数是怎样随着完成任务的时间的变化而变化的?(3) 若安排七(1)班 40 名全体同学去完成此次植树活动,则需要多长时间完成任务?三、当堂练习1. 下列说法正确的是 ( )①用同一种砖铺地,所铺的面积和块数成正比例. ①小明从家到学校,平均每分钟走的路程和所用的时间成反比例.①正方形的周长和它的边长不成比例. ①圆的面积和它的半径不成比例. A.①①① B.①①① C.①① D.①①2. 若 x ①2= y ①4 (x ,y 均不为 0),x 和 y 成_____比例; 若 (x ,y 均不为 0), x 和 y 成 比例. 3. 如表,若 x 与 y 成正比例,则 m = ( ); 若 x 与 y 成反比例,则 n = ( ).4. 用收割机收割一片麦田,每天收割的面积和需要的天数如下表.(1) 表中 和 是相关联的量, 随着 的变化而变化. (2) 表中这两种量相对应的两个数的积是 ,这个积所表示的意义是 .(3) 因为每天收割的面积和需要的天数的 是一定的,所以每天收割的面积和需要的天数成 43x y教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
七年级上(教学案):第三章 代数式第三章 代数式
七年级数学·上新课标[冀教]第三章代数式1.让学生经历用字母表示以前学过的运算律和计算公式,并体会用字母表示数的意义,形成初步的符号感.2.理解代数式的意义,能解释一些简单代数式的实际背景,并能体会代数式是反映数量之间关系的数学模型.3.会求代数式的值,能够根据特定的问题查阅资料,找到所需要的公式,并会代入字母的具体值进行计算.1.用代数式表示实际问题中的数量关系,要求学生逐步掌握一些分析数量关系的一般方法.2.学会“观察—归纳”的思维方法.3.将文字语言描述的数量或数量关系,用符号语言表示,使学生感悟其中“分析—综合”方法的应用.1.培养学生准确运算的能力,并适当地渗透特殊与一般的辩证关系的思想.2.培养学生养成认真做题的良好习惯,体会数学与现实的联系.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.本章内容包括用字母表示数、代数式、代数式的值.数的运算伴随着数的扩充与发展不断丰富,用字母表示数后,再用加、减、乘、除、乘方和开方等运算符号连接数和字母形成代数式,从而可以用方程刻画现实问题中的等量关系,用不等式表示数量间的不等关系,用函数研究数量间的变化以及对应关系.所以代数式是学习方程、不等式、函数的基础,它对整个第三学段代数知识的学习具有奠基作用.教材采用“大家谈谈”“一起研究”“做一做”等模块,以生动鲜活的例子引入课题,加强讨论与交流,实验与探究,以及动手操作活动的开展,进一步培养学生运用符号解决问题的能力和进行判断和推理的能力,以及培养学生的探索精神.【重点】1.列代数式,求代数式的值.2.培养学生对知识的抽象和概括能力.【难点】由实际问题列代数式及规律探究题的解法.1.教学中重点渗透具体数字到字母的抽象概括思维方式,并注意归纳、类比、转化等思想方法的应用.2.让学生经历观察、探究、思考交流,分析问题中的数量关系,来发展数学思维.3.用代数式表示实际问题的数量关系,要求学生逐步掌握一些分析数量关系的一般方法,对有些实际问题,可以借助表格或图形分析数量关系,使得思路更加清晰.4.在代数式求值的教学过程中,让学生体会到从运算的角度看,代数式是一个计算过程.可以借助图框教学来显示计算过程.对含一个字母的代数式,有意识地取字母的不同值,代入并进行计算,来感受代数式的值是随着字母取值的变化而变化的,渗透函数思想.在解决实际问题的过程中,采用“由特殊到一般再到特殊”的教学过程.5.代数式中字母的取值,要根据具体问题确定其范围,必须要保证代数式和其在实际问题中有意义.3.1用字母表示数1.在观察、思考的过程中形成用字母表示数的一般概念.2.体会用字母表示数的特点和意义.3.通过用字母表示一些具体的数学量,初步培养抽象思维的能力和符号逻辑.在实践的过程中,体会到用一个一般的量来表示具体数值的必要性.通过自主式学习和研究式学习,在教师的帮助下形成代数的思维方式.1.通过实践、观察、思考、归纳等环节,总结规律,培养自主学习的能力.2.体会简单的数学思想是如何运用到具体情况中的.3.在与其他同学的交流和讨论中,培养既合作又竞争的意识.【重点】1.通过实践总结规律,并使用字母表示规律.2.能够自觉地使用字母表示简单的数学关系.【难点】1.认识用字母表示数具有不唯一性.2.能根据实际情况列出合理的代数式.【教师准备】多媒体课件.【学生准备】预习教材P96~97.导入一:出示教材章前图情境问题:【课件】代数式在现实生活中的应用非常广泛.如存款问题:爷爷在银行按1年定期存了a元钱,存款时的1年定期存款年利率是3.50%.到期后,爷爷取出本息共为p元.怎样写出用a表示p的式子?[设计意图]教材中的章前图和内容具有生活情境性,可以帮助学生初步感知用字母表示数的必要.导入二:周末,小明帮妈妈打扫卫生,做完后心里美滋滋的,想着自己喜欢的玩具,忽然他计上心来……妈妈下班后看到桌上有一纸条,内容是拖地3元,叠被1元,抹窗5元,丢垃圾袋1元,共计10元.妈妈看了之后,一言不发,提笔在纸上加上了吃饭x元,穿衣y元,带去看病z元,关心a 元,…,共计b元.写完后就去厨房做饭了,小明看后心里很不是滋味,心生惭愧,赶忙收起纸条.小明懂得了x与y等字母的含义,同学们,你们懂吗?[设计意图]用伟大的母爱,引出本节课的内容,让学生学会感恩.活动1运算律中的字母师:科学家爱因斯坦上小学时,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,.大家能用示例再验证下这个规律吗?生随意举例.师:如果仅靠具体的示例,还不能把这个规律完整地表达出来.你能把这个规律用简明的方法表示出来吗?活动方式:师生对话、交流.[设计意图]利用教材情境,让学生明白字母能简明表示一些规律,与此同时培养学生善于观察和勤于积累的能力.[处理方式]展示学生的成果:爱因斯坦发现的这个规律就是加法交换律,用字母表示为a+b=b+a(a,b表示任意数).(过渡语)师:还有没有其他的已学过的运算律?预设生1:加法结合律:a+b+c=a+(b+c)=(a+b)+c.生2:乘法交换律:ab=ba.生3:乘法结合律:abc=a(bc)=(ab)c.(a,b,c分别为任意数)……(过渡语)师:同学们回答得太好了,那么除了用字母表示运算律之外,用字母还可以表示公式.【课件展示】1.长方形的面积计算公式S=ab,S表示面积,a,b分别表示长方形的长与宽.2.圆的面积计算公式S=πr2,S表示面积,r表示圆的半径.3.长方体的体积计算公式V=abc,V表示体积,a,b,c分别表示长方体的长、宽、高.4.圆柱的体积计算公式V=πr2h,V表示体积,r表示底面半径,h表示圆柱的高.[设计意图]过渡到用字母表示以前学过的运算律、公式、法则,不仅复习了旧知识,而且巩固了新知识,把已学知识重新规划,让学生有一个重新认识的过程.运算律的展示使学生进一步体会用字母表示数可以使数量关系简明和一般化,初步体验和确认了用字母可以表示任意数这一点.活动2用字母表示数量关系(1)请你算出他们每人100米短跑的速度,并将计算结果填入表中.(2)写出计算速度时所用的公式.(3)这个公式能用来计算汽车、轮船、飞机在某段匀速行驶过程中的速度吗?若用s表示路程,t表示所用时间,v表示速度,则这个公式就是v=.思路一[处理方式]独立思考,写出结果,小组内交流.体会用字母表示数的优越性.展示交流结果:(1)100米表示路程,16秒表示时间,小帆的速度=100÷16=(m/s),同理,大林的速度=100÷14.5=(m/s),小明的速度=100÷15.2=(m/s).(算错的同学要订正错误)(2)v=.(其中v表示速度,s表示路程,t表示时间)(3)由于v表示速度,s表示路程,t表示时间,所以v=可以用来求汽车、轮船、飞机在某段匀速行驶过程中的速度.[设计意图]此过程可以使学生经历运用数学符号描述数量关系的过程,发展符号感和抽象思维.通过与同伴交流,学生将体验获得解决问题策略的方法,学会合理清晰地阐述自己的观点.学生必将获得良好的数学活动经验.思路二(1)速度、路程和时间三个量的关系是什么?请动手写一写:.并利用这个关系,分别求出小帆、大林和小明的速度.(2)如果用v表示速度,s表示路程,t表示时间,那么它们的关系可以用字母写成什么?表示为:.(3)能否利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度?[处理方式]独立思考,写在练习本上,同桌交流,展示成果.(1)路程=速度×时间,速度=路程÷时间,时间=路程÷速度.(2)s=vt,v=,t=.(其中v表示速度,s表示路程,t表示时间)(3)可以利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度.师总结:用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.活动3按照要求和条件表示数出示教材第97页的内容:观察自然数0,1,2,3,4,5,6,7,8,9,10,11,12,….(1)请用字母表示偶数和奇数.(2)两个偶数之和是什么数?提出猜想,并用字母表示数的方法说明这个猜想是正确的.[处理方式]同桌互相提问,复习已有知识,交流体会方法.提出引导问题:偶数、奇数的概念是什么?它们有什么特征?(1)能被2整除的数是偶数,不能被2整除的数是奇数.偶数用字母表示为2m(m为自然数),奇数用字母表示为2m+1(m为自然数).(2)提出猜想:两个偶数的和是偶数.验证1:2+4=6,102+134=236……验证2:(相邻两个偶数)一个偶数为2m(m为自然数),另一个为2m+2,其和为2m+2m+2=2(2m+1).验证3:一个偶数为2m(m为自然数),另一个为2n(n为自然数),两个偶数的和为2(m+n).活动4做一做——能力提升用字母表示数,说明:(1)任意两个奇数之和是偶数.(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数.问题引导:(1)一个奇数怎么表示?(2)两个相邻的奇数怎么表示?(3)任意两个奇数怎么表示?(4)与m相邻的两个自然数怎么表示?问题提示:(1)2m+1.(2)2m+1和2m - 1.(3)2m+1和2n+1.(4)m+1和m - 1.(m,n为自然数)问题说明:(1)任意两个奇数之和是偶数:2m+1+2n+1=2(m+n+1).(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数:m+1+m - 1=2m.[知识拓展]用字母表示数,同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示.用字母表示实际问题中的某一数量时,字母的取值需使这个问题有意义,并且符合实际.用字母表示数可简明表达问题中的数量关系、公式、法则、规律等.用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.1.填空.(1) - 6 ℃下降2 ℃后是℃;温度由t℃下降2 ℃后是℃;(2)今年李华m岁,去年李华岁,五年后李华岁;(3)三个连续偶数中间一个为2n,则其余两个为,;(4)某商店上月收入a元,本月收入比上月的2倍多10元,本月收入元;(5)城市市区人口a万人,市区绿化面积m万m2,则平均每个人拥有绿地m2;(6)某城市5年前人均年收入为n元,预计今年人均年收入是5年前的2倍多500元,那么今年人均年收入将达元.答案:(1)- 8(t- 2)(2)(m- 1)(m+5)(3)2n- 22n+2(4)(2a+10)(5)(6)(2n+500)2.选择.(1)用字母表示乘法对加法的分配律是()A.a(b+c)B.ab+acC.a(b+c)=ab+acD.ab=ba(2)昨天的最高气温是27 ℃,今天的最高气温比昨天的下降t℃,今天的最高气温是()A.27+tB.27 - tC.(27+t)℃D.(27 - t)℃(3)(2015·吉林中考)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元解析:(1)乘法分配律是一个数乘两个数的和,等于这个数分别乘这两个加数,然后把乘得的积相加,据此写成字母表达式为a(b+c)=ab+ac;(2)用昨天的最高气温减去下降的气温即为今天的最高气温.今天的最高气温是(27 - t)℃;(3)购买1个单价为a元的面包所需费用为a元,3瓶单价为b元的饮料所需费用为3b元,则共需费用为(a+3b)元.答案:(1)C(2)D(3)D3.填空.(1)长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成的,则能射进阳光部分的面积是;(2)(2015·安顺中考)如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形的个数为(用含n的式子表示).解析:(1)能射进阳光部分的面积=长方形的面积- 半径为b的半圆的面积.即能射进阳光部分的面积=2ab - πb2;(2)认真观察图形,确定图形变化规律:第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,以后每个图案都比前一个图案多3个基础图形,所以第n(n 是正整数)个图案中的基础图形的个数为3n+1.答案:(1)2ab - πb2(2)3n+13.1用字母表示数活动1运算律中的字母活动2用字母表示数量关系活动3按照要求和条件表示数活动4做一做——能力提升一、教材作业【必做题】教材第98页习题A组第1,2题.【选做题】教材第98页习题B组第1,2题.二、课后作业【基础巩固】1.如果甲数是x,甲数是乙数的2倍,那么乙数是()A.xB.2xC.x+2D.x+2.n为整数,则2n - 1一定是()A.偶数B.奇数C.2的倍数D.正整数3.一个长方形的周长为28,其中长为x,则此长方形的面积为()A.14xB.x(x - 14)C.x(14+x)D.x(14 - x)4.若一个正方形的边长为a,则这个正方形的周长是.5.若每箱有36个苹果,则n箱共有个苹果.6.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的式子表示)7.某商品的进价为x元,售价为120元,则该商品的利润率可表示为.8.一棵树刚栽时高2 m,以后每年长高0.2 m,n年后的树高为多少米?9.一桶油,连桶重x kg,桶本身重1 kg,用去油的后,桶内还有多少油?【能力提升】10.x是两位数,y是一位数,如果把x置于y的左边,那么所成的三位数应表示为()A.xyB.x+yC.100x+yD.10x+y11.(2015·海南中考)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1 - 10%)(1+15%)x万元B.(1 - 10%+15%)x万元C.(x - 10%)(x+15%)万元D.(1+10% - 15%)x万元12.有一块长为x m,宽为y m的长方形草坪,在草坪中间有一条宽为z m的人行道,形状如图所示,请你计算这块草坪的实际绿化面积.【拓展探究】13.怎样的两个数,它们的和等于它们的积呢?观察下面几个式子:2+2=2×2;3+=3×;4+=4×;5+=5×……(1)你还能发现一些这样的两个数吗?(2)你能从中发现什么规律吗?把这个规律用字母n表示出来.【答案与解析】1.A(解析:甲数是乙数的2倍,那么乙数就是甲数的.)2.B(解析:因为n为整数,所以代数式2n - 1一定是奇数.故选B.)3.D(解析:长方形的宽为×28 - x=14 - x,面积为x(14 - x).)4.4a(解析:正方形的边长为a,正方形的周长为4×正方形的边长,所以正方形的周长为4a.)5.36n(解析:每箱苹果数与箱数的积即为所求.)6.(3200 - 5a)(解析:学生捐款数=捐款总数- 教师捐款总数.所以学生捐款数为(3200 - 5a)元.)7.(解析:利润为(120 - x)元,所以该商品的利润率可表示为.)8.解:原来树高为2 m,n年增长0.2n m,所以n年后的树高为2+0.2n(m).9.解:桶中有油(x - 1)kg,用去油的后,还剩油的1 - ,所以桶内还有油(x - 1)kg.10.D(解析:根据题意可知把x置于y的左边,相当于把x扩大为原来的10倍,y不变.即所得的数是10x+y.故选D.)11.A(解析:1月份的产值是x万元,则2月份的产值是(1 - 10%)x万元,3月份的产值是(1+15%)(1 - 10%)x万元.)12.解:草坪的实际绿化面积应是长方形面积与平行四边形面积之差,长方形的面积为xy m2,平行四边形的面积为yz m2.所以实际绿化面积为(xy - yz)m2.13.解:(1)答案不唯一,如6+=6×等.(2)(n+1)+=(n+1)×.本节课运用贴近学生生活实际的材料,再次引导学生经历由具体的数到“抽象的数”,由具体的算式到含有字母的式子的学习过程,让学生经历从具体的情境中抽象出数量关系和变化规律的过程,从而体会用字母表示数的意义,形成初步的符号感,初步体会“特殊—一般—特殊”“数形结合”等数学思想方法.对课堂节奏的把握不够紧凑,最后学生完成练习的时间不够充分.在用字母表示数的过程中对学生的探究发现没有进行方法指导.课堂创设要丰富多彩,供学生观察、猜想、讨论和验证,要充分调动学生的积极性,让每个学生都有发言的机会,教学面向全体学生.在猜想和说明问题时,提醒学生采取提出问题、特例验证、一般推理的方式进行思考.练习(教材第97页)(1)15a(2)4a+2a(3)(a+b)习题(教材第98页)A组1.(1)( - 6+t)(2)8a(3)10a+b(4)25 - a(5)(29+a)(26+a)2.解:ab - cd.3.解:ab+ac或a(b+c).B组1.解:设原来四位数的后三位数为a,则原来四位数为7000+a,新四位数为10a+7.2.解:设连续两个奇数为2n+1和2n - 1(n为整数),则(2n+1)+(2n - 1)=4n,所以任意两个连续奇数之和都是4的倍数.清朝末年,文学家俞曲园写了一首咏杭州风景点“九溪十八涧”的诗:重重叠叠山,曲曲环环路,丁丁东东泉,高高下下树.当代数学家淡祥柏把每句诗都表示成算式:以上共有4个算式,每个汉字表示一个数字,在每一个算式中,重叠的汉字代表相同的数字,不同的汉字代表不同的数字,你能写出这4个算式的数字形式吗?解:3.2代数式1.进一步理解用字母表示数的意义.2.掌握书写代数式的注意事项并会正确书写代数式.1.会把代数式反映的数量关系用文字语言表述出来,会把文字语言表述的数量关系用代数式表示出来.2.能分析简单问题中的数量关系,并用代数式表示出来.通过将实际问题中的数量关系用代数式表示,提高数学应用意识.【重点】列代数式;用代数式表示实际问题中的数量关系;代数式表示的实际意义.【难点】代数式的意义;用代数式表示实际问题中的数量关系;规律探索.第课时1.在具体情境中,进一步理解用字母表示数的意义.2.能解释一些简单代数式的几何意义.3.在具体情境中,能列出代数式,并解释其实际意义.1.经历应用数学符号的过程,进一步提高学生的符号感.2.初步学会从数学的角度提出问题和理解问题,充分体会解决问题的策略的多样性.培养学生热爱数学,会用数学思想解决生活中的问题的能力.【重点】列代数式.【难点】用数学语言表达代数式的意义.【教师准备】多媒体课件.【学生准备】搜集以前学过的数学公式.导入一:填空.1.m的3倍与5的和可以表示为.2.小华用a元买了b本练习本,每本练习本元.3.边长为x cm的正方形的周长是cm;面积是cm2.教师活动:(1)组织学生交流;(2)引导学生观察所列代数式,给出代数式的概念;(3)交流所列代数式的意义.学生活动:(1)独立思考完成填空;(2)交流结果;(3)说说代数式在此问题中所代表的实际意义.[设计意图]用填空的方式来列简单的代数式,学生能够独立完成.为下面代数式概念的引出作铺垫.师板书:三角形的面积公式S=ah,路程问题中的s=vt,5>b等等.教师活动:(1)板书;(2)讲解.学生活动:(1)回答问题;(2)讨论交流.[设计意图]引导学生找出代数式与等式、不等式的不同.活动1代数式的概念1.代数式的概念.思路一教师活动:(1)组织学生阅读教材第99页;(2)引导学生举出代数式的例子.学生活动:(1)阅读课文;(2)举例交流,畅所欲言.[设计意图]让学生先直观感受什么叫代数式,只要学生知道什么是代数式即可,要求学生能举出一些实际例子.追问:单独的一个字母或一个数是代数式吗?(是.)[设计意图]这个问题的价值在于强调单独的一个数或一个字母也是代数式,强化易错点,使学生知道字母可以表示具体的数,也可以表示具体的数量关系,同一字母或表达式在不同的场合有不同的意义,强化学生的符号感;其次,通过交流,拓宽学生的思维,发展学生的联想、类比等思维能力.思路二请同学们观察并思考:a+b,m - n,25m,,6a2,a3……这些式子有哪些共同点?预设生:都含有数字或字母.师:除了数字和字母外,还有什么?预设生:还有运算符号(+、- 、×、÷、乘方).师:运算符号在数字和字母之间起到了什么样的作用?预设生:把数或字母连接起来了.师:回答得很好!同学们,这就是代数式!现在你能用自己的语言叙述一下什么是代数式吗?学生交流2分钟后,找不同学生语言叙述,互相补充,教师加以引导.然后用多媒体课件展示代数式的定义.概括:用运算符号连接数和字母组成的式子,都叫做代数式.单独的一个数或字母也是代数式.2.例题讲解.指出下列各代数式的意义:(1)2a+5;(2)2(a+5);(3)a2+b2;(4)(a+b)2.〔解析〕根据代数式的意义,必须把代数式作为一个整体去看待.运算符号和字母、数字的组合,是代数式的重要特点.解:(1)2a+5表示是a的2倍与5的和.(2)2(a+5)表示a与5的和的2倍.(3)a2+b2表示a的平方与b的平方的和.(4)(a+b)2表示a与b的和的平方.活动2用代数式表示数量关系用代数式表示“a,8两数之和与b,c两数之差的积”.可按下面的步骤列代数式:[处理方式]四人为一小组,把“做一做”试着做下来.做完之后,小组长把自己组做的答案呈现出来.[设计意图]让学生仿照图示的方法列代数式,体会数量之间的和、差、倍、分的关系与加、减、乘、除的运算的对应.用代数式表示:(1)a与b的差与c的平方的和.(2)百位数字是a,十位数字是b,个位数字是c的三位数.(3)三个连续的整数(用同一个字母表示),以及它们的和.〔解析〕(1)a与b的差也就是a - b,所求即为(a - b)与c的平方的和.列代数式的关键是一定要注意运算顺序;(2)用不同的字母表示一个整数各数位上的数字,记为abc=100a+10b+c;(3)中间的这个数是m,则连续的三个整数就是m - 1,m,m+1.解:(1)(a - b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m - 1,m,m+1.它们的和为(m - 1)+m+(m+1).强调:在代数式中,字母与数或字母与字母相乘时,通常把乘号写作“·”或省略不写,如2×a 写作2·a或2a,a×b写作a·b或ab.除法运算一般以分数的形式表示.如s÷t写作(t≠0).[设计意图]本部分内容是学生学习了代数式之后紧跟的练习,目的是强化学生对代数式概念的理解与掌握,会根据具体要求列代数式,训练学生思维的严密性.[知识拓展](1)对于一个代数式,它的意义没有统一的规定,以简明而不致引起误解为出发点,同一个代数式可用不同形式的文字语言表述它的意义.(2)如果式子中含有“=”“<”“>”“≤”“≥”等符号,它们不是运算符号,那么这样的式子不是代数式.(3)数与字母、字母与字母相乘,乘号可以省略,也可写成“·”;数字与数字相乘,乘号不能省略;数字要写在字母前面.(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.(5)带分数一定要写成假分数.1.用运算符号把数和字母连接起来的式子叫做代数式.2.单独的一个数或字母也是代数式.1.下列式子是代数式的是.①,②a2b,③x=1,④a2+ab - 1,⑤3>2,⑥o,⑦y=x - 1.解析:等式与不等式都不是代数式,排除③⑤⑦.故填①②④⑥.2.写出代数式a2 - b2表示的意义.解:a的平方与b的平方的差.3.用代数式表示.(1)x的2倍与y的差;(2)m与5的差的3倍;(3)a的11倍再加上2;(4)x,y两个数和的平方;(5)甲数为a,比甲数的平方大3的数.解:(1)2x - y.(2)3(m - 5).(3)11a+2.(4)(x+y)2.(5)a2+3.第1课时活动1代数式的概念用运算符号连接数和字母组成的式子,都叫做代数式.注意:单独的一个数或字母也是代数式.活动2用代数式表示数量关系正确表达代数式的实际意义.一、教材作业【必做题】教材第100页练习第1,2题.【选做题】教材第101页习题A组第1,2,3,4题.二、课后作业【基础巩固】1.下列属于代数式的是()A.4+6=10B.2a - 6b>0C.0D.v=2.买一个足球需要a元,买一个篮球需要b元,则买4个足球、7个篮球共需要()A.(4a+7b)元B.4a元C.7b元D.11元3.2(a+b)的几何意义是.4.设乙数为x,甲数比乙数的2倍大1,则甲数为.【能力提升】5.某厂一月份产值为a万元,从二月份起每月增产15%,三月份的产值可以表示为()A.(1+15%)2×a万元B.(1+15%)3×a万元C.(1+a)2×15%万元D.(2+15%)2×a万元6.一个两位数,十位上是a,个位上是b,用代数式表示这个两位数为()A.abB.baC.10a+bD.10b+a7.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m - n)2B.3(m - n)2C.3m - n2D.(m - 3n)28.甲、乙二人按5∶2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年盈利14000元,那么甲、乙二人分别应分得()A.2000元和5000元B.4000元和10000元C.5000元和2000元D.10000元和4000元【拓展探究】9.通讯市场竞争日益激烈,某通讯公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准是每分钟多少元?【答案与解析】1.C(解析:一个字母或一个数字也是代数式.)2.A(解析:4个足球需要4a元,7个篮球需要7b元,共需要(4a+7b)元.故选A.)3.a与b的和的2倍4.2x+15.A(解析:一月份产值是a万元,二月份产值是a(1+15%)万元,三月份产值是(1+15%)2×a万元.故选A.)6.C(解析:十位数字是a,表示为10a,个位数字是b,则这两位数是10a+b.)。
认识比教案
《比的初步认识》第一课时教材简析:这部分内容主要教学比的意义、比与分数、除法的关系。
例1、例2教学认识比的意义。
认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。
进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。
在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。
练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。
可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。
教学目标:1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
重点:理解比的意义难点:理解比与分数、除法的关系教学准备:多媒体课件、挂图、小黑板教学过程:一、谈话导入1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。
(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?设计意图:开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学两个数量之间关系的初步认识
【编语导读】5.5两个数量之间关系的初步认识(1)教学目标:知识与技能:初步感受两个数量之间的对应关系;在实际问题情境中,进一步理解字母表示数的意义。
过程与方法:通过简单实例中两个数量之间的对应关系,进一步发展符号感,提高观察能力和归纳概括能力。
情感态度与价值观:本节...
5.5两个数量之间关系的初步认识(1)
教学目标:
知识与技能:初步感受两个数量之间的对应关系;在实际问题情境中,进一步理解字母表示数的意义。
过程与方法:通过简单实例中两个数量之间的对应关系,进一步发展符号感,提高观察能力和归纳概括能力。
情感态度与价值观:本节教学从贴近学生生活的实例出发,感受两个数量之间的关系,增强数学的应用意识。
教学重点:初步感受两个数量之间的关系。
教学难点:对字母表示数的意义的深化理解。
教材分析:本节教学只是让学生初步通过观察、操作初步感受两个变量之间的关系是代数式意义的应用和发展,为后续学习提前做些渗透和铺垫,切不可搞成函数的教学。
教学方法:情境教学法、师生互动法。
教学用具:多媒体课件。
课时安排:第一课时。
环节教师活动
学生活动
设计意图。