人教版九年级数学下册知识点总结
初中数学知识点总结人教版(精选7篇)
初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
人教版九年级数学反比例函数知识点归纳
人教版九年级数学反比例函数知识点归纳本文介绍了新人教版九年级数学下册第26章反比例函数的知识点和研究目标。
其中,重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用。
难点是反比例函数及其图象的性质的理解和掌握。
基础知识包括反比例函数的概念和反比例函数的图象。
反比例函数的图象与x轴、y轴无交点,称取点关于原点对称。
反比例函数的图象的形状是双曲线,与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
图象关于原点对称,对称性是反比例函数的重要性质。
如图1所示,设点P(a,b)在双曲线上。
作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积等于三角形PAO和三角形PBO的面积之和。
由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上。
作QC⊥XXX的延长线于C,则三角形PQC的面积为(图2)。
需要注意的是,双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
直线与双曲线的关系有两种情况:一种是两图象必有两个交点,另一种是两图象没有交点;当有交点时,这两个交点关于原点成中心对称。
反比例函数与一次函数有联系。
求函数解析式的方法有两种:待定系数法和根据实际意义列函数解析式。
需要注意学科间知识的综合,但重点放在对数学知识的研究上。
在解决问题时,可以充分利用数形结合的思想。
对于例题,若y是x的反比例函数,则应选C或A。
对于已知函数的图象在第二、四象限内和y随x的增大而减小的情况,可以求出k的值。
已知一次函数y=ax+b的图象经过第一、二、四象限时,可以确定它的图象位于第三象限。
若反比例函数经过点(a,b),则直线不经过的象限为第四象限。
若P (2,2)和Q(m,n)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过第一、三、四象限。
对于函数的增减性问题,需要分别讨论。
y轴作垂线,得到三个小矩形和一个三角形,它们的面积之和为20平方单位,求函数的解析式.2)已知函数y=f(x)的图象如图所示,其中ABCD为一矩形,E为函数图象上一点,且E在ABCD内部.若矩形ABCD的长为4,宽为2,求函数的解析式.答案:(1)设函数解析式为y=ax²+bx+c,由题意可列出方程组:a+b+c=54a+2b+c=2016a+4b+c=80解得a=2,b=-4,c=7,因此函数的解析式为y=2x²-4x+7.2)设函数解析式为y=f(x)=kx+m,由题意可得:f(0)=m=2f(2)=2k+m=4f(4)=4k+m=0解得k=-1/2,m=2,因此函数的解析式为y=-1/2x+2.1) 在图中,通过每个点作两条垂线段,分别与x轴和y轴围成一个矩形。
人教版九年级数学下册 第16讲 等腰、等边即直角三角形 知识点梳理
(4) 勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2.
(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.
知识点二:角平分线和垂直平分线
3.角平分线
(1)性质:角平分线上的点到角的两边的距离相等.即若
∠1=∠2,PA⊥OA,PB⊥OB,则PA=PB.
(2)判定:角的内部到角的两边的距离相等的点在角的角平
分线上.
例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.
(3)勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.
(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.
(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.
6.直角三角形的判定
(1)有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;
(2)如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△
②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.
(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.
失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.
③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.
人教版九年级下册数学知识点总结
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
人教版九年级数学知识点总结
人教版九年级数学知识点总结对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。
学习需要持之以恒。
下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
九年级数学知识点整理等腰三角形的判定方法1.有两条边相等的三角形是等腰三角形。
2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上标准差与方差极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。
计算器——求标准差与方差的一般步骤:1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。
2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。
如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;5.标准差的平方就是方差。
初三数学下册知识点整理1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
初中九年级数学知识点总结
九年级数学上知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容;第二十一章二次根式一.知识框架二.知识概念二次根式:一般地,形如√āa≥0的代数式叫做二次根式;当a>0时,√a表示a的算数平方根,其中√0=0对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1是非负数;2;3;4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用;第二十二章一元二次根式一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数一元,并且未知数的最高次数是2二次的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0a≠0.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0a≠0后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题;1运用开平方法解形如x+m2=nn≥0的方程;领会降次──转化的数学思想.2配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为x+p2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程;这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解;进而举例说明如何解形如的方程;然后举例说明一元二次方程可以化为形如的方程,引出配方法;最后安排运用配方法解一元二次方程的例题;在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程;对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解;3一元二次方程ax2+bx+c=0a≠0的根由方程的系数a、b、c而定,因此:解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,•将a、b、c代入式子,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性;这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.第二十三章旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转;这个定点叫做旋转中心,转动的角度叫做旋转角;图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变;2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角旋转角小于0°,大于360°;3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形; 中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;4.中心对称的性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形,对应线段平行或者在同一直线上且相等;本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习;第二十四章圆一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆;定点称为,定长称为;2.和:圆上任意两点间的部分叫做圆弧,简称弧;大于半圆的弧称为,小于半圆的弧称为;连接圆上任意两点的线段叫做弦;经过圆心的弦叫做;3.和:顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;4.和:过三角形的三个顶点的圆叫做的,其圆心叫做三角形的外心;和三角形三边都相切的圆叫做这个三角形的,其圆心称为内心;5.:在圆上,由两条半径和一段弧围成的图形叫做扇形;6.圆锥侧面展开图是一个扇形;这个扇形的半径称为的;7.圆和点的位置关系:以点P与圆O的为例设P是一点,则PO是点到圆心的距离,P在⊙O外,PO>r;P 在⊙O上,PO=r;P在⊙O内,PO<r; 8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点;9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫;两圆圆心之间的距离叫做;两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r;10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;11.切线的性质:1经过切点垂直于这条半径的直线是圆的切线;2经过切点垂直于切线的直线必经过圆心;3圆的切线垂直于经过切点的半径;12.垂径定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;13.有关定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径.14.圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/18015.扇形面积S=πR^2-r^2 5.圆锥侧面积S=πrl第二十五章概率知识框架本章内容要求学生了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率;九年级数学下知识点人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容;第二十六章 二次函数一.知识框架 二..知识概念1.二次函数:一般地,自变量x 和y 之间存在如下关系:一般式:y=ax^2+bx+ca≠0,a、b 、c 为常数,则称y 为x 的二次函数;2.二次函数的解析式三种形式; 一般式 y=ax 2+bx+ca ≠0 顶点式 2()y a x h k =-+ 交点式 12()()y a x x x x =-- 3.二次函数图像与性质 2b x a=-对称轴:标:24(,)24b ac b a a-- 顶点坐与y 轴交点坐标0,c4.增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 5.二次函数图像画法:勾画草图关键点:错误!开口方向 错误!对称轴 错误!顶点 错误!与x 轴交点 错误!与y 轴交点 6.图像平移步骤1配方 2()y a x h k =-+,确定顶点h,k 2对x 轴 左加右减;对y 轴 上加下减 7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x += 8.根据图像判断a,b,c 的符号 1a ——开口方向2b ——对称轴与a 左同右异 9.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0a ≠0的根; 抛物线y=ax 2+bx+c,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点b ac二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目;因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.教师在讲解本章内容时应注重培养学生数形结合的思想和独立思考问题的能力;第二十七章相似一.知识框架二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形;互为相似形的三角形叫做相似三角形2.相似三角形的判定方法:根据相似图形的特征来判断;对应边成比例,对应角相等错误!.平行于三角形一边的直线或两边的延长线和其他两边相交,所构成的三角形与原三角形相似;错误!.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;错误!如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;错误!如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理:错误!.斜边与一条直角边对应成比例的两直角三角形相似;错误!.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似;4.相似三角形的性质:错误!.相似三角形的一切对应线段对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等的比等于相似比;错误!相似三角形周长的比等于相似比;错误!.相似三角形面积的比等于相似比的平方;本章内容通过对相似三角形的学习,培养学生认识和观察事物的能力和利用所学知识解决实际问题的能力;第二十八章锐角三角函数一.知识框架二.知识概念△ABC中1∠A的对边与斜边的比值是∠A的正弦,记作sinA=错误! 2∠A的邻边与斜边的比值是∠A的余弦,记作cosA=错误! 3∠A的对边与邻边的比值是∠A的正切,记作tanA=错误! 4∠A的邻边与对边的比值是∠A的余切,记作cota=错误!2.特殊值的三角函数:a sinacosatanacota30°45°1160°本章内容使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义;并能应用这些概念解决一些实际问题;第二十九章投影与视图知识框架本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念;。
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题
c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。
人教版九年级数学全册各单元知识点总结
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
人教版数学九年级下册:第二十九章《投影与视图》知识点
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
人教版九下数学课本答案
人教版九下数学课本答案人教版九年级下册数学课本答案1. 第一章实数基础1.1 知识点一实数的概念及实数的分类1.2 知识点二有理数与无理数1.3 知识点三实数的实际应用1.4 知识点四实数的运算性质2. 第二章比例与相似2.1 知识点一比例的概念及基本性质2.2 知识点二平面图形的相似2.3 知识点三相似三角形的判定及性质2.4 知识点四应用题解题思路3. 第三章几何图形的性质3.1 知识点一矩形、正方形及其它四边形的性质3.2 知识点二三角形的性质3.3 知识点三圆的性质3.4 知识点四空间图形的性质4. 第四章函数基础4.1 知识点一函数及函数的性质4.2 知识点二直线函数及其图象4.3 知识点三二次函数基础4.4 知识点四函数与应用5. 第五章线性不等式组5.1 知识点一线性不等式及解法5.2 知识点二一元一次不等式组5.3 知识点三二元一次不等式组5.4 知识点四不等式组的实际应用6. 第六章统计基础6.1 知识点一统计数据的整理与分析6.2 知识点二统计图与计算6.3 知识点三概率的基础6.4 知识点四概率的计算与应用7. 第七章再谈三角形7.1 知识点一“辅助线”解题7.2 知识点二三角形的判定7.3 知识点三三角形内部关系的性质7.4 知识点四三角形外部关系的性质8. 第八章立体几何基础8.1 知识点一立体图形的基本概念及性质8.2 知识点二切割与展开8.3 知识点三空间几何体的拓展8.4 知识点四立体几何的应用9. 第九章微积分初步9.1 知识点一函数的极限与连续性9.2 知识点二函数的导数与微分9.3 知识点三应用题解题思路9.4 知识点四整体复习与应用10. 第十章矩阵与变换10.1 知识点一矩阵的基本概念10.2 知识点二矩阵的基本运算10.3 知识点三矩阵变换与应用10.4 知识点四综合应用解题思路。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版九年级数学下册详细知识点
人教版九年级数学下册详细知识点1. 整式的加减运算- 同类项的加减法- 不同类项的加减法- 图形法- 代数法- 消元法2. 二次根式的运算- 二次根式的化简- 二次根式的加减法- 二次根式的乘法- 二次根式的除法- 二次根式的混合运算3. 平面向量- 平面向量的概念- 平面向量的加法- 平面向量的数乘- 平面向量的线性运算- 平面向量的模- 平面向量的数量积- 平面向量的投影4. 一次函数与一元一次方程- 一次函数的概念- 一次函数的图象- 一次函数的性质- 一次函数的表示方法- 一元一次方程的概念- 一元一次方程的解- 一元一次方程的应用5. 特殊三角函数值的计算- 30°、45°、60°特殊角的三角函数值- 任意角的正弦、余弦、正切值的计算6. 相似三角形与三角比- 相似三角形的条件- 相似三角形的性质- 三角比的定义- 三角比的性质和应用- 相似三角形和三角比的综合应用7. 幂的乘法与除法- 幂的乘法- 幂的除法- 科学计数法- 根式及其运算8. 多边形的面积- 任意多边形的面积- 三角形的面积- 正多边形的面积- 扇形和梯形的面积9. 数据的收集、整理和分析- 数据的收集和整理- 数据的图形表示- 数据的分析与解释- 统计指标的运算以上是人教版九年级数学下册的详细知识点。
不同章节涵盖了整式的运算、二次根式的处理、平面向量的操作、一次函数与一元一次方程、特殊三角函数值的计算、相似三角形与三角比、幂的乘除法、多边形的面积以及数据的收集、整理和分析等内容。
通过学习这些知识,学生将能够更好地掌握九年级数学下册的重点内容。
九年级数学知识点总结人教版
九年级数学知识点总结人教版学习从来无捷径,循序渐进登高峰。
如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。
学习需要勤奋,做任何事情都需要勤奋。
下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
1、概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180° ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180° ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点 P(x,y)关于原点 O 的对称点P′(-x,-y).(一)平行四边形的定义、性质及判定.1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4 ·对称性:平行四边形是中心对称图形.(二)矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2 ·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4 ·对称性:矩形是轴对称图形也是中心对称图形.(三)菱形的定义、性质及判定.1 ·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。
人教版初中九年级数学下册第二十七章《相似》知识点总结(含答案解析)
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A .2B .3C .1D .1.5 3.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC的值为( )A .10B .11C .12D .134.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有( )A .1个B .2个C .3D .4个5.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .152 6.有下列四种说法:其中说法正确的有( ) ①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个B .3个C .2个D .1个 7.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .1:2D .2:1 8.如图,已知在ABC 中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EF BE BD = B .EF AF DC AD = C .AC FG CG DC = D .AE FG AB DC= 9.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 10.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB等于( )A .2B .22C .512-D .211.大自然巧夺天工,一片小心树叶也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(AP >PB ),如果AP 的长度为8cm ,那么AB 的长度是( )A .45-4B .12-45C .12+45D .45+4 12.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:5 13.下列相似图形不是位似图形的是( )A .B .C .D . 14.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个 15.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .二、填空题16.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)17.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .18.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.19.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.20.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.21.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.22.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)23.已知13x y =,则x y y-的值为______ 24.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F,如果GF=4,那么线段BC的长是________.25.如图,Rt△ABC中,AC=5,BC=12,O为BC上一点,⊙O分别与边AB、AC切于E、C,则⊙O半径是________.26.如图,点A在反比例函数kyx=(k≠0)的图像上,点B在x轴的负半轴上,直线AB交y轴与点C,若12ACBC=,△AOB的面积为12,则k的值为_______.三、解答题27.已知:△ABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1;(2)以B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比2:1,直接写出C2点坐标是;(3)△A2BC2的面积是平方单位.28.已知ABC ,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值; (2)若18AB =,FB EC =,求AC 的长. 29.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD :AB =3:1,CE 垂直y 轴于点E .(1)求证:CDE DAO ∽△△;(2)直接写出点B 和点C 的坐标.30.如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,12DE CD =,连接BE 与AC ,AD ,FE 分别交于点O ,F .(1)若DEF ∆的面积为2,求平行四边形ABCD 的面积.(2)求证2·OB OE OF =.。
人教版九年级下册数学课本知识点归纳
人教版九年级下册数学课本知识点归纳第一篇范文:新人教版九年级数学知识点归纳新人教版九年级上册数学知识点归纳第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax+bx+c=0时,应满足(a≠0)2221.2 降次――解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac 的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
九年级下册数学考点
九年级下册数学的考点主要包括以下几点:
相似三角形:理解相似三角形的定义,掌握相似三角形的性质和判定方法,能够进行简单的相似三角形计算。
锐角三角函数:掌握锐角三角函数的定义和性质,能够进行简单的三角函数计算。
二次函数:理解二次函数的定义和性质,掌握二次函数的图像和解析式,能够进行简单的二次函数计算。
圆:理解圆的定义和性质,掌握圆的周长和面积计算公式,能够进行简单的圆的相关计算。
概率初步知识:理解概率的初步知识,掌握简单概率的计算方法,能够进行简单的概率计算。
需要注意的是,这些考点只是其中的一部分,具体考试内容还需要参考当地的教学大纲和考试说明。
在学习过程中,建议注重基础知识的掌握和解题思路的梳理,多做一些练习题,提高自己的数学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学下册知识点总结26.1二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,x和y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b ∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
a的绝对值还可以决定开口大小,a 的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即求根公式)(如右图)求根的方法还有因式分解法和配方法在中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注明函数。
2画出对称轴,并注明X=什么3与X轴交点坐标,与Y轴交点坐标,顶点坐标。
抛物线的性质轴对称1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。
开口3.a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
决定对称轴位置的因素4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号当a与b异号时(即ab<0),对称轴在y轴右。
因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号可简单记忆为,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式()的斜率k的值。
可通过对二次函数求导得到。
决定抛物线与y轴交点的因素5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)抛物线与x轴交点个数6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______Δ= b^2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)特殊值的形式7.特殊值的形式①当x=1时 y=a+b+c②当x=-1时 y=a-b+c③当x=2时 y=4a+2b+c④当x=-2时 y=4a-2b+c二次函数的性质8.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t ,正无穷)奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。
周期性:无 解析式:①y=ax^2+bx+c[一般式] ⑴a≠0⑵a >0,则抛物线开口朝上;a <0,则抛物线开口朝下; ⑶极值点:(-b/2a ,(4ac-b^2)/4a ); ⑷Δ=b^2-4ac,Δ>0,图象与x 轴交于两点:([-b-√Δ]/2a ,0)和([-b+√Δ]/2a ,0); Δ=0,图象与x 轴交于一点: (-b/2a ,0);Δ<0,图象与x 轴无交点; ②y=a(x-h)^2+k[顶点式]此时,对应极值点为(h ,k ),其中h=-b/2a ,k=(4ac-b^2)/4a ; ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)对称轴X=(X1+X2)/2 当a>0 且X ≧(X1+X2)/2时,Y 随X 的增大而增大,当a>0且X ≦(X1+X2)/2时Y 随X 的增大而减小此时,x1、x2即为函数与X 轴的两个交点,将X 、Y 代入即可求出解析式(一般与一元二次方程连 用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x 轴交点和另一个点坐标设交点式。
两交点X 值就是相应X1 X2值。
26.21. 如果抛物线y ax bx c =++2与x 轴有公共点,公共点的横坐标是x 0,那么当x x =0时,函数的值是0,因此x x =0就是方程ax bx c 20++=的一个根。
2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。
这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
27.1概述如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
相似比相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形。
性质相似多边形的对应角相等,对应边的比相等。
相似多边形的周长比等于相似比。
相似多边形的面积比等于相似比的平方。
27.2判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
例题∵∠A=∠A'; ∠B=∠B'∴△ABC∽△A'B'C'性质1.的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方27.3如果两个图形不仅是,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做,这个点叫做位似中心,这时的相似比又称为位似比。
性质位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
位似多边形的对应边平行或共线。
位似可以将一个图形放大或缩小。
位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
注意1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。
28.1锐角角A的(sin),(cos)和(tan),(cot)以及(sec),(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边,余弦(cos)等于邻边比斜边正切(tan)等于对边比邻边;余切(cot)等于邻边比对边正割(sec)等于斜边比邻边余割 (csc)等于斜边比对边正切与余切互为倒数互余角的三角函数间的关系。
(90°-α)=α, cos(90°-α)=sinα,(90°-α)=cotα, cot(90°-α)=tanα.同角三角函数间的关系平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.特殊的三角函数值0° 30° 45° 60° 90°0 1/2 √2/2 √3/2 1 ← sinα1 √3/2 √2/2 1/2 0 ← cosα0 √3/3 1 √3 None ← tanαNone √3 1 √3/3 0 ← cotα 28.2勾股定理,只适用于直角三角形(外国叫“”)a^2+b^2=c^2, 其中a 和b 分别为直角三角形两直角边,c 为斜边。