最新圆有关性质测试题

合集下载

圆测试题及答案解析

圆测试题及答案解析

圆测试题及答案解析一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 直线与圆相离B. 直线与圆相切C. 直线与圆相交D. 直线在圆内答案:C解析:根据圆心到直线的距离小于圆的半径,可以判断直线与圆相交。

2. 圆的周长公式是什么?A. C = 2πrB. C = πr²C. C = 2rD. C = rπ答案:A解析:圆的周长公式是C = 2πr,其中C表示周长,r表示半径。

二、填空题1. 半径为7的圆的面积是 __________。

答案:153.94解析:圆的面积公式是A = πr²,将半径7代入公式得A = π ×7² ≈ 153.94。

2. 如果一个扇形的半径为10,圆心角为30°,那么它的弧长是__________。

答案:5π解析:弧长公式是L = θ × r,其中θ为圆心角(以弧度为单位),r为半径。

将圆心角30°转换为弧度是π/6,代入公式得L = π/6× 10 = 5π/3 ≈ 5。

三、简答题1. 描述圆的切线的性质。

答案:圆的切线在圆上某一点处与圆相切,且与过该点的半径垂直。

解析:圆的切线是一条直线,它恰好在一个点上与圆接触,并且这个接触点处的切线与从圆心到接触点的半径形成90°的角。

四、计算题1. 已知圆的半径为8,求圆的面积。

答案:圆的面积为200π。

解析:根据圆的面积公式A = πr²,将半径8代入公式得A = π × 8² = 64π ≈ 200π。

2. 已知圆的直径为20,求圆的周长。

答案:圆的周长为20π。

解析:圆的周长公式是C = πd,其中d为直径。

将直径20代入公式得C = π × 20 = 20π。

(完整版)圆的基本性质检测试题

(完整版)圆的基本性质检测试题

圆的基本性质测试题班级 姓名 得分一:选择题(每题3分,共30分)( )1.下列语句中不正确的有①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,对称轴是任意一条直径所在的直线, ④半圆是弧,⑸直径是圆内 最长的弦,⑥等弧所对的圆周角相等. A .3个 B.4个 C .5个 D.6个( )2. 如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是:A .2.5B .3.5C .4.5D .5.5 ( )3.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=A.400B. 600C.800D.1200( )4.如图,将圆沿AB 折叠后,圆弧 恰好经过圆心,则 ∠AOB 等于:A .60°B .90°C .120°D .150°(第3题) (第4题) (第5题) (第6题)( )5. 两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为A .(45)+ cmB .9 cmC .45cmD .62cm( )6. 如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是 A .30︒ B .45︒ C .60︒ D .80︒( )7.AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是:A .30ºB .60ºC .45ºD .75º(第7题) (第8题) (第9题) (第10题)( )8.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB =2cm ,∠BCD =22°30′,则⊙O 的半径为: A .4cm B.2cm C.1cm D.0.5cm ( )9. 已知⊙O 的直径AB=12,弦AC=6,AD=62,则∠CAD=A. 60°B. 450C.1050 或150D. 60°或 450( )10.如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为的中点,P 是直径AB 上一动点,则PC+PD 的最小值为: A.22 B.2 C.1 D.2二:填空题(每题3分,共18分)11. 如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距 离为 。

圆测试题及答案

圆测试题及答案

圆测试题及答案
一、选择题
1. 下列哪个选项不是圆的基本性质?
A. 圆周上任意两点之间的线段称为弦。

B. 圆的直径是圆的最长弦。

C. 圆心到圆上任意一点的距离都相等。

D. 圆的面积与半径的平方成正比。

2. 圆的周长公式是什么?
A. C = πr
B. C = 2πr
C. C = 4πr
D. C = πr²
3. 已知圆的半径为3,求圆的周长。

A. 18π
B. 6π
C. 9π
D. 3π
二、填空题
4. 圆的面积公式为 \( A = \pi r^2 \),其中 \( r \) 表示圆的________。

5. 如果圆的周长为12π,那么圆的半径是________。

三、计算题
6. 已知圆的半径为5厘米,求圆的周长和面积。

四、解答题
7. 如果一个圆的直径是14厘米,求圆的周长和面积,并用适当的单位表示结果。

答案:
一、选择题
1. D
2. B
3. A
二、填空题
4. 半径
5. 3
三、计算题
6. 圆的周长为 \( 2\pi \times 5 = 10\pi \) 厘米,圆的面积为\( \pi \times 5^2 = 25\pi \) 平方厘米。

四、解答题
7. 圆的周长为 \( 2\pi \times 7 = 14\pi \) 厘米,圆的面积为\( \pi \times (7)^2 = 49\pi \) 平方厘米。

圆的有关性质测试题

圆的有关性质测试题

圆有关的性质测试题一、选择题1、如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( ) A 、10B 、8C 、6D 、4二、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ) A .8 B .4 C .10 D .53、若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( ) A.点A 在圆外 B. 点A 在圆上 C. 点A 在圆内 D.不能肯定4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是AD 上任意一点,则∠BEC 的度数为 ( ) A. 30° B. 45°C. 60°D. 90°五、如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( )A .120° B.130C .140°D .150°六、如图,⊙O 的半径为5,若OP =3,,则通过点P 的弦长可能是 ( )A .3B .6C .9D .12 7、如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论: ① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个八、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ) A .20 B .30 C .40 D .50九、如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .810、如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD11、如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( )O P(第5题)︵ ︵ AE =(A )6 (B )8 (C )10 (D )12二、填空题1、已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____.二、如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,若是∠A =63 º,那么∠B = º.3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = °.4、如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠ABD=°.五、一条弦把圆分成2:3两部份,那么这条弦所对的圆周角的度数为__________. 六、如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .7、如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .八、若是一边长为20cm 的等边三角形硬纸板恰好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 cm (铁丝粗细忽略不计). 三、解答题1、如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥. (1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若662AD AE ==,,求BC 的长.C(第1题)BDAEOAPB第17题图二、如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.3、已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 别离在弦AB 、AC 上,且知足AD =CE .(1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数.4、如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E , 且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长.ODCBAE OD CBAPO ED CBA五、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径32r=,2AC=,AB=BC求AB长度。

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。

2.3_圆的基本性质水平测试题(含答案)

2.3_圆的基本性质水平测试题(含答案)

圆的基本性质一、选择题1、下面三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等的圆心角所对的弧相等。

其中是真命题的是 ( )A.①②;B. ①③;C. ②③;D. ①②③。

2、已知⊙O 的半径为5cm ,P 为该圆内一点,且OP=1cm ,则过点P 的弦中,最短的弦长为( )A 、8cm ;B 、6cm ;C 、; D 、。

3.如图1,CD 是O 的直径,A B ,是O 上的两点,若20ABD ∠=,则ADC ∠的度数为( )A .40B .50 C .60 D .70图1 图2 图34、如图2,点A 、B 、D 、C 是⊙O 上的四个点,且∠BOC=110°,则∠BAC 的度数是( )A.110°B.70°C.100°D.55°5、如图3,正方形ABCD 的四个顶点分别在⊙O 上,点P 在劣弧CD 上不同于点C 得到任意一点,则∠BPC 的度数是( )A 、45 ;B 、60 ;C 、75 ;D 、90。

6、如图4,AD 平分∠BAC ,则图中相似三角形有( )A 、2对;B 、3对;C 、4对;D 、5对。

图4D二、精心填一填(每小题3分,共24分)7、如图,已知AB是⊙O的直径,弦CD与AB相交于点E。

若______,则CE=DE(只须填上一个适合的条件即可)。

8、已知AB、CD为⊙O的两条弦,圆心O到它们的距离分别为OM、ON,如果AB>CD,那么OM____ON。

(填“>、=、<”中的一种)9、在⊙O中,AB是直径,CD是弦,若AB⊥CD于E,且AE=2,EB=8,则CD=__________.10、△ABC的三边长分别是AB=4cm,AC=2cm,,以点C为圆心,CA为半径画圆交边AB于另一点D,设AD的中点为E,则CE=_______。

11、半径为10cm的圆内有两条平行弦,长度分别为12cm、16cm,则这两条平所弦间的距离为_______cm。

圆的相关性质(46题):2023年中考数学真题分项汇编(全国通用)(解析版)

圆的相关性质(46题):2023年中考数学真题分项汇编(全国通用)(解析版)

圆的有关性质(46题)一、单选题 1.(2023·四川自贡·统考中考真题)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=︒,则ABC ∠的度数是( )A .41︒B .45︒C .49︒D .59︒【答案】C 【分析】由CD 是O 的直径,得出90DBC ∠=︒,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=︒,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=︒,∵AD AD =,∴41ABD ACD ∠=∠=︒,∴904149ABC DBC DBA ∠=∠−∠=︒−︒=︒,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.统考中考真题)如图,在O 中,OA【答案】B【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE =在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,1122CE BE BC ===⨯=在Rt OCE中,60COE CE ∠=︒=,2sin 60CE OC ∴===︒,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.A .1123−【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴(2244114MN l AB OA −=+=+=−故选:B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键. 4.(2023·四川宜宾·统考中考真题)如图,已知点A B C 、、在O 上,C 为AB 的中点.若35BAC ∠=︒,则AOB ∠等于( )A .140︒B .120︒C .110︒D .70︒【答案】A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠,35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键. 5.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O ,连接,OC OD ,则BAE COD ∠−∠=( )A .60︒B .54︒C .48︒D .36︒【答案】D 【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵360360180,55BAE COD ︒︒∠=︒−∠=, ∴3603601803655BAE COD ︒︒∠−∠=︒−−=︒, 故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6.(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形【答案】B 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.是O 的直径,是O 上一点.若 A .66︒B 【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵BC BC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒, 故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是( )A .12πB .6πC .4πD .2π【答案】B 【分析】根据圆周角定理求得60AOB ∠=︒,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB AB =,30ACB ∠=︒,∴60AOB ∠=︒,∴260π66π360S =⨯=.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键. 内接于O ,BC ∥ 【答案】C 【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,12AE AD ==,进而可得12CD CF CD ====,最后问题可求解.【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥,∴CBD ADB ∠=∠,∵CBD CAD ∠=∠,∴CAD ADB ∠=∠,∵AC BD ⊥,∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,AD =∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,12AE AD ==, ∴15CAO CAD OAD ∠=∠−∠=︒,1cos30AE OA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒, ∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒−∠−∠=︒,∴122CD CF CD ====,∴1BC =;故选:C .【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键. 10.(2023·浙江台州·统考中考真题)如图,O 的圆心O 与正方形的中心重合,已知O 的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).【答案】D 【分析】设正方形四个顶点分别为A B C D 、、、,连接OA 并延长,交O 于点E ,由题意可得,EA 的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为A B C D 、、、,连接OA 并延长,交O 于点E ,过点O 作OF AB ⊥,如下图:则EA 的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:4OE AB ==,122AF OF AB ===由勾股定理可得:OA ==∴4AE =−故选:D.【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.11.(2023·山东枣庄·统考中考真题)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为( )A .32︒B .42︒C .48︒D .52︒【答案】A【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠,,804832B APD D ∴∠=∠−∠=︒−︒=︒,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数. 12.(2023·四川内江·统考中考真题)如图,正六边形ABCDEF 内接于O ,点P 在AF 上,Q 是DE 的中点,则CPQ ∠的度数为( )A .30︒B .36︒C .45︒D .60︒【答案】C 【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.【详解】如图,连接,,,OC OD OQ OE ,∵正六边形ABCDEF ,Q 是DE 的中点,∴360606COD DOE ︒∠=∠==︒,1302DOQ EOQ DOE ∠=∠=∠=︒,∴90COQ COD DOQ ∠=∠+∠=︒,∴1452CPQ COQ ∠=∠=︒,故选:C.【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.如图,O 是ABC 的外接圆,A .43【答案】B 【分析】作BM AC ⊥于点M ,由题意可得出AEB DEC V V ≌,从而可得出EBC 为等边三角形,从而得到6030GEF EGF ∠=︒∠=︒,,再由已知得出EF ,BC 的长,进而得出CM ,BM 的长,再求出AM 的长,再由勾股定理求出AB 的长.【详解】解:作BM AC ⊥于点M ,在AEB △和DEC 中,A D AE EDAEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA AEB DEC ≌, ∴EB EC =,又∵BC CE =,∴BE CE BC ==,∴EBC 为等边三角形,∴60GEF ∠=︒,BC EC =∴30EGF ∠=︒,∵2EG =,OF AC ⊥,30EGF ∠=︒ ∴112EF EG ==,又∵3AE ED ==,OF AC ⊥∴4CF AF AE EF ==+=,∴285AC AF EC EF CF ===+=,,∴5BC EC ==,∵60BCM ∠=︒,∴∠30MBC =︒,∴52CM =, BM =, ∴112AM AC CM =−=,∴7AB =.故选:B .【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、三角形的外接圆与外心、勾股定理等知识点,综合性较强,掌握基本图形的性质,熟练运用勾股定理是解题关键. 内接于,,O AC BD A .40︒【答案】B 【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.【详解】解:∵BC BC =,∴40BDC BAC ∠=∠=︒,∵BD 为圆的直径,∴90BCD ∠=︒,∴9050DBC BDC ∠=︒−∠=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键. 15.(2023·湖北宜昌·统考中考真题)如图,OA OB OC ,,都是O 的半径,AC OB ,交于点D .若86AD CD OD ===,,则BD 的长为( ).A .5B .4C .3D .2【答案】B 【分析】根据等腰三角形的性质得出,OD AC ⊥根据勾股定理求出10OC =,进一步可求出BD 的长.【详解】解:∵8AD CD ==,∴点D 为AC 的中点,∵,AO CO =∴OD AC ⊥,由勾股定理得,10,OC =∴10,OB =∴1064,BD OB OD =−=−=故选:B .【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键.16.(2023·河北·统考中考真题)如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A .a b <B .a b =C .a b >D .a ,b 大小无法比较 【答案】A【分析】连接1223,PP P P ,依题意得12233467PPP P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PPP P PP +−=−,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++ 122313PP P P PP =−+在123PP P 中有122313PP P P PP >+∴1223130b a PPP P PP −=+>− 故选:A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键. 17.(2023·浙江杭州·统考中考真题)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( )A .23︒B .24︒C .25︒D .26︒【答案】D 【分析】根据,OA OB 互相垂直可得ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ADB 所对的圆周角12701352ACB ∠=⨯︒=︒,又19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒−∠−∠=︒,故选:D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半. 18.(2023·湖北黄冈·统考中考真题)如图,在O 中,直径AB 与弦CD 相交于点P ,连接AC AD BD ,,,若20C ∠=︒,70BPC ∠=︒,则ADC ∠=( )A .70︒B .60︒C .50︒D .40︒【答案】D 【分析】先根据圆周角定理得出20B C ∠=∠=︒,再由三角形外角和定理可知702050BDP BPC B ∠=∠−∠=︒−︒=︒,再根据直径所对的圆周角是直角,即90ADB ∠=︒,然后利用ADB ADC BDP ∠=∠+∠进而可求出ADC ∠.【详解】解:∵20C ∠=︒,∴20B ∠=︒,∵70BPC ∠=︒,∴702050BDP BPC B ∠=∠−∠=︒−︒︒,又∵AB 为直径,即90ADB ∠=︒,∴905040ADC ADB BDP ∠=∠−∠=︒−︒=︒,故选:D .【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识. 19.(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【答案】B【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=−=−, OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===,在Rt △ADO 中,222AD OD OA +=,()2223772R R ⎛⎫∴+−= ⎪⎝⎭, 解得:156528m 56R =≈,故选:B.【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键. 20.(2023·四川·统考中考真题)如图,AB 是O 的直径,点C ,D 在O 上,连接CD OD AC ,,,若124BOD ∠=︒,则ACD ∠的度数是( )A .56︒B .33︒C .28︒D .23︒【答案】C 【分析】根据圆周角定理计算即可.【详解】解:∵124BOD ∠=︒,∴18012456AOD Ð=°-°=°, ∴1282ACD AOD ∠=∠=︒,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键. 21.(2023·山东聊城·统考中考真题)如图,点O 是ABC 外接圆的圆心,点I 是ABC 的内心,连接OB ,IA .若35CAI ∠=︒,则OBC ∠的度数为( )A .15︒B .17.5︒C .20︒D .25︒【答案】C 【分析】根据三角形内心的定义可得BAC ∠的度数,然后由圆周角定理求出BOC ∠,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是ABC 的内心,CAI ∠=︒,∴270BAC CAI ∠=∠=︒,∴2140BOC BAC ∠=∠=︒,∵OB OC =,∴1801801402022BOC OBC OCB ︒−∠︒−︒∠=∠===︒,故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键..如图,O 的半径为,以圆内接正六边形面积近似估计O 的面积,可得2A .3【答案】C 【分析】根据圆内接正多边形的性质可得30AOB ∠=︒,根据30度的作对的直角边是斜边的一半可得12BC =,根据三角形的面积公式即可求得正十二边形的面积,即可求解. 【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30︒,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC OA ⊥交OA 于点于点C ,∵30AOB ∠=︒,∴1122BC OB ==, 则1111224OAB S =⨯⨯=, 故正十二边形的面积为1121234OAB S =⨯=,圆的面积为113π⨯⨯=,用圆内接正十二边形面积近似估计O 的面积可得3π=,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键. 23.(2023·广东·统考中考真题)如图,AB 是O 的直径,50BAC ∠=︒,则D ∠=( )A .20︒B .40︒C .50︒D .80︒【答案】B【分析】根据圆周角定理可进行求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵50BAC ∠=︒,∴9040ABC BAC ∠=︒−∠=︒,∵AC AC =,∴40D ABC ∠=∠=︒;故选:B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.24.(2023·河南·统考中考真题)如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A .95︒B .100︒C .105︒D .110︒【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键. 25.(2023·全国·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒B .105︒C .125︒D .155︒【答案】D 【分析】根据圆周角定理得出2140BOC BAC ∠=∠=︒,进而根据三角形的外角的性质即可求解.【详解】解:∵BC BC =,70BAC ∠=︒,∴2140BOC BAC ∠=∠=︒,∵140BPC BOC PCO ∠=∠+∠≥︒,∴BPC ∠的度数可能是155︒故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键. 26.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是( )A .25︒B .30︒C .35︒D .40︒【答案】A【分析】根据圆内接四边形对角互补得出18010575A ∠=︒−︒=︒,根据圆周角定理得出2150BOD A ∠=∠=︒,根据已知条件得出1503COD BOD ∠=∠=︒,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,105BCD ∠=︒,∴18010575A ∠=︒−︒=︒∴2150BOD A ∠=∠=︒∵2BOC COD ∠=∠ ∴1503COD BOD ∠=∠=︒,∵CD CD = ∴11502522CBD COD ∠=∠=⨯︒=︒,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键. A .35︒B .30︒ 【答案】A 【分析】证明35NMO MNO ∠=∠=︒,可得23570AOB ∠=⨯︒=︒,结合OA OB =,C 为AB 的中点,可得35AOC BOC ∠=∠=︒.【详解】解:∵35MNO ∠=︒,MO NO =,∴35NMO MNO ∠=∠=︒,∴23570AOB ∠=⨯︒=︒,∵OA OB =,C 为AB 的中点,∴35AOC BOC ∠=∠=︒,故选A .【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.二、填空题 28.(2023·四川南充·统考中考真题)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =−=−=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键. 29.(2023·浙江金华·统考中考真题)如图,在ABC 中,6cm,50AB AC BAC ==∠=︒,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为__________cm .【答案】56π【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD AB ⊥,∵6cm,50AB AC BAC ==∠=︒,∴BD CD =,1252BAD CAD BAC ∠=∠=∠=︒,∴250DOE BAD ∠=∠=︒,113cm 22OD AB AC ===, ∴弧DE 的长为()50351806cm ππ⨯⨯=,故答案为:56πcm . 【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.30.(2023·四川广安·统考中考真题)如图,ABC 内接于O ,圆的半径为7,60BAC ∠=︒,则弦BC 的长度为___________.【答案】【分析】连接,OB OC ,过点O 作OD BC ⊥于点D ,先根据圆周角定理可得2120BOC BAC ∠=∠=︒,再根据等腰三角形的三线合一可得60BOD ∠=︒,2BC BD =,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接,OB OC ,过点O 作OD BC ⊥于点D ,60BAC ∠=︒,2120BOC BAC ∴∠=∠=︒,,OB OC OD BC =⊥Q ,1602BOD BOC ∴∠=∠=︒,2BC BD =,∵圆的半径为7,7OB ∴=,sin 60BD OB ∴=⋅︒=2BC BD ∴==故答案为:【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.31.(2023·甘肃武威·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是BC 所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒,在Rt ACB △中,90905535ABC A ∠=︒−∠=︒−︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.32.(2023·浙江绍兴·统考中考真题)如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180B D Ð+а=, ∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=. 故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键. 33.(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5︒【分析】方法一∶如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒−︒=︒,然后再根据等腰三角形的性质求得65OAB ∠=︒、25OAD ∠=︒,最后根据角的和差即可解答.方法二∶ 连接,OB OD ,由题意可得:105BAD ∠=︒,然后根据圆周角定理即可求解.【详解】方法一∶ 解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒−︒=︒,15525130AOD ∠=︒−︒=︒,∴()118077.52OAB AOB ∠=︒−∠=︒,()1180252OAD AOB ∠=︒−∠=︒,∴52.5OAB A BAD O D ∠∠−∠==︒.故答案为52.5︒.方法二∶解∶ 连接,OB OD ,由题意可得:15550105BAD ∠=︒−︒=︒,根据圆周角定理,知1110552.522BAD BOD ∠=∠=⨯︒=︒.故答案为:52.5︒.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键. 34.(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是________ 个.【答案】10︒,则1272∠=∠=︒,进而得出36AOB ∠=︒,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角360725︒==︒,∴1272∠=∠=︒,∴18072236AOB ∠=︒−︒⨯=︒,∴共需要正五边形的个数3601036︒==︒(个), 故答案为:10.【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法. 35.(2023·湖南永州·统考中考真题)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【分析】过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD =−=cm ,在Rt AOD 中,8AD =cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.36.(2023·湖北随州·统考中考真题)如图,在O 中,60OA BC AOB ⊥∠=︒,,则ADC ∠的度数为___________.【答案】30︒【分析】根据垂径定理得到»»AB AC=,根据圆周角定理解答即可.【详解】解:∵OA BC⊥,∴»»AB AC=,∴1302ADC AOB∠=∠=︒,故答案为:30︒.【点睛】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.是O上不同的三点,点在ABC的内部,连接【答案】80【分析】先根据圆周角定理求出BOC∠的度数,再根据三角形的外角定理即可得出结果.【详解】解:在O中,2260120BOC A∠=∠=⨯︒=︒Q,1204080ODC BOC OCD∴∠=∠−∠=︒−︒=︒故答案为:80.【点睛】本题考查了圆周角定理,三角形的外角定理,熟练掌握圆周角定理是本题的关键.38.(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55︒,为了监控整个展区,最少..需要在圆形边缘上共安装这样的监视器___________台.【答案】4【分析】圆周角定理求出P ∠对应的圆心角的度数,利用360︒÷圆心角的度数即可得解.【详解】解:∵55P ∠=︒,∴P ∠对应的圆心角的度数为110︒,∵360110 3.27︒÷︒≈,∴最少需要在圆形边缘上共安装这样的监视器4台;故答案为:4【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.是O 的内接正六边形,设正六边形 【答案】2【分析】连接,,OA OC OE ,首先证明出ACE △是O 的内接正三角形,然后证明出()ASA BAC OAC ≌,得到BAC AFE CDE S S S ==,OAC OAE OCE S S S ==,进而求解即可.【详解】如图所示,连接,,OA OC OE ,∵六边形ABCDEF 是O 的内接正六边形,∴AC AE CE ==,∴ACE △是O 的内接正三角形,∵120B ∠=︒,AB BC =, ∴()1180302BAC BCA B ∠=∠=︒−∠=︒,∵60CAE ∠=︒,∴30OAC OAE ∠=∠=︒,∴30BAC OAC ∠=∠=︒,同理可得,30BCA OCA ∠=∠=︒,又∵AC AC =,∴()ASA BAC OAC ≌, ∴BAC OAC S S =,由圆和正六边形的性质可得,BAC AFE CDE SS S ==, 由圆和正三角形的性质可得,OAC OAE OCE S S S ==, ∵()2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S =+++++=++=, ∴122S S =.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点. 40.(2023·广东深圳·统考中考真题)如图,在O 中,AB 为直径,C 为圆上一点,BAC ∠的角平分线与O 交于点D ,若20ADC ∠=︒,则BAD ∠=______°.【答案】35【分析】由题意易得90ACB ∠=︒,20ADC ABC ∠=∠=︒,则有70BAC ∠=︒,然后问题可求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC AC =,20ADC ∠=︒,∴20ADC ABC ∠=∠=︒,∴70BAC ∠=︒,∵AD 平分BAC ∠,∴1352BAD BAC ∠∠==︒;故答案为:35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.41.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是______寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由6AB =可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA,AB=寸,⊥,且10AB CD∴==寸,5AE BE==,设圆O的半径OA的长为x,则OC OD x1Q,CE=∴=−,1OE x在直角三角形AOE中,根据勾股定理得:222(1)5−−=,化简得:222125x x−+−=,x x xx=,即226∴=(寸).CD26故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.三、解答题在第一象限内,A与x轴相切于点(1)求证:四边形ABOH为矩形.(2)已知A的半径为4,【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.(2)如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =−,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键. 43.(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知O ,A 是O 上一点,只用圆规将O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在O 上逆时针方向顺次截取AB BC CD ==;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于O 上方点E ;③以点A 为圆心,OE 长为半径作弧交O 于G ,H 两点.即点A ,G ,D ,H 将O 的圆周四等分.【答案】见解析【分析】根据作图提示逐步完成作图即可.再根据图形基本性质进行证明即可.【详解】解:如图,即点A ,G ,D ,H 把O 的圆周四等分.理由如下:如图,连接,,,,,,,,,,OB OC AG AE DE AC DC OE OH OG AH ,由作图可得:AB BC CD ==,且OA OB AB ==,∴AOB 为等边三角形,60AOB ∠=︒,同理可得:60BOC COD ∠=∠=︒,∴180AOB BOC COD ∠+∠+∠=︒,∴A ,O ,D 三点共线,AD 为直径,∴=90ACD ∠︒,设CD x =,而30DAC ∠=︒,∴2AD x =,AC ,由作图可得:DE AE AC ===,而OA OD x ==,∴⊥EO AD ,OE =,∴由作图可得AG AH =,而OA OH x ==,∴22222OA OH x AH +==,∴90AOH =︒∠,同理90AOG DOG DOH ∠=︒=∠=∠,∴点A ,G ,D ,H 把O 的圆周四等分.【点睛】本题考查的是等腰三角形的性质,圆弧与圆心角之间的关系,等边三角形的判定与性质,勾股定理与勾股定理的逆定理的应用,圆周角定理的应用,熟练掌握图形的基本性质并灵活应用于作图是解本题的关键. 统考中考真题)如图,在O 中,弦52求O 的半径;【答案】(1)5(2)94【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【详解】(1)解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴的半径为152BD =. (2)解:如图,过点C 作CE AB ⊥于点E ,O 的半径为5,5OB ∴=, 12OC OB =, 31522BC OB ∴==,4cos 5ABC ∠=,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=−=,92CE ==,则BAC ∠的正切值为99224CE AE ==. 【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键. 都是O 的半径,,求O 的半径.【答案】(1)见解析(2)52【分析】(1)由圆周角定理得出,11,22∠=∠∠=∠ACB AOB BAC BOC ,再根据2A CB B AC ∠=∠,即可得出结论; (2)过点O 作半径OD AB ⊥于点E ,根据垂径定理得出1,2∠=∠=DOB AOB AE BE ,证明DOB BOC ∠=∠,得出BD BC =,在Rt BDE △中根据勾股定理得出1DE =,在Rt BOE 中,根据勾股定理得出222(1)2OB OB =−+,求出OB 即可.【详解】(1)证明:∵AB AB =,∴12ACB AOB ∠=∠, ∵BC BC =,∴12BAC BOC ∠=∠,2ACB BAC ∠=∠,2AOB BOC ∴∠=∠.(2)解:过点O 作半径OD AB ⊥于点E ,则1,2∠=∠=DOB AOB AE BE ,2AOB BOC Ð=ÐQ , ∴DOB BOC ∠=∠,BD BC ∴=,4,==AB BC2,∴==BE DB在Rt BDE △中,90DEB =︒∠Q1∴==DE ,在Rt BOE 中,90OEB ∠=︒,222(1)2∴=−+OB OB ,52OB ∴=,即O 的半径是52.【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理. 46.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD △(2)见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △ ,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒−︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,。

初中数学专题训练:圆的有关概念和性质(附参考答案)

初中数学专题训练:圆的有关概念和性质(附参考答案)

初中数学专题训练:圆的有关概念和性质(附参考答案)1.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10 cm,AB=16 cm.若从目前太阳所处的位置到太阳完全跳出海平面的时间为16 min,则“图上”太阳升起的速度为( )A.1.0 cm/min B.0.8 cm/minC.1.2 cm/min D.1.4 cm/min2.如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC⏜的度数是( )=80°,则BDA.30°B.25°C.20°D.10°3.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O 作OF⊥AC于点F,延长FO交BE于点G.若DE=3,EG=2,则AB的长为( )A.4√3B.7C.8 D.4√54.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )C.105°D.110°5.如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为( )A.2√3B.3√2C.2√5D.√5⏜的中点.若∠BAC=35°,则∠AOB 6.如图,已知点A,B,C在⊙O上,C为AB等于( )A.140°B.120°C.110°D.70°7.如图,△ABC内接于⊙O,AD是⊙O的直径.若∠B=20°,则∠CAD的度数是( )A.60°B.65°C.70°D.75°8.如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为( )A.30°B.45°9.如图,在圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是( )A.25°B.30°C.35°D.40°10.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心,以OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是( )A.15°B.22.5°C.30°D.45°11.往水平放置的半径为13 cm 的圆柱形容器内装入一些水以后,截面图如图所示.若水面宽度AB=24 cm,则水的最大深度为( )A.5 cm B.8 cmC.10 cm D.12 cm12.如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=( )A.23°B.24° C.25°D.26°13.如图所示,在Rt△ABC中,∠ACB=90°,AC=2√3,BC=3,点P为△ABC 内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是( )A.3 B.3√3C.3√34D.3√3214.如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为________.15.如图所示,点A,B,C是⊙O上不同的三点,点O在△ABC的内部,连接BO,CO,并延长线段BO交线段AC于点D.若∠A=60°,∠OCD=40°,则∠ODC=______°.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=10,BE=2,则⊙O的半径OC=______.17.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB ,量得AB⏜的中心C 到AB 的距离CD =1.6 cm ,AB =6.4 cm ,很快求得圆形瓦片所在圆的半径为_____cm.18.如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_______.19.如图,在⊙O 中,两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求⊙O 的半径长; (2)点F 在CD 上,且CE =EF ,求证:AF ⊥BD .20.如图,已知AC 为⊙O 的直径,直线PA 与⊙O 相切于点A ,直线PD 经过⊙O 上的点B 且∠CBD =∠CAB ,连接OP 交AB 于点M .求证: (1)PD 是⊙O 的切线; (2)AM 2=OM ·PM .21.如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心、3为半径的⊙O与OB交于点C,过点C作CD⊥OB交AB于点D,P是边OA上的动点,则PC+PD的最小值为_______.22.如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC =∠ADB.(1)求证DB平分∠ADC,并求出∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F.若AC=AD,BF=2,求此圆的半径长.参考答案1.A 2.C 3.B 4.D 5.D 6.A7.C 8.D 9.A 10.C11.B 12.D 13.D17. 4 18.2√314.45°15.80 16.29419.(1)⊙O的半径长为3√5(2)证明略20.(1)证明略(2)证明略21.2√1022.(1)证明略∠BAD=90°(2)圆的半径长为4。

专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题23圆的有关性质(共38题)一.选择题(共17小题)1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC 的长度为何?()A.3B.4C.D.5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.414.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.515.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是()A.90°B.100°C.110°D.120°16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD 为()A.70°B.65°C.50°D.45°17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.二.填空题(共14小题)18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD 为2厘米,则镜面半径为厘米.30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.三.解答题(共7小题)32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE 的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC 为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.。

初三圆的测试题及答案

初三圆的测试题及答案

初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。

答案:10π cm2. 圆的直径是半径的______倍。

答案:23. 半径为4cm的圆的面积是______。

答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。

答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。

答案:平行四边形6. 圆的切线与半径垂直相交于______。

答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。

答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。

初三关于圆的试题及答案

初三关于圆的试题及答案

初三关于圆的试题及答案一、选择题(每题3分,共30分)1. 下列说法中,正确的是()A. 圆的直径是圆的半径的两倍B. 圆周率π是一个无限不循环小数C. 圆的周长与直径成正比例D. 圆的面积与半径的平方成正比例2. 圆的周长公式是()A. C = 2πrB. C = πdC. C = πrD. C = 2πd3. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πd²D. S = πd4. 一个圆的半径是5厘米,那么它的直径是()A. 10厘米B. 15厘米C. 20厘米D. 25厘米5. 如果一个圆的半径增加一倍,那么它的面积将增加()A. 1倍B. 2倍C. 4倍D. 8倍6. 一个圆的周长是62.8厘米,那么它的半径是()A. 10厘米B. 15厘米C. 20厘米D. 25厘米7. 圆内接四边形的对角线()A. 相等B. 垂直C. 互相平分D. 互相垂直8. 圆的直径是圆内最长的线段,这种说法()A. 正确B. 错误9. 圆的切线()A. 与半径垂直B. 与直径垂直C. 与圆心垂直D. 与圆周平行10. 圆的内切圆与外切圆的半径之和等于()A. 内切圆的半径B. 外切圆的半径C. 两圆半径之和D. 两圆半径之差二、填空题(每题3分,共30分)1. 圆的周长公式是______,面积公式是______。

2. 如果圆的半径是3厘米,那么它的周长是______厘米,面积是______平方厘米。

3. 圆的直径是半径的______倍。

4. 圆的周长与直径的比值是______。

5. 圆的面积与半径的平方的比值是______。

6. 圆的切线与半径的交点是______。

7. 圆内接四边形的对角线互相______。

8. 圆的内切圆与外切圆的半径之和等于______。

9. 圆的直径是圆内最长的线段,这种说法是______。

10. 圆的周长是圆的直径的______倍。

三、解答题(每题10分,共40分)1. 已知一个圆的半径是4厘米,求它的周长和面积。

(完整版)圆的基本性质练习题一

(完整版)圆的基本性质练习题一

圆的基本性质练习一、看准了再选1..如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) A.110° B.70° C.55° D.125°2.如图,⊙O 的直径CD 过弦EF 的中点G 且EF ⊥CD ,若∠EOD=40°,则∠DCF 等于( ) A.80° B. 50° C.40° D. 20°3.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A、相离 B、相切 C、相切或相交 D、相交4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于( ) A.30° B.120° C.150° D.60°5.如图,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B ,C•则BC=( ). A .32 B .33 C .323 D .3326..如图所示,∠1,∠2,∠3的大小关系是( ).A .∠1>∠2>∠3B .∠3>∠1>∠2C .∠2>∠1>∠3D .∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O•与点A 不重合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( ) A .0<x ≤2 B .1<x ≤2 C .1≤x ≤2 D .x>28.如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( )OCFGD EAPBC OA .65°B .115°C .65°或115°D .130°或50°9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等的角有( )个。

圆的有关性质初三练习题

圆的有关性质初三练习题

圆的有关性质初三练习题1. 单选题:下列哪个选项是关于圆的有关性质的描述?a) 圆的面积等于πr²b) 圆的外切矩形的面积小于圆的面积c) 圆周长等于2πrd) 圆的直径等于圆的半径的两倍2. 填空题:已知圆的半径为5cm,求其直径长为______cm。

3. 判断题:若两个圆的半径相等,则它们的面积一定相等。

4. 多选题:下列哪些是圆的有关性质?a) 弧长公式:L = α/360° × 2πrb) 圆的切线与半径垂直c) 弦的长大于弧的长d) 圆心角等于弧所对的圆周角e) 圆的半径与直径满足关系式:d = 2r5. 解答题:已知圆的半径为8cm,求其面积和周长。

6. 判断题:如果两个圆的半径相等,则它们的直径也一定相等。

7. 单选题:下列哪个选项是圆的有关性质的描述?b) 弧长与圆心角的关系:L = rθc) 两条弧长相等的弧所对的圆心角一定相等d) 圆上的两点可以连成一条直线8. 填空题:确定圆心为O,半径为6cm的圆上,P点与Q点之间的弧长为12πcm,则圆心角∠POQ的度数为______。

9. 判断题:两条相交的弦一定相等。

10. 解答题:已知圆的周长为12πcm,求其半径和面积。

11. 单选题:下列哪个选项是关于两个相交圆的有关性质的描述?a) 两个相交圆一定有2个公共切线b) 两个相交圆的外切矩形的面积一定小于两个圆的面积之和c) 两个相交圆的内切矩形的面积一定大于两个圆的面积之和d) 两个相交圆的半径之和一定大于两个相交弦的长度之和12. 填空题:已知圆的周长为18πcm,则其直径长为______cm。

13. 判断题:两个相交圆的交点一定在两个圆的直径上。

14. 多选题:下列哪些是与圆的有关性质有关的计算公式?a) 圆的面积公式:S = πr²b) 圆的弧长公式:L = 2πrd) 圆心角的计算公式:α = L/re) 弧度制与角度制的换算公式:θ(度数) = θ(弧度) × 180°/π15. 解答题:已知圆的面积是16πcm²,求其半径和周长。

与圆有关的性质练习题

与圆有关的性质练习题

圆的练习题一1、半径为R 的圆中,垂直平分半径的弦长等于( )A .43RB .23R C .3R D .23R2.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为( )A .23B .3C .5D .253.已知:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,则⊙O 的半径为( )A .4cmB .5cmC .42cmD .23cm3.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B .5:2C .5:2D .5:44、在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,则⊙O 的直径的长为( )A .42B .82C .24D .165、下列命题中,正确的有( ) A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 6.下列说法中,正确的是( ) A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等7.⊙O 中,M 为的中点,则下列结论正确的是( ). A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小不能确定8、如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 是( )A .正方形 B.长方形C .菱形D .以上答案都不对9、如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =,3cm OC =,则⊙O 的半径为 cm .10.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径 OA =10 m ,高度CD 为_ ____m .11、如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________12. ⊙O 的半径是3cm ,P 是⊙O 内一点,PO=1cm ,则点P 到⊙O 上各点的最小距离是 .13. 一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm .14. 若圆的半径为2cm ,圆中的一条弦长23cm ,则此弦中点到此弦所对弧的中点的距离为 .15. AB 为圆O 的直径,弦CD ⊥AB 于E ,且CD=6cm ,OE=4cm ,则AB= . 16.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短的弦长是 ,最长的弦长是 .17.如图,弦DC 、FE 的延长线交于⊙O 外一点P ,直线PAB 经过圆心O ,请你根据现有圆形,添加一个适当的条件: ,使∠1=∠2.18.已知:⊙O 半径为6cm ,弦AB 与直径CD 垂直,且将CD 分成1∶3两部分,求:弦AB 的长.第8题第9题第10题19. 如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?20、已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.21、如图所示,以ABCD的顶点A为圆心,AB为半径作圆,作AD,BC于E,F,•延长BA交⊙O于G,求证:GE=EF22、 如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.23.⊙O 的直径为50cm ,弦AB ∥CD ,且AB=40cm ,CD=48cm ,求弦AB 和CD 之间的距离.24、 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。

24.1圆的有关性质练习卷人教版数学九年级上册

24.1圆的有关性质练习卷人教版数学九年级上册

人教版九年级上册《24.1圆的有关性质》同步练习卷 一、选择题 1. 下列说法中错误的是( )A .半圆是弧B .半径相等的圆是等圆C .过圆心的线段是直径D .弓形是弦及弦所对的弧组成的图形2. 在以AB=8cm 为直径的圆上,到AB 的距离为4cm 的点有( )A .无数个B .1个C .2个D .4个3. 下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A .3个B .4个C .5个D .6个4. 如图,BC 是半圆O 的直径,D ,E 是BC ―上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠DOE=40°,那么∠A 的度数为( )A .35°B .40°C .60°D .70°5.若⊙O所在平面内一点P到⊙O上的点的最大距离为7,最小距离为3,则此圆的半径为()A.5 B.2 C.10或4 D.5或2 二、填空题6.若四边形的四个顶点在同一个圆上,则这个四边形可能是______ .7.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 ______ .8.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD的度数是 ______ 度.9.如图,OB、OC是⊙O的半径,A是⊙O上一点,若∠B=20°,∠C=30°,则∠BOC= ______ .10.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ,OP⊥AB,则PQ的长是 ______ .三、解答题11.如图,AC是⊙O的直径,点B在圆上(不与点A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,∠AOB=3∠ADB.求证:DE= 1AC.212.如图,A、B、C为⊙O上三点,∠ACB=20〇,求∠BAO的度数.13.如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.问:线段CE和线段BF相等吗?请说明理由.14.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.15.如图a,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.(1)如图b,当点P在半径OA上时,若QP=QO,求∠OCP的度数.(2)当点P在直线l上其他位置时,是否还存在∠OCP使得QP=QO?若存在,请求出∠OCP的度数;若不存在,请说明理由.。

圆的测试题及答案

圆的测试题及答案

圆的测试题及答案# 圆的几何性质测试题及答案## 一、选择题1. 圆的半径是10厘米,那么它的直径是多少厘米?- A. 5厘米- B. 10厘米- C. 20厘米- 答案:C2. 圆的周长公式是什么?- A. C = πr- B. C = 2πr- C. C = 4πr- 答案:B3. 一个圆的面积是50π平方厘米,它的半径是多少厘米?- A. 5厘米- B. 10厘米- C. 20厘米- 答案:A## 二、填空题4. 圆的面积公式是 \( A = \pi r^2 \),其中 \( r \) 表示圆的________。

- 答案:半径5. 如果一个圆的直径是20厘米,那么它的半径是________厘米。

- 答案:106. 圆的周长是其直径的________倍。

- 答案:π## 三、简答题7. 描述圆的切线的性质。

- 答案:圆的切线在圆上某一点处与半径垂直,且只与圆接触于一点。

8. 解释什么是圆的内接多边形。

- 答案:圆的内接多边形是指所有顶点都位于圆上,且所有边都与圆相切的多边形。

## 四、计算题9. 已知圆的半径为7厘米,求其周长和面积。

- 答案:周长 \( C = 2\pi r = 2 \times 7\pi \) 厘米,面积\( A = \pi r^2 = 49\pi \) 平方厘米。

10. 一个圆的周长是44厘米,求其半径。

- 答案:半径 \( r = \frac{C}{2\pi} = \frac{44}{2\pi}\approx 7 \) 厘米。

## 五、证明题11. 证明:在一个圆中,所有直径的长度相等。

- 答案:在一个圆中,直径是连接圆上任意两点并通过圆心的线段。

由于圆心到圆上任意一点的距离(即半径)是相等的,因此通过圆心的线段(即直径)的长度也必然相等。

## 六、应用题12. 一个圆形花坛的半径是15米,如果绕花坛铺设一条1米宽的小路,这条小路的面积是多少平方米?- 答案:首先计算外圆的半径,即 \( r_{外} = 15 + 1 = 16 \) 米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《点、直线、圆和圆的位置关系》复习题
一、填空题
25.如图,点B是线段AC的中点,过点C的直线l与AC成60°的角,在直线l上取一点P,使
∠APB=30°,则满足条件的点有几个( )
A.3个
B.2个
C.1个
D.不存在
三、解答题
26.如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且PDA PBD
∠=∠.
(1)判断直线PD是否为O的切线,并说明理由;
(2)如果60
∠=,PD=,求PA的长。

BDE
27.如图,在△ABC中,AB=AC,D是BC中点,AE平分
∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两
点, 交AD于点G,交AB于点F.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.
28.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB
于点E、F,点G是AD的中点.求证:GE是⊙O的切线.
29.如图,点O在APB
的平分线上,⊙O与PA相切于点C.
(1) 求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E若⊙O的半径为3,PC=4,
求弦CE的长.
30.已知如图所示,△ABC中∠A=∠B=30°,CD是△ABC的角平分线,以C为圆心,CD为半径画圆,交CA所在直线于E、F两点,连接DE、DF。

(1)求证:直线AB是⊙C的切线。

(2)若AC=10cm,求DF的长
31.如图,AB是⊙O的直径,∠A=30,延长OB到D,使BD=OB.
(1)△OCB是否是等边三角形?说明你的理由;
(2)求证:DC是⊙O的切线.
32.已知:如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,
A
∠DOC=2∠ACD=90°.
(1)求证:直线AC是⊙O的切线;
D (2)如果∠ACB=75°,⊙O的半径为2,求BD的长.
B C
O。

相关文档
最新文档