量子力学第七章练习 解答

合集下载

量子力学第七章习题

量子力学第七章习题

第七章 自旋与全同粒子7.1 证明ˆˆˆx y z i σσσ=. 解: 方法Ⅰ根据ˆˆˆ,,x y z σσσ在ˆz σ表象中的矩阵表示,现将它们乘起来后有 010*******ˆˆˆ1000110001x y z i i i ii σσσ-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭既是 ˆˆˆx y z i σσσ= 方法Ⅱ从泡利矩阵的对易关系()()()ˆˆˆˆˆ21ˆˆˆˆˆ22ˆˆˆˆˆ23x y y x z y z z y x z x x z y i i i σσσσσσσσσσσσσσσ⎧-=⎪⎪-=⎨⎪-=⎪⎩ 出发,又考虑到 ()222ˆˆˆ14x y z σσσ===我们来证明命题.先找出ˆˆˆ,,x y z σσσ之间的反对易关系: (2) 式右乘ˆy σ与(2)式左乘ˆy σ相加,有 ()()()()2211ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ2211ˆˆˆˆˆˆˆˆˆˆˆˆ022x y y x y z z y y y y z z y y z y z y y z y z y z z i ii iσσσσσσσσσσσσσσσσσσσσσσσσσσ+=-+-=-+-=-=()()()ˆˆˆˆ05ˆˆˆˆ06ˆˆˆˆ07x y y x y z z y z x x z σσσσσσσσσσσσ+=⎧⎪+=⎨⎪+=⎩ 再证明ˆˆˆ,,x y z σσσ之间的循环关系:将(5)、(6)、(7)分别代入(1)、(2)、(3),便得到 ()()()ˆˆˆˆˆ8ˆˆˆˆˆ9ˆˆˆˆˆ10x y y x z y z z y x z x x z y i i i σσσσσσσσσσσσσσσ⎧=-=⎪=-=⎨⎪=-=⎩ 最后证明以z ˆσ右乘(8)式两边,注意到(4)式,立即得到 ˆˆˆz y z i σσσ= 7.2 求在自旋态()12z s χ中, ˆx S 和ˆyS 的测不准关系: ()()22?x y S S ∆⋅∆=解: 在自旋态()1210z s χ⎛⎫= ⎪⎝⎭先计算()222x x x S S S ∆=-()()†1122011110010100022x x S S χχ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ()2222112201011101010044xxSS χχ+⎛⎫⎛⎫⎛⎫===⎪⎪⎪⎝⎭⎝⎭⎝⎭ 所以:()22224x x xS SS ∆=-=又 ()()1122010*********y y i S S i i χχ+-⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()()()2221122222001100004001101000444y y i i S S i i i i i χχ+--⎛⎫⎛⎫⎛⎫== ⎪⎪⎪⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所以 ()22224y yy S S S ∆=-=最后得 ()()224224416x y S S ∆⋅∆==讨论: 由ˆx S 和ˆy S 的对易关系ˆˆˆ,z x y i S S S ⎡⎤=⎣⎦ 要求()()2222ˆˆ4zyx S S S ≥∆∆ ,在()12z S χ态中,2z S = , 所以()()42216x y S S ∆⋅∆≥. 可见上述结论符合上式的要求. 7.3 求01ˆ102x S ⎛⎫= ⎪⎝⎭及0ˆ02yi S i -⎛⎫= ⎪⎝⎭ 的本征值和所属的本征函数. 解: (1) 求01ˆˆ1022x xS σ⎛⎫== ⎪⎝⎭的本征值和本征函数 ˆx σ的本征值方程为 11220110c c c c λ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即 11221201001c c c c c c λλλλ-+=-⎛⎫⎧⎛⎫=⇒⎨ ⎪ ⎪-=-⎝⎭⎝⎭⎩ (1) 上式有12,c c 非零解的条件是101λλ-=-,即21λ= 当1λ=+时,由方程(1)知12c c =,再由本征函数的归一化条件22121c c +=.得12c c ==即得ˆx σ的本征值为1+11⎫⎪⎝⎭,亦即ˆx S 的本征值为2+ 的本征函数. 当1λ=-时,由方程(1)知12c c =-,再由本征函数的归一化条件22121c c +=.得12c c ==即得ˆx σ的本征值为1-11⎫⎪-⎝⎭,它对应ˆx S 的本征值为2- 的本征函数. (2) 求0ˆˆ022y yi S i σ-⎛⎫== ⎪⎝⎭的本征值和本征函数 ˆy σ的本征值方程为 112200c c i c c i λ-⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即 12120c ic ic c λλ--=⎧⎨-=⎩ (2)21c ,c 不全为零解的条件是0ii λλ--=-,即21λ=当1λ=+时,由方程(2)知21c ic =,再由本征函数的归一化条件得: 12c c ==所以1i ⎫⎪⎝⎭ 为对应于ˆy S 的本征值为2+ 的本征函数. 当1λ=-时,由方程(2)知21c ic =-,再由本征函数的归一化条件得:12c c ==所以1i ⎫⎪-⎝⎭ 为对应于ˆy S 的本征值为2- 的本征函数. 无疑,以上所求的所有本征函数都有一个不确定的相因子i e δ.另外,由于ˆzS 的本征值为2± ,所以在自身表象中的表示为10ˆ012zS ⎛⎫= ⎪-⎝⎭ 本征函数为10,01⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 7.4 求自旋角动量在()cos ,cos ,cos αβγ方向的投影ˆˆˆˆcos cos cos n x y zS S S S αβγ=++ 的本征值和所属的本征函数.在这些本征态中, 测量ˆz S 有哪些可能值? 这些可能值各以多大的概率出现? ˆz S 的平均值是多少?解: 将ˆˆˆ,,x y z S S S 在ˆz S 的表象中的矩阵形式代入ˆˆˆˆcos cos cos n x y zS S S S αβγ=++中得: 01010ˆcos cos cos 10001222cos cos cos cos cos cos 2ni S i i i αβγγαβαβγ-⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫= ⎪+-⎝⎭设ˆnS 的本征值为2λ ,本征函数为12c c λψ⎛⎫= ⎪⎝⎭则有本征值方程 1122cos cos cos cos cos cos c c i c c i γαβλαβγ-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭即 ()12cos cos cos 0cos cos cos i c i c γλαβαβγλ--⎛⎫⎛⎫=⎪ ⎪+-+⎝⎭⎝⎭ (1) 21c ,c 有非零解的条件是:()cos cos cos 0cos cos cos i i γλαβαβγλ--=+-+亦 ()()2222c o s c o s c o s 0γλαβ---+= 亦即 ()2222cos cos cos 0λαβγ-++= 得 21,1λλ==±即: ˆnS 的本征值为2± . 因此我们普遍的证明了:自旋角动量在空间任意方向的投影均为2+ 和2-, 以下求n S 的本征矢. 将矩阵方程(1)展开()()()()()()1212cos cos cos 02cos cos cos 03c i c i c c γλαβαβγλ⎧-+-=⎪⎨+-+=⎪⎩当1λ=+时, 由(2)得 12cos cos 1cos i c c αβγ-=-所以 12cos cos 1cos 1i c αβγψ+-⎛⎫⎪-=⎪ ⎪⎝⎭由1ψ+的归一化求2c , 即()()222112222222222cos cos 11cos 212cos cos cos cos 11cos 1cos c c c αβψψγγγαβγγ+++⎛⎫+ ⎪=+ ⎪-⎝⎭⎛⎫-+++ ⎪=== ⎪--⎝⎭得:2c =所以:1cos cos cos cos 1cos 1cos 1i i αβαβγψγ+-⎫-⎫⎪-==⎪⎪-⎭⎪⎭另解:当1λ=+时, 由(3)得: 21cos cos 1cos i c c αβγ+=+所以 111cos cos 1cos c i ψαβγ+⎛⎫ ⎪=+⎪ ⎪+⎝⎭由1ψ+的归一化求1c , 即()()222111222222112cos cos 11cos 212cos cos cos cos 11cos 1cos c c c αβψψγγγαβγγ+++⎛⎫+ ⎪=+ ⎪+⎝⎭⎛⎫++++ ⎪=== ⎪++⎝⎭得:1c =所以:111cos cos cos cos cos 1cos i i γψαβαβγ+⎫+⎫⎪==+⎪⎪+⎭⎪+⎭同理当1λ=-时, 由(2)得:12cos cos 1cos i c c αβγ-=-+所以 12cos cos 1cos 1i c αβγψ--⎛⎫-⎪+= ⎪ ⎪⎝⎭由1ψ-的归一化求1c , 即()()222112222222222cos cos 11cos 212cos cos cos cos 11cos 1cos c c c αβψψγγγαβγγ+--⎛⎫+ ⎪=+ ⎪+⎝⎭⎛⎫++++ ⎪=== ⎪++⎝⎭得:()2i c e δδπ==所以:1cos cos cos cos 1cos 1cos 1i i αβαβγψγ--⎫--⎫⎪+==⎪⎪--⎭⎪⎭另解:同理当1λ=-时, 由(3)得 21cos cos 1cos i c c αβγ+=-- 所以111cos cos 1cos c i ψαβγ--⎛⎫ ⎪=+⎪ ⎪-⎝⎭由1ψ-的归一化求1c , 即()()222111222222112cos cos 11cos 212cos cos cos cos 11cos 1cos c c c αβψψγγγαβγγ+--⎛⎫+ ⎪=+ ⎪-⎝⎭⎛⎫-+++ ⎪=== ⎪--⎝⎭得:1c =所以:111cos cos cos cos cos 1cos i i γψαβαβγ--⎫-+⎫⎪==+⎪⎪+⎭⎪-⎭对于态1cos cos 101cos 01i αβψγ+-⎫⎫⎫+⎪⎪⎪-⎭⎭⎭可能值为2±,出现的几率分别为()()()()()2222cos cos cos cos 21cos 2cos cos 1cos 1cos cos 21cos 21cos 22z i i W s αβαβγαβγγγγγ-+⎛⎫=== ⎪-⎝⎭+-+====--1cos 22z W s γ-⎛⎫===- ⎪⎝⎭在此态中ˆzS 的平均值是 1cos 1cos cos 22222z S γγγ+-⎛⎫=+=- ⎪⎝⎭对于态1cos cos 101cos 01i αβψγ--⎫⎫⎫=⎪⎪⎪--⎭⎭⎭ 可能值为2±,出现的几率分别为()()()()22cos cos cos cos21cos21cos1cossin2221coszi iW sαβαβγγγγγ-+⎛⎫===⎪+⎝⎭--===+1cos22zW sγ+⎛⎫===-⎪⎝⎭在此态中ˆzS的平均值是1cos1coscos22222zSγγγ-+⎛⎫=+=--⎪⎝⎭7.5 设氢原子的状态是()()()()211121101,2,R r Yr Yθϕψθϕ⎛⎫⎪⎪=⎪⎪⎝⎭(1)求轨道角动量z分量ˆzL和自旋角动量z分量ˆzS的平均值;(2) 求总磁矩()ˆˆˆSI2e eμμ=--M L S的z分量的平均值(用玻尔磁子表示).解:(1)*211121112110211022111112ˆˆ244z z zR YL L d R Y Y L dYR Y dψψτττ+⎛⎫⎪⎛⎫⎪== ⎪⎪ ⎪⎝⎭⎪⎝⎭=+=⎰⎰⎰*211121112110211011012ˆ0122z zR YS S d R Y Y dYψψττ+⎛⎫⎪⎛⎫⎛⎫⎪== ⎪ ⎪⎪- ⎪⎝⎭⎝⎭⎪⎝⎭⎰⎰*211121112110211011222132444R YR Y Y dYτ⎛⎫⎪⎛⎫⎪= ⎪⎪ ⎪⎝⎭⎪⎝⎭⎛⎫=-=-⎪⎝⎭⎰(2)112244424z z z Be e e e eM L S Mμμμμμ=--=-+==7.6一体系由三个全同的玻色子组成.玻色子之间无相互作用.玻色子只有两个可能的单粒子态.问体系可能的状态有几个?它们的波函数怎样用单粒子波函数构成?解:玻色子的总波函数应是对称的.这种对称波函数是由所有可能的单粒子波函数乘积组合而成,为了方便地组织这些波函数,我们列一个填充单态的表:波函数为()()()()()()()()()()()()I II 123123123123ψαααψααβαβαβαα==++⎤⎦ ()()()()()()()()()()()()III IV123123123123ψαβββαβββαψβββ++⎤⎦= 7.7 证明()()()123,,S S Sχχχ和A χ组成正交归一系. 证明1:单电子自旋空间的基矢为112210,01χχ+-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭两个电子构成的体系的自旋态空间在无耦合表象中的基矢为单电子自旋态空间基矢的直积,即121212121110,00010100,1011⎛⎫⎛⎫⎛⎫⎛⎫⊗⊗ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⊗⊗ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭态空间是4维的,在此定态空间中,两个电子的自旋态()()()312,,S S Sχχχ和A χ可写为 ()()()()()()()()()()()1211111212222212123111112122222121210110000,00011001010011011010S S z z z z z z z z S s s s s s s s s χχχχχχχχχχχ----⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪==⊗===⊗=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎫⎛⎫+⎤==⊗+⊗=⎪ ⎪⎪ ⎪⎥⎦⎭⎝⎭⎭⎝⎭()()()()1111121222221212010011011010z z z z A s s s s χχχχχ--⎫⎪⎪⎪⎪⎝⎭⎛⎫ ⎪⎫⎛⎫⎫⎛⎫-⎤⎪==⊗-⊗=⎪ ⎪⎪ ⎪⎥⎪⎦-⎭⎝⎭⎭⎝⎭⎪⎝⎭由此容易证明归一性:()()()22223121A S S S χχχχ====.()()()()()(()(††3121†100010,0,100010000110010.100010S S S S S A χχχχχχ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪==== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪⎪==⎪-⎪⎝⎭同理可证得()()()()†††33220S S S A S A χχχχχχ===.所以()()()312,,S S Sχχχ和A χ组成正交归一系. 证明2: ()12i χ±是第i 个单电子的ˆz S 的本征函数,本征值为2±,它们是正交归一的,即 ()()()()()()()()††11112222††11112222111,2i i i i i i i i i χχχχχχχχ----=====由()12i χ±组合而成的二电子体系的自旋波函数的正交归一性决定于上面那些单电子波函数的正交归一性.先证明归一性.()()()()()()()()()()()()111111222211111122222212122112221S Sχχχχχχχχχχχχ+++++⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦=== ()()()()()()()()()()()()221111222211111122222212122112221SS χχχχχχχχχχχχ++----+++------⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦===()()()()()()()()()()()()()()()()()()()331111111122222222111111112222222212211221112112122111122S Sχχχχχχχχχχχχχχχχχχ++----++++----⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪=++⎬⎬⎥⎥⎪⎪⎦⎦⎭⎭⎡⎤=+=+=⎢⎥⎣⎦()()()()()()()()11111111222222221122112212A A χχχχχχχχχχ++----⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦()()()()()()()()()()()()()()()()()111111112222222211111111222222221211212212112112122111122χχχχχχχχχχχχχχχχ++++----++++----⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=+=+=⎢⎥⎣⎦以下证明正交性:()()()()()()12111122221212S Sχχχχχχ++--⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦()()()()()()11111122222221120110χχχχχχ+++---⎛⎫=== ⎪⎝⎭()()()()()()()()()()()()()()()()()()()()131111112222221111111122222222111122222112212112212122110S S χχχχχχχχχχχχχχχχ+++--++++--++--⎡⎤⎡⎤=+⎢⎥⎣⎦===()()()()()()()()()()()()()()()()()()()11111112222221111111122222222111122222112212112212122110S A χχχχχχχχχχχχχχχχ+++--++++--++--⎡⎤⎡⎤=-⎢⎥⎣⎦-=()()()()()()()()()()211111111122222222121221120S Sχχχχχχχχχχ++++----⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦()()()(()()()()()()()()()()()()()()231111112222221111111122222222112221122121122121220S S χχχχχχχχχχχχχχχ+++----++++------+-⎡⎤=+⎥⎦==+=()()(()()()()()()()()()()()()()()21111112222221111111122222222112221122121122121220S A χχχχχχχχχχχχχχχχ+++----++++------+-⎡⎤=-⎥⎦===()()()()()()()()()()()()()()()()()()()()311111112222221111111122222222111122221221122112121222110SSχχχχχχχχχχχχχχχχχχχχ++--++++--++--⎡⎤⎡⎤=+⎥⎢⎥⎦⎣⎦⎡⎤=+⎥⎦⎡⎤=+=⎥⎦ ()()()()()()()()()()()()()()()()()()3211111122222211111111222222221122122112211212120220S Sχχχχχχχχχχχχχχχχχχ++----++++------+-⎡⎤⎡⎤=+⎥⎢⎥⎦⎣⎦⎡⎤=+⎥⎦⎤=+=⎥⎦()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()31111111122222222111111112222222211111111222222221111112222221221122112112122121211212122212112S A χχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχχ++----++++----++++----++++---⎡⎤⎡⎤+-⎥⎥⎦⎦⎡⎤⎡⎤=+-⎢⎥⎢⎥⎣⎦⎣⎦⎡=+⎢⎣--()()[]1122211100102χ-⎤⎥⎦=+--=同理可证()()()32100A S A S A S χχχχχχ+++===7.8 设两电子在弹性辏力场中运动,每个电子的势能是()2212U r r μω=.如果电子之间的库仑能和()r U 相比可以忽略,求当一个电子在基态,另一个电子处于沿x 方向运动的第一激发态时,两电子组成体系的波函数.解: 在直角坐标系中势能写作()()()22222211,,22U r r U x y z x y z μωμω=⇒=++,如果电子之间的库仑作用忽略不计,所以每个电子像另一电子不存在那样作三维振动.写出任一电子的波函数()z ,y ,x ψ所满足的薛定谔方程()()()()22222222221,,,,,,22x y z x y z x y z E x y z x y z ψμωψψμ⎛⎫∂∂∂-+++++= ⎪∂∂∂⎝⎭ 令 ()()()()123,,x y z x y z ψψψψ= 将此代入薛定谔方程()()()()()()22222222212322222222221231112d x d y d z x y z E x dx y dy z dz ψψψμωμωμωμψψψ⎡⎤⎡⎤⎡⎤-+-+-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 上式第一项仅是x 的函数,第二项仅是y 的函数,第三项仅是z 的函数,而右端是一个常数,所以上式第一项、第二项和第三项分别只等于一个与z ,y ,x 无关的常数.设()()22212222112x d x x E x dx ψμωμψ⎡⎤-=-⎢⎥⎢⎥⎣⎦()()22222222212y d y y E y dy ψμωμψ⎡⎤-=-⎢⎥⎢⎥⎣⎦()()22222222212z d z z E z dz ψμωμψ⎡⎤-=-⎢⎥⎢⎥⎣⎦则:x y z E E E E =++上面三式都是一维谐振子的方程,其本征函数和本征值为: 对于x 方向 ()()2212110,1,22x x x n n x x x x N eH x E n n αψαω-⎛⎫==+= ⎪⎝⎭对于y 方向()()2212210,1,22yy y n n y y y y NeH y E n n αψαω-⎛⎫==+= ⎪⎝⎭ 对于z 方向 ()()2212310,1,22z z z n n z z z x N e H z E n n αψαω-⎛⎫==+= ⎪⎝⎭其中α=总波函数和能级如下:()()()()()()()()222212123,,xyzxyzx y z n n n n n n x y z x y z N N N H x H y H z eαψψψψααα-++==32n x y z E E E E n ω⎛⎫=++=+ ⎪⎝⎭其中:x y z n n n n =++ ,,0,1,2,3x y z n n n =将()1,2i i =电子的基态波函数表示为(注意: 11222n n N n απ⎛⎫= ⎪⎝⎭!)()2222311232200i i r r i r N ee ααψ--⎫== (1) x 方向的第一激发态波函数表示为()2222112221012i i r r i i i r N N x eeααψα--==(2)其中2μωα=,i r 表示第i 个电子的矢径,1,2i =.将0ψ与1ψ视为两个独立的单电子轨道状态,根据对称性原理两电子组成的体系的轨道状态有对称与反对称两种:()()()()01120211S r r r r ψψψψψ+⎤⎦(3) ()()()()01120211A r r r r ψψψψψ-⎤⎦ (4)考虑到电子(费米子)体系的总波函数应是反对称的,则I S A Φψχ= (单重态) III A S Φψχ= (三重态) (5)即该二电子体系共有以上四个反对称的波函数.将(1)、(2)代入(3) 、(4),把(5)式所表示的总波函数的轨道部分的函数形式具体化:()()22222222122122212I 3232111122222114212S Ar r r r A r r A e e e x e x x e αααααΦψχχχ-----+=⎧⎫⎪=+⎬⎪⎭⎫=+⎬⎭(6)()()2221214III221r r A S S x x e αΦψχχ-+⎧⎫==-⎬⎭(7) 引入相对坐标()121212=+=-R r r r r r则有 ()()121212X x x x x x =+=- (8) 22222212121212422R r r r r r =++⋅=+-⋅r r r r由此得:()222212142r r R r +=+ (9) 将(8)、(9)分别代入(6)与(7),得()222144I4R rS A A XeαΦψχχ-+==()222144III4R r A S S αΦψχχ-+==从上面波函数可以看出,该二电子体系的轨道运动可以认为是质心的振动与两电子相对振动的合成.。

量子力学第七章习题解答

量子力学第七章习题解答


h h 2 2 2 λ − cos γ − (cos α + cos β ) = 0 4 4
2
h λ − = 0 (利用 cos 2 α + cos 2 β + cos 2 γ = 1) 4
2
2

a h 设对应于 S n = 的本征函数的矩阵表示为 χ 1 ( S n ) = , b 2 2
由归一化条件,得
a 2 2 1 = χ 1 χ 1 = (a , b ) = a + b b 2 2 2 cos α + i cos β 2 2 a + a =1 1 + cos γ
+ * *
2 2 a =1 1 + cos γ

1 + cos γ a= 2
,得
b=
cos α + i cos β 2(1 + cos γ )
ˆ 在这些本征态中, 测量 S z 有哪些可能值?这些可 ˆ 能值各以多大的几率出现? S z 的平均值是多少?
ˆ ˆ 解:在 S z 表象, S n 的矩阵元为
ˆ = h 0 1 cos α + h 0 − i cos β + h 1 0 cos γ Sn 1 0 i 0 0 − 1 2 2 2

b1 a1 = ⇒ a b 1 1
b1 = a1
χ 1+/ 2 χ 1 / 2 = 1 ,得 由归一化条件 a * * 1 (a1 , a1 ) = 1 a 1

2 a1 = 1
2

a1 =
1 2
b1 =

量子力学教程课后习题答案

量子力学教程课后习题答案

量子力学教程课后习题答案量子力学习题及解答第一章量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式,(1)以及,(2),(3)有这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。

本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作。

但要注意的是,还需要验证对λ的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=h,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性的电子的能量——动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。

第七章量子力学的矩阵形式与表象变换习题

第七章量子力学的矩阵形式与表象变换习题

一. 选择题99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'exp(21)('x p ix P πψ=,它在动量表象中的表示是D A.δ(')p p -. B.δ(')p p +. C.δ()p . D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是AA.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x .101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是DA.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是C A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001. B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪.103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是DA.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 0b a .D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪.104.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 AA. .B. - .C. 2 .D. 0.105.算符Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符(,)F x i x ∂∂在 Q 表象中的矩阵元的表示是BA.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂.C.F u x F x i x u x dx mn n m =⎰()(,)()* ∂∂. D.F u x F x i x u x dx mn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是AA. 以本征值为对角元素的对角方阵. B 一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是A A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是BA.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-. C.22222212p p ∂∂μωμ -.D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是A A. ±1. B. 0. C. ±i . D. 1±i .110. 在 Q 表象中F =⎛⎝ ⎫⎭⎪0110, F 的归一化本征态分别为A A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为AA.S S +-=.B.S S +=*.C.S S =-.D.S S *=-. 112.幺正变换BA.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符 ()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于B A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D. [ , ]a a i +=.二. 填空题1. Q 表象是以Q 的本征函数系(){}x u n 为基底的表象,在这个表象中,有()()x u Q x u Q n n n =()()x u t a n n ∑=ψ()()()())(,,)(,)(,***t a t a t a t a t a t a n n 21+21=⎪⎪⎪⎪⎪⎭⎫⎝⎛=ψψ2. 算符F 对应一个矩阵(方阵),矩阵元是dxFu u F m n nm ⎰=*3. 选定表象后,算符和量子态都用 表示。

量子力学练习参考解答

量子力学练习参考解答

量子力学练习参考解答第一章 波函数与薛定谔方程1.1,1.2,1.3题解答略。

1.4(a )设一维自由粒子的初态为一个Gauss 波包,222412)(1)0,(απαψxx p i e e x -=证明:初始时刻,0=x ,0p p =[]2)(12α=-=∆x x x[]α2)(12=-=∆p p p2 =∆⋅∆p x证:初始时刻012222===-+∞∞-+∞∞-⎰⎰dx exdx x x x απαψ2122222222απαψα===-∞+∞-∞+∞-⎰⎰dx exdx x x x()22122α=-=∆xx x)0,(x ψ的逆变换为⎰+∞∞--=dx ex p ipx/)0,(21)(ψπϕ=⎰+∞∞---dx eeeipx x x p i/2412220)(121απαπ=2220()22214(/)p p eααπ--22202()()p p p eααϕπ--=因此02)(p dp p p p ==⎰+∞∞-ϕ2222222)(0αϕ +==⎰∞+∞-p dp p p p()α22122 =-=∆p p p2 =∆⋅∆p x注:也可由以下式子计算p 和2p :2222(,0)()(,0)(,0)()(,0)dp x ix dx dxd p x x dxdx ψψψψ+∞*-∞+∞*-∞=-=-⎰⎰1.5 设一维自由粒子的初态为)0,(x ψ,证明在足够长时刻后,()[]⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅-=t mx t imx i t m t x ϕπψ2exp 4exp ,2式中()()⎰+∞∞--=dx e x k ikx0,21ψπϕ是)0,(x ψ的Fourier 变换。

提示:利用()x e e x i i δπααπα=-∞→24/lim。

证:依照平面波的时刻转变规律 ()t kx i ikxe e ω-→ , m k E 22==ω,任意时刻的波函数为()()()dk e k t x mtkkx i 2/221, -+∞∞-⎰=ϕπψ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=⎰∞+∞-22/2ex p 212t mx k m t i k dk etimx ϕπ(1) 那时刻足够长后(所谓∞→t ),上式被积函数中的指数函数具有δ函数的性质,取m t 2 =α , (2)参照此题的解题提示,即得()()⎰+∞∞--⎪⎭⎫ ⎝⎛-⋅≈k d t mx k k e t m et x i timx δϕππψπ4/2221,2⎪⎭⎫⎝⎛=-t mx e e t m t imx i ϕπ2/4/2 (3) 1.6 依照粒子密度散布ρ和粒子流密度散布j的表示式, ()()()t r t r t r ,,,*ψψρ=()()()()()[]t r t r t r t r mi t r j ,,,,2,**ψψψψ∇-∇-=概念粒子的速度散布v()()()()⎥⎦⎤⎢⎣⎡∇-∇-==t r t r t r t r m i j v ,,,,2**ψψψψρ 证明:0=⨯∇v 。

苏汝铿量子力学(第二版)课后习题(含答案)--第七章7.4-7.5#12 @(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)--第七章7.4-7.5#12 @(延边大学)三年级

第十二小组 姚郁飞 孟兆楷7.4 一个无自旋的质量为m ,带电为q 的粒子被束缚在一个半径为R 的圆周上运动。

分别就下面各种情况求允许的能级:i) 粒子的运动是非相对论的。

ii) 在与圆面垂直的方向上由一均匀磁场B ;iii) 同样的磁通量穿过圆面,但它现在被包在一个半径为b (b R <)的螺线管内; iv) 在圆面上有一极强的电场E 存在()22/qE mR >>v) 没有E B 和,但粒子的运动是极端相对论的; vi) 圆现在被一等圆周但一般面积的椭圆代替。

解:i)22p H m =,变换到极坐标,2222ˆ2d H mR d θ=- 代入定态薛定谔方程,得()()()222222()d E mR d ψθψθψθψθπ⎧-=⎪⎨⎪=+⎩边界条件 由此解得()20,1,2,...12in nn n n E m R θψθ⎧=⎪⎪=±±⎨⎛⎫⎪= ⎪⎪⎝⎭⎩ii) 当加上磁场后1,2q H p A m c ⎛⎫=- ⎪⎝⎭ 其中1ˆ2A Br e θ=⋅ 所以相应薛定谔方程为:()212i d q BR E m R d c ψθψθ⎛⎫--= ⎪⎝⎭边界条件()()2ψθψθπ=+ 由于qBR c只是一常数项,可以归入E ,故参考1)可取解()in Ce θψθ= 由此可得21, 0,1,2,...22n n q E BR n m R c ⎛⎫=-=±±⎪⎝⎭iii)2B ds A ds dl A A R φπ=⋅=∇⨯⋅=⋅=⎰⎰⎰因为磁通量不变,所以A 也不变。

所以n E 同上。

iv) 加一极强的电场E()2222cos 2d H qER mR d θθ=-+-由于22/qE mR >>,即势能V 比动能大很多,因此如果取电场方向为00θ=,则粒子处在0θ=时的概率很大。

故对cos θ作展开:1cos 12θθ2≈-所以222221ˆ122d HqER mR d θθ⎛⎫=--- ⎪⎝⎭(7.4) 为了不至于与能量E 混淆,将电场强度重新记作ε 显然,方程(7.4)中q R ε-为常数项,可以归入E 并222, M mR q R M εω== 则相应的薛定谔方程为()22222122d M q R E M d ωθψεψθ⎛⎫-+=+ ⎪⎝⎭显然,这就是一个谐振子的薛定谔方程 所以12n q R E n εω⎛⎫+=+⎪⎝⎭1122n qEE n q R n qER mRωε⎛⎫⎛⎫=+-=+- ⎪ ⎪⎝⎭⎝⎭,0,1,2,...n =v) 应用波尔量子化条件pdq nh =⎰取广义坐标θ,则p 就是角动量。

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第7章 自旋与全同粒子——第8章

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第7章 自旋与全同粒子——第8章

(2)无耦合表象
力学量组
(
J12
,
J1z
,
J
2 2
,
J
2
z
)
也相互对易,相应的表象称为无耦合表象。无耦合表象的基
矢为:| j1m1 j2m2 。
五、光谱的精细结构
在无外场的情形下,电子自旋对原子能级和谱线有影响。在哈密顿量中体现在电子的自
旋和轨道运动之间的相互作用引起了附加项。体系的哈密顿量可表示为:
2
三、简单塞曼效应 1.简单塞曼效应概念 在没有外磁场时的一条谱线在外磁场中分裂为三条,这即是简单塞曼效应。
2.简单塞曼效应的物理机制
考虑氢原子或类氢原子在均匀外磁场中的情形。在较强的外磁场作用下,须考虑电子的
轨道磁矩和自旋磁矩与磁场 B 的相互作用。由于外磁场较强,可略去电子的自旋和轨道运
动之间的相互作用能量。此时,哈密顿量可表示为:
H
2
2me
2
U (r)
eB 2mec
(2Sz
Lz )
力学量组 (H , L2 , J 2 , J z ) 相互对易,其共同本征函数是定态薛定谔方程的解:
nlmms (r, ,, sz ) Rnl (r)Ylm ( ,)ms (sz )
则 Enlmms
Enl
eB 2mec
(m
2ms
)
EEnlnl22ememBBecec((mm11)), ,

(r , 2 ,t)
2 / 31
圣才电子书 十万种考研考证电子书、题库视频学习平台


z
表象中,s
z
的本征值为:
2
,相应的本征态为:
1 2

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答

方法 2:一维谐振子的运动方程为 q 2q 0 ,其解为
q Asint
速度为 q A c o st ,动量为 p q A cost ,则相积分为
pdq A22 T cos2t dt A22 T (1 cost )dt A22T nh , n 0,1,2,
0
20
2
E A22 nh nh , n 0,1,2, 2T
0 k 2 cosk 2aC k 2 sin k 2aD k1ek1a F 0
21
解此方程即可得出 B、C、D、F,进而得出波函数的具体形式,要方程组有非零解,必须
e k1a k1e k1a
当 c 1 时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
2.7 一粒子在一维势阱中
U (x)
U 0
0,
x a
0, x a
运动,求束缚态( 0 E U0 )的能级所满足的方程。
解:粒子所满足的 S-方程为
6
(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由evB v2 ,得 R v
R
eB
再由量子化条件 pdq nh,n 1,2,3,,以, p Rv R2 eBR 2分别表示广义坐标和相应的
广义动量,所以相积分为
pd
2 0
pd
2Rv 2eBR2
nh, n 1,2,,由此得半径为 R
(x x) 而得其对方,由①经 x x 反演,可得③,
(x) c (x)

由③再经 x x 反演,可得①,反演步骤与上完全相同,即是完全等价的。
(x) c (x)

量子力学习题解答-第7章

量子力学习题解答-第7章

解:
¥
å (a)任意波函数可以用能量本征函数展开为y = cny n ,其中y 1 = y gs 为基态波函数。
n =1
¥
å 由于 y y gs = 0 ,则有: cn y1 y = c1 = 0 ;基态的展开系数为 0。则
n =1
¥
¥
å å H = En cn 2 ³ E fe cn 2 = E fe
-
5 4
Z
ù úû
E1
对 Z 求导求最小值有
¶H ¶Z
=
éêë-4Z
+
4Z0
-
5ù 4 úû
E1
=
0
Þ
Z
=
Z0
-
5 16
H
min
=
é êêë
2çæ è
Z0
-
5 16
2
ö ÷ ø
+
4çæ è
Z0
-
5 16
÷öZ ø
p 2b
ö ÷÷ø
=
3bh2 2m
ò V = 1 mw2 A 2 ¥ x4e-2bx2 dx = 1 mw2 A 2 2 3
p = 3mw2
2

2
32b2 2b 8b

H
3bh 2 =
+ 3mw , ¶
H
3h2 3mw 2
mw
=-
=0Þb=
2m 8b
¶b 2m 8b2
2h
H = 3h2 mw + 3mw2 2h = 3 hw ³ 3 hw
2
ö ÷ ø
3
=
3 4
æ ç è
3a 2h4 4m2

苏汝铿量子力学课后习题及答案chapter7

苏汝铿量子力学课后习题及答案chapter7

r = a 处 (ln x0 )′ 连续得到相移,继而得到散射截面。
解 对于低能散射,只需考虑 l = 0 的 S 分波。令径向波函数 R0 (r ) =
x0 (r ) ,则 x0 满足 r
x0′′ + k 2 x0 = 0 x0′′ − k ′2 x0 = 0
其中, k =
2
(r>a) (r<a,x0 (0)=0)
u0 ( r ) ,则 u0 (r ) 满足的径向波动 r
2 µU d2 ⎡ ⎤ u ( r ) + ⎢ k 2 − 2 0 δ ( r − R ) ⎥ u0 ( r ) = 0 2 0 dr ⎣ ⎦
式中: k =
2
2µ E
2
> 0 。由于 r ≠ R 时, V0 = 0 ,可得方程(1)的解为
u0 ( r ) =
1,
1 。式(6)简写为 kR
k cot δ 0 ≈
由式(7)又可得
2 µU 0
2
+
1 记为 = A R
(7)
sin 2 δ 0 =
于是 s 分波产生的散射截面为
k2 k2 + A
(8)
σ0 =
4π 4π k 2 4π k →0 4π 4π 2 sin δ = = ≈ = 0 2 2 2 2 k k k +A k + A ( 2µU 0 + 1 ) 2 R
{
B sin kr A sin( kr +δ 0 )
r<a r>a
(2)
δ 0 为入射粒子受散射势场 V ( r ) 作用后产生的相移。为了求出 δ 0 ,首先利用波函数 u
0
(r ) 在

量子力学周世勋习题解答第七章

量子力学周世勋习题解答第七章


h4 (∆S x ) 2 (∆S y ) 2 ≥ 16
可见①式符合上式的要求。 可见①式符合上式的要求。
ˆ = h 0 1 及S = h 0 ˆy 7.3. 求 S x 1 0 2 2− i
所属的本征函数。
ˆ 解: S x 的久期方程为
−λ h 2

− i 的本征值和 0
的 z 分量的平均值(用玻尔磁矩子表示)。
解:ψ可改写成
1 0 1 3 ψ = R21 (r )Y11 (θ , ϕ ) − 0 2 R21 (r )Y10 (θ , ϕ ) 1 2
1 3 = R21 (r )Y11 (θ , ϕ ) χ 1 ( S z ) − R21 (r )Y10 (θ , ϕ ) χ 1 ( S z ) − 2 2 2 2
+
h 0 1 h 0 1 1 h 2 ˆ S x2 = χ 1+ S x2 χ 1 = (1 0) 1 0 2 1 0 0 = 4 2 2 2
(∆S x ) 2 = S x2 − S x
+
2
h 0 − i 1 ˆ S y = χ 1 S y χ 1 = (1 0) i 0 0 = 0 2 2 2
ˆ 的本征值为 ± h 。 所以 S n 2
h λ=± 2

cos γ h 2 cos α + i cos β
cos α − i cos β a h a = b 2 b − cos γ
⇒ a (cos α + i cos β ) − b cos γ = b cos α + i cos β b= 1 + cos γ

7量子力学第7章练习+解答

7量子力学第7章练习+解答

量子力学第七章练习+解答1.考虑一个两维的物理体系,右矢1ψ和2ψ构成态空间的正交归一化基,我们用下式)112φψψ=+)112φψψ=-定义新基1φ和2φ,算符P 用1ψ和2ψ基表示成矩阵为11P εε⎛⎫=⎪⎝⎭,求出算符P 用1φ和2φ基表示矩阵P '。

解:求变换矩阵)1111111211s ψφψψψψ==+=)12121112s ψφψψψψ==-=)21212122s ψφψψψψ==+=)22222122s ψφψψψψ==-=-则变换矩阵为1111s ⎛⎫=⎪-⎭依题意,(),,k l k i i jjl ki ij jl kl i ji jP P P s P s φφφψψψψφ+'===∑∑利用了基的完备性,1i i iψψ=∑,写出矩阵乘积为11111101111101P S PS εεεε++⎛⎫⎛⎫⎛⎫⎛⎫'===⎪ ⎪⎪ ⎪---⎭⎝⎭⎭⎝⎭2.考虑一个具有三维态空间的物理体系,在态空间选定一组正交归一化基,在这组基下,Hamilton 量可以用矩阵210120003H ⎛⎫⎪= ⎪ ⎪⎝⎭表示,(1)当测量系统的能量时,可能的结果是什么?(2)一个粒子处于ψi i i ⎛⎫⎪-⎪⎪⎭,求H ,2H 和H ∆解:(1)Hamilton 量满足的本征方程为 210210120120000303a a a b b b c c c λλλλ-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭非零解的条件为()()22101203103λλλλλ--=--=- 即123λλ== 31λ=是可能的能量本征值,能量有简并。

(2))21051203003i H H H iii i i ψψψψ+⎛⎫⎛⎫⎪⎪===---= ⎪⎪ ⎪⎪⎝⎭⎭)2222210111203003i HHH iii i i ψψψψ+⎛⎫⎛⎫⎪⎪===---= ⎪⎪ ⎪⎪⎝⎭⎭3H ∆==3.考虑Hamilton 量()2ˆˆ2x p H V x m=+描述的一维物理系统,对于定态,求x p(1)由3.1节的练习1知:()ˆ[,()]x x px i xψψ∂=-∂ ,所以:()[][]22ˆˆˆ11ˆˆˆˆˆˆˆˆˆˆ,,,,,2222x x x x x x xp p p H x V x x x p p x p x p i m m mm m ⎡⎤⎡⎤⎡⎤=+==+=-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 即:ˆˆˆ,x impH x ⎡⎤=⎣⎦对于定态,即ˆHE ψψ=,利用ˆH 是厄米算符,则*ˆH E E ψψψ==*ˆˆˆˆˆˆˆ,ˆˆˆˆ0x x im im im p pHx H x xHim im im E im E xxExxψψψψψψψψψψψψψψψψ⎡⎤===-⎣⎦=-=-=。

量子力学解答(7章)

量子力学解答(7章)



法 2:设 f (λ ) = e

e iλσ z σ y e −iλσ z = σ y cos 2 λ + i[σ z , σ y ] sin λ cos λ − σ y sin 2 λ
iλσ z
σ x e −iλσ ,则f(0)=σx对参数λ求导,得:
z
Байду номын сангаас
f ′(λ ) =
df (λ ) = ie iλσ z [σ z , σ x ]e −iλσ z = −e iλσ z 2σ y e −iλσ z , 则f ′(0) = −2σ y dλ
f (0) = σ x , f ′(0) = −2σ y ,得: A = σ x , B = −σ y
即: e
iλσ z
σ x e − iλσ = σ x cos 2λ − σ y sin 2λ ,
z


= σ x (cos 2 λ − sin 2 λ ) + i (2iσ y ) sin λ cos λ

证 2:设 y (λ ) = e
,则

dy d2y = iσ z e iσ zλ ,注意到 σ z2 = 1 ,有 2 = −σ z2 e iσ zλ = − y ,方程 dλ dλ

ww
⎛ e iλ e iλσ z = ⎜ ⎜ 0 ⎝
0 ⎞ ⎟。 e −i λ ⎟ ⎠
w.
dy dλ = iσ z ,得 A=1, B = iσ z ,于
ww
w.
3
kh
da
w.
co
m
e iλσ z σ y e −iλσ z = σ y cos 2λ + σ x sin 2λ

曾谨言量子力学习题解答 第七章

曾谨言量子力学习题解答 第七章

前式第一个积分可重复用(7)式,得:
v e
iqf c
ˆ f d e p

iqf c

q c

q ˆ A f d c
ˆq p c
A d v
第七章:粒子在电磁场中的运动
[1]证明在磁场 B 中,带电粒子的速度算符的各分量,满足下述的对易关系: iq ˆ (1) vx , v y 2 B z c iq ˆ (2) v y , vz 2 B x c iq ˆ (3) By v z , vx 2c
2
速度算符间的对易式是:
v z , v x 0
v , v qi B c v , v 0
x y 2 y z
, v z 分别和 vx , v y 对易,因此 v z 与 v x v y 对易,而: 根据( 4 5 )
2
ˆ v2 v2 H 1 x y 2


ˆ (15) 题, (6) 式中的 H 维) 的能量算符和一个角动量分量算符之和, 按 7.2 和前一章的第
本征值是
E k m 2 p 1 m 2k 1 k 0,1,2,3,
(7)
ˆ 又H 2
1 2 ˆ x 这个能量算符的本征值是可以连续取值的,它和沿 z 轴作自由运动的粒子 p 2

iqf iqf iqf c c e e e c
又设变换后儿率流密度是 j ,将(4)代入(2)式右方,同时又代入
A A f r , t
iqf iqf iqf iqf iqf iqf q 1 c c c c c c , j e p e e e A f r t e e 2 c

量子力学课件第七章

量子力学课件第七章

第七章变分原理7.1理论假设你想计算一个体系的基态能量E gs ,体系用哈密顿量描述,但是你不能从(定态)薛定谔方程求解。

变分原理将给你E gs 的一个上限。

有时你所需的也仅仅是这个上限,而且通常如果你巧妙的运用变分原理,这个上限将非常的接近精确值。

下面介绍它的原理:选取任意归一化函数ψ,我断言gs E H Hψψ≤≡ [7.1]也就是说,在ψ态(可假定不正确)下,H的期望值必高估于基态能量。

当然,如果ψ恰好是某一激发态,H 显然大于E gs ;关键点是要对于任意的ψ都成立。

证明:因为H (未知)的本征函数组成一个完全集,所以我们可以将ψ表示成它们的线性组合:1n n nc ψψ=∑,其中 n n n H E ψψ=.因为ψ是归一化的,所以21m mn n m n m n n mnmnnc c c c c ψψψψψψ*====∑∑∑∑∑,(假定本征函数已是正交归一的:m n mn ψψδ=)。

我们有,2m m n n m n n m n n n mnmnnH c H c c E c E c ψψψψ*===∑∑∑∑∑。

而由定义可知基态能量是最小的本征值,所以gs n E E ≤,因此2gs n gsnH E c E ≥=∑,1如果哈密顿量允许有散射态,也允许有束缚态的话,那么我们将不仅需要做积分同时也需要求和,但是论证方法是不变的。

这就是我们试图要证明的。

例题7.1 假设我们想求解一维简谐振子的基态能量:22222122d H m x m dx ω=-+ 。

当然,我们已经知道这种情况的精确解(式2.61):(12)gs E ω= ;但它不失为验证这个方法的一个很好的例子。

我们可以选取高斯函数作为我们的试探波函数,2()bx x Ae -ψ=, [7.2]其中b 为常数,A 由归一化决定:214222212bx b Ae dx AA b ππ∞--∞⎛⎫==⇒= ⎪⎝⎭⎰[7.3]现在H T V=+ , [7.4]其中,在这种情况下,2222222()22bx bx d bT A e e dx m dx m ∞---∞=-=⎰[7.5] 222222128bx m V m A e x dx b ωω∞--∞==⎰,所以2228b m H m b ω=+[7.6] 根据式7.1,对任意b ,H 必大于等于E gs 。

量子力学习题参考解答七张宸编辑

量子力学习题参考解答七张宸编辑
于是势能可以写成
(4.4)
V ( y1 , y2 )
1 2 (k a )( y12 y2 ) a ( y1 cos y2 sin )( y1 sin y2 cos ) 2 1 2 2 ( k a )( y12 y2 ) a sin cos y12 a sin cos y2 2 ay1 y2 cos 2 ay1 y2 sin 2
立即看出有本征值 w 2 。考察
2w

( )( w) 2 w2 2 ( w ) 2 w2 w 0
(1.15)


w ( w )2 8w2 4 w
2

w 9w2 2 w 2
1 的概率为 2
2 2
1 P(t ) | 0 | (t ) | (e iLt eiLt ) | cos(Lt ) |2 cos 2 (Lt ) 2
(2.5)
习 3 具有同样质量的无相互作用的粒子在宽度为 2a 的无穷深势阱中运动。写出体系最低 的四条能级的能量值及简并度,如果: (1)两个为全同粒子,自旋的量子数为

9 2 2 5 2 2 , 4 9 8ma 2 4ma 2
(3.12)
习 4 设有两个全同粒子,处于一维谐振子势场中,彼此间还有与距离成正比的作用力,即 位势为
V ( x1 , x2 )
1 1 2 k ( x12 x2 ) a ( x1 x2 ) 2 , a, k 0 2 2
试给出 cij (3)试求出 H 的能量本征值( B B 解: (1)
(1.5)
w和
w) 。
L S Lx S x Ly S y Lz S z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学第七章练习+解答
1.考虑一个两维的物理体系,右矢1ψ
和2
ψ构成态空间的正交归一化基,我们用下式
)112φψψ=
+
)112φψψ=
-定义新基1φ
和2φ,
算符P 用1ψ
和2
ψ
基表示成矩阵为11P εε
⎛⎫
=
⎪⎝⎭
,求出算符P 用1φ
和2φ基表示矩阵P '。

解:求变换矩阵
)1111
11
1
2
11s ψφ
ψψψψ==+=
)
12121112
s ψφψψψψ==-=
)2121
212
2
s ψφψψψψ==+=
)
22222
12
2
s ψφψψψψ==-=-
则变换矩阵为1
11
1s ⎛⎫
=⎪-⎭
依题意,(
),,k l k i i j
j
l ki ij jl kl i j
i j
P P P s P s φφφψψψ
ψ
φ+
'===


利用了基的完备性,1i i i
ψψ=∑,写出矩阵乘积为
11111101111101P S PS εεεε+
+⎛⎫⎛⎫⎛⎫⎛⎫'==
=⎪ ⎪⎪ ⎪---⎭⎝⎭⎭⎝⎭
2.考虑一个具有三维态空间的物理体系,在态空间选定一组正交归一化基,在这组基下,Hamilton 量可以用矩阵2101
2000
3H ⎛⎫

= ⎪ ⎪⎝

表示,(1)当测量系统的能量时,可能的结果是什么?(2
)一个粒子处于ψ
i i i ⎛⎫

-⎪⎪⎭
,求H ,2
H 和H ∆
解:(1)Hamilton 量满足的本征方程为 2
102101
201200
00
30
3a a a b b b c c c λλλλ-⎛⎫⎛⎫⎛⎫⎛⎫⎛
⎫ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝
⎭⎝⎭⎝⎭⎝
⎭⎝

非零解的条件为
()
()
2
210120310

λλλλ
--=--=- 即123λλ== 31λ=是可能的能量本征值,能量有简并。

(2

)2
1051
203
00
3i H H H i
i
i i i ψψψψ+
⎛⎫⎛⎫
⎪⎪===
---= ⎪⎪ ⎪⎪⎝
⎭⎭
)2
2
2
2
21011
1
20300
3i H
H
H i
i
i i i ψψψψ+⎛⎫⎛⎫
⎪⎪===
---= ⎪⎪ ⎪⎪⎝


3
H ∆==
3.考虑Hamilton 量()2ˆˆ2x p H V x m
=+描述的一维物理系统,对于定态,求x p
(1)由3.1节的练习1知:()ˆ[,()]x x p
x i x
ψψ∂=-∂ ,所以:
()[][]22ˆˆˆ11ˆˆˆˆˆˆˆˆˆˆ,,,,,2222x x x x x x x
p p p H x V x x x p p x p x p i m m m
m m ⎡⎤⎡⎤⎡⎤=+==+=-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 即:ˆˆˆ,x im
p
H x ⎡⎤=⎣⎦
对于定态,即ˆH
E ψψ=,利用ˆH 是厄米算符,则*ˆH E E ψψψ==
*
ˆˆˆˆˆˆˆ,ˆˆˆˆ0x x im im im p p
H
x H x xH
im im im E im E x
xE
x
x
ψψψψψψψψψψψψψψψψ⎡⎤==
=-⎣

=
-=-=。

相关文档
最新文档