重庆市2017年中考数学试题(A卷-WORD版-含答案)
2020年重庆市中考数学试题A卷(word版,含答案)
考生须知1.考生应按规定的时间入场,开始考试后15分钟禁止迟到考生进入考场。
2.考生入场时须主动出示《准考证》以及有效身份证件(身份证、军人、武警人员证件、未成年人的户口本、公安户籍部门开具的《身份证》号码证明、护照或者港、澳、台同胞证件),接受考试工作人员的核验,并按要求在“考生花名册”上签自己的姓名。
3.考生只准携带必要的文具入场,如铅笔、签字笔、毛笔、水粉水彩颜料等,具体要求见招考简章。
禁止携带任何已完成作品以及各种无线通信工具(如寻呼机、移动电话)等物品。
如发现考生携带以上禁带物品,考生将作为违纪处理,取消该次考试成绩。
考场内不得擅自相互借用文具。
4.考生入场后按号入座,将本人《准考证》以及有效身份证件放在课桌上,以便核验。
5.考生答题前应认真填写试卷及答题纸上的姓名、准考证号等栏目并粘贴带有考生个人信息的条形码。
凡不按要求填写或字迹不清、无法辨认的,试卷及答题纸一律无效。
责任由考生自付。
6.开考后,考生不得中途退场。
如因身体不适要求中途退场,须征得监考人员及考点主考批准,并在退场前将试卷、答题纸如数上交。
7.考生遇试卷分发错误或试题字迹不清等情况应及时要求更换;涉及试题内容的疑问,不得向监考人员询问。
8.考生在考场内必须严格遵守考场纪律,对于违反考场规定、不服从监考人员管理和舞弊者,取消当次考试成绩。
9.考试结束铃声响时,考生要立即停止答题,并将试卷、答题纸按要求整理好,翻放在桌上,待监考人员收齐后方可离开考场。
任何考生不准携带试卷、答题纸离开考场。
离开考场后不准在考场附近逗留和交谈。
试卷第1页,总8页重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,最小的数是( )A .-3B .0C .1D .22.下列图形是轴对称图形的是()A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A .B .C .D .4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A .10B .15C .18D .215.如图,AB 是的切线,A 切点,连接0A ,0B ,若,则的度数为()A .40°B .50°C .60°D .70°6.下列计算中,正确的是( )AB .CD .7. 解一元一次方程时,去分母正确的是()32610⨯32.610⨯42.610⨯50.2610⨯O 20B ∠=︒AOB ∠=2==2-=11(1)123x x +=-A .B .C .D .8.如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF 的长度为()AB .2C .4D .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比),山坡坡底C 点到坡顶D 点的距离,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:,,)A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式结的解集为;且关于的分式方程有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-5611.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把沿着AD 翻折,得到,DE 与AC 交于点G ,连接BE 交AD 于点F .若,,,的面积为2,则点F 到BC 的距离为()3(1)12x x +=-2(1)13x x +=-2(1)63x x +=-3(1)62x x +=-ABC △(1,2)A (1,1)B (3,1)C DEF △DEF △ABC △1:0.75i =45m CD =sin 280.47︒≈cos 280.88︒≈tan 280.53︒≈3132x x x a-⎧≤+⎪⎨⎪≤⎩x a ≤y 34122y a y y y --+=--ABD △AED △DG GE =3AF =2BF =ADG △A B C D12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分,反比例函数的图象经过AE上的两点A,F,且,的面积为18,则k的值为()A.6 B.12 C.18 D.24第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)13.计算:.14. 一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是.15.现有四张正面分别标有数字-1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点在第二象限的概率为.16. 如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以A0的长为半径画弧,分别与正方形的边相交.则图中的阴影音分面积为.(结果保留)17.A,B两地相距240 km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线所示.其中点C的坐标是,点D的坐标是OAE∠(0,0)ky k xx=>>AF EF=ABE△0(1)|2|π-+-=(),P m nπCD DE EF--()0240,,则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
中考数学试题分项版解析汇编(第04期)专题01 实数(含解析)-人教版初中九年级全册数学试题
专题01 实数一、选择题1.(2017某某某某第1题)﹣3的相反数是()A.﹣3 B.3 C.13D.-13【答案】B.考点:相反数.2.(2017某某某某第2题)2017年某某市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【答案】A.【解析】试题分析:将2580亿用科学记数法表示为:2.58×1011.故选:A.考点:科学记数法—表示较大的数.3. (2017某某株洲第2题)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【答案】A.【解析】试题分析:由数轴可得,点A表示的数是﹣2,|﹣2|=2,故选A.考点:数轴;绝对值.4. (2017某某某某第1题)5-的相反数是( ) A .5 B .5- C .51 D .51- 【答案】A 【解析】试题分析:根据只有符号不同的两个数互为相反数,可得﹣5的相反数是5, 故选:A . 考点:相反数5. (2017某某某某第6题)近似数2100.5⨯精确到( ) A .十分位 B .个位 C.十位 D .百位 【答案】C考点:近似数和有效数字6. (2017某某第1题)2017的相反数是( ) A .2017- B .2017 C .12017 D .12017- 【答案】A. 【解析】试题分析:一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.由此可得2017的相反数是﹣2017,故选A . 考点:相反数.7. (2017某某第3题)某市今年约有140000名报名参加初中学业水平考试,用科学的计数方法表示140000为( )A .41410⨯ B .31410⨯ C .41.410⨯ D .51.410⨯ 【答案】D.考点:科学记数法.8. (2017某某某某第1题)下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,故选C . 考点:有理数的大小比较.9. (2017某某某某第2题)在绿满鄂南行动中,某某市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为()A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤×106.故选D . 考点:科学记数法.10. (2017某某某某第1题)下列各数中无理数为( ) A 2 B .0 C .12017D .﹣1 【答案】A . 【解析】试题分析:A 2是无理数,选项正确; B .0是整数是有理数,选项错误; C .12017是分数,是有理数,选项错误; D .﹣1是整数,是有理数,选项错误.考点:无理数.11. (2017某某某某第8题)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )302sin60° 22 ﹣3 ﹣2 ﹣sin45° 0 |﹣5| 6 23()﹣14()﹣1A .5B .6C .7D .8 【答案】C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 12. (2017某某某某第1题)化简15-等于( ) A .15 B .-15 C .15± D .115【答案】A 【解析】试题分析:∵负数的绝对值是它的相反数,∴|﹣15|等于15, 故选A . 考点:绝对值.13. (2017某某某某第6题)5月14-15日“一带一路”论坛峰会在隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A .84.410⨯ B .94.410⨯ C.9410⨯ D .84410⨯【解析】试题分析:×109,故选B . 考点:科学记数法—表示较大的数.14. (2017某某某某第8题)观察以下一列数的特点:0,1,-4,9,-16,25,┅,则第11个数是( ) A .-121 B .-100 C.100 D .121 【答案】B考点:规律型:数字的变化类.15. (2017某某第1题)7的倒数是( ) A.7B.7C.17D.17【答案】D 【解答】试题分析:﹣7的倒数是﹣17,故选D . 考点:倒数.16. (2017某某某某第1题)2017-的绝对值是( ) A .2017- B .12017-C .2017D .12017【答案】C 【解析】试题分析: |﹣2017|=2017,故选 C . 考点:绝对值.17. (2017某某某某第3题)作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为A .91.8510⨯ B .101.8510⨯C .111.8510⨯D .121.8510⨯【答案】B 【解析】试题分析:×1010;故选B . 考点:科学记数法—表示较大的数.18. (2017某某某某第2题)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为( ) A .60.710⨯ B .5710⨯ C .4710⨯ D .47010⨯ 【答案】B 【解析】试题分析:700000=7×105.故选B . 考点:科学记数法—表示较大的数.19. (2017某某某某第1题)13-的绝对值是( ) A .3- B .3 C .13 D .13-【答案】C考点:查绝对值的意义20. (2017某某呼和浩特第1题)我市冬季里某一天的最低气温是10C -︒,最高气温是5C ︒,这一天的温差为( ) A .5C -︒ B .5C ︒C .10C ︒D .15C ︒【答案】D 【解析】试题分析:5﹣(﹣10),=5+10,=15℃.故选D . 考点:有理数的减法.21.(2017某某呼和浩特第2题)中国的陆地面积为29600000km ,将这个数用科学记数法可表示为( ) A .720.9610km ⨯ B .4296010km ⨯ C .629.610km ⨯D .529.610km ⨯【答案】C 【解析】试题分析:×106.故选C考点:科学记数法—表示较大的数.22. (2017某某某某第1题)在下列各数中,比-1小的数是( ) A .1 B . -1 C . -2 D .0 【答案】C. 【解析】试题分析: 根据有理数比较大小的方法,可得﹣2<﹣1<0<1, 所以各数中,比﹣1小的数是﹣2. 故选C .考点:有理数大小比较.23. (2017某某第1题)下列实数中,无理数是( ) A .0B .2C .﹣2D .27【答案】B考点:无理数的定义.24. (2017某某某某第1题)﹣2017的相反数是( ) A .﹣2017 B .2017 C .20171- D .20171【答案】B . 【解析】试题分析:﹣2017的相反数是2017,故选B . 考点:相反数.25. (2017某某某某第2题)正在修建的黔X 常铁路,横跨渝、鄂、湘三省,起于某某市黔江区黔江站,止于某某市武陵区某某站.铁路规划线路总长340公里,工程估算金额375000000000元.将数据37500000000用科学记数法表示为( )×1011×1011×1010D .375×108【答案】C . 【解析】 ×1010.故选C .考点:科学记数法—表示较大的数.26. (2017某某某某第1题)在实数21,3,0,1--中,最大的数是( ) A .1- B .0 C .3 D .21【答案】C.考点:实数大小比较.27. (2017某某第1题)2017的相反数是( ) A .﹣2017 B .2017 C .12017- D .12017【答案】A. 【解析】试题分析:根据相反数特性:若a .b 互为相反数,则a+b=0即可解题.∵2017+(﹣2017)=0, ∴2017的相反数是(﹣2017),故选 A . 考点:相反数.28. (2017某某第7题)某某省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n ,则n 的值为( )A.5 B.6 C.7 D.8【答案】B.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.∵2000000=2×106,∴n=6.故选B.考点:科学记数法.29. (2017某某第1题)下列实数中,为无理数的是()B.2 C.2 D.4A.2【答案】B.考点:无理数,有理数.30. (2017某某六盘水第1题)大米包装袋上100.1kg的标识表示此袋大米重( )~ B.10.1kg C.9.9kg D.10kgA.9.910.1kg【答案】A.~,故选A.10千克超出;—10千克不足,所以此袋大米重9.910.1kg考点:正数和负数.31. (2017某某乌鲁木齐第1题)如图,数轴上点A表示数a,则a是()A .2B .1C .1-D .2- 【答案】A . 【解析】试题解析:∵A 点在﹣2处, ∴数轴上A 点表示的数a=﹣2, |a|=|﹣2|=2. 故选A .考点:数轴;绝对值. 二、填空题1. (2017某某某某第1382+.【答案】2. 【解析】 82+222.故答案为:2 考点:二次根式的加减法.2. (2017某某某某第15题)按一定规律排列的一列数依次为:23 ,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是. 【答案】299201.考点:规律型:数字的变化类.3. (2017某某某某第11题)我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为27500亿3m ,应节约用水,数27500用科学记数法表示为. 【答案】×104. 【解析】试题分析:×104.考点:科学记数法——表示较大的数. 4. (2017某某某某第9题)8的立方根是. 【答案】2.试题分析:利用立方根的定义可得8的立方根为2. 考点:立方根.5. (2017某某某某第9题)计算:328-- =. 【答案】0.考点:实数的运算;推理填空题.6. (2017某某某某第11题)据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为. ×108.【解析】×108×108.考点:科学记数法—表示较大的数.7. (2017某某某某第12题)命题:“如果m是整数,那么它是有理数”,则它的逆命题为:.【答案】“如果m是有理数,那么它是整数”.【解析】试题分析:命题:“如果m是整数,那么它是有理数”的逆命题为“如果m是有理数,那么它是整数”.故答案为:“如果m是有理数,那么它是整数”.考点:命题与定理.8. (2017某某第11题)将57 600 000用科学记数法表示为.×107【解析】试题分析:×107考点:科学记数法—表示较大的数.9. (2017某某第1412763的结果是.3【解析】试题分析:原式3633﹣33考点:二次根式的加减法.10. (2017某某某某第11题)15的绝对值是.【答案】1 5【解析】试题分析:根据负数的绝对值等于它的相反数,得|-15|=15.考点:绝对值.11. (2017某某呼和浩特第11题)使式子112x-有意义的x 的取值X 围为.【答案】x <12考点:1.二次根式有意义的条件;2.分式有意义的条件.12. (2017某某某某第12题)市民惊叹某某绿化颜值暴涨,2017年某某市投资25160000元实施生态造林绿化工程建设项目.将25160000用科学记数法表示为______________. 【答案】×107. 【解析】试题分析:×107.考点:科学记数法—表示较大的数.13. (2017某某某某第14题)计算:()2223-=.【答案】=16﹣83 【解析】试题分析:原式=4﹣83+12=16﹣83 考点:二次根式的混合运算.14. (2017某某第11题)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米. 【答案】考点:有理数的混合运算.15. (2017某某某某第9题)计算:=÷-3)12(. 【答案】-4. 【解析】试题分析:利用异号两数相除的法则计算即可得到结果. 原式=-12÷3=﹣4. 故答案为﹣4. 考点:有理数的除法.16. (2017某某六盘水第13题)中国“蛟龙号”深潜器下潜深度为7062米,用科学计数法表示为米. ×103.试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值×103. 考点:科学记数法—表示较大的数.17.(2017某某六盘水第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.20.(2017某某六盘水第20题)计算1491625…的前29项的和是. 【答案】8555.试题分析:因为22222123......29......n ++++++=(1)(21)6n n n ++,当n=29时,原式=29(291)(2291)85556⨯+⨯⨯+=.考点:数列.21. (2017某某乌鲁木齐第11题)计算05132⎛= ⎝⎭. 3【解析】试题解析:原式=3﹣1+1 =3.考点:实数的运算;零指数幂. 三、解答题1. (2017某某某某第19题)计算:|﹣23|+(4﹣π)0﹣12+(﹣1)﹣2017. 【答案】0.考点:实数的运算;零指数幂;负整数指数幂.2. (2017某某株洲第1980×(﹣1)﹣4sin45°.【答案】-1. 【解析】试题分析:根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.80×(﹣1)﹣4sin45°2+1×(﹣1)﹣42 2﹣1﹣2 =﹣1.考点:实数的运算;零指数幂;特殊角的三角函数值.菁3. (2017某某某某第18题)计算:2)21(|275|60sin 6)2017(----+-π【答案】2考点:1、实数的运算;2、零指数幂;3、负整数指数幂;4、特殊角的三角函数值 4. (2017某某第17题)计算020172sin 30( 3.14)12(1)π+-+-2. 【解析】试题分析:利用特殊角的三角函数值,零指数幂法则,绝对值的性质,以及乘方的意义计算即可得到结果. 试题解析:原式21﹣2. 考点:实数的运算.5. (2017某某某某第1910112(3)14cos302π-⎛⎫+----︒ ⎪⎝⎭【答案】2. 【解析】试题分析:原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式3﹣1﹣3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. 6. (2017某某某某第17题)计算:23282cos 45-+- . 【答案】-5考点:1.实数的运算;2.乘方;3.立方根;4.特殊角的三角函数值. 7. (2017某某呼和浩特第17题)(1)计算:1103|252(82+; (2)先化简,再求值:2222441242x x x x x x x --+÷++-,其中65x =-. 【答案】(1)原式51;(2)32x ,﹣54. 【解析】试题分析:(1)原式利用绝对值的代数意义化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,把x 的值代入计算即可求出值.试题解析:(1)原式5﹣2﹣125325﹣1; (2)原式=()()()()22221222x x x x x x x +--++-=112x x +=32x , 当x=﹣65 时,原式=﹣54. 考点:1.分式的化简求值;2.实数的运算.8. (2017某某某某第21题)计算:)202312sin 60π-++-.3【解析】试题分析:据乘方、零指数幂、绝对值、特殊角的三角函数值进行计算即可.试题解析:原式=﹣4+1+|1﹣2×32|=﹣33﹣4. 考点: 1.实数的运算;2.零指数幂;3.特殊角的三角函数值.9. (2017某某第19题)计算:18 +(2 ﹣1)2﹣129+(12)﹣1.【答案】2+2 【解析】试题分析:根据负整数指数幂和分数指数幂的意义计算. 试题解析:原式=32+2﹣22+1﹣3+2=2+2. 考点:二次根式的混合运算10. (2017某某某某第15题)计算:()12017012cos303112-⎛⎫+--+- ⎪⎝⎭.【答案】2.考点:实数的运算;负整数指数幂;特殊角的三角函数值. 11. (2017某某某某第20题)阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i -++=++-+=+()()()21212221213i i i i i i i +⨯-=⨯-+⨯-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________; (2)计算:()()134i i +⨯-; (3)计算:232017i i i i ++++.【答案】(1)﹣i ,1;(2)7﹣i ;(3)i . 【解析】考点:实数的运算;新定义;阅读型.12. (2017某某某某第17题)计算:22)2(8)12(-+-+.【答案】7. 【解析】试题分析:首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可. 试题解析:原式=3+22﹣22+4=7. 考点:二次根式的混合运算. 13. (2017某某第19题)计算; (1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x (x ﹣2)﹣(x+1)(x ﹣1) 【答案】(1)-1;(2)22x +. 【解析】试题分析:(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果. 试题解析:(1)原式=4﹣3﹣4×12=4﹣3﹣2=﹣1; (2)原式=x 2+2x+1+x 2﹣2x ﹣x 2+1=x 2+2. 考点:整式的混合运算,实数的混合运算.14. (2017某某第19题)计算:02845sin 2|1|-+-- .【答案】2.考点:实数的运算;零指数幂;特殊角的三角函数值. 15. (2017某某六盘水第21题)计算:(1)12sin 302°;(2)2133.【答案】-1.试题分析:本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析: 原式=11222+-=-1. 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.。
中考数学试题北师大版经典中考
数学中考模拟试卷全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间l20分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共30分)1. 8的立方根是()(A) 2 (B) ±2 (C) 4 (D) ±42.已知a)(A)1± (B) 1 (C)1- (D) 03.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()(A) 4⨯2.110-0.2110-⨯(B) 4(C) 5⨯2110-2.110-⨯ (D) 64.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()(A) 3 (B) 4 (C) 5 (D) 6主视图左视图俯视图5.下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚骰子,数字“6”朝上;④小明长大后成为一名宇航员(A) ①②③ (B) ①③④ (C) ②③④ (D) ①②④6. 某中学篮球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是()(A)15岁,16岁; (B)15岁,15岁; (C)15岁,15.5岁; (D)16岁,15岁7. 关于x的方程()06862=+--xxa有实数根,则整数a的最大值是()(A) 6 (B) 7 (C) 8 (D) 98. 把一个长方形纸片沿EF折叠后,点D、C分别落在D’、C’的位置,若︒=∠65EFB,则AE∠D’等于()(A) ︒70 (B)︒65 (C)︒50 (D)︒259.已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=︒70,则∠DAO+∠DCO的大小是()(A)︒70 (B)︒110 (C) ︒140 (D)︒150 10. 已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,则θsin的值为()(A)125(B)135(C)1310(D)1312第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上.11.分解因式:=+-aaa251023______ ___12.函数1-=xxy中,自变量x的取值范围是13.如图,路灯距离地面8米,身高1.6米的小明站在(第10题图)OAMB(第13题图)距离灯的底部(点O )20米的A 处,则小明的影长为___________米. 14.若,m n n m -=-且,3,4==n m 则()2n m += 15.如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .三、(第16题每小题5分,第17题6分,共16分) 16.解答下列各题:(1)计算: 2202(3)( 3.14)8sin 45π----+--︒.(2)先化简:)2(2222a b ab a aba b a ++÷--,当1-=b 时,请你为a 任意选一个适当的数代入求值。
2017年重庆中考数学A卷及答案
重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --,对称轴为ab x 2-=.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( )A.-3B.2C.0D.-42.下列图形中是轴对称图形的是( )A B C D3.计算26x x ÷正确的结果是( )A.3B.3xC.4xD.8x4.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.估计110+的值应在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.若4,31=-=y x ,则代数式33-+y x 的值为( )A.-6B.0C.2D.6 7.要使分式34-x 有意义,x 应满足的条件是( ) A.3>x B.3=x C.3<x D.3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( )A.3:2B.3:5C.9:4D.4:99.如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( ) A.4-2π B.4-23π C.8-2π D.8-23π 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73B.81C.91D.10911.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( )(参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A.5.1米B.6.3米C.7.1米D.9.2米12.若数a 使关于x 的分式方程4112=-+-xa x 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤->-+021232a y y y 的解集为2-<y ,则符合条件的所有整数a 的和为( ) A.10 B.12 C.14 D.16二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。
2017年中考数学填空压轴题
2017年中考数学填空压轴题填空题1(2017浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________【答案】22. 【解析】试题解析:连接AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y=﹣34x+3时,PQ 最小, ∵A 的坐标为(﹣1,0),y=﹣34x+3可化为3x+4y ﹣12=0, ∴22|3(1)4012|34+=3, ∴223-1=22.考点:1.切线的性质;2.一次函数的性质.2.(2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.学科网【答案】【解析】试题解析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ ⊥FB ,∴FQ=BQ=12BF, ∵AB=4,F 是AB 的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=2,Rt △DAF 中,DF=2242=25+,∵DE=EF,DE ⊥EF, ∴△DEF 是等腰直角三角形,∴DE=EF=25=102,∴PD=22DE PE -=3,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴422CG DC DG AG AF FG ====, ∴CG=2AG ,DG=2FG,∴FG=1252533⨯=, ∵22442+=∴CG=233⨯=,∴-=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴3 =,∴EH=EF﹣-=∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GH DE EH=,123EN==,∴EN=2,∴NH=EH﹣EN=326-=,Rt△GNH中,6==,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=2632+++=考点:1。
2019年重庆市中考数学试题(A卷)含答案解析(word版)
重庆市2019年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(2019•重庆A )在—4,0,—1,3这四个数中,最大的数是( )A. —4B. 0C. —1D. 3考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正 数大于0,负数小于0 得到﹣4 <﹣1<0<3 .解答:解:∵| ﹣4|=4 ,| ﹣1|=1,∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 .故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数 越小.2.(2019•重庆A )下列图形是轴对称图形的是( )A .B .C . D考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A 、是轴对称图形,故正确;B 、不是轴对称图形,故错误;C 、不是轴对称图形,故错误;D 、不是轴对称图形,故错误.故选A .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称 轴折叠后可重合.3.(2019•重庆A 12 )A. 43B. 23C. 32D. 6考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2 .故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(2019•重庆A)计算()32a b的结果是()A. 63a b D. 6a ba b C. 53a b B. 23考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n =a mn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数);求出()32a b的结果是多少即可.解答:解:()32a b= (a 2)3•b 3= 63a b即计算()32a b的结果是63a b.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n =a mn (m ,n 是正整数);②(ab )n=a n b n.5.(2019•重庆A)下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C 不符合题意;D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(2019•重庆A )如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
2019年重庆市中考数学试卷(A)含答案
重庆市中考数学试题(A 卷,word 版含答案)一、选择题1、在实数-3,2,0,-4,最大的数是( )A 、-3B 、2C 、0D 、-4 2、下列图形中是轴对称图形的是( )A B C D3、计算26x x ÷正确的解果是( )A 、3B 、3xC 、4x D 、8x 4、下列调查中,最适合采用全面调查(普查)方式的是( ) A 、对重庆市初中学生每天阅读时间的调查 B 、对端午节期间市场上粽子质量情况的调查 C 、对某批次手机的防水功能的调查D 、对某校九年级3班学生肺活量情况的调查 5、估计110+的值应在( )A 、3和4之间B 、4和5之间C 、5和6之间D 、6和7之间 6、若4,31-==y x ,则代数式33-+y x 的值为( ) A 、-6 B 、0 C 、2 D 、6 7、要使分式34-x 有意义,x 应满足的条件是( )A 、3 xB 、3=xC 、3 xD 、3≠x 8、若ABC ∆错误!未找到引用源。
DEF ∆,相似比为3:2,则对应高的比为( ) A 、3:2 B 、3:5 C 、9:4 D 、4:9来源中国教*#育^&出版%网9、如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A 、4-2πB 、4-23π C 、8-2π D 、8-23π10、下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,。
,按此规律排列下去,第⑨个图形中菱形的个数为( )A 、73B 、81C 、91D 、10911、如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( )(参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A 、5.1米B 、6.3米C 、7.1米D 、9.2米来源:zzs%t&ep.^co@m#]12、若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤--+021232a y yy 的解集为2- y ,则符合条件的所有整数a 的和为( ) A 、10 B 、12 C 、14 D 、16 二、填空题 13、“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。
中考数学试题分项版解析汇编(第03期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学
专题02 代数式和因式分解一、选择题1.(2017某某省某某市)下列计算正确的是( )A .842a a a ÷=B .236(2)6a a = C .3232a a a -= D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017某某省某某市)下列运算正确的是( ) A .1212-=- B .623x x x =⋅ C .422x x x =+ D .4226)3(x x =【答案】A . 【解析】 试题分析:A .1212-=-,正确,符合题意;B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误; D .224(3)9x x =,故此选项错误; 故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.3.(2017某某省某某市)要使二次根式42-x 在实数X 围内有意义,则x 的取值X 围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2【答案】B . 【解析】试题分析:∵二次根式42-x 在实数X 围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值X 围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017某某省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017某某省眉山市)已知2211244m n n m +=--,则11m n-的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】 试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值.6.(2017某某省某某市)使代数式x x 3431-++有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017某某省某某市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴193211111a a a a ++++ =11111 (132435461921)+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C . 考点:1.规律型:图形的变化类;2.综合题. 8.(2017某某省达州市)下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017某某省枣庄市)下列计算,正确的是( ) A .826-=B .13|2|22-=- C .3822= D .11()22-=【答案】D . 【解析】试题分析:82-=222-=2,A 错误;13|2|22-=,B 错误; 38=2,C 错误;11()22-=,D 正确,故选D . 考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂.10.(2017某某省枣庄市)实数a ,b 在数轴上对应点的位置如图所示,化简2||()a a b +-的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017某某省某某市)单项式39m x y 与单项式24nx y 是同类项,则m +n 的值是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(2017某某省某某市)若21121x x -+-+在实数X 围内有意义,则x 满足的条件是( ) A .x ≥12 B .x ≤12 C .x =12 D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017某某省某某市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017某某省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017某某省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a = D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确; C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误; 故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017某某四市)下列运算正确的是( )A .123)4(3+-=--x xB .422124)3(x x x -=⋅- C .32523x x x =+ D .326x x x =÷ 【答案】A .考点:整式的混合运算.17.(2017某某省某某市)下列运算中,正确的是()A.2ab ab 77a a a B.236a a a D.22a a a C.32【答案】C.【解析】试题分析:A.错误、7a+a=8a.B.错误.235a a a.C.正确.32a a a.D.错误.222ab a b故选C.考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017某某省某某市)计算2a a的结果是()A.a B.2a C.22a D.3a【答案】D.考点:同底数幂的乘法.19.(2017某某省某某市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O 上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A .4B .23C .2D .0 【答案】A . 【解析】试题分析:如图,∵⊙O 的半径=2,由题意得,OA 1=4,OA 2=23,OA 3=2,OA 4=23,OA 5=2,OA 6=0,OA 7=4,… ∵2017÷6=336…1,∴按此规律运动到点A 2017处,A 2017与A 1重合,∴OA 2017=2R =4.故选A .考点:1.规律型:图形的变化类;2.综合题.20.(2017某某省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+=B .004446++=C .34446+=D .14446-= 【答案】D .考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型. 21.(2017某某省)若321x x --=+11x -,则中的数是( ) A .﹣1 B .﹣2 C .﹣3 D .任意实数 【答案】B . 【解析】 试题分析:∵321x x -- =+11x -,∴321x x --﹣11x -=3211x x ---=2(1)1x x --=﹣2,故____中的数是﹣2.故选B . 考点:分式的加减法.22.(2017某某省某某市)计算23a a ⋅,正确结果是( ) A .5a B .4a C .8a D .9a 【答案】A . 【解析】试题分析:23a a ⋅=23a+=5a ,故选A .考点:同底数幂的乘法.23.(2017某某省某某市)化简2111x x x+--的结果是( ) A .x +1 B .x ﹣1 C .21x - D .211x x +-【答案】A .考点:分式的加减法.24.(2017某某省某某市)下列计算正确的是( ) A .()()2222a a a +-=- B .()()2122a a a a +-=+- C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意; B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意; D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017某某省襄阳市)下列运算正确的是( )A .32a a -=B . ()325a a =C . 235a a a =D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方. 26.(2017某某市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017某某市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017某某市B 卷)若分式13x -有意义,则x 的取值X 围是( ) A .x >3 B .x <3 C .x ≠3 D .x =3 【答案】C . 【解析】 试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C . 考点:分式有意义的条件.29.(2017某某市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题30.(2017某某省某某市)计算:0|15(3)π+-=.5 【解析】试题分析:原式555 考点:1.实数的运算;2.零指数幂.31.(2017某某省某某市)分解因式:24mx m -=. 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017某某省眉山市)分解因式:228ax a -=.【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用. 33.(2017某某省某某市)分解因式:282a -=. 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017某某省达州市)因式分解:3228a ab -=. 【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2=2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017某某省枣庄市)化简:2223321(1)x x xx x x ++÷-+-=. 【答案】1x. 【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x.考点:分式的乘除法.36.(2017某某省某某市)分解因式:222ma mab mb ++=. 【答案】2()m a b + .试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +. 考点:提公因式法与公式法的综合运用. 37.(2017某某省)计算:41892-=. 【答案】32.考点:二次根式的加减法.38.(2017某某省)分解因式:a a +2=. 【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1). 考点:因式分解﹣提公因式法.39.(2017某某省)已知4a +3b =1,则整式8a +6b ﹣3的值为. 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017某某省某某市)分解因式2a b a 的结果为. 【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1). 考点:提公因式法与公式法的综合运用.41.(20173x X 围内有意义,则x 的取值X 围是. 【答案】x ≥3.试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件. 42.(2017某某省某某市)分式11x 有意义的x 的取值X 围为.【答案】x ≠1.考点:分式有意义的条件.43.(2017某某省某某市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017某某省某某市)分解因式:22m m +=. 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017某某省某某市)已知21a a +=,则代数式23a a --的值为. 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想. 46.(2017某某省某某市)因式分解:26x x +=.【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017某某省某某市)分解因式:2x y y -=. 【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解. 48.(2017某某市B 卷)计算:0|3|(4)-+-. 【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂. 三、解答题49.(2017某某省某某市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值. 【答案】1x x -,当x =5时,原式=54. 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x x x +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54. 考点:分式的化简求值.50.(2017某某省某某市)计算:6118cos 4520173--+-+. 【答案】13.考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017某某省某某市)先化简,再求值:2211a a a a a +-⎛⎫+÷ ⎪⎝⎭,其中a =2. 【答案】11a a +-,3. 【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017某某省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017某某省某某市)(1)计算:|21|)2(45cos 04.012----+-; (2)先化简,再求值:y x yxyx x y xy x y x 2)22(222-÷--+--,其中x =22y 2. 【答案】(1)0.7;(2)1y x-,2-.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值. 54.(2017某某省达州市)计算:112017122cos 453-⎛⎫--++︒ ⎪⎝⎭.【答案】5. 【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2121322-+++⨯=522-+ =5. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. 55.(2017某某省达州市)设A =223121a a a a a a -⎛⎫÷- ⎪+++⎝⎭.(1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);… 解关于x 的不等式:()()()27341124x x f f f ---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x ≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017某某省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型. 57.(2017某某省)计算:()11713π-⎛⎫---+ ⎪⎝⎭. 【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 58.(2017某某省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x 5 【答案】2x ,25 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x 当x =5时,原式=25.考点:分式的化简求值.59.(2017某某四市)先化简,再求值:2211121x x x x x ---÷++,其中15-=x . 【答案】11x +,55. 考点:分式的化简求值.60.(20171014()20172.【答案】3.【解析】 试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.61.(2017某某省某某市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -,33. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x - 当33x 时,原式=1333+-=13=33. 考点:分式的化简求值.62.(2017某某省某某市)计算:0318 3.14. 【答案】0.【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法.试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017某某省某某市)化简:211a a a a . 【答案】21a .考点:分式的乘除法.64.(2017某某省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由.【答案】(1)3;(2)见解析;延伸 2,理由见解析.【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论.试题解析: (1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+.∵n 为整数,∴这个和是5的倍数.延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017某某省某某市)计算:011(2017)()93---+.【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017某某省某某市)计算:()09213+---. 【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017某某省某某市)先化简,再求值:1211x x ⎛⎫-⋅ ⎪+⎝⎭,其中x =2017. 【答案】21x +,11009. 【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=1121x x x +-⨯+=21x x x ⨯+=21x + 当x =2017时,原式=220171+=22018=11009. 考点:分式的化简求值. 68.(2017某某省某某市)(1) 计算:()02343218π-+--. (2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-. 考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017某某省襄阳市)先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中52x =,52y =. 【答案】2xy x y -,12. 【解析】 试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xy x y - 当52x =,52y =时,原式2(52)(55252+-+24=12. 考点:分式的化简求值.70.(2017某某市B 卷)计算:(1)2()(2)x y x y x +--; (2)23469(2)22a a a a a a --++-÷--. 【答案】(1)222x y +;(2)3a a -.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017某某市B 卷)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =()()F s F t ,当F (s )+F (t )=18时,求k 的最大值. 【答案】(1)F (243)=9,F (617)=14;(2)54. 【解析】 试题分析:(1)根据F (n )的定义式,分别将n =243和n =617代入F (n )中,即可求出结论;(2)由s =100x +32、t =150+y 结合F (s )+F (t )=18,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合F (n )的定义式,即可求出F (s )、F (t )的值,将其代入k =()()F s F t 中,找出最大值即可.试题解析:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F (t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5,∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()6()12F sF t=⎧⎨=⎩或()9()9F sF t=⎧⎨=⎩或()10()8F sF t=⎧⎨=⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.。
2024年重庆市中考数学真题卷(A卷)和答案
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。
1.下列四个数中,最小的数是( )A .-2B .0C .3D .12-2.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .-3B .3C .-6D .64.如图,,165AB CD ∠=∥,则2∠的度数是()A .105B .115C .125D .1355.若两个相似三角形的相似比是1∶3,则这两个相似三角形的面积比是( )A .13:B .14:C .16:D .19:6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子。
第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A .20B .22C .24D .267.已知m =,则实数m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点。
2017年中考数学真题试题及答案(word版)
保密 ★ 启用前2017年中考题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上) 1、计算2(1)⨯-的结果是( ) A 、12-B 、2-C 、1D 、22、若∠α的余角是30°,则cos α的值是( )A 、12B 、 32C 、22D 、33 3、下列运算正确的是( ) A 、21a a -= B 、22a a a +=C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( )A 、第一、二、三象限B 、第二、三、四象限C 、第一、二、四象限D 、第一、三、四象限 7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃A B C D9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( ) A 、2B 、23C 、 53D 、 7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( ) A 、2 B 、5C 、22D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1B 、2C 、4D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( ) A 、1011升 B 、19升C 、110升 D 、111升 二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上) 13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论:16题图 17题图 18题图①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2AC AD = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342π-----+20、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据2≈1.413 1.73 )21、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA 33π,求⊙O 的半径r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34. (1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100%⨯利润进价)24、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,2,求EB 的长.25、已知抛物线223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH=HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A CCBDBACBCD二、填空题 13. 201114. 315. (3)(3)a a a +- 16. 144°17. 23- 18. ①③④三、解答题19. 解:原式=2-1-3+2, =0.故答案为:0.20. 解:∵一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2, ∴x 1+x 2=4,x 1•x 2=1, ∴(x 1+x 2)2÷( )=42÷=42÷4 =4.21. 解:在Rt △CEB 中, sin60°=,∴CE=BC•sin60°=10×≈8.65m ,∴CD=CE+ED=8.65+1.55=10.2≈10m , 答:风筝离地面的高度为10m .22. (1)证明:连OC ,如图, ∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r , ∴∠A=30°,∠AOC=60°,AC= r , ∴∠AOB=120°,AB=2 r , ∴S 阴影部分=S △OAB -S 扇形ODE = •OC•AB - =- ,∴ •r•2r- r 2=- ,∴r=1,即⊙O 的半径r 为1. 23. 解:(1)3÷ -3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM= -m,EF= = ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+ = +(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).。
重庆市2017年中考数学试题(A卷,word版,含答案)
2017重庆中考数学试题(A卷)人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》江缘学校陈思梅青海一中李清一、选择题1、在实数-3,2,0,-4,最大的数是()A、-3B、2C、0D、-42、下列图形中是轴对称图形的是()A B C D3、计算26xx 正确的解果是()A、3B、3xC、4xD、8x4、下列调查中,最适合采用全面调查(普查)方式的是()A、对重庆市初中学生每天阅读时间的调查B、对端午节期间市场上粽子质量情况的调查C、对某批次手机的防水功能的调查D、对某校九年级3班学生肺活量情况的调查5、估计110+的值应在( ) A 、3和4之间 B 、4和5之间 C 、5和6之间 D 、6和7之间6、若4,31-==y x ,则代数式33-+y x 的值为( ) A 、-6 B 、0 C 、2D 、67、要使分式34-x 有意义,x 应满足的条件是( )A 、3 xB 、3=xC 、3 xD 、3≠x8、若ABC ∆错误!未找到引用源。
DEF ∆,相似比为3:2,则对应高的比( )A 、3:2B 、3:5C 、9:4D 、4:99、如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A 、4-2πB 、4-23πC 、8-2πD 、8-23π10、下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,。
,按此规律排列下去,第⑨个图形中菱形的个数为( )A 、73B 、81C 、91D 、0911、如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( )参考数据:错误!未找到引用源。
重庆市中考数学试卷(a卷)答案及解析
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.的相反数是2 A .2-B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12B .14C .16D .18【答案】C【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,5cm 6cm 9cm 另一个三角形的最短边长为,则它的最长边为2.5cm A. 3cm B. 4cm C. 4.5cm D. 5cm【答案】C【解析】利用相似三角形三边对应成比例解出即可。
2017年中考数学真题汇编----线段、射线、直线(word版)
2017 中考数学真题汇编-----线段、射线、直线一.选择题1.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行2.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行3.如图,C、B 是线段AD 上的两点,若AB=CD,BC=2AC,那么AC 与CD 的关系是为()A.CD=2AC B.CD=3AC C.CD=4AC D.不能确定4.如果延长线段AB 到C,使得,那么AC:AB 等于()A.2:1 B.2:3 C.3:1 D.3:25.如图,点M 在线段AB 上,则下列条件不能确定M 是AB 中点的是()A.BM= AB B.AM+BM=AB C.AM=BM D.AB=2AM6.△ABC 中,CA=CB,D 为BA 中点,P 为直线CD 上的任一点,那么PA 与PB 的大小关系是()A.PA>PB B.PA<PB C.PA=PB D.不能确定7.如图,在数轴上有A、B、C、D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D 两点表示的数分别为﹣5 和6,且AC 的中点为E,BD 的中点为M,BC之间距点B 的距离为BC 的点N,则该数轴的原点为()A.点E B.点F C.点M D.点N8.观察图形,下列说法正确的个数是()(1)直线BA 和直线AB 是同一条直线;(2)AB+BD>AD;(3)射线AC 和射线AD 是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1 个B.2 个C.3 个D.4 个9.如图,点A、B、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=210.点A、B、C 在同一条数轴上,其中点A、B 表示的数分别为﹣3、1,若BC=2,则AC 等于()A.3 B.2 C.3 或5 D.2 或6二.填空题21.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB= .22.如图,已知C,D 两点在线段AB 上,AB=10cm,CD=6cm,M,N 分别是线段AC,BD 的中点,则MN= cm.23.如图,以图中的A、B、C、D 为端点的线段共有条.24.若线段AB=3cm,BC=4cm,且A,B,C 三点在同一条直线上,则A,C 两点间的距离是cm.25.把一根绳子对折成一条线段AB,点P 是AB 上一点,从P 处把绳子剪断已知PB,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为cm.三.解答题(共9 小题)32.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C 所对应数的和是p.(1)若以B 为原点,写出点A,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO=28,求p.33.如图,在平面内有A、B、C 三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC 上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有条.34.如图,己知线段AB=80 厘米,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且NB=14 厘米,求PM 的长.35.如图,线段AB=8cm,C 是线段AB 上一点,AC=3.2cm,M 是AB 的中点,N 是AC 的中点.(1)求线段CM 的长;(2)求线段MN 的长.36.如图,已知A、B、C、D 四个点.(1)画直线AB、CD 相交于点P;(2)连接AC 和BD 并延长AC 和BD 相交于点Q;(3)连接AD、BC 相交于点O;(4)以点C 为端点的射线有条;(5)以点C 为一个端点的线段有条.37.如图,P 是线段AB 上任一点,AB=12cm,C、D 两点分别从P、B 同时向A点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s 后,求CD 的长;②当D 在线段PB 运动上时,试说明AC=2CD;(2)如果t=2s 时,CD=1cm,试探索AP 的值.参考答案与解析一.选择题1.(2017•随州)某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.2.(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.3.如图,C、B 是线段AD 上的两点,若AB=CD,BC=2AC,那么AC 与CD 的关系是为()A.CD=2AC B.CD=3AC C.CD=4AC D.不能确定【分析】由AB=CD,可得,AC=BD,又BC=2AC,所以,BC=2BD,所以,CD=3AC;【解答】解:∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC;故选B.【点评】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.4.如果延长线段AB 到C,使得,那么AC:AB 等于()A.2:1 B.2:3 C.3:1 D.3:2【分析】作出图形,用AB 表示出AC,然后求比值即可.【解答】解:如图,∵BC= AB,∴AC=AB+BC=AB+ AB= AB,∴AC:AB=3:2.故选D.【点评】本题考查了两点间的距离,用AB 表示出AC 是解题的关键,作出图形更形象直观.5.如图,点M 在线段AB 上,则下列条件不能确定M 是AB 中点的是()A.BM= AB B.AM+BM=AB C.AM=BM D.AB=2AM【分析】直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.【解答】解:A、当BM=AB 时,则M 为AB 的中点,故此选项错误;B、AM+BM=AB 时,无法确定M 为AB 的中点,符合题意;C、当AM=BM 时,则M 为AB 的中点,故此选项错误;D、当AB=2AM 时,则M 为AB 的中点,故此选项错误;故选:B.【点评】此题主要考查了两点之间,正确把握线段中点的性质是解题关键.6.△ABC 中,CA=CB,D 为BA 中点,P 为直线CD 上的任一点,那么PA 与PB 的大小关系是()A.PA>PB B.PA<PB C.PA=PB D.不能确定【分析】先根据等腰三角形三线合一的性质得出CD⊥AB,那么直线CD 是线段AB 的垂直平分线,再利用线段垂直平分线的性质即可得出PA=PB.【解答】解:如图.∵CA=CB,D 为BA 中点,∴CD⊥AB,∴直线CD 是线段AB 的垂直平分线,∵P 为直线CD 上的任一点,∴PA=PB.故选C.【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,得出直线CD是线段AB 的垂直平分线是解题的关键.7.如图,在数轴上有A、B、C、D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D 两点表示的数分别为﹣5 和6,且AC 的中点为E,BD 的中点为M,BC之间距点B 的距离为BC 的点N,则该数轴的原点为()A.点E B.点F C.点M D.点N【分析】根据A、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD,求得AB、BC,CD 的长度,从而找到E,M,N 所表示的数.【解答】解:如图所示:∵2AB=BC=3CD,∴设CD=x,则BC=3x,AB=1.5x,∵A、D 两点表示的数分别为﹣5 和6,∴x+3x+1.5x=11,解得:x=2,故CD=2,BC=6,AB=3,∵AC 的中点为E,BD 的中点为M,∴AE=EC=4.5,BM=MD=4,则E 点对应的数字是﹣0.5,M 对应的数字为:2,∵BC 之间距点B 的距离为BC 的点N,∴BN= BC=2,故AN=5,则N 正好是原点.故选:D.【点评】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.观察图形,下列说法正确的个数是()(1)直线BA 和直线AB 是同一条直线;(2)AB+BD>AD;(3)射线AC 和射线AD 是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1 个B.2 个C.3 个D.4 个【分析】利用直线,射线及线段的定义判定即可.【解答】解:(1)直线BA 和直线AB 是同一条直线;正确,(2)AB+BD>AD;正确(3)射线AC 和射线AD 是同一条射线;正确,(4)三条直线两两相交时,一定有三个交点,还可能有一个,故不正确.共3 个说法正确.故选:C.【点评】本题主要考查了直线,射线及线段,解题的关键是熟记直线,射线及线段.9.如图,点A、B、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M 是线段AC 的中点,点N 是线段BC 的中点,可知:,继而即可得出答案.【解答】解:根据点M 是线段AC 的中点,点N 是线段BC 的中点,可知:,∴只要已知AB 即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.10.点A、B、C 在同一条数轴上,其中点A、B 表示的数分别为﹣3、1,若BC=2,则AC 等于()A.3 B.2 C.3 或5 D.2 或6【分析】要求学生分情况讨论A,B,C 三点的位置关系,即点C 在线段AB 内,点C 在线段AB 外.【解答】解:此题画图时会出现两种情况,即点C 在线段AB 内,点C 在线段AB 外,所以要分两种情况计算.点A、B 表示的数分别为﹣3、1,AB=4.第一种情况:在AB 外,AC=4+2=6;第二种情况:在AB 内,AC=4﹣2=2.故选:D.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.二.填空题(2017•桂林)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则11.AB= 4 .【分析】根据中点定义解答.【解答】解:∵点C 是线段AD 的中点,若CD=1,∴AD=1×2=2,∵点D 是线段AB 的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.12.如图,已知C,D 两点在线段AB 上,AB=10cm,CD=6cm,M,N 分别是线段AC,BD 的中点,则MN= 8 cm.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND= DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N 分别是AC、BD 的中点,∴MN=MC+CD+ND= AC+CD+ DB= (AC+DB)+CD= (AB﹣CD)+CD= ×(10 ﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.13.如图,以图中的A、B、C、D 为端点的线段共有 6 条.【分析】按顺序分别写出各线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,共6 条.故答案为:6.【点评】本题考查了直线上点与线段的数量关系,线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).14.若线段AB=3cm,BC=4cm,且A,B,C 三点在同一条直线上,则A,C 两点间的距离是 1 或7 cm.【分析】当C 在点B 的右侧和左侧时,分别计算AC 的长即可.【解答】解:分两种情况:①如图1,当C 在点B 的右侧时,AC=AB+BC=3+4=7,②如图2,当C 在点B 的左侧时,AC=BC﹣AB=4﹣3=1,则A,C 两点间的距离是1 或7cm.故答案为:1 或7.【点评】本题考查了两点的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.15.把一根绳子对折成一条线段AB,点P 是AB 上一点,从P 处把绳子剪断已知PB,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为60 或120 cm.【分析】根据题意得知AP 与PB 的关系,再确定剪断后的各段绳子中最长的一段,然后代入数值即可.【解答】解:根据题意知PB,剪断后的各段绳子中最长的一段为40cm,则(1)点A 是连着的端点,则PA=20,PB=40,AB=60,原长=2AB=60×2=120cm;(2)如果点B 是连着的(也就是线段的中点),则PB=20,PA=10,所以AB=30,原长=2AB=60cm,故答案为:60cm或120cm.【点评】本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三.解答题16.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C 所对应数的和是p.(1)若以B 为原点,写出点A,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO=28,求p.【分析】(1)根据以B 为原点,则C 表示1,A 表示﹣2,进而得到p 的值;根据以C 为原点,则A 表示﹣3,B 表示﹣1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示﹣28,B 表示﹣29,A 表示﹣31,据此可得p 的值.【解答】解:(1)若以B 为原点,则C 表示1,A 表示﹣2,∴p=1+0﹣2=﹣1;若以C 为原点,则A 表示﹣3,B 表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O 在图中数轴上点C 的右边,且CO=28,则C 表示﹣28,B 表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.【点评】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.17.如图,在平面内有A、B、C 三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC 上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有 6 条.【分析】(1)(2)利用直尺即可作出图形;(3)根据线段的定义即可判断.【解答】解:(1)(2)(3)图中有线段6 条.【点评】本题考查了线段、射线以及线段的作图,是一个基础题,在作图的过程中要注意延伸性.18.如图,己知线段AB=80 厘米,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且NB=14 厘米,求PM 的长.【分析】先根据N 为PB 的中点,且NB=14 厘米,得出PB 的长,再由M 是AB 的中点得出MB 的长,根据MP=MB﹣PB 即可得出结论.【解答】解:∵N 为PB 的中点,且NB=14 厘米,∴PB=2NB=2×14=28(厘米),∵M 是AB 的中点,∴AM=MB= AB= ×80=40(厘米),∴MP=MB﹣PB=40﹣28=12(厘米).【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.如图,线段AB=8cm,C 是线段AB 上一点,AC=3.2cm,M 是AB 的中点,N 是AC 的中点.(1)求线段CM 的长;(2)求线段MN 的长.【分析】(1)根据M 是AB 的中点,求出AM,再利用CM=AM﹣AC 求得线段CM 的长;(1)根据N 是AC 的中点求出NC 的长度,再利用MN=CM+NC 即可求出MN 的长度.【解答】解:(1)由AB=8,M 是AB 的中点,所以AM=4,又AC=3.2,所以CM=AM﹣AC=4﹣3.2=0.8(cm).所以线段CM 的长为0.8cm;(2)因为N 是AC 的中点,所以NC=1.6,所以M N=NC+CM,1.6+0.8=2.4(cm),所以线段MN 的长为2.4cm.【点评】本题主要考查线段中点的运用,线段的中点把线段分成两条相等的线段.20.如图,已知A、B、C、D 四个点.(1)画直线AB、CD 相交于点P;(2)连接AC 和BD 并延长AC 和BD 相交于点Q;(3)连接AD、BC 相交于点O;(4)以点C 为端点的射线有 3 条;(5)以点C 为一个端点的线段有 6 条.【分析】(1)、(2)、(3)分别根据直线、线段、延长线的画法作出即可;(4)根据射线的定义即可得出答案;(5)根据线段的定义即可得出答案.【解答】解:(1)、(2)、(3),如图所示:(4)以点C 为端点的射线有3 条,分别是:射线CP、射线CD、射线CQ,故答案为:3;(5)以点C 为一个端点的线段有6 条,分别是:线段CP、线段CD、线段CA、线段CQ、线段CO、线段CB,故答案为:6.【点评】此题考查了直线、线段的画法,及射线、线段的定义,解题的关键是:掌握直线的画法,正确理解射线及线段的定义.21.如图,P 是线段AB 上任一点,AB=12cm,C、D 两点分别从P、B 同时向A点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s 后,求CD 的长;②当D 在线段PB 运动上时,试说明AC=2CD;(2)如果t=2s 时,CD=1cm,试探索AP 的值.【分析】(1)①先求出PB、CP 与DB 的长度,然后利用CD=CP+PB﹣DB 即可求出答案.②用t 表示出AC、DP、CD 的长度即可求证AC=2CD;(2)当t=2 时,求出CP、DB 的长度,由于没有说明D 点在C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm∵AP=8cm,AB=12cm∴PB=AB﹣AP=4cm∴CD=CP+PB﹣DB=2+4﹣3=3cm②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,∴AC=2CD;(2)当t=2 时,CP=2×2=4cm,DB=3×2=6cm,当点D 在C 的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB﹣CB=5cm,∴AP=AC+CP=9cm,当点D 在C 的左边时,如图所示:∴AD=AB﹣DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9 或11【点评】本题考查两点间的距离,涉及列代数式,分类讨论的思想,属于中等题型.。
2018年重庆市中考数学试卷word 版(含答案)
重庆市2018年初中毕业暨高中招生考试参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b2a ,4ac b 4a),对称轴公式为x =—b 2a .一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.1.3的倒数是()A .13B .— 13 C .3 D .—32.计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 5 3.不等式组⎩⎨⎧>≤-62,31x x 的解集为()A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C =50°,∠BDE =60°,则∠CDB 的度数等于()A .70°B .100°C .110°D .120° 5.下列调查中,适宜采用全面调查(普查)方式的是()A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于() A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
2017年重庆市中考数学试卷(A卷)(含答案解析)
2017年重庆市中考数学试卷(A卷)一、选择题(每小题4分,共48分)1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x84.(4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(4分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.67.(4分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠38.(4分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E 是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10911.(4分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米12.(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣1)2=.15.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.16.(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB 于点F,求∠AFE的度数.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(10分)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2017•重庆)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x8【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x6÷x2=x4.故选:C.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.4.(4分)(2017•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4分)(2017•重庆)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】首先得出的取值范围,进而得出答案.【解答】解:∵3<<4,∴4<+1<5.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(4分)(2017•重庆)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.7.(4分)(2017•重庆)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.【点评】本题考查的知识点为:分式有意义,分母不为0.8.(4分)(2017•重庆)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.9.(4分)(2017•重庆)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .B .C .D .【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF ,求出答案.【解答】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣×1×1﹣=﹣. 故选:B .【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.10.(4分)(2017•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.11.(4分)(2017•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.12.(4分)(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2017•重庆)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.【解答】解:11000=1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2017•重庆)计算:|﹣3|+(﹣1)2=4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【点评】此题考查了有理数的混合运算以及绝对值,熟练掌握运算法则是解本题的关键.15.(4分)(2017•重庆)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB 的度数是多少即可.【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【点评】此题主要考查了圆周角定理的应用,以及圆的特征和应用,要熟练掌握.16.(4分)(2017•重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【点评】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.(4分)(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B 之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(每小题8分,共16分)19.(8分)(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.20.(8分)(2017•重庆)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.【点评】此题考查了扇形统计图和条形统计图、列表法与树状图法的应用;从统计图中、扇形图中获取信息、画出树状图是解决问题的关键.21.(10分)(2017•重庆)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.【解答】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.【点评】此题考查了分式和整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m ≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.【解答】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和反比例函数的性质解答.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.【点评】本题主要考查全等三角形的判定与性质及勾股定理、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.【点评】本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.。
2017重庆中考数学试题及答案A卷Word版.docx
重庆市 2017 年初中毕业生学业水平暨普通高中招生考试数学试题 ( A卷)( 全卷共五个大题,满分150 分,考试时间120 分钟 )注意事 :1.的答案写在答卡上,不得在卷上直接作答.2.作答前真答卡上的注意事.3.考束,由考人将和答卡一并收回.参考公式 : 抛物y ax2bx c(a 0)b4ac b2b 的点坐 (,) ,称 x.2a4a2a一、 ( 本大共 12个小,每小 4 分,共 48 分 ) 在每个小的下面,都出了代号A、B、C、D 的四个答案,其中只有一个是正确的,将答卡上号右正确答案所的方框涂黑.1.在数- 3, 2, 0,- 4,最大的数是 ( B )A.-3B.2C.0D.-42.下列形中是称形的是 ( C )A B C D3. 算x6x 2正确的果是(C )A . 3 B. x3 C. x4 D . x84.下列中,最适合采用全面( 普 ) 方式的是 ( D )A . 重市初中学生每天的B . 端午期市上粽子量情况的C. 某批次手机的防水功能的 D . 某校九年 3 班学生肺活量情况的5. 估10 1的在( B )A.3和4之B.4和5之C.5和 6之D.6和 7之6. 若x 14 ,代数式 3x y3的( B ), y3A. -64 7.要使分式x 3B.0C.2D.6有意, x 足的条件是( D )A . x 3 B. x 3 C. x 3 D. x 38.若ABC∽DEF ,相似比3: 2,高的比 ( A )A.3:2B.3:5C.9:4D.4:99. 如,矩形 ABCD 的 AB=1 , BE 平分∠ ABC ,交 AD 于点 E,若点 E 是 AD 的中点,以点 B 心, BE 半径画弧,交BC 于点 F,中阴影部分的面是(B)A.2- B .3C.2-3--48D.422810. 下列形都是由同大小的菱形按照一定律所成的,其中第①个形中一共有 3 个菱形,第②个形中一共有7 个菱形,第③个形中一共有13 个菱形,⋯⋯,按此律排列下去,第⑨个形中1菱形的个数为 ( C )A. 73B. 81C. 91D. 10911 题图11. 如图,小王在长江边某瞭望台 D 处,测得江面上的渔船A 的俯角为 400,若 DE=3 米, CE=2 米, CE平行于江面 AB ,迎水坡 BC 的坡度 i 1: 0.75 ,坡长 BC=10 米,则此时 AB 的长约为 ( A )( 参考数据 :sin40 0≈0.64 , cos40 0≈ 0.77 ,tan40 0≈ 0.84)2ay2 y12. 若数 a 使关于 x 的分式方程y 的不等式组311 1 4 的解为正数,且使关于2的xx2 y a解集为 y 2 ,则符合条件的所有整数 a 的和为 ( A )A. 10B. 12C. 14D.16二、填空题 (本大题 6 个小题,每小题 4 分,共 24 分 )请将每小题的答案直接填在答题卡中对应的横线上.13. “渝新欧”国际铁路联运大通道全长 11000 千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1. 1× 104 .14. 计算 :|-3|+(- 1) 2=4.,则∠ ACB= 3215. 如图, BC 是⊙ O 的直径,点 A 在圆上,连接 AO , AC ,∠ AOB=64度 .16. 某班体育委员对本班学生一周锻炼时间( 单位 : 小时 ) 进行了统计,绘制了如图所示的折线统计图,则 该班这些学生一周锻炼时间的中位数是11小时.18 题图17. A 、B 两地之间的路程为 2380 米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回 A 地,乙继续向 A 地前行 . 甲到达 A 地时停止行走,乙到达 A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走, 甲、乙两人相距的路程 y( 米 ) 与甲出发的时间 x( 分钟 ) 之间的 关系如图所示, 则乙到达 A地时,甲与 A 地相距的路程是180米 .18. 如图,正方形 ABCD 中, AD=4 ,点 E 是对角线 AC 上一点,连接 DE ,过点 E 作 EF ED ,交 AB 于点 F ,连接 DF ,交 AC 于点 G ,将△ EFG 沿 EF 翻折,得到△ EFM ,连接 DM ,交 EF 于点 N ,若点 F是 AB 的中点,则△ EMN 的周长是.三、解答题 ( 本大题 2 个小题,每小题 8 分,共 16 分 ) 解答时每小题必须给出必要的演算过程或推理步 骤,画出必要的图形 ( 包括作辅助线 ) ,请将解答过程书写在答题卡 中对应的位置上 ....19. 如图, AB//CD ,点 E 是 CD 上一点,∠ 0AEC=42, EF 平分∠ AED 交 AB 于点 F. 求∠ AFE 的度数 .220. 重庆某中学组织七、八、九年级学生参加“直辖 20 年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计, 绘制了如图 1 和如图 2 两幅不完整的统计图, 根据图中提供的信息完成以下问题.( 1) 扇形统计图中九年级参赛作文篇数对应的圆心角是 126度,并补全条形统计图;45( 2) 经过评审,全校有4 篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.解 :( 2) 假设 4 篇荣获特等奖的作文分别为A 、B 、C 、D ,其中 A 代表七年级获奖的特等奖作文 . 列表法 :P6 1122四、解答题 ( 本大题 4 个小题,每小题 10 分,共 40 分 ) 解答时每小题必须给出必要的演算过程或推理步 骤,画出必要的图形 ( 包括作辅助线 ) ,请将解答过程书写在答题卡 中对应的位置上 .... 21 . 计算 :( 1) x x 2 yx y 2( 2)3 a 2a 22a 1 ;a2a222. 如图,在平面直角坐标系中,一次函数mx n( m 0) 的图像与反比例函数 yk k 0 的图像x交于第一、三象限内的 A ,B 两点,与 y 轴交于点 C. 过点 B 作 BMx 轴,垂足为 M ,BM=OM ,OB= 2 2 ,点 A 的纵坐标为 4.( 1) 求该反比例函数和一次函数的解析式;( 2) 连接 MC ,求四边形 MBOC 的面积 .解 :(1) 由题意可得, BM=OM , OB=2 2 ,∴ BM=OM=2,∴点 B 的坐标为 ( ﹣ 2,﹣ 2) ,∵反比例函数的解析式为∵点 A 的纵坐标是 4,∴yk( k 0) ,∴ 2k,∴ k 4 ,∴反比例函数的解析式为y4 , x 2x44,得 x 1 ,∴点 A 的坐标为 (1 , 4) ,x∵一次函数 y mx n(m0) 的图象过点 A(1, 4) 、点 B( ﹣ 2,﹣ 2) ,m n 4 m 2 y 2x2 ;∴n,得n,即一次函数的解析式为 2m 22(2) ∵ y2x 2 与 y 轴交与点 C ,∴点 C 的坐标为 (0 , 2) ,∵点 B( ﹣ 2,﹣ 2) ,点 M(﹣ 2,0) ,点 O(0, 0) ,∴ OM=2, OC=2, MB=2,3∴四边形 MBOC 的面积为:S Rt COM S Rt BOM 1OM OC1OM MB12 212 2 4 .222223.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.( 1) 该地某果农今年收获樱桃和枇杷共400 千克,其中枇杷的产量不超过樱桃产量的7 倍,求该果农今年收获樱桃至少多少千克?( 2) 该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售. 该果农去年樱桃的市场销售量为100 千克,销售均价为30 元 /千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 千克,销售均价为20 元 /千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m 的值 .解 :(1)设该果农今年收获樱桃x 千克,根据题意得400- x≤7x,解得 x≥ 50.(2)100(1-m%) × 30+200×(1+2 m%) × 20(1- m%)=100 × 30+200× 20,令 m%=y,原方程可化为 :3000(1- y)+4000(1+2 y)(1- y)=7000 ,整理可得 :8 y2- y=0,解得 : y1=0, y2=0.125 ,∴ m1=0( 舍去 ) ,m2=12.5 ,∴ m=12.5.24. 在△ ABC 中,∠ ABM=45 0, AM ⊥ BM ,垂足为M ,点 C 是 BM 延长线上一点,连接AC .( 1) 如图一,若 AB= 3 2, BC=5 ,求 AC 的长; ( 2) 如图二,点 D 是线段 AM 上一点, MD=MC ,点 E 是△ABC 外一点,EC=AC ,连接 ED 并延长交 BC 于点 F,且点 F 是线段 BC 的中点 . 求证 : ∠ BDF= ∠ CEF.五、解答题 ( 本大题2个小题,25小题10分,26小题12分,共22分 ) 解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形( 包括作辅助线) ,请将解答过程书写在答题卡中对应的位置上....25. 对任意一个三位数n,如果 n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与 111 的商记为F( n). 例如 n= 123,对调百位与十位上的数字得到213,对调百位与个位上的数4字得到 321,十位与个位上的数字得到132,三个新三位数的和213+321+132=666 ,666÷ 111=6 ,所以 F( 123) =6 .( 1) 算 : F( 243) ,F( 617) ;( 2) 若 s,t 都是“相异数”,其中s=100x+32 ,t=150+y( 1≤ x≤ 9, 1≤ y≤ 9, x, y 都是正整数 ) ,定 : k F s18 ,求k的最大.,当 F s F tF t解 :( 1) F( 243)=(423+342+234) ÷ 111=9, F( 617)=(176+716+671) ÷ 111=14.26. 如,在平面直角坐系中,抛物 y 3 x2 2 3 x 3 与x交于A,B两点(点A在点B的33左 ) ,与 y 交于点 C,称与 x 交于点 D ,点 E( 4,n) 在抛物上 .(1) 求直 AE 的解析式;( 2) 点 P 直 CE 下方抛物上的一点,接PC, PE. 当△ PCE 的面最大,接CD, CB,点 K 是段 CB 的中点,点 MCP 上的一点,点N 是 CD 上的一点,求 KM+MN+NK 的最小;( 3) 点 G 是段 CE 的中点,将抛物y 3 x2 23x 3 沿x正方向平移得到新抛物y′,y′33点 D,y′的点点 F. 在新抛物 y′的称上,是否存在一点Q,使得△ FGQ 等腰三角形?若存在,直接写出点 Q 的坐,若不存在,明理由 .解 :(1)当 y0 ,即 3 x22 3 x30 .33解个方程,得x1 1 , x23.∴点 A(-1 , 0),B(3,0).当 x4,n342234353 ,333∴点 E(4,53). ⋯⋯ (2分 )∴直 AE 的解析式y 3 x3.⋯⋯(3分 )333(2) 令x0 ,得y3.∴点C(0, 3 ).又∵点 E(4 ,53) ,35∴直 CE 的解析式 y2 3 x 3 . 点 P 作 PF ∥ y ,交 CE 于点 F ,如 1.3点 P 的坐 ( t ,3 t 2 2 3 t 3 ) , F( t ,2 3 t 3 ) ,333∴PF=23 t 3 ( 3 t 22 3 t 3)3 t 24 3t , 33333∴S △PCE1 x E x C PH1 4 (3 t 24 3 t ) 2 3 t 2 83t .22333 3 又∵抛物 开口向下,0 t4,∴当 t 2,△取得最大 .SPCE此 ,点 P (2 ,3 ). ⋯⋯(5 分)如 2 所示 : 作点 K 关于 CD 和 CP 的 称点 G 、H , 接 G 、 H 交 CD 和 CP 与 N 、 M .∵ K 是 CB 的中点,∴ K( 3 ,3) .∵点 H 与点 K 关于 CP 称,∴点 H 的坐 (3, 3 3) .2222∵点 G 与点 K 关于 CD 称,∴点 G(0, 0) ,∴ KM+MN+NK=MH+MN+GN .当点 O 、 N 、 M 、 H 在条直 上 , KM+MN+NK 有最小 ,最小=GH ,∴ GH= (3)2(33)2=3,22∴ KM+MN+NK 的最小 3. ⋯⋯ (8 分 )(3) 点 Q 的坐 (3 ,4 3 221) ,(3, 4 3 2 21),(3, 23) ,(3,2 3 ).335( 写 一个点的坐 得 1 分)⋯⋯ (12 分)如 3 所示:∵ y ′ 点 D , y ′的 点 点F ,∴ F(3 ,4 3).3∵点 G CE 的中点,∴ FG= 12(53)2 2 21 ,3 3∴①当 FG=FQ ,点 Q(3,432 21 ),3Q ′(3,4 3 2 21).3②当 GF=GQ ,点 F 与点 Q ″关于 y3 3 ).称,∴点 Q ″ (3 , 236③当 QG=QF时,设点 Q1的坐标为 (3 ,a).由两点间的距离公式可知 : a4312( 3a)2,解得:a 2 3.∴点 Q1的坐标为 (3 ,23).3355综上所述,点 Q的坐标为 (3 ,43221),(3, 4 3 221),(3,23),(3, 2 3).335 7。
重庆市2020年中考数学试卷(A卷)(Word版,含答案与解析)
重庆市2020年中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)(共12题;共48分)1.下列各数中,最小的数是()A. ﹣3B. 0C. 1D. 2【答案】A【考点】有理数大小比较【解析】【解答】解:∵﹣3<0<1<2,∴这四个数中最小的数是﹣3.故答案为:A.【分析】有理数的大小比较:越靠近正方向越大,反之,越靠近反方向的越小.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【考点】轴对称图形【解析】【解答】解:B、C、D都不是轴对称图形,A是轴对称图形.故答案为:A.【分析】轴对称图形定义:如果把一个图形沿某条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;常见的轴对称图形:线段、圆、正多边形、矩形、等腰三角形、等腰梯形等.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×105【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:26000=2.6×104.故答案为:C.【分析】用表示大于等于10的数为a×10n,其中(n为正整数,1≤a<10).4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 21【答案】B【考点】探索图形规律【解析】【解答】解:∵第①个图案中黑色三角形的个数为1,第②个图案中数黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故答案为:B.【分析】分别找出图①、②、③中黑色三角形的个数,找到规律代入即可.5.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°【答案】 D【考点】切线的性质【解析】【解答】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°﹣20°=70°.故答案为:D.【分析】根据切线性质:圆的切线垂直于过切点的半径可得∠A=90°,根据直角三角形两锐角互余即可计算∠AOB.6.下列计算中,正确的是()A. √2+ √3=√5B. 2+ √2=2 √2C. √2× √3=√6D. 2 √3﹣2=√3【答案】C【考点】二次根式的乘除法,同类二次根式,二次根式的加减法【解析】【解答】解:A. √2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C. √2× √3=√2×3=√6,此选项计算正确;D.2 √3与﹣2不是同类二次根式,不能合并,此选项错误.故答案为:C.【分析】由经过化简后,被开方数相同的二次根式称为同类二次根式,同类二次根式可进行加减可判断A、B、D;根据二次根式的乘法法则,根指数不变,把被开方数相乘即可判断C.7.解一元一次方程12(x+1)=1﹣13x时,去分母正确的是()A. 3(x+1)=1﹣2xB. 2(x+1)=1﹣3xC. 2(x+1)=6﹣3xD. 3(x+1)=6﹣2x【答案】 D【考点】解含分数系数的一元一次方程【解析】【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故答案为:D.【分析】在方程左右两边同乘6即可.8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2 √5【答案】 D【考点】勾股定理,位似变换【解析】【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2 √5.故答案为:D.【分析】根据△DEF与△ABC以原点为位似中心成位似图形,且相似比为2:1,从而即可由点A,C的坐标得出点D,F的坐标,进而根据两点间的距离公式即可算出DF的长.9.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i =1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】 B【考点】解直角三角形的应用﹣坡度坡角问题,解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt △DEC 中,∵山坡CD 的坡度i =1:0.75,∴ DE EC = 10.75 = 43 ,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE =BC+EC =60+27=87=DF ,在Rt △ADF 中,AF =tan28°×DF≈0.53×87≈46.11,∴AB =AF+FB =46.11+36≈82.1,故答案为:B.【分析】由山坡CD 的坡度i =1:0.75可得DE :EC=4:3,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x 且CD =45即可分别计算DE 、EC ,可得BE ;由“在坡顶D 点处测得居民楼楼顶A 点的仰角为28°”可由AF =tan28°×DF ,即可计算AB.10.若关于x 的一元一次不等式组 {3x−12≤x +3x ≤a的解集为x≤a ;且关于y 的分式方程 y−a y−2 + 3y−4y−2 =1有正整数解,则所有满足条件的整数a 的值之积是( ) A. 7 B. ﹣14 C. 28 D. ﹣56【答案】 A【考点】分式方程的解及检验,一元一次不等式组的应用【解析】【解答】解:不等式组整理得: {x ≤7x ≤a, 由解集为x≤a ,得到a≤7,分式方程去分母得:y ﹣a+3y ﹣4=y ﹣2,即3y ﹣2=a ,解得:y = a+23 ,由y为正整数解,得到a=1,4,7当a=4时,y=2,此时分式方程无解,故a=1,71×7=7.故答案为:A.【分析】由不等式组的解集为x≤a可得a≤7,解分式方程可得y=a+23,由分式方程有正整数解可得y≠2,即a≠4,且a≤7且a+2能整除3,故a=1或7即可得结果.11.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC 交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√33【答案】B【考点】勾股定理,翻折变换(折叠问题)【解析】【解答】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12•(AF+DF)•BF=4,∴12•(3+DF)•2=4,∴DF=1,∴DB=√BF2+DF2=√12+22=√5,点F到BD的距离为h,则有12•BD•h=12•BF•DF,∴h=2√55,故答案为:B.【分析】由三角形的中线平分三角形面积可得S△ADE,再又翻折可得S△ABD,由勾股定理可得BD,由面积公式可得12•BD•h=12•BF•DF即可求解.12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE 的面积为18,则k的值为()A. 6B. 12C. 18D. 24【答案】B【考点】平行线的判定,矩形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12•ON•AN=12•OM•FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD 是矩形,∴OA =OD ,∴∠OAD =∠ODA =∠DAE ,∴AE ∥BD ,∴S △ABE =S △AOE ,∴S △AOE =18,∵AF =EF ,∴S △EOF = 12 S △AOE =9,∴S △FME = 13 S △EOF =3,∴S △FOM =S △FOE ﹣S △FME =9﹣3=6= k 2, ∴k =12.故答案为:B.【分析】先证明OB ∥AE ,得出S △ABE =S △AOE , 设点A (a,k a )可求出点E 、F 坐标,可得S △AOE=12×3a ×k a 即可. 二、填空题:(本大题6个小题,每小题4分,共24分)(共6题;共24分)13.计算:(π﹣1)0+|﹣2|=________.【答案】 3【考点】绝对值及有理数的绝对值,0指数幂的运算性质,有理数的加法【解析】【解答】解:(π﹣1)0+|﹣2|=1+2=3.故答案为:3.【分析】根据任何非0 数的0次幂为1,负数的绝对值等于它的相反数分别计算,再利用有理数加法计算即可.14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是________.【答案】 6【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6.故答案为:6.【分析】由n 边形内角和(n ﹣2)×180°和n 边形外角和360°可列方程求解.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n.则点P (m ,n )在第二象限的概率为________.【答案】 316【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为:316【分析】无放回事件,可列出所有可能情况,找出点在第二象限(横坐标为负,纵坐标为正),利用概率公式即可计算.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为________.(结果保留π)【答案】4﹣π【考点】勾股定理,正方形的性质,扇形面积的计算【解析】【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2 √2,∴OA=OC=√2,∴图中的阴影部分的面积=22﹣90π×(√2)2×2=4﹣π,360故答案为:4﹣π.【分析】由正方形的性质可得AB=BC=2,由勾股定理得AC,即可得扇形半径为AC一半,故图中的阴,其中n=180°,r=AC一半.影部分的面积=正方形面积-扇形面积,再带入扇形面积公式nπr236017.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是________.【答案】 (4,160)【考点】通过函数图象获取信息并解决问题【解析】【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km/h ),∴乙货车从B 地到A 地所用时间为:240÷60=4(小时),当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米),∴点E 的坐标是(4,160).故答案为:(4,160).【分析】由CD 段可得乙货车的速度,再由两车行驶速度分析点E 的意义即可求解。
2017年度重庆中考数学A卷及规范标准答案
重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( )A.-3B.2C.0D.-4 2.下列图形中是轴对称图形的是( )A B C D 3.计算26x x ÷正确的结果是( )A.3B.3xC.4x D.8x 4.下列调查中,最适合采用全面调查(普查)方式的是( ) A.对重庆市初中学生每天阅读时间的调查 B.对端午节期间市场上粽子质量情况的调查 C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查 5.估计110+的值应在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间 6.若4,31=-=y x ,则代数式33-+y x 的值为( )A.-6B.0C.2D.67.要使分式34-x 有意义,x 应满足的条件是( ) A.3>x B.3=x C.3<x D.3≠x8.若ABC ∆错误!未找到引用源。
∽DEF ∆,相似比为3:2,则对应高的比为( ) A.3:2 B.3:5 C.9:4 D.4:99.如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( ) A.4-2πB.4-23πC.8-2πD.8-23π10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73B.81C.91D.10911.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( ) (参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A.5.1米B.6.3米C.7.1米D.9.2米12.若数a 使关于x 的分式方程4112=-+-xa x 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤->-+021232a y yy 的解集为2-<y ,则符合条件的所有整数a 的和为( ) A.10 B.12 C.14 D.16二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2017年初中毕业暨高中招生考试模拟试题数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3)A. B.C.D.4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 1,2x x ==- D. 0,2x x ==6题图9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。
14.计算020152-= 。
15.已知ABC DEF ∆∆,ABC ∆与DEF ∆的相似比为4:1, 则ABC ∆与DEF ∆对应边的高之比为 。
16.如图,在等腰直角三角形ABC 中,∠ACB=90°,AB=A 为 圆心,AC 长为半径作弧,交AB 于点D ,则阴影部分的面积是 。
17.从3,2,1,0,4---这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数1y =的自变量取值范围内的概率是10题图12题图16题图18.如图,矩形ABCD 中,AB=连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC E '',当射线BE '和射线BC '都与线段AD 相交时,设交点分别F,G ,若△BFD 为等腰三角形,则线段DG 长为 。
三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.解方程组2431y x x y =-⎧⎨+=⎩20.如图,在△ABD 和△FEC 中,点B,C,D,E 在同一直线上,且AB=FE,BC=DE,∠B=∠E 。
求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.()21(2)()y x y x y -++ 22869(2)11y x y y y y ⎛⎫-+--÷ ⎪++⎝⎭18题图20题图22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w (万元)的多少分为以下四个类型:A 类(10w <),B 类(1020w ≤<),C 类(2030w ≤<),D 类(30w ≥),该镇政府对辖区对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 。
扇形统计图中B 类所对应扇形圆心角的度数为 度。
请补全条形统计图。
(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会,计划从D 类企业的4个参会代表中随机抽取2个发言,D 类企业的4个参会代表中2个来自高新区,另2个来自开发区,请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率。
23.如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由; (2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(14x ≤≤,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.24. 某水库大坝的横截面是如图所示的四边形BACD ,期中A B ∥CD.瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 在俯角45β=︒,已知NM 所在直线与PC 所在直线垂直,垂足为点E ,PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH 的坡度为1:1.5i =,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)24题图H五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上.25.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A 作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。
(1)如图1,若点H是AC的中点,AC=AB,BD的长。
(2)如图1,求证:HF=EF。
(3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由。
图1 图226.如图1,在平面直角坐标系中,抛物线24y x =-++交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点W ,顶点为C ,抛物线的对称轴与x 轴的交点为D 。
(1)求直线BC 的解析式。
(2)点E (m ,0),F (m+2,0)为x 轴上两点,其中()4m <<2,EE ',F F '分别垂直于x 轴,交抛物线与点E ',F ',交BC 于点M ,N ,当ME NF ''+的值最大时,在y 轴上找一点R ,使得RF RE ''-值最大,请求出R 点的坐标及RF RE ''-的最大值。
(3)如图2,已知x 轴上一点9,02P ⎛⎫ ⎪⎝⎭,现以点P为顶点,x 轴上方作等边三角形QPC ,使GP ⊥x 轴,现将△QPG 沿PA 方向以每秒1个单位长度的速度平移,当点P 到达点A 时停止,记平移后的△QPG 为Q P G '''∆,设Q P G '''∆与△ADC 的重叠部分面积为s ,当点Q '到x 轴的距离与点到直线AW 的距离相等时,求s 的值。
图1 图2数学试题(A 卷)参考答案(全卷共五个大题 满分150分 考试时间120分钟)一、选择题(本大题12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分) 13. 43.710⨯ 14. -1 15. 4:1 16. 82π-17. 2518. 9817三、解答题(本大题共2个小题,每小题7分,共14分) 19.12x y =⎧⎨=-⎩ 20.∵BC=DE∴BC+CD=DE+CD 即BD=CE易证:△ABD ≌△FEC 故:ADB FCE ∠=∠四、解答题(本大题4个小题,每小题10分,共40分) 21.⑴24x xy + ⑵233y y y +-22.⑴25;72;图略⑵16P =23.⑴四位“和谐数”:1111,2222,3443,1221等任意一个四位“和谐数”都能被11整数,理由如下:设四位“和谐数”是abcd ,则满足: 个位到最高位排列:,,,d c b a 最高位到个位排列:,,,a b c d由题意,两组数据相同,则:,a d b c == 则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数所以四位“和谐数”abcd 能被11整数又由于,,,a b c d 的任意性,故任意四位“和谐数”都可以被11整除 ⑵设能被11整除的三位“和谐数”为:zyx ,则满足: 个位到最高位排列:,,x y z 最高位到个位排列:,,z y x 由题意,两组数据相同,则:x z = 故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数 故2(14)y x x x =≤≤,为自然数 24.⑴在Rt △PEN 中,EN=PE=30m在Rt △PEM 中,50tan31PEME m ==︒∴20m MN EM EN =-=答:两渔船M 、N 之间的距离为20米 ⑵过点D 作DN ⊥AH 交直线AH 于点N由题意:tan 4DAB ∠=,4tan 7H ∠=在RT △DAN 中,2464tan 3DN AN DAB ===∠m 在RT △DHN 中,24424tan 7DN HN H===∠m故AH=HN-AN=42-6=36m14322ADH S AH DN =⨯⨯=△2m故需要填筑的土石方共343210043200V S L m =⨯=⨯=设原计划平均每天填筑3xm ,则原计划43200x天完成;增加机械设备后,现在平均每天填筑32xm4320010(1020)243200x x x+--⨯=解得:864x =经检验:864x =是原分式方程的解,且满足实际意义五、解答题(本大题共2个小题,每小题12分,共24分) 25.⑴AB =BD =⑵连接AF易证:△DAE ≌△ADH ,故DH=AE30EAF EAB FAB FAB ∠=∠-∠=︒-∠60(90)6030FDH FDA HDA FDA FBA FBA ∠=∠-∠=∠-︒=︒-∠-︒=︒-∠故EAF FD H ∠=∠ 易证:△DHF ≌△AEF ∴HF=EF⑶(方法不唯一,有很多,合理即可) (法一)取AB 的中点M ,连接CM 、FM 在RT △ADE 中,AD=2AEFM 是△ABD 的中位线,故AD=2FM ∴FM=AE易证△ACM 为等边三角形,故AC=CM1302CAE CAB ∠=∠=︒30CMF AMF AMC ∠=∠-∠=︒ 故△ACE ≌△MCF (手拉手全等模型) 故易证:△CEF 为等边三角形B(法二)延长DE 至点N ,使EN=DE ,连接AN ;延长BC 至点M ,使CB=CM ,连接AM ;延长BD 交AM 于点P易证:△ADE ≌△ANE ,△ABC ≌△AMC易证:△ADM ≌△ANB (手拉手全等模型),故DM=BNCF 是△BDM 的中位线,EF 是△BDN 的中位线故1122EF BN DM CF ===CFE CFD DFE MDP DBN MDP DBA ABN∠=∠+∠=∠+∠=∠+∠+∠故△CEF为等边三角形B 26.⑴y=+⑵22'(E M=+++=+-2'F N=+故:2''E MF N+=+-当3m==时,''E MF N+最大,此时E F∴'':E F y=∴(0R,max''4RF RE-=⑶由题意,Q点在CAB∠的角平分线或外角平分线上①当Q点在CAB∠的角平分线上时,如图''Q M Q N==CW△RMQ’∽△RNC,故'RQ=,则RN=△CRN∽△CWO,故CN=∴DN=CD-CN=4=故S=x②当Q 点在CAB ∠的外角平分线上时,如图△Q ’RN ∽△WCO,故'Q R =RM -△RCM ∽△WCO ,故在Rt △Q ’MP ’中,''3AM M ==,故''3CP MP CM =-=-=在Rt △CP ’S中,'P S ==故x。