高吸水性树脂

合集下载

高吸水树脂

高吸水树脂

高吸水树脂高吸水性树脂(Super Absorbent Polymer, 简称SAP),通用名高吸水树脂、吸水树脂,用于不同行业又有专业俗称如农林保水剂、光缆阻水粉、高分子吸水珠、人工水晶泥、蓄热蓄冷剂等。

kl-sap主要化学成分是低交联型聚丙烯酸钠盐,属新型功能高分子吸水材料。

它能吸收比自身重几百或上千倍的无离子水。

吸水后即成凝胶状,即使加压也很难挤出水来。

具体特性如下:1.高吸水性能吸收自身重量的数百倍或上千倍的无离子水。

2.高吸水速率每克高吸水树脂能在30秒内就吸足数百克的无离子水。

3.高保水性吸水后的凝胶在外加压力下,水也不容易从中挤出来。

4.高膨胀性吸水后的高吸水树脂凝胶体体积随即膨胀数百倍。

5.吸氨性低交联型聚丙烯酸盐型高吸水性树脂其分子结构中含有羧基阴离子,遇氨可将其吸收,有明显的去臭作用。

6.安全性送样经江苏省卫生防疫站检测属无毒、无刺激。

详见江苏省卫生防疫站质量检测报告书[(毒)字第20000097号]。

具体指标如下:(执行标准Q/320682RYM01-2009)附:规格按颗粒大小分有:kl-5,kl-40,kl-80,kl-120,kl-150,kl-300按应用要求分有:速膨松散型(A)和缓膨增粘型(B)凯姆勒化学技术(北京)有限公司吸水材料部门是专业从事高吸水性树脂的技术研发、生产及推广应用的高新技术跨国联合体,与国外在该领域有着先进经验的技术专家和科研机构共同合作,同时还和国内重点科研院校共同承担该领域的专项课题的研发工作。

我们研制生产的各种性状的高分子吸水树脂已在农业、林业、园艺、工业生产、医疗卫生、日用化妆品及特殊领域广泛应用。

农林园艺:抗旱、保墒、节水、土壤润湿剂,用于种子包衣、人工草坪、育种移栽、无土栽培、土壤保水、苗木运输、花卉。

卫生用品:卫生巾、婴儿纸尿布、成人失禁垫片、吸水纸。

医疗医药:吸水、防粘接、缓释用,用于纱布、软膏、绷带、冰袋、缓释性药物。

工业生产:吸水、止水、增稠,用于膨胀橡胶、密封条、电缆止水条、电池、涂料、油水分离。

各类高吸水性树脂比较

各类高吸水性树脂比较

一、高吸水性树脂简介高吸水性树脂(在石油行业也称水膨体、体膨型聚合物、预交联凝胶等)是上世纪70年代迅速发展的一类新型功能高分子材料,它含有强亲水性基团,并具有一定的交联度,不溶于水,也不溶于有机溶剂,其特点是能够吸收达到自身总量的几百倍乃至几千倍的水,并且吸水速度快,吸水后成为一种被水高度溶胀的无色透明凝胶,即使施加压力也难以使水挤出,显示奇特的吸水、保水功能。

因此它一出现,便在农林园艺、医疗及生理卫生、建材、食品等领域得到广泛的应用。

高吸水树脂的制备方法主要有溶液聚合法、悬浮聚合法、反相悬浮聚合法和本体聚合法等。

高吸水性树脂的合成方法主要有本体聚合、溶液聚合、反相悬浮聚合和反相乳液聚合等几种方法。

高吸水树脂的溶液聚合方法主要有:反相悬浮聚合、反相乳液聚合和水溶液聚合。

吸水后的树脂内部存在3种状态的水,即结合水、束缚水、自由水。

结合水是水以一系列分子层在凝胶的内外表面溶剂化所形成的;在结合水的外层也有一层水,也具有一定的定向性,称为束缚水;最外层为自由水,由于与树脂以氢键结合,形成一体,故很难挥发。

温度升高,使分子热运动加剧,一部分自由水就挥发掉了,保水率下降。

目前根据制备高吸水性树脂的原料来源不同,高吸水性树脂大致可分为三大系列:淀粉系、纤维素系和合成树脂系。

淀粉类制备工艺复杂,产品耐热性能差,易腐烂变质,难以长期保存;纤维素类综合吸水性能相对较差;合成树脂类,尤其是聚丙烯酸盐类则由于原料来源丰富、价格低廉、能够防腐防变、长期保存、综合吸水性能优良等特点,因而成为当前研究的重点。

合成树脂系高吸水性树脂的主要产品有聚丙烯酸类:聚丙烯酸盐、聚丙烯酰胺、丙烯酸与丙烯酰胺共聚;聚乙烯醇类:聚乙烯醇一酸酐交联共聚;醋酸乙烯一丙烯酸脂共聚水解等。

树脂的反复吸液性能测定所谓反复吸液能力是指树脂能够吸液、释放所吸液体并能多次重复进行这一过程的能力,它可用重复吸液次数和每次的吸液率来表示。

随着吸液次数的增加,吸水率略呈下降趋势,这是由于当树脂第一次吸液后,水分子进入树脂内部,部分水与树脂分子链上的亲水基团形成氢键,使之从自由水转变为结合水,在第一次吸液过滤后的干燥过程中,结合水无法全部除去,导致在尚未进行第二次吸水前其网络内就有少量水存在,降低了树脂结构内外的渗透压差值,使吸水推动力下降,故后一次吸水量减少。

高吸水性树脂

高吸水性树脂

在农业领域的应用
土壤改良:高吸水性树脂能吸收相当于其自身重量数百倍的水分可有效改善土壤湿度 和保水性能促进作物生长。
节水灌溉:通过使用高吸水性树脂可将灌溉水有效吸附并缓慢释放实现节水灌溉和 均匀供水。
农药和营养剂缓释:高吸水性树脂可以吸附农药和营养剂并在需要时缓慢释放提高农 药利用率和植物吸收率。
高吸水性树脂的制备方法主要包括化学合成和物理改性不同的制备方法可以得到不同性能的高吸水性树脂。
高吸水性树脂的分类
按原料分类:淀粉类、纤维素 类、其他天然产物类
按交联剂类型分类:羧甲基淀 粉、淀粉磷酸酯、纤维素黄原 酸酯等
按离子类型分类:阳离子型、 阴离子型、非离子型
按应用领域分类:农业、医疗 卫生、建筑材料等
高吸水性树脂的应用领域
卫生用品:用于生产婴儿尿布、成人失禁用品等 农业:用于土壤保水、植物生长调节剂等 医疗领域:用于吸收伤口渗出液、止血材料等 建筑材料:用于自修复混凝土、调节室内湿度等
化学合成法
原理:通过化学反应将原料转化为高吸水性树脂 优点:可控制产物的性质如吸水能力、分子量等 缺点:需要使用有机溶剂可能对环境造成污染 常用原料:丙烯酸、丙烯酰胺等单体
高吸水性树脂具有优异的保水性能 能够吸收相当于其自身重量数百倍 甚至上千倍的水分。
高保水性
在医疗领域高吸水性树脂可以用于 制造具有保湿功能的敷料和药物载 体促进伤口愈合。
添加标题
添加标题
添加标题
添加标题
在土壤改良、节水农业、园艺等领 域高吸水性树脂的高保水性有助于 提高植物生长效率和抗旱能力。
高保水性还使得高吸水性树脂在化 妆品、个人卫生用品等领域具有广 泛的应用前景。
回收再利用:将废弃 的高吸水性树脂经过 处理后重新用于生产 新的高吸水性树脂或 其他用途。

高吸水性树脂

高吸水性树脂

简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。

高分子凝胶的相转移理论的发表(田中豊一)90年代高分子学会开始成立「高分子凝胶研究会」(对于机能性凝胶的研究发表日趋活跃)机能性凝胶它能够吸收自身重量几百倍至千倍的水分,无毒、无害、无污染;吸水能力特强,保水能力特高,通过丙烯酸聚合得到的高分子量聚合物→高保水量,高负荷下吸收量的平衡,所吸水分不能被简单的物理方法挤出,并且可反复释水、吸水。

应用于农林业方面,可在植物根部形成“微型水库”。

高吸水性树脂除了吸水,还能吸收肥料、农药,并缓慢的释放出来以增加肥效和药效。

高吸水性树脂以其优越的性能,广泛用于农林业生产、城市园林绿化、抗旱保水、防沙治沙,并发挥巨大的作用。

此外,高吸水性树脂还可应用于医疗卫生、石油开采、建筑材料、交通运输等许多领域。

现有的高吸水性树脂的厂家有:三大雅精细化学品有限公司、日本触媒、得米化工、住友精化、巴斯夫、台塑这几大公司占了全球产量的99%,其中三大雅占55%。

高吸水性树脂目录简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。

高吸水性树脂

高吸水性树脂

高吸水性树脂
高吸水性树脂(SAP)是一种高分子材料,有着奇特的吸水性能和保水能力,吸水可达自身重量的数百倍甚至上千倍,并可在数秒内生成凝胶,且保水性强,在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,具有良好的生物降解性能,同时又具备高分子材料的优点。

高吸水性树脂是我公司与著名高校研究机构经过几年的研究共同开发出来的一种新型的产品,拥有自主的知识产权的吸水材料。

配方工艺独特,产品目前已能过省级鉴定,鉴定结果为“国内领先水平”。

用途:
可广泛用于干燥剂、脱氧保鲜剂、制热制冷设备、吸水膨胀橡胶、膨胀玩具、电缆阻水带、卫生巾、纸尿裤、凉垫、药品保湿、冰垫、冰帽、冰带、混凝土外加剂、农林园世抗旱保水、防沙治水等很多方面。

包装:
大包装:三层防潮塑编牛皮纸袋,25kg/袋。

第5章高吸水性树脂

第5章高吸水性树脂
纤维素类与淀粉类高吸水性树脂的对比
纤维素也可采用与其他单体进行接枝共聚引入亲水性基团的方法 来制取高吸水性树脂。制备方法与淀粉类基本相同。
与淀粉类高吸水性树脂相比,纤维素类的吸水能力比较低,一般 为自身重量的几百倍。
但是作为纤维素形态的吸水性树脂在一些特殊形式的用途方面, 淀粉类往往无法取代。
例如,与合成纤维混纺制作高吸水性织物,以改善合成纤维的吸 水性能。这方面的应用显然非纤维素类莫属。
优点:原料丰富,产品吸水率较高,可达千倍以上。
缺点:吸水后凝胶强度低,长期保水性不佳。使用中易受细菌等微土物分解 而失去吸水保水作用。
上一内容 下一内容 回主目录
返回
第二节 高吸水性树脂的分类
支链淀粉
淀粉结构
直链淀粉
H
OH H
O OH
O HO H H OH O HO
H
O H OH H O HO H H OH O
的制备
下一内容 回主目录
上一内容
返回
第三节 高吸水性树脂的吸水机理
1. 吸水原理
物理吸附 吸 水 实 质 化学吸附 棉花、纸张、海绵等。 毛细管的吸附原理。
有压力时水会流出。
通过化学键的方式把水和亲水 性物质结合在一起成为一个整 体。加压也不能把水放出。
上一内容
下一内容
回主目录
返回
上一内容 下一内容 回主目录
返回
第二节 高吸水性树脂的分类
3. 合成聚合物类高吸水性树脂
原则上可由任何水溶性高分子经适度交联合成高吸水性树脂。
(1)聚丙烯酸盐类
a. 目前生产最多的一类合成高吸水性树脂。
b. 这类产品吸水率较高,一般均在千倍以上。 c. 由丙烯酸或其盐类与具有二官能度的单体共聚而成。

高吸水性树脂

高吸水性树脂

高吸水性树脂高吸水性树脂是一种典型的功能高分子材料,能够吸收并保持自身重量数百倍乃至数千倍的水分或数十倍的盐水,通常又称为“高吸水性聚合物”、“吸水性高分子材料”、“吸水性高分子树脂”或者“超强吸水剂”等。

高吸水性树脂与普通吸水或吸湿材料,如脱脂棉、海绵、琼脂、硅胶、氯化钙和活性炭等相比,具有吸水速度快、保水能力强等特点,可以广泛应用于农业、林业和日常生活等领域中。

而普通水或吸湿材料一般只能吸收自身质量的几十倍或仅仅十几倍的水分,并且容易在加压时失水,保水能力很差,其开发应用因此受到了很大的限制。

高吸水性树脂发展很快,种类也日益增多,并且原料来源相当丰富,由于高吸水性树脂在分子结构上带有的亲水基团,或在化学结构上具有的低度联度或部分结晶结构又不尽相同,由此在赋予其高吸水性能的同时也各自形成了一些各自的特点,从不同角度出发,就形成了多种多样的分类方法。

按原料来源进行分类。

按照原料来源对高吸水性树脂进行分类,在高吸水性树脂的发展过程中,人们的分类方式也是随着发展水平的提高而不断变化和完善的。

日本的温品谦二曾将高吸水性树脂分为淀粉系列、纤维素系列和合成树脂系列三个系列。

后来,邹新禧结合高吸水性树脂的发展和自己的研究成果,从原料来源的角度提出了六大系列,即淀粉系、纤维素系、合成聚合物系、蛋白质系、其他天然物及其衍生物系和共混物及复合物系。

按亲水化方法进行分类。

高吸水性树脂在分子结构上具有大量的亲水化化学基团,这些化学基团的亲水性很大程度上影响着高吸水性树脂的吸水保水性性能,如何有效获得这些化学基团在高吸水性树脂化学结构上的组织结构,充分发挥各化学基团所在亲水点的效能,也是影响高吸水性树脂性能的重要方面。

因此,为了获得具有良好性能的高吸水性树脂,需要从亲水性化学基团的选择和化学结构的组织构造两个方面进行考虑,即从亲水化方法考虑。

从这个角度,可以将高吸水性树脂分为两大类。

亲水性单体直接聚合法:选择丙烯盐酸、丙烯酰胺等亲水性良好的单体,直接进行均聚合或者进行共聚合反应,获得如聚丙烯盐酸、聚丙烯酰胺或者丙烯酸/丙烯酰胺共聚物等高吸水性树脂。

高吸水性树脂的特性及其应用

高吸水性树脂的特性及其应用

重视,如婴儿襁褓、纸尿布、失禁片、妇女卫生巾,宇航员尿袋、餐巾、手帕、母乳垫
片、卫生棉、止血栓、生理棉、汗毛巾等产品中都可以应用高吸水性树脂。另外,如手
术垫、手术手套、手术衣、手术棉、贴身衬衣、内裤、鞋垫等一些生理用品中也广泛用
到高吸水性树脂。它的高吸水能力和保水能力使得生理卫生方面的产品大大轻便化、小
生物组织十分接近,且凝胶具有溶质透过性,组织适应性和抗血凝固性等,这些特性都
为其作为医用材料在医疗卫生方面的应用奠定了基础。
高吸水性树脂在生物体中的适应性方面,已经有不少学者进行过相关的研究,结果
表明,某些合成和半合成的高吸水性物质,具有一定的生物适应性(本单位制得的高吸
水性树脂没有进行过此方面验证)。
五、高吸水性树脂的应用
目前高吸水性树脂已成功地应用于个人卫生护理产品等诸多领域,如妇女用卫生巾、
婴儿纸尿布、老年失禁纸尿布、纸床单等。高吸水性树脂在农艺园林方面的应用也已表
现出令人鼓舞的前景,高吸水性树脂的应用有利于节水灌溉、降低植物死亡率、提高土
壤保肥能力、提高作物发芽率等。超强吸水树脂在沙漠治理方面的应用更是具有无可估
由于高吸水性树脂是分子中含有亲水基团和疏水基团的交联型高分子电解质,当亲 水基团与水分子形成自由水合状态时,树脂的疏水基团因疏水相互作用而折向内侧,形 成局部疏水性的微粒结构,可使进入网络的水失去活动性。因此,高吸水性树脂的吸水 主要是靠内部的三维网络的作用,吸收大量的自由水储存在网状结构内,也就是说水分 子封闭在网络里,这是网络的物理吸附,只是水分子运动受到限制,而不是牢固的化学吸 附。
目前,我国西部 10 省(区、市)的 16 个荒漠化治理示范区,就已经应用了高吸水性 树脂作为水分保持剂,使得苗木成活率达到 98%。另外北京的 20 公里“申奥大道”绿色 长廊工程也采用了高分子吸水树脂作为水分保持剂。

7.高吸水性树脂详解

7.高吸水性树脂详解
高吸水性树脂
1 概述
自古以来,吸水材料的任务一直是由纸、 棉花和海绵以及后来的泡沫塑料等材料所承担 的。但这些材料的吸水能力通常很低,所吸水 量最多仅为自身重量的20倍左右,而且一旦受 到外力作用,则很容易脱水,保水性很差。
1
高吸水性树脂
60年代末期,美国首先开发成功高吸水性 树脂。这是一种含有强亲水性基团并通常具有 一定交联度的高分子材料。它不溶于水和有机 溶剂,吸水能力可达自身重量的500~2000 倍,最高可达5000倍,吸水后立即溶胀为水凝 胶,有优良的保水性,即使受压也不易挤出。 吸收了水的树脂干燥后,吸水能力仍可恢复。
27
高吸水性树脂
(b) 聚丙烯腈水解法 将聚丙烯腈用碱水解,再用甲醛、氢氧化 铝等交联剂交联成网状结构分子,也是制备高 吸水性树脂的有效方法之一。这种方法较适用 于腈纶废丝的回收利用。 如用氢氧化铝交联腈纶废丝的皂化产物, 最终产品的吸水率为自身重量的700倍。反应 历程如下:
28
高吸水性树脂
29
后将产物用碱水解后得到乙烯醇与丙烯酸盐的 共聚物,不加交联剂即可成为不溶于水的高吸 水性树酯。这类树脂在吸水后有较高的机械强 度,适用范围较广。
13
高吸水性树脂
(4)改性聚乙烯醇类 这类高吸水性树脂由聚乙烯醇与环状酸酐
反应而成,不需外加交联剂即可成为不溶于水 的产物。这类树脂由日本可乐丽公司首先开发 成功,吸水倍率为150~400倍,虽吸水能力较 低,但初期吸水速度较快,耐热性和保水性都 较好,故是一类适用面较广的高吸水性树脂。
25
高吸水性树脂
CH2 CH
+ CH2 CH R CH CH2
COOH
引发剂
CH2 CH CH2 CH CH2 CH CH2 CH

高吸水性树脂

高吸水性树脂
生产需要使用高 成本的原料和复杂的工艺,导致 其成本较高。
02
03
性能稳定性差
安全性问题
高吸水性树脂的性能受温度、湿 度等因素影响较大,稳定性较差。
部分高吸水性树脂可能含有有害 物质,对环境和人体健康造成潜 在威胁。
高吸水性树脂的发展趋势和未来研究方向
01
02
03
降低生产成本
其他天然高分子类高吸水性树脂
03
如壳聚糖、蛋白质等天然高分子材料经改性后制备而成的高吸
水性树脂。
按功能分类
通用型高吸水性树脂
适用于一般吸水、保水、保鲜等用途 。
功能型高吸水性树脂
具有特殊功能,如离子交换、导电、 光敏等,可应用于更广泛的领域。
高吸水性树脂的吸水机理和性能指标
吸水机理
高吸水性树脂具有高度交联的三维网络结构,能够吸收相当于其自身数百倍乃 至数千倍的水分,同时通过物理交联作用将水分固定在三维网络中。
高吸水性树脂的发现和应用历史
1970年代初,日本科学家首先发现了高吸水性树脂的存在,并开始进行研 究和开发。
1980年代初,高吸水性树脂开始进入商业化应用阶段,广泛应用于农业、 卫生、医疗、工业等领域。
如今,随着人们对高吸水性树脂的不断深入研究,其应用领域不断扩大, 已经成为现代社会不可或缺的重要材料之一。
高吸水性树脂
目录
• 引言 • 高吸水性树脂的种类和特性 • 高吸水性树脂的生产方法和应用领域 • 高吸水性树脂的发展前景和挑战
01
引言
高吸水性树脂的定义
01
高吸水性树脂是一类能够吸收相 当于其自身重量数百倍甚至上千 倍的水,并保持较高的保有水分 的性能的聚合物材料。
02
高吸水性树脂具有高分子电解质 性质,能够在低湿度环境中吸收 大量的水分,同时具有良好的吸 水性和保水性。

高分子材料第3章5高吸水性树脂

高分子材料第3章5高吸水性树脂

离子型接枝共聚
它是指借助催化剂的作用使单体活化为带正电荷或者 负电荷的活性中心,然后进行接枝共聚。接枝点数目与活性 中心的浓度有关,可以用催化剂浓度调节。如AlCl3和聚氯 乙烯(PVC)作催化剂接枝乙烯基亲水性单体反应:
聚合物的侧基反应(偶联法)
这是指聚合物侧链官能团与端基聚合物之 间的反应。其接枝反应如下:
第六节 高吸水性树脂
概述
高吸水性树脂是一种交联密度很低、不溶于水、高水 膨胀性的功能性高分子材料。由于其能吸收自身质量百倍到千 倍的水,且吸收的水份不易用机械压力压出,具有良好的保水 性能,因此被广泛用于农业、林业、园艺等的土壤改良剂,卫 生用品材料、工业用脱水剂、保鲜剂、防雾剂、医用材料等等。 高吸水性树脂的良好的吸水性能与保水性能使其在防沙固林中 独树一帜。
高吸水性树脂的结构与吸水性机理
结构
高吸水性树脂聚合物 是一类分子中含有极性基 团并具有一定交联度的功 能高分子,是由化学交联 和聚合物分子链间的相互 缠绕物理交联构成的三维 网络结构。其结构如图示:
机理
从其交联的结构图中可以看出,交联密度低,水 分子容易渗入树脂中使树脂膨胀,进一步亲水而凝胶 化,成为高吸水性的状态。但是交联度不能太低,否 则就会溶解于水,因此在不溶于水的情况下处于最低 交联度的树脂有可能是高吸水性树脂。而其中的极性 基团则大多是羧基、酰胺基、氨基,磺酸基、磷酸基 ,亚磺酸基等亲水性基团或者是这些基团的共聚体。 高吸水性聚合物吸水前,高分子链相互缠绕在一起; 吸水后,聚合物可以看成是高分子电解质组成的离子 网络和水的构成物。在这种离子网络中,存在可以移 动离子对,它们是由高分子电解质离子组成的。
纤维素接枝丙烯酸
淀粉系接枝丙烯酸
高吸水性树脂的应用

高吸水性树脂简介

高吸水性树脂简介

高吸水性树脂简介高吸水性树脂也称超强吸水性聚合物简写为SAP.它是一种含有羧基,羟基等强亲水性基团并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶 ,即使加压也难以将水分离出来.同时 ,高吸水性树脂可循环使用.因此 ,越来越受到人们的关注.目前 ,超强吸水树脂已在工业,农业,林业,卫生用品等领域中得到广泛应用 ,并显示出更为广阔的发展前景.1. SAR的结构与吸水机理1.1 SAR的交联网络结构SAR 与传统的吸水材料不同,它可以吸收比自身重几百倍甚至几千倍的水.在处于吸水状态时其保水性好,在压力下水也不会从中溢出.而传统的吸水材料只能吸收自身重量的20倍的水.树脂的高吸水性主要与它的化学结构和聚集态中极性基团的分散状态有关,它具有低交联度亲水性的三维空间网络结构.它是由化学交联和聚合物分子链间的相互缠绕物理交联构成.吸水前,高分子链相互缠绕在一起,彼此交联成网状结构,从而达到整体上的紧固度;吸水后,聚合物可以看成是高分子电解质组成的离子网络和水的构成物.在这种离子网络中存在可移动离子对,它们是由高分子电解质离子组成的.1.2 SAR的吸水机理关于SAR的吸水机理存在不同的说法.其中有两种占主要地位,金益芬等认为SAR吸水有3个原动力:水润湿,毛细管效应和渗透压.高吸水能力主要由这3个方面的因素决定.水润湿是所有物质吸水的必要条件,聚合物对水的亲和力大,必须含有多个亲水基团;毛细管效应的作用则是让水容易迅速地扩散到聚合物中去;渗透压可以使水通过毛细管扩散,渗透到聚合物内部或者渗透压以水连续向稀释聚合物固有的电解质浓度方向发动.刘廷栋等[2]则认为当水与高分子表面接触时主要有 3 种相互作用:一是水分子与高分子电负性强的氧原子形成氢键;二是水分子与疏水基团相互作用;三是水分子与亲水基团的相互作用.上述两种理论虽然表述不相同,但二者的理论都是建立在高吸水聚合物的主体网络结构基础之上的,实质是相同的。

高吸水性树脂简介

高吸水性树脂简介

高吸水性树脂简介1、定义高吸水性树脂(Superabsorbent Polymer, SAP)是一种具有轻度交联的三维网络状吸水性的材料,含有大量的亲水性基团,能在很短的时间内迅速吸收大量的天然水分从而达到完全饱和状态,而且即便是施加一定的压力依旧能够有效保住水分的不流失。

2、高吸水性树脂的结构特点从化学结构看,SAP聚合网络链段上含有大量强亲水性基团,如羧基、羟基、酰胺基和磺酸基等,可以与水分子发生氢键作用,具备优异的亲和性能,所以,制备的SAP树脂与水接触后能够迅速吸收水分而达到溶胀平衡。

从物理结构看,SAP是一个三维网络结构,具有一定的交联密度,即使与水相遇也不容易发生溶解。

通常制备的SAP多为水溶性线性聚合物,如果没有经过交联处理,在吸收水分后便会形成一种流动性强的聚合液,无法达到保水效果。

进行适度的交联后,SAP在吸收水分溶胀后不会被水溶解。

水分被包裹在树脂网络内部,即便施加一定的压力水分也不会溢出,达到束水目的。

3、高吸水性树脂的性能(1)吸水性能SAP有着超高的吸水性能主要是因为其自身的三维网络结构,其聚合物网络链段上含有-COOH、-OH、-CONH2等多个强亲水性官能团,能够吸收大量的水分并将水分保持在网络内部。

其吸水性能也会因亲水基团类型的不同、网络结构、外部环境的变化而具有差异。

(2)耐盐性能根据SAP的吸水机制,可以大量吸收纯水中的自由水,但是如果水里含有盐离子的话,液体吸收能力会大幅下降,而SAP经常被广泛应用于农业、医疗、环保等领域,其吸收介质为肥料、血液、尿液和土壤等,其大多为混合的盐溶液,所以单纯的追求吸纯水的能力远不能满足其应用的要求,因此关于SAP耐盐性能的研究有重要的意义。

(3)保水性能保水性能是SAP的一个重要功能。

它可以通过交联网络将大量的水或水溶液锁定在网络内,从而保持大量的水。

即使在特定外压下,水分也难从网格中流出,吸水性树脂的网格构造是保水性的关键。

高吸水性树脂

高吸水性树脂

• 合成树脂系列:合成系高吸水保水材料是 20 世纪 70年代后讯速发
展起来的,是目前高吸水保水材料中发展最迅速、品种最多、产量最 大的一类高分子聚合物。主要由单体(主要有丙烯酸、丙烯腈、丙烯 酰胺、乙烯醇等)在交联剂作用下进行聚合/交联而成。与淀粉系、纤 维素系相比,合成系 SAP制备工艺简单、吸水、保水能力强,但其单 体的残留大、不易被降解,属于非环境友好材料。 • 其它天然物及其衍生物系列:其制备原理是将天然高分子进行化学改 性,在其分子上引入亲水基团,然后在交联剂的作用下形成网状结构。 研究较多的是纤维素衍生物的交联产物。以果胶类、海藻酸、肝素类、 壳聚糖类及有关衍生物等天然高分子为原料也可合成可降解的 SAP。 这些吸水性树脂虽然生物降解性好,原料来源广,但由于工艺复杂、 价格昂贵,无法工业化生产,目前难以推广。除了羧甲基纤维素交联 物外,其它品种均处于实验室阶段。
高吸水性树脂的应用
卫生用品:SAP最具规模的应用领域就是卫生行业,由于 SAP具有吸收率高,吸液量大,保液性好,且安全无毒和 重量轻等优点,因而卫生用品生产厂家把之添加在婴儿纸 尿裤、妇女卫生用品、成人失禁垫、宇航员尿袋和医用衬 垫内。其中高吸水性树脂用于婴儿纸尿裤等个人卫生用品 约占95%。 农业生产:研究表明,高吸水性树脂可以有效地抑制水分 的蒸发, 防止土壤中的水分流失, 并减小土壤的容重, 加 入旱田中可将农作物的产量提高20% 左右。用沥青铺底, 上面撒上一些高吸水性树脂, 再铺上一层十几厘米厚的土 层, 种植上几年农作物以后就可以将沙漠绿化. 这是治理 沙漠的一个重要途径, 在撒哈拉沙漠已经取得了成功. 这 对沙漠化越来越严重的我国来说有着极其重要的意义。
高吸水性树脂的分类
• 淀粉系列:淀粉是一种可再生、来源广泛的天然高分子化合物。

高吸水性树脂

高吸水性树脂

高吸水性树脂高吸水性树脂(Super Absothent Polymer,简称SAP),是由低分子物质经聚合反应合成或由高分子化合物经化学反应制成,是一种经适度交联而具有三维网络结构的新型功能高分子材料,分子链上含有很多强亲水基团,能吸收相当于自身重量几百倍甚至几千倍的水,这是以往材料所不可比拟的。

高吸水性树脂不但吸水能力强,且保水能力非常高,吸水后无论加多大压力也不脱水【5】。

因此被广泛地应用到农业、林业、园艺等的土壤改良剂、卫生用品材料、工业用脱水剂、保鲜剂、防雾剂、医用材料、水凝胶材料等。

1高吸水树脂的结构高吸水树脂是一种三维网络结构,它不溶于水而大量吸水膨胀形成高含水凝胶。

高吸水树脂的主要性能是具有吸水性和保水性。

要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有移动的交联度。

实验表明:吸水基团极性极性越强,含量越多,吸水率越高,保水性也越好。

而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱。

高吸水性树脂的微观结构因合成体系的不同而呈现出多样性[1]。

1.1离子型高吸水树脂结构大多数高吸水性树脂是由分子链上含有强亲水性基团(如梭基、磺酸基、酞图1 高吸水树脂的离子网络结构胺基、轻基等)的三维网状结构所组成,如图1所示。

吸水时,首先是离子型亲水团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。

随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。

当离子浓度差提供的驱动力不能克服聚合物交联构造及分子链间相互作用(如氢键)所产生的阻力时,达到饱和量。

1.2淀粉接枝型高吸水性树脂结构日本三洋化成工业公司温品谦二等根据V on E. Cgruber等的方法探讨了淀粉接枝丙烯酸的聚合物结构,见图2如示【2】。

高吸水性树脂简介介绍

高吸水性树脂简介介绍
高吸水性树脂简介介绍
汇报人: 日期:
目录
• 高吸水性树脂概述 • 高吸水性树脂的工作原理 • 高吸水性树脂的制备方法 • 高吸水性树脂的发展前景
01
高吸水性树脂概述
定义及特性
01
02
03
定义
高吸水性树脂是一种具有 特殊吸水性能的高分子材 料。
吸水性能
高吸水性树脂具 倍的水分。
保水性能
该树脂吸水后能够保持水 分不易流出,具有良好的 保水性能。
类型及分类
交联型高吸水性树脂
通过交联剂使树脂形成三维网络结构,从而 提高吸水性能。
合成高吸水性树脂
通过化学合成方法制得的高分子材料,具有 优异的吸水性能和稳定性。
非交联型高吸水性树脂
通过物理或化学方法使树脂具有吸水性能, 不需要交联剂。
天然高吸水性树脂
由天然高分子材料制成,具有良好的生物相 容性和可降解性。
应用领域
医疗卫生领域
农业领域
高吸水性树脂可用于制造婴儿尿布、成人 失禁用品、医用敷料等,提供优异的吸水 保水性能,增加产品舒适度和使用时长。
高吸水性树脂可作为土壤改良剂,提高土 壤保水能力,减少水分蒸发,提高农作物 产量。
工业领域
物理吸水机制
高吸水性树脂具有三维网络结构,能够吸收并储存大量水分。当水分子进入树 脂网络时,由于毛细管作用和渗透压作用,水分子被迅速吸收并扩散到整个树 脂结构中。
吸水过程
快速吸水阶段
高吸水性树脂与水接触后,迅速 吸收表面水分,形成一层水膜。
缓慢吸水阶段
随着水分的不断渗入,树脂内部 的亲水基团开始发挥作用,通过 氢键等作用力将水分子牢固吸附 在树脂网络上,实现高吸水性能

吸水饱和阶段
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高吸水性高分子材料材料学吕岩1411093004摘要:在这篇综述中,探究的领域是高吸水性高分子材料,其中主要指的是高吸水性树脂。

大体概述了其发展、结构,分类,吸水原理等;及几类简单的高吸水性树脂的制备方法。

如淀粉类、纤维素类、共聚合类等。

高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水,且吸水膨胀后生成的凝胶具有优良的保水性,因而广泛地应用于农业、医疗卫生、园艺、建筑材料、食品加工等多个领域。

关键词:高吸水性树脂原理性能制备广泛应用Super absorbent polymer materialsMaterial science lvyan 1411093004Abstract:In this review, I explore the area about super absorbent polymer materials, mainly refers to the superabsorbent resin. Generally overview of its development, structure, classification, principle of absorbing water, etc.; And at the same time introduce some simple method of preparation of superabsorbent resin. Such as starch, cellulose, copolymerization, etc. Super absorbent resin is a kind of new functional polymer material, because it can absorb hundreds to thousands of times the mass of the water, and it has good water retention. So it has been widely used in agriculture, health care, gardening, building materials, food processing and other fields.Keywords: Super absorbent resin Principle PerformancePreparation Super extensive applications引言高吸水性高分子材料(Super Absorbent Polymer简称SAP)主要指高吸水性树脂,也称为超强吸水剂、高吸水性聚合物一种具有优异吸水能力和保水能力的新型功能高分子材料。

它首先由美国和日本于60年代中期研制成功。

它不同于以往的普通的吸水性材料,如海绵、吸水纸、脱脂棉等,吸水量最大也只能达到自身重量的20倍左右,且在受挤压后吸附的水易被挤出。

而高分子吸水树脂是一类高分子电解质,如交联聚丙烯酸钠吸水剂,其结构中因含有羧基、羰基、羧酸根、亚氨基等极性基团,故其亲水性极强,且聚合物的骨架又是一个适度交联的网状结构,带有负电荷,因而属高分子电解质。

其它高分子吸水剂的结构中同样都含有极性基团及阴离子或阳离子,如聚丙烯酸盐树脂、聚丙烯腈类树脂、淀粉—丙烯酸共聚物树脂、羧甲基纤维素交联物等等,因而它们在吸水过程中会发生电离而引起同类电荷基团的相互排斥,树脂骨架膨胀,同时与水发生化学反应,最终生成凝胶状物质。

所以,吸水后的高分子树脂在受压后,水不会从高分子中释放出来,且其吸水速度相当快,吸水量可在几分钟甚至几秒内达自身重量的几百倍。

如淀粉—丙烯腈接枝共聚物,其吸水量可达自身重量的300~1200倍,淀粉—丙烯酸共聚物的可达300~1400倍,聚丙烯酸盐树脂的可达300~1000倍。

另外,高分子吸水树脂还具有缓释作用、吸附作用、吸湿放湿作用及能够成膜、稳定性好的特点,使其在日用化学工业中有着独特的作用。

因而自研制成功以来,高分子吸水树脂受到了世界各国的高度重视,发展极为迅速,世界范围内的需求量逐年递增,其应用领域也在逐步扩大,过去主要用在个人卫生用品方面,而今已扩展到医用材料、缓释农药、土壤保湿剂、食品干燥剂、保鲜剂及化妆品中,其开发应用前景十分广阔。

一.高吸水性树脂的概述1.1高吸水性树脂的发展历史高吸水性树脂作为一种具有特殊功能的高分子化合物,它的起源在高分子化合物出现以后。

1961年美国农业部北方研究中心从淀粉接枝丙烯腈首先开始研究,其后Fanta等人在前人研究工作的基础上开始继续进行了淀粉接枝丙烯腈的研究,发现接枝产物加碱水解后生成的产物具有优良的吸水性能,并于1966年首先发表了淀粉改性物质具有优越的吸水能力的论文,指出淀粉衍生物具有优越的吸水能力,吸水后形成的凝胶的保水性很强。

首次开发成功后,世界各国对高吸水性树脂在体系、种类、制备方法、性能改进、应用领域等方面进行了大量的研究工作,并取得了一系列的研究成果。

1978年,日本三洋化成公司考虑到丙烯腈单体残留在聚合物中有毒性,卫生上不安全,所以提出了不痛的方法来制备高吸水性树脂,提出了淀粉丙烯酸,交联性的单体接枝共聚反应的合成方法,并于1979年在日本名古屋投产。

我国高吸水性树脂的研究从20世纪80年代初开始,如湖南湘潭大学自1981年开展了合成吸水剂的研究,先后对淀粉系、纤维系、合成系的吸水剂性能和合成方法进行了研究,制备了淀粉接枝共聚丙烯腈皂化水解物、纤维素接枝丙烯酸盐、聚乙烯醇变性物,都具有优越的性能。

1.2高吸水性树脂的分类高吸水性树脂从其原料角度出发主要分为两类,即天然高分子改性高吸水性树脂和全合成高吸水性树脂。

前者是指对淀粉、纤维素、甲壳质等天然高分子进行结构改造得到的高吸水性材料。

其特点是生产成本低、材料来源广泛、吸水能力强,而且产品具有生物降解性,不造成二次环境污染,适合作为一次性使用产品。

但是产品的机械强度低,热稳定性差,特别是吸水后性能较差,不能应用到诸如吸水性纤维、织物、薄膜等场合。

淀粉和纤维是具有多糖结构的高聚物,最显著的特点是分子中具有大量羟基作为亲水基团,经过结构改造后还可以引入大量离子化基团,增加吸水性能。

后者主要指对聚丙烯酸或聚丙烯腈等人工合成水溶性聚合物进行交联改造,使其具有高吸水树脂的性质。

特点是结构清晰、质量稳定、可以进行大工业化生产,特别是吸水后机械强度较高,热稳定性好。

但是生产成本较高,而吸水率偏低。

在材料的外形结构上来说,目前已经有粉末型、颗粒型、薄膜型、纤维型等高吸水性产品,其中纤维型和薄膜型材料具有使用方便,便于在特殊场合使用的特点。

高吸水性树脂由于采用原料不同,制备方法各异,产品牌号繁多,单从产品名称上不易判断其结构归属。

1.3高吸水性树脂的结构特征与性质高吸水性高分子材料之所以能够吸收高于自身重量数百倍,甚至上千倍的水分,其特殊结构特征起到了决定性的作用。

作为高吸水性树脂从化学结构上来说主要具有以下的特点:1)树脂分子中具有强亲水基团,如羟基、羧基等。

这类聚合物分子都能够与水分子形成氢键,因此对水有很高的亲和性,与水接触后可以迅速吸收并被水所溶胀。

2)树脂具有交联结构,这样才能在与水相互作用时不被溶解成溶液。

3)聚合物内部应该具有浓度较高的离子性基团,大量离子性基团的存在可以保证体系内部具有较高的离子浓度,从而在体系内外形成较高的指向体系内部的渗透压,在此渗透压作用下,环境中的水具有向体系内部扩散的趋势,因此,较高的离子性基团浓度将保证吸水能力的提高。

4)聚合物应该具有较高的分子量,分子量增加,吸水后的机械强度增加,同时吸水能力也可以提高。

高吸水性树脂作为一种功能材料应用,其应用领域不同,对它的性能也有各种各样的要求。

高吸水性树脂主要有以下几项性能:1)吸水性高吸水性树脂的吸水性可从两个方面反映:一是其吸水溶胀的能力,以吸水率表示,目前报道的最大吸水率是5000 倍;另一个是其保水性。

其吸水能力不仅决定于聚合物的组成,结构,形态,分子量,交联度等内在因素,外界条件对其影响也很大.高吸水性树脂吸水性的测定方法很多,有筛网法,茶袋法,抽吸法,离心法等,因测定方法的不同而有差异,只能作为参考。

2)凝胶强度高吸水性树脂吸水后,其凝胶需具有一定的强度,以维持良好的保水性和加工性能。

聚合物本身的结构及组成直接决定了高吸水性树脂吸水后的强度,而且强度与吸水能力,吸水速度三者有相互依赖和相互矛盾的关系。

所以在制造高吸水性树脂时,应根据不同的使用要求,进行合理的分子设计,采用适宜的单体结构,选择合理的合成方法,制造出具有恰当的聚合度和交联密度的产品,以达到强度,吸水能力及速度都能满足使用要求的吸水性树脂.。

高吸水性树脂凝胶强度测试难度相对较大,Brandt 等人通过振荡应力流变计测定树脂凝胶粒的剪切模量,用以表征凝胶强度。

3)保水性高吸水性树脂不但吸水能力强,而且保水能力也非常强,所谓保水能力指的是吸水后的膨胀体能保持其水溶液不离析的状态的能力。

众所周知,含有大量水的一般水凝胶都具有加压难脱水,蒸发慢,对水的保持能力高的特点。

高吸水性树脂是水凝胶,当然具有这些性质。

通常物质的脱水主要有加热蒸发脱水和加力脱水两种。

因此,高吸水性树脂也有自然条件保水性,热保水性和加压保水性等几种保水性能。

4)稳定性高吸水性树脂作为吸水性材料使用必然会受到外界条件,如光,热,化学物质以及其它条件的影响,使其吸水性能发生改变。

因此,高吸水性树脂的稳定性主要包括热稳定性,光稳定性和储存稳定性等。

不同种类的高吸水性树脂吸水后,其稳定性有差异,如聚丙烯酸盐类树脂随交联度增加热稳定性也增大,常温下,高吸水性树脂可在密闭容器内储存3~5 年,其吸水能力不变,稳定性很好。

5)增稠性高吸水性树脂凝胶具有特殊的流变性能,增稠性是其显著特性,很少量的树脂就可使溶液粘度大大提高。

Taylor 研究了高吸水性树脂凝胶的增稠机理,发现由于高吸水性树脂在水中可高度溶胀,吸收溶剂,溶液体系被溶胀的树脂颗粒紧密填充,而变得稠密,溶液粘度显著增加。

除以上性能外,高吸水性树脂还具有吸氨性,扩散性,安全性,相溶性等特殊性能。

1.4高吸水性树脂的吸水原理吸水机制可分为两类:一类是物理吸附类,像传统的吸水性材料如棉花等,其吸水机制主要是毛细血管吸附原理,所以这类物质的吸水能力不高,只能吸收自重的几十倍的水,且一旦施压,所吸收的水分就逸出,保水性能差。

另一类是化学吸附类,通过化学键的方式把水和亲水物质结合在一起成为一个整体。

此种吸附结合很牢,加压也不易失去所吸收的水分。

高吸水性树脂是具有三维空间网络结构的高聚物,所吸收的水分既有物理吸附,又有化学吸附。

相关文档
最新文档