中考数学 相似综合试题
2024年黑龙江佳木斯中考数学试题及答案
2024年黑龙江佳木斯中考数学试题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1. 下列计算正确的是( )A. 326a a a ⋅=B. ()527a a =C. ()339328a b a b -=-D.()()22a b a b a b -++=-【答案】C【解析】【分析】本题主要考查同底数幂的乘法,幂的乘方与积的乘方,平方差公式,运用相关运算法则求出各选项的结果后再进行判断即可.【详解】解:A 、3256a a a a ⋅=≠,故选项A 计算错误,此选项不符合题意;B 、()52107a a a =≠,故选项B 计算错误,此选项不符合题意;C 、()339328a b a b -=-,此选项计算正确,符合题意;D 、 ()()()()22a b a b b a b a b a -++=-+=-,故选项D 计算错误,此选项不符合题意;故选:C .2. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不合题意;D、是轴对称图形,不是中心对称图形,故D选项不合题意.故选:B.3. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.4. 一组数据2,3,3,4,则这组数据的方差为()A. 1B. 0.8C. 0.6D. 0.5【答案】D【解析】【分析】本题主要考查了方差的计算,解题的关键是方差的计算公式的识记.根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.【详解】平均数为:()233443+++÷=方差为:()()()()222221233333434S ⎡⎤=⨯-+-+-+-⎣⎦()110014=⨯+++0.5=故选:D .5. 关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A. 4m ≤ B. 4m ≥ C. 4m ≥-且2m ≠ D. 4m ≤且2m ≠【答案】D【解析】【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴取值范围是4m ≤且2m ≠.故选:D .6. 已知关于x 的分式方程2333x x kx -=--无解,则k 的值为( )A. 2k =或1k =- B. 2k =- C. 2k =或1k = D. 1k =-【答案】A【解析】【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,2(3)3kx x --=-,整理得,(2)9k x -=-,的当2k =时,方程无解,当2k ≠时,令3x =,解得1k =-,所以关于x 的分式方程2333x x kx -=--无解时,2k =或1k =-.故选:A .7. 国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案( )A. 5B. 4C. 3D. 2【答案】B【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设购买x 支笔记本,y 个碳素笔,利用总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,再结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设购买x 支笔记本,y 个碳素笔,依题意得:3228x y +=,3142y x ∴=-.又x ,y 均为正整数,∴211x y =⎧⎨=⎩或48x y =⎧⎨=⎩或65x y =⎧⎨=⎩或82x y =⎧⎨=⎩,∴共有4种不同的购买方案.故选:B .8. 如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A. 4.5B. 3.5C. 3D. 2.5【答案】A【解析】【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,证明AFE ODE ∽,有AF AE EF OD OE DE ==,根据E 为AO 的中点,可得AF OD =,EF DE =,进而有1122EF DE DF a ===,162A AF OD y a ===,可得6B y OD a==,2B x a =,则有32BE BD DE a =-=,问题随之得解.【详解】如图,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥,∴AF y ∥轴,DF a =,∴AFE ODE ∽,∴AF AE EF OD OE DE==,∵E 为AO 的中点,∴AE OE =,∴1AF AE EF OD OE DE===,∴AF OD =,EF DE =∴1122EF DE DF a ===,162A AF OD y a ===,∵B OD y =,∴6B y OD a==,∴2B x a =,∴2B BD x a ==,∴32BE BD DE a =-=,∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .9. 如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为( )【答案】C【解析】【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.先由菱形性质可得对角线AC 与BD 交于点O ,由直角三角形斜边中线等于斜边一半可得2OA OC OM ===,进而由菱形对角线求出边长,由sin sin MAC OBC ∠=∠=sin MC AC MAC =∠=,tan MN BM OBC =∠=.【详解】解:连接AC ,如图,∵菱形ABCD 中,AC 与BD 互相垂直平分,又∵点O 是BD 的中点,∴A 、O 、C 三点在同一直线上,∴OA OC =,∵2OM =,AM BC ⊥,∴2OA OC OM ===,∵8BD =,∴142OB OD BD ===,∴BC ===,21tan 42OC OBC OB ===∠,∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒,∴MAC OBC∠=∠∴sin sin OC MAC OBC BC ∠=∠===,∴sin MC AC MAC =∠=,∴BM BC MC =-=-=,∴1tan 2MN BM OBC =∠==故选:C .10. 如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sin NBC ∠=BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是( )A. ①②③④B. ①③⑤C. ①②④⑤D. ①②③④⑤【答案】A【解析】【分析】连接DG,可得BD AB=AC 垂直平分BD ,先证明点B 、H 、D 、F 四点共圆,即可判断①;根据AC 垂直平分BD ,结合互余可证明DG FG =,即有DG FG BG ==,则可判断②正确;证明ABM DBN ∽,即有BN BD BM AB ==,可判断④;根据相似有212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,根据12AH D H =可得3AH AD =,再证明AHM CBM ∽,可得13AHM ABM S HM S BM == ,即可判断⑤;根据点H 是AD 的中点,设2AD =,即求出BH ==,同理可证明AHM CBM ∽,可得23BM BH ==,即可得BN ==,进而可判断③.【详解】连接DG ,如图,∵四边形ABCD 是正方形,∴45BDC BAC ADB ∠=∠=∠=︒,BD AB =90BAD ADC ∠=∠=︒,AC 垂直平分BD ,∴90CDP ∠=︒,∵DF 平分CDP ∠,∴1452CDF CDP CDB ∠=∠=︒=∠,∴90BDF CDF CDB ∠=∠+∠=︒,∵90BHF BDF ∠=︒=∠,∴点B 、H 、D 、F四点共圆,∴45HFB HDB ∠=∠=︒,DHF DBF ∠=∠,∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确,∵AC 垂直平分BD ,∴BG DG =,∴BDG DBG ∠=∠,∵90BDF ∠=︒,∴90BDG GDF DBG DFG ∠+∠=︒=∠+∠,∴GDF DFG ∠=∠,∴DG FG =,∴DG FG BG ==,∴点G 是BF 的中点,故②正确,∵90BHF BAH ∠=︒=∠,∴90AHB DHF AHB ABH ∠+∠=︒=∠+∠,∴DHF ABH ∠=∠,∵DHF DBF ∠=∠,∴ABH DBF ∠=∠,又∵45BAC DBC ∠=∠=︒,∴ABM DBN ∽,∴BNBDBM AB ==,∴BN =,故④正确,∴212ABM DBN S AB S BD⎛⎫== ⎪⎝⎭ ,若12AH D H =,则()1122AH HD AD AH ==-,∴3AH AD =,∴13=AH AD ,即13H HA ABC AD ==,∵AD BC ∥,∴AHM CBM ∽,∴13HMAHBM BC ==,∴13AHM ABM S HM S BM == ,∴3ABM AHM S S = ,∵12ABM DBN S S = ,∴26BND ABM AHM S S S == △,故⑤错误,如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===,∴112AH AD ==,∴BH ==,同理可证明AHM CBM ∽,∴12HM AH BM BC ==,∴32HM BM BH BM BM+==,∴23BM BH ==,∵BN =,∴BN ==,∵2BC =,∴在Rt BNC △中,23NC ==,sin NC NBC BN ∠==,故③正确,则正确的有:①②③④,故选:A .【点睛】本题是一道几何综合题,主要考查了正方形的性质,相似三角形的判定与性质,正弦,圆周角定理以及勾股定理等知识,证明点B 、H 、D 、F 四点共圆,ABM DBN ∽,是解答本题的关键.二、填空题(每小题3分,共30分)11. 国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为________.【答案】121.390810⨯【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.【详解】1 亿81.010=⨯,13908亿48121.39081010 1.390810=⨯⨯=⨯故答案为:121.390810⨯12. 在函数y =中,自变量x 的取值范围是________.【答案】3x ≥##3x≤【解析】【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.13. 已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件_________________可使菱形ABCD 成为正方形.【答案】AC BD =或AB BC⊥【解析】【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:AC BD =;根据有一个角是直角的菱形是正方形,可添加的:AB BC ⊥;故添加的条件为:AC BD =或AB BC ⊥.14. 七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是________.【答案】35【解析】【分析】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有6种,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有20种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有12种,∴选取的2名学生恰好是1名男生、1名女生的概率为:123205=,故答案为:35.15. 关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.【答案】102a -≤<【解析】【分析】本题考查解一元一次不等式(组),一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.先解出不等式组中每个不等式的解集,然后根据不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,即可得到关于a 的不等式组,然后求解即可.【详解】解:由420-≥x ,得:2x ≤,由102x a ->,得:2x a >, 不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,∴这3个整数解是0,1,2,120a ∴-≤<,解得102a -≤<,故答案为:102a -≤<.16. 如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠________︒.【答案】65【解析】【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵ AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒-︒=︒,故答案为:65.17. 若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是________︒.【答案】90【解析】【分析】此题主要考查了圆锥的侧面积公式以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.根据圆锥的侧面积公式πS rl =求出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =,2π1236π360n ⨯∴=,解得90n =,∴侧面展开图的圆心角是90︒.故答案为:90.18. 如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是________.【答案】12+【解析】【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出BP 取最大值时B 、P 、M 三点的位置关系.取AC 的中点M ,连接PM 、BM ,利用解三角形求出BM ==,利用三角形中位线定理推出1122PM AD ==,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值.【详解】解:取AC 的中点M ,连接PM 、BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =,∴124tan 2BC AC BAC ==÷=∠,∴122AM CM AC ===,∴BM ===,∵P 、M 分别是CD AC 、的中点,∴1122PM AD ==.如图,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值,最大值为12BM MP +=,故答案为:12+.19. 矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为________.【答案】52或72或10【解析】【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点B 的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出PC 即可.【详解】解:①点B 的对称点落在矩形对角线BD 上,如图1,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,由折叠性质可知:BB AP '⊥,∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=,∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=;②点B 的对称点B '落在矩形对角线AC 上,如图2,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠;③点B 的对称点B '落在矩形对角线CA 延长线上,如图3,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠;综上所述:则PC 长为52或72或10.故答案为:52或72或10.20. 如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;如此下去,……,则2024A 的坐标是________.【答案】()1,3【解析】【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A 的对应点1A ,2A , ,12A 的坐标,发现规律即可解决问题.【详解】解: 正方形OMNP 顶点M 的坐标为()3,0,3OM MN NP OP ∴====,OAB 是等边三角形,点B 坐标是()1,0,∴,由题知,1A 的坐标是()2,0;2A 的坐标是()2,0;3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;继续滚动有,4A 的坐标是()3,2;5A 的坐标是()3,2;6A 的坐标是5,32⎛ ⎝;7A 的坐标是()1,3;8A 的坐标是()1,3;9A 的坐标是52⎫⎪⎪⎭;10A 的坐标是()0,1;11A 的坐标是()0,1;12A 的坐标是12⎛ ⎝;13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组,2024121688÷= ,∴2024A 的坐标与8A 的坐标一样为()1,3,故答案为:()1,3.三、解答题(满分60分)21. 先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos 60m =︒.【答案】1m -+,12【解析】【分析】本题主要考查分式的化简求值及特殊三角函数值,先对分式进行化简,然后利用特殊三角函数值进行代值求解即可.【详解】解:原式()()()()21111m m m m m m-+=⋅+--1m =-+,当1cos 602m =︒=时原式12=.22. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)【答案】(1)作图见解析,()12,3B(2)作图见解析,()23,0B -(3【解析】【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出AB =,再由旋转角等于90︒,利用弧长公式即可求出.【小问1详解】解:如图,111A B C △为所求;点1B 的坐标为()2,3,小问2详解】如图,22AB C 为所求;()23,0B -,【小问3详解】AB ==,点B 旋转到点2B=.23. 如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.【答案】(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【解析】【分析】本题主要考查二次函数的图象与性质以及与几何综合:【(1)将B ,C 两点坐标代入函数解析式,求出b ,c 的值即可;(2)过点P 作PE x ⊥轴于点E ,设()2,23P x x x --+,且点P 在第二象限,根据APC APE AOC PCOE S S S S =+- 梯形可得二次函数关系式,再利用二次函数的性质即可求解.【小问1详解】解:将()1,0B ,()0,3C 代入2y x bx c =-++得,103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+【小问2详解】解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=,∴()3,0A -,∴3,OA =∵()0,3C ,∴3OC =,过点P 作PE x ⊥轴于点E ,如图,设()2,23P x x x --+,且点P 在第二象限,∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<,∴S 有最大值,∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A50100x <≤3B 100150x <≤m C150200x <≤20D200250x <≤14E 250300x <≤5(1)频数分布表中m = ,扇形统计图中n = .(2)本次调查立定跳远成绩的中位数落在 组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?【答案】(1)8,40(2)C (3)估计该校立定跳远成绩合格的男生有228人【解析】【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,(1)用A 组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B 组的人数,用C 组的人数除以总人数即可求解;(2)根据中位数的求法,即可求解;(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.【小问1详解】解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人),%205040%n =÷=,即40n =,故答案为:8,40;【小问2详解】解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,382526+<< ,5142526+<<,∴把这组数据从小到大排列,第25和第26个数据都在C 组,故本次调查立定跳远成绩的中位数落在C 组,答案为:C ;【小问3详解】解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25. 甲、乙两货车分别从相距225km 的A 、B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是 km/h ,乙货车的速度是 km/h ;(2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.【答案】(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【解析】【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.(1)由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,乙货车到达配货站路程为120km ,到达后返回,所用时间为6h ,根据速度=距离÷时间即可得;(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象结合已知条件可知(4,105)E 和点(5.5,225)F ,再利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B 地后、甲货车卸货,半小时后继续驶往B 地,三种情况与配货站的距离相等,分别列方程求出x 的值即可得答案.【小问1详解】解:由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km ,总时间是6h ,∴乙货车速度240640km /h =÷=,故答案为:30;40【小问2详解】甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩,∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤【小问3详解】设甲货车出发h x ,甲、乙两货车与配货站的距离相等,①两车到达配货站之前:1053012040x x -=-,解得:32x =,②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-,解得:4514x =,③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---,解得:5x =,答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26. 已知ABC 是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M 、N 在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.【答案】图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【解析】【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识 ,选②,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,构造全等三角形,得出AN AQ =,CAN QAB ∠=∠,再证明AQM ANM △≌△,得到MN QM =;在Rt QHM △中由勾股定理得222QH HM QM +=,即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭,整理可得结论;选③方法同②【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM ∴=;∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒,∴30,BQH ∠=︒12B BH Q ∴=,QH BQ =∴12HM BM BH BM BQ =+=+,在Rt QHM △中,可得:222QH HM QM +=即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,为AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,QH BQ =12HM BM BH BM BQ =-=-,在Rt QHM △中,可得:222QH HM QM +=即22212BQ BM BQ QM ⎫⎛⎫+-=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27. 为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元的(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【解析】【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,(1)设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元,根据题意列出二元一次方程组,问题得解;(2)设购买甲种品牌毽子x 个,购买乙种品牌毽子31002x ⎛⎫-⎪⎝⎭个,根据题意列出一元一次不等式组,解不等式组即可求解;(3)设商家获得总利润为y 元,即有一次函数3541002y x x ⎛⎫=+-⎪⎝⎭,根据一次函数的性质即可求解.【小问1详解】解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩,解得:1510a b =⎧⎨=⎩,答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;【小问2详解】解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩,解得:14586417x ≤≤,x 和31002x ⎛⎫- ⎪⎝⎭均为正整数,60x ∴=,62,64,3100102x -=,7,4,∴共有3种购买方案.【小问3详解】设商家获得总利润为y 元,3541002y x x ⎛⎫=+- ⎪⎝⎭,400y x =-+,10k =-< ,y ∴随x 的增大而减小,∴当60x =时,340y =最大,答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28. 如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =时,点M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(A (2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=+<≤⎨⎪⎪+<<⎪⎩ (3)存在,(12,4N +,()22,4N -,(32,N -,4N ⎛⎝【解析】【分析】(1)运用因式分解法解方程求出OA 的长,根据等边三角形的性质得出6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,求出AC 的长即可;(2)分02t <≤,23t <≤和3 3.6t <<三种情况,运用三角形面积公式求解即可;(3)当2=时求出2t =,得4OP =,分OP 为边和对角线两种情况可得点N 的坐标;当2+=和+=O 、P 、M 、N 为顶点的四边形是菱形【小问1详解】解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根,6OA ∴=∵OAB 是等边三角形,∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=,∴AC ===∴点A 的坐标为(A 【小问2详解】解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D ,∴2OP t =,3OQ t =,30OPD ∴∠=︒∴,OD t =∴PD ===,211322S OQ PD t ∴=⨯⨯=⨯=;当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-,QE ==又2OP t =,2122S t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭。
2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案
2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案一、锐角三角函数1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定4.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②123【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示, ∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠DBF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.5.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P 作交于点由运动到所需的时间为3s由①可得,点O 以的速度从P 到A 所需的时间等于以从M 运动到A即:由O 运动到P 所需的时间就是OP+MA 和最小.如下图,当P 运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =,∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.7.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD 是梯形,AB ∥CD ,点B (10,0),C (7,4).直线l 经过A ,D 两点,且sin ∠.动点P 在线段AB 上从点A 出发以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.【答案】解:(1)(﹣4,0);y=x+4.(2)在点P、Q运动的过程中:①当0<t≤1时,如图1,过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•35=3t.∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,S=12PM•PE=12×2t×(14﹣5t)=﹣5t2+14t.②当1<t≤2时,如图2,过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.S=1 2PM•PE=12×2t×(16﹣7t)=﹣7t2+16t.③当点M与点Q相遇时,DM+CQ=CD=7,即(2t﹣4)+(5t﹣5)=7,解得t=167.当2<t<167时,如图3,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,S=12PM•MQ=12×4×(16﹣7t)=﹣14t+32.综上所述,点Q与点M相遇前S与t的函数关系式为()()225t14t0<t1S{7t16t1<t21614t322<t<7-+≤=-+≤⎛⎫-+ ⎪⎝⎭.(3)①当0<t≤1时,22749S5t14t5t55⎛⎫=-+=--+⎪⎝⎭,∵a=﹣5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大.∴当t=1时,S有最大值,最大值为9.②当1<t≤2时,22864S7t16t7t77⎛⎫=-+=--+⎪⎝⎭,∵a=﹣7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647.③当2<t<167时,S=﹣14t+32∵k=﹣14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)t=209或t=125时,△QMN为等腰三角形.【解析】(1)利用梯形性质确定点D的坐标,由sin∠DAB=2,利用特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式:∵C(7,4),AB∥CD,∴D(0,4).∵sin∠DAB=22,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0).设直线l的解析式为:y=kx+b,则有4k b0{b4-+==,解得:k1{b4==.∴y=x+4.∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.(2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;③当2<t<167时,如图3.(3)根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值.(4)△QMN为等腰三角形的情形有两种,需要分类讨论:①如图4,点M在线段CD上,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,由MN=MQ,得16﹣7t=2t﹣4,解得t=209.②如图5,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.∴当t=209或t=125时,△QMN为等腰三角形.考点:一次函数综合题,双动点问题,梯形的性质,锐角三角函数定义,特殊角的三角函数值,由实际问题列函数关系式,一次函数和二次函数的性质,等腰三角形的性质,分类思想的应用.8.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】 (1)过作轴于,利用三角函数求得OD 、DC 的长,从而求得点的坐标⊙P 与菱形OABC 的边所在直线相切,则可与OC 相切;或与OA 相切;或与AB 相切,应分三种情况探讨:①当圆P 与OC 相切时,如图1所示,由切线的性质得到PC 垂直于OC ,再由OA=+t ,根据菱形的边长相等得到OC=1+t ,由∠AOC 的度数求出∠POC 为30°,在直角三角形POC 中,利用锐角三角函数定义表示出cos30°=oc/op ,表示出OC , 等于1+t 列出关于t 的方程,求出方程的解即可得到t 的值;②当圆P 与OA ,即与x 轴相切时,过P 作PE 垂直于OC ,又PC=PO ,利用三线合一得到E 为OC 的中点,OE 为OC 的一半,而OE=OPcos30°,列出关于t 的方程,求出方程的解即可得到t 的值;③当圆P 与AB 所在的直线相切时,设切点为F ,PF 与OC 交于点G ,由切线的性质得到PF 垂直于AB ,则PF 垂直于OC ,由CD=FG ,在直角三角形OCD 中,利用锐角三角函数定义由OC 表示出CD ,即为FG ,在直角三角形OPG 中,利用OP 表示出PG ,用PG+GF 表示出PF ,根据PF=PC ,表示出PC ,过C 作CH 垂直于y 轴,在直角三角形PHC 中,利用勾股定理列出关于t 的方程,求出方程的解即可得到t 的值,综上,得到所有满足题意的t 的值.9.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠, ∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒, ∴BPN x ∠=︒,∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t =+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒, ∴BM OC P ,∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=Y . 故答案为32. 【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.10.如图,在平面直角坐标系xOy 中,点P 是⊙C 外一点,连接CP 交⊙C 于点Q ,点P 关于点Q 的对称点为P ′,当点P ′在线段CQ 上时,称点P 为⊙C “友好点”.已知A (1,0),B (0,2),C (3,3) (1)当⊙O 的半径为1时,①点A ,B ,C 中是⊙O “友好点”的是 ;②已知点M 在直线y +2 上,且点M 是⊙O “友好点”,求点M 的横坐标m 的取值范围;(2)已知点D 0),连接BC ,BD ,CD ,⊙T 的圆心为T (t ,﹣1),半径为1,若在△BCD 上存在一点N ,使点N 是⊙T “友好点”,求圆心T 的横坐标t 的取值范围.【答案】(1)①B;②0≤m≤3;(2)﹣4+33≤t<33.【解析】【分析】(1))①根据“友好点”的定义,OB=<2r=2,所以点B是⊙O“友好点”;②设M(m,﹣3m+2 ),根据“友好点”的定义,OM=223222m m⎛⎫+-+≤⎪⎪⎝⎭,由此求解即可;(2)B(0,2),C(3,3),D(23,0),⊙T的圆心为T(t,﹣1),点N是⊙T“友好点”,NT≤2r=2,所以点N只能在线段BD上运动,过点T作TN⊥BD于N,作TH∥y轴,与BD交于点H.易知∠BDO=30°,∠OBD=60°,NT=3HT,直线BD:y=﹣3x+2,可知H(t,﹣3t+2),继而可得NT=﹣12t+33,由此可得关于t的不等式,解出t的范围即可.【详解】(1)①∵r=1,∴根据“友好点”的定义,OB=<2r=2,∴点B是⊙O“友好点”,∵OC=2233+=32>2r=2,∴点C不是⊙O“友好点”,A(1,0)在⊙O上,不是⊙O“友好点”,故答案为B;②如图,设M (m ,﹣33m +2 ),根据“友好点”的定义, ∴OM =223222m m ⎛⎫+-+≤ ⎪ ⎪⎝⎭, 整理,得2m 2﹣23m ≤0,解得0≤m ≤3;∴点M 的横坐标m 的取值范围:0≤m ≤3;(2)∵B (0,2),C (3,3),D (23,0),⊙T 的圆心为T (t ,﹣1),点N 是⊙T “友好点”, ∴NT ≤2r =2,∴点N 只能在线段BD 上运动,过点T 作TN ⊥BD 于N ,作TH ∥y 轴,与BD 交于点H .∵tan ∠BDO =323OB OD == ∴∠BDO=30°,∴∠OBD =60°,∴∠THN=∠OBD=60°,∴NT =HT•sin ∠THN=32HT , ∵B (0,2),D 30),∴直线BD :y 3+2, ∵H 点BD 上,∵H (t ,﹣33t +2), ∴HT 3+2﹣(﹣1)3+3,∴NT=32HT=32(﹣33t+3)=﹣12t+332,∴﹣12t+33≤2,∴t≥﹣4+33,当H与点D重合时,点T的横坐标等于点D的横坐标,即t=33,此时点N不是“友好点”,∴t<33,故圆心T的横坐标t的取值范围:﹣4+33≤t<33.【点睛】本题是圆的综合题,正确理解“友好点”的意义,熟练运用相似三角形的性质与特殊三角函数是解题的关键.11.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan3B=∵MN∥AD,∴∠A=∠B,∴tan A=3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=3.在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CFx≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.12.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D 作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=22=413,FH HL∵LN•LF=AL•BL,∴413•LN=10•16,∴LN=4013.13【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.13.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD,解得OD=1,∴22=+=2,PO PD OD∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.14.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.15.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.。
(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题
第五章图形的相似与解直角三角形第一节图形的相似与位似1.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( B )A.12B.2 C.3 D.4(第1题图)(第2题图)2.(2019泰安中考)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( B )A.18 B.1095C.965D.2533.(2019遵义十九中一模)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( D )A.∠ABP=∠C B.∠APB=∠ABCC.APAB=ABACD.ABBP=ACCB(第3题图)(第4题图)4.(济南中考)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,DB于M,N两点.若AM=2,则线段ON的长为( C )A.22B.32C.1 D.625.(2019滨州中考)在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__(4,6)或(-4,-6)__.6.(2019随州中考)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =__125或53__时,以A ,D ,E 为顶点的三角形与△ABC 相似. 7.(汇川升学一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上.若△ABC 的边BC 长为40 cm ,高AH 为30 cm ,则正方形DEFG 的边长为__1207__cm.(第7题图)(第8题图)8.(2019包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =kx 的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为__-16__.9.(2019六盘水中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若CD =5,BC =8,AE =2,则AF =__169__. 10.(泰安中考)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长. 解:(1)∵AB=AC , ∴∠B =∠C. ∵∠APD =∠B, ∴∠APD =∠B=∠C. ∵∠APC =∠BAP+∠B, ∠APC =∠APD+∠DPC, ∴∠BAP =∠DPC, ∴△ABP ∽△PCD ,∴BP CD =AB CP, ∴AB ·CD =CP·BP. ∵AB =AC ,∴AC ·CD =CP·BP;(2)∵PD∥AB,∴∠APD =∠BAP. ∵∠APD =∠C ,∴∠BAP =∠C. ∵∠B =∠B,∴△BAP ∽△BCA , ∴BA BC =BP BA. ∵AB =10,BC =12, ∴1012=BP 10,∴BP =253.11.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B ) A .1∶3 B .1∶4 C .1∶5 D .1∶2512.(盘锦中考)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD =3,DC =4,DE =52,∠EDF =90°,则DF 长是( C )A.158 B.113 C.103 D.165(第12题图)(第13题图)13.(2019杭州中考)如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于__78__.14.(2019长春中考)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G. (1)求证:BD∥EF;(2)若DG GC =23,BE =4,求EC 的长.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∵DF =BE ,∴四边形BEFD 是平行四边形, ∴BD ∥EF ;(2)∵四边形BEFD 是平行四边形, ∴DF =BE =4. ∵DF ∥EC , ∴△DFG ∽△CEG , ∴DG CG =DF CE, ∴CE=DF·CG DG =4×32=6.15.(2019杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC; (2)若AD =3,AB =5,求AFAG的值. 解:(1)∵AG⊥BC,AF ⊥DE , ∴∠AFE =∠AGC=90°.∵∠EAF =∠GAC,∴∠AED =∠ACB, ∵∠EAD =∠BAC,∴△ADE ∽△ABC ; (2)由(1)可知:△ADE∽△ABC, ∴AD AB =AE AC =35. ∵∠AFE =∠AGC=90°,∠EAF =∠GAC, ∴△EAF ∽△CAG , ∴AF AG =AE AC , ∴AF AG =35. 16 .(2019枣庄中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求, 由图形可知,∠A 2C 2B 2=∠ACB, 过点A 作AD⊥BC 交BC 的延长线于点D ,由A(2,2),C(4,-4),B(4,0),易得D(4,2), ∴AD =2,CD =6,AC =22+62=210, ∴sin ∠ACB =AD AC =2210=1010,即sin ∠A 2C 2B 2=1010.17.(2019连云港中考)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH∥AB,交BC 的延长线于点H. (1)求BD·cos ∠HBD 的值; (2)若∠CBD=∠A,求AB 的长. 解:(1)∵DH∥AB,∴∠BHD =∠ABC=90°,∠A =∠HDC, ∴△ABC ∽△DHC , ∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4, 在Rt △BHD 中,cos ∠HBD =BH BD, ∴BD ·cos ∠HBD =BH =4;(2)∵∠CBD=∠A,∠ABC =∠BHD, ∴△ABC ∽△BHD , ∴BC HD =AB BH. ∵△ABC ∽△DHC , ∴AB DH =ACCD=3, ∴AB =3DH , ∴3DH =3DH4,解得DH =2, ∴AB =3DH =3×2=6.18.(2019眉山中考)如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,AC =42,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD,线段BE 与CD 相交于点F.(1)求证:PC CD =CECB;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式. 解:(1)∵△BCE 和△CDP 均为等腰直角三角形, ∴∠ECB =∠PCD=45°, ∠CEB =∠CPD=90°, ∴△BCE ∽△DCP , ∴PC DC =EC CB; (2)AC∥BD.理由如下:∵∠PCE +∠ECD=∠BCD+∠ECD=45°, ∴∠PCE =∠BCD. 又∵PC DC =EC CB ,∴△PCE ∽△DCB , ∴∠CBD =∠CEP=90°, ∴∠ACB =∠CBD, ∴AC ∥BD ;(3)作PM ⊥BD ,交BD 的延长线于点M. ∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4. ∵△PCE ∽△DCB ,∴EC CB =PE BD ,即442=x BD, ∴BD =2x.∵∠PBM =∠CBD-∠CBP=45°, BP =BE +PE =4+x , ∴PM =4+x 2,∴S △PBD =12BD ·PM=12×2x×4+x 2, =12x 2+2x.2019-2020学年数学中考模拟试卷一、选择题1.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°2.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9 B.m≥9C.m<﹣9 D.m≤﹣93.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.5.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人 B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .47.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .08.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B =135°,则劣弧AC 的长是( )A.4πB.2πC.πD.23π9.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .210.如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD =2∠ACB .若DG =5,EC =1,则DE 的长为( )A .2B .4C .D .11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ).A.15°B.20°C.25°D.30°12.下列运算正确的是( )A.222()x y x y +=+ B.632x x x ÷= 3=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭二、填空题13.分解因式(a -b)(a -9b)+4ab 的结果是____.14.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.15.方程3x x -=1xx +的解是_____. 16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.已知a ,b 是一元二次方程x 2+x ﹣4=0的两个不相等的实数根,则a 2﹣b =_____. 18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____. 三、解答题19.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球,记两次取得乒乓球上的数字依次为a 、b . (1)求a 、b 之积为偶数的概率;(2)若c =5,求长为a 、b 、c 的三条线段能围成三角形的概率.20.在正方形ABCD 中,点M 是射线BC 上一点,点N 是CD 延长线上一点,且BM =DN ,直线BD 与MN 交于点E .(1)如图1.当点M 在BC 上时,为证明“BD﹣2DE BM”这一结论,小敏添加了辅助线:过点M 作CD 的平行线交BD 于点P .请根据这一思路,帮助小敏完成接下去的证明过程.(2)如图2,当点M 在BC 的延长线上时,则BD ,DE ,BM 之间满足的数量关系是 . (3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G ,如图3,若1,3AF AD = CM =2,则线段DG = .21.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.22.计算:(π0﹣3|+(12)﹣123.已知二次函数y =﹣x 2+2mx ﹣m 2﹣1(m 为常数).(1)证明:不论m 为何值,该函数的图象与x 轴没有公共点;(2)当自变量x 的值满足﹣3≤x≤﹣1时,与其对应的函数值y 的最大值为﹣5,求m 的值.24.(1)计算:10124303)cos -︒⎛⎫-++-- ⎪⎝⎭(2)先化简,再求值:2222121111a a aa a a a+-+⋅---+,其中a=﹣12.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题13.(a-3b)214.615.x=﹣3 216.5 17.518.3 10三、解答题19.(1)P(数字之积为偶数)=56;(2)P(三线段能围成三角形)=13.【解析】【分析】(1)通过列表法可得a、b所有可能的结果,计算出a、b之积为偶数的次数,然后用a、b之积为偶数的次数除以总次数即可计算a、b之积为偶数的概率;(2)首先列出a、b、c所有可能的结果,根据三角形的性质找到能组成三角形的结果,最后计算能围成三角形的概率.【详解】(1)根据题意列表如下:由以上表格可知:有12种可能结果,分别为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其积分别为:2,3,4,2,6,8,3,6,12,4,8,12;积为偶数的有2,4,2,6,8,6,12,4,8,12,共10个,则P(数字之积为偶数)=1012=56;(2)所有的可能结果有12种,a,b及c的值分别为(1,2,5),(1,3,5),(1,4,5),(2,1,5),(2,3,5),(2,4,5),(3,1,5),(3,2,5),(3,4,5),(4,1,5),(4,2,5),(4,3,5),能构成三角形的有(2,4,5),(3,4,5),(4,2,5),(4,3,5),共4种,则P(三线段能围成三角形)=412=13.【点睛】本题考查了用列举法计算概率的知识,正确理解题意是解题的关键.20.(1)见解析;(2)BD+2DE BM;(3.【解析】【分析】(1)过点M作MP∥CD,交BD于点P,推出PM=DN,证明△EPM≌△EDN,推出EP=ED,根据正方形的性质和勾股定理求出即可;(2)过点M作MP∥CD交BD的延长线于点P,推出BM=PM=DN,根据AAS证明△EPM≌△EDN,推出EP =ED,根据正方形的性质和勾股定理求出即可;(3)证明△ABF∽△DNF,得出比例式,得到AB:ND=1:2,设AB=x,则DN=2x,根据BM =DN ,列出方程求出AB 的长度,根据DF ∥BM ,得到413,43DF DG BM BG ===即可求解. 【详解】解:(1)如图1,过点M 作MP ∥CD ,交BD 于点P ,∵四边形ABCD 是正方形,∴∠C =90°,∠CBD =∠CDB =45°, ∵PM ∥CD ,∴∠NDE =∠MPE ,∠BPM =∠CDB =45°, ∴△BPM 是等腰直角三角形, ∴PM =BM,PB =,∵BM =DN , ∴PM =DN ,在△EPM 和△EDN 中,,MPE NDE PEM DEN PM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPM ≌△EDN (AAS ), ∴EP =ED ,∴PB =BD ﹣PD =BD ﹣2DE ,根据勾股定理得:BP =,即2BD DE -=;(2)如图2,过点M 作MP ∥CD 交BD 的延长线于点P ,∴∠PMB=∠BCD=90°,∵∠CBD=45°,∴△BMP是等腰直角三角形,∴BM=PM=DN,与(1)证法类似:△EPM≌△EDN(AAS),∴EP=ED,∴PB=BD+PD=BD+2DE,根据勾股定理得:BP BM,即BD+2DE=BP BM,故答案为:BD+2DE BM;(3)如图3,∵AB∥CD,∴AB∥DN,∴△ABF∽△DNF,∴AF:FD=AB:ND,∵AF:FD=1:2,∴AB:ND=1:2,设AB =x ,则DN =2x , ∵BM =DN , ∴x+2=2x ,x =2, ∴AB =AD =2,DF =43,∴BD = ∵DF ∥BM ,∴413,43DF DG BM BG ===∴142DG =⨯=故答案为:2【点睛】本题综合考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题的能力.用的数学思想是类比推理的思想.21.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =.【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22【解析】【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】原式=1﹣(3+2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(1)见解析;(2)m的值为﹣5或1.【解析】【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y=﹣(x﹣m)2﹣1,则抛物线的对称轴为直线x=m,讨论:当m<﹣3时,根据二次函数性质得到x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5;当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,利用二次函数的性质得到x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,然后分别解关于m的方程即可得到满足条件的m的值.【详解】(1)证明:△=4m2﹣4×(﹣1)×(﹣m2﹣1)=﹣4<0,所以﹣x2+2mx﹣m2﹣1=0没有实数解,所以不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=﹣x2+2mx﹣m2﹣1=﹣(x﹣m)2﹣1,抛物线的对称轴为直线x=m,当m<﹣3时,﹣3≤x≤﹣1,y随x的增大而减下,则x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5,解得m1=﹣5,m2=﹣1(舍去);当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,﹣3≤x≤﹣1,y随x的增大而增大,则x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,解得m1=1,m2=﹣3(舍去);综上所述,m的值为﹣5或1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.24.(1)4;(2)1a,-2. 【解析】 【分析】(1)根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算; (2)将原式的分子、分母因式分解,约分后计算减法,再代值计算即可. 【详解】(1) )0+(13)﹣1+4cos30°﹣﹣==4; (2)2222121111a a a a a a a+-+-+-- =22111(1)(1(1)1a a a a a a a +--+--+())=21(1)(1)a aa a a a +-++=1(1)a a a ++=1a, 当a =﹣12 时,原式=11-2=﹣2.【点睛】本题考查了实数的混合运算,分式的化简求值.解答(1)题的关键是根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算;解答(2)题的关键是把分式化到最简,然后代值计算.25.(1)94;(2)94,92,94;八;(3)23【解析】 【分析】(1)根据中位数、众数和平均数的定义求解; (2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.如图,在等腰梯形ABCD 中,AD ∥BC ,AB≠AD,对角线AC 、BD 相交于点O .以下结论不正确的是( )A.梯形ABCD 是轴对称图形B.∠DAC =∠DCAC.△AOB ≌△DOCD.△AOD ∽△COB2.下列说法正确的是( )A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣20194.在四边形ABCD 中,//,AB CD AB AD =,添加下列条件不能推得四边形ABCD 为菱形的是( ) A .AB CD =B .//AD BCC .BC CD =D .AB BC =5.下列各式变形中,正确的是( )A .2=x B .2(1)(1)1x x x ---=-C .x xx y x y=--++D .22131=x+-24x x ⎛⎫++ ⎪⎝⎭6.如图,在数轴上,点A 表示的数是2,△OAB 是Rt △,∠OAB =90°,AB =1,现以点O 为圆心,线段OB 长为半径画弧,交数轴负半轴于点C ,则点C 表示的实数是( )A B C.﹣3 D.﹣7.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.8.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.D.39.在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A B.C D10.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x 2+52 =(x+1)2B.x 2+52 =(x ﹣1)2C.x 2+(x+1)2 =102D.x 2+(x ﹣1)2=52 11.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( )A .1.32×109B .1.32×108C .1.32×107D .1.32×106二、填空题13.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC ,垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,∠C =45°,则DF :FE 的值为_____.14.如图,OC 是O 的半径,弦AB OC ⊥于点D ,点E 在O 上,EB 恰好经过圆心O ,连接EC .若B E ∠=∠,32OD =,则劣弧AB 的长为__________.15.分解因式:228ax a -=_______.16.对非负实数x“四舍五入”到个位的值记为< x >,即已知n 为正整数,如果n -12≤x<n +12,那么< x >=n .例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=1x 1.62+的非负实数x 的值为____. 17.在不透明的袋子中有2个白球,3个红球,除颜色外完全相同,任意摸出一个球,摸到红球的概率18.截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为_____.三、解答题19.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=,AB=6,求FD的长.20.如图,在数轴上点A、B、C分别表示-1、-2x+3、x+1,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当AB=2BC时,x的值为_____.21.化简分式:2222334424x x xx x x x⎛⎫---÷⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.22.2018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另加外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.23.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点 C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.24.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.25.如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于12DE 的长为半径画弧,两弧在∠ABC 的内部相交于点F ;画射线BF ,过点F 作FG ⊥AB 于点G ,作FH ⊥BC 于点H求证:BG =BH .【参考答案】***一、选择题二、填空题13.7:314.2π15.2(2)(2)a x x +-16.817.3518.5×107三、解答题19.(1)证明见解析;(2)7. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BFDF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA , ∴BF BD DF AD ==∴BF =4DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(3+4DF )2=32+DF 2,∴DF =7.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.20.(1) 223x<<;(2)1【解析】【分析】(1)根据A、B、C三点在数轴上的位置列不等式组即可得出x的取值范围;(2)分别求出AB、BC的距离,根据AB=2BC列方程即可得出x的值.【详解】(1)由题意得:231123xx x-+>-⎧⎨+>-+⎩①②解不等式①得:x<2;解不等式②得:x>23.∴不等式组的解集为:23<x<2.(2)∵AB=2BC,∴-2x+3-(-1)=2[x+1-(-2x+3)]-2x+4=2x+2+4x-68x=8解得x=1.故答案为:1【点睛】本题考查数轴的性质、解一元一次不等式组及解一元一次方程,不等式解集遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.x+2,3.【解析】【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【详解】2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ =22(2)33(224x x x x x x ⎡⎤---÷⎢⎥---⎣⎦) =233()224x x x x x --÷--- =(-2)(2)323x x x x x -⋅--+ =x+2,∵x 2﹣4≠0,x ﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x =1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.22.(1)若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)见解析;(3)750≤m≤900.【解析】【分析】:(1)根据题意,直接按照第一个标准,由底薪每单补贴,求解即可(2)按照x >m,0<x≤500和0<x≤500三种情况,分别求解即可;(3)根据(2)中的关系式,分别代入求解,注意要符合工资要求【详解】(1)由题意可得,1000+500×6+(600﹣500)×8=1000+3000+800=4800(元),答:若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)由题意可得,当0<x≤500时,y =1000+6x ,当500<x≤m 时,y =1000+500×6+(x﹣500)×8=8x ,当x >m 时,y =1000+500×6+(m﹣500)×8+(x﹣m)×10=10x ﹣2m ,由上可得,y =10006(05008(500102(x x x x m x m x m +⎧⎪⎨⎪-⎩<≤)<≤)>) ;(3)若800<m≤900,y =8×800=6400,符合题意,若700≤m≤800,6400≤﹣2m+10×800≤6500,解得,750≤m≤800,综上所述:750≤m≤900.【点睛】此题考查不等式组的应用,解题关键在于列出方程23.(1)A (4,4);(2)①2728.S (t 2)33=-+,S 有最大值为283;②t 的值为4或3614. 【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)①首先求出直线OA 、OB 、OC 、BC 的解析式.①求出P 、Q 的坐标即可解决问题;即可表示出QR 和PE 的长,即可得到三角形面积解析式利用配方法求出最值即可;②分三种情况讨论,即∠REO =90°或∠ORE =90°或∠ROE =90°分别求解即可.【详解】解:(1)由题意△OAB 是等腰直角三角形,∵OB =8,即B (8,0)∴A (4,4),(2)∵A (4,4),B (8,0),∴直线OA 的解析式为y =x ,直线AB 的解析式y =﹣x+6,∵t =3时,直线l 恰好过点C ,即OP =3,OC =5,∴PR =4,C (3,﹣4),∴直线OC 的解析式为y =-43x ,直线BC 的解析式为y =43255x -, ①当0<t <3时,Q (t ,t ),R (t ,-43t ), ∴QR=t-(-43t)=73t .PE =8﹣2t . ∴S =2117728(82)(2)22333PE QR t t t =-=--+. ∴t =2时,S 有最大值为283. ②要使△ORE 为直角三角形,则有三种情况:Ⅰ.若∠REO=90°,如图1,则点P与E点重合,∴8﹣2t=0,解得t=4,Ⅱ.若∠ORE=90°,如图2.△ORP∽△REP,∴OP RPRP PE=,即RP2=OP•PE,∴24(82) 3tt t⎛⎫=-⎪⎝⎭,解之得:t=36 17,Ⅲ.当t>4时,△ORE不可能为直角三角形.故使得△ORE为直角三角形时,t的值为:4或36 17,【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.24.(1)30;(2)y=﹣30x+60;(3)甲、乙第一次相遇是在出发后0.6小时;(4)25≤x≤56或76≤x≤2.【解析】【分析】(1)观察图形即可求得A 、B 两地间的距离;(2)乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由待定系数法可求乙与B 地的距离y (km )与乙行驶时间x (h )之间的函数关系式;(3)由相遇问题的数量关系直接求出结论;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由待定系数法求出解析式建立不等式组求出其解即可.【详解】解:(1)由题意,得A 、B 两地间的距离为30km .故答案为:30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得 30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由题意,得 22223002k b k b =+⎧⎨=+⎩, 解得:223060k b =-⎧⎨=⎩, ∴y =-30x+60.(3)由函数图象,得(30+20)x =30,解得x =0.6.故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,由题意,得30150.75b k b =⎧⎨=+⎩, 解得:k 20b 30=-⎧⎨=⎩, y 甲1=﹣20x+30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩, ∴y 甲2=﹣20x+40,当20303010301510x x x -+-≤⎧⎨-⎩…时, ∴25≤x≤56; 306015102x x -+-⎧⎨⎩……, 解得:76≤x≤2. ∴25≤x≤56或76≤x≤2.【点睛】本题考查了行程问题的数量关系路程÷时间=速度的运用,运用待定系数法求一次函数的解析式的运用,不等式组的解法的运用,解答时求出一次函数的解析式是关键.25.详见解析【解析】【分析】由作法可知BF 是∠ABC 的角平分线,再证明△GBF ≌△HBF 即可得到结论.【详解】证明:由作法可知BF 是∠ABC 的角平分线,∴∠ABF =∠CBF ,∵FG ⊥AB ,FH ⊥BC .∴∠FGB =∠FHB ,在△GBF 和△HBF 中,FGB FHB GBF HBF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△GBF ≌△HBF (AAS ),∴BG =BH .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.。
2022最新中考数学专题测试:相似三角形及应用(含解析)
专题17 相似三角形及应用学校:___________姓名:___________班级:___________1.【江苏省南通市海安县2022模拟届九年级上学期期末考试数学试题】下列条件不能判定△ABC 与△DEF 相似的是( )A .AB BC AC DE EF DF == B .AB BCDE EF=,A D ∠=∠ C .∠A=∠D ,∠B=∠E D .AB BCDE EF=,∠B=∠E【考点定位】相似三角形的判定.2.【江苏省徐州市市区、铜山县2022模拟届九年级中考模拟数学试题】直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A ,B ,C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为()A .254 B .253C .203D .154【答案】A .【解析】分别过点A 、B 、D 作AF ⊥l 3,BE ⊥l 3,DG ⊥l 3,先根据全等三角形的判定定理得出△BCE ≌△ACF ,故可得出CF 及CE 的长,在Rt △ACF 中根据勾股定理求出AC 的长,再由相似三角形的判定得出△CDG ∽△CAF ,故可得出CD 的长,在Rt △BCD 中根据勾股定理即可求出BD 的长.分别过点A 、B 、D 作AF ⊥l 3,BE ⊥l 3,DG ⊥l 3,∵△ABC 是等腰直角三角形,∴AC=BC ,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF ,∠BCE=∠CAF , 在△BCE 与△ACF 中,EBC ACF BC ACBCE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,【考点定位】1.相似三角形的判定与性质;2.平行线之间的距离;3.全等三角形的判定与性质;4.等腰直角三角形.3.【江苏省淮安市2022模拟年中考数学试题】如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于A 、B 、C 和点D 、E 、F .若32=BCAB ,DE =4,则EF 的长是( )A .38 B .320C .6D .10 【答案】C .【考点定位】平行线分线段成比例.4.【江苏省南京市2022模拟年中考数学试题】如图所示,△ABC 中,DE ∥BC ,若12AD DB =,则下列结论中正确的是( ) A .12AE EC = B .12DE BC = C .1=3ADE ABC △的周长△的周长 D .1=3ADE ABC △的面积△的面积【答案】C .【考点定位】相似三角形的判定与性质.5.【江苏省南通市海安县2022模拟届九年级上学期期末考试数学试题】若△ABC ∽△A ′B ′C ′,相似比为1:3,则△ABC 与△A ′B ′C ′的面积之比为.【答案】1:9.【解析】∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.【考点定位】相似三角形的性质.6.【江苏省扬州市2022模拟年中考数学试题】如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上,若线段AB=4 cm,则线段BC=cm【答案】12【考点定位】平行线分线段成比例7.【江苏省常州市2022模拟年中考数学试题】如图,在△ABC 中,DE ∥BC ,AD :DB =1:2,DE =2,则BC 的长是.【答案】6.【考点定位】相似三角形的判定与性质.8.【江苏省无锡市2022模拟年中考数学试题】已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于.【答案】952BACDE故答案为:952【考点定位】全等三角形的判定及性质;相似三角形的判定及性质;勾股定理. 9.【江苏省苏州市吴中、相城、吴江区2022模拟届九年级中考一模数学试题】如图,在平面直角坐标系中,已知点A (0,6),B (8,0).点P 从A 点出发,以每秒1个单位的速度沿AO 运动;同时,点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动. (1)求运动时间t 的取值范围;(2)t 为何值时,△POQ 的面积最大?最大值是多少?(3)t 为何值时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似?【答案】(1) 0≤t ≤4;(2) 当t=3时,△POQ 的面积最大,最大值是9.(3) 当t 为125或1811时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似. 【解析】试题分析:(1)由点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动,可得:2t=8,解得:t=4,进而可得:0≤t ≤4;(2)先根据三角形的面积公式,用含有t 的式子表示△POQ 的面积=-t 2+6t ,然后根据二次函数的最值公式解答即可;试题解析:(1)∵点A (0,6),B (8,0),∴OA=6,OB=8,∵点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动, ∴2t=8,解得:t=4, ∴0≤t ≤4;(2)根据题意得:经过t 秒后,AP=t ,OQ=2t ,∴OP=OA -AP=6-t , ∵△POQ 的面积=12•OP •OQ ,即△POQ 的面积=12×(6-t )×2t=-t 2+6t . ∵a=-1<0,∴△POQ 的面积有最大值,当t=-2ba=3时,△POQ 的面积的最大值=244ac b a =9,即当t=3时,△POQ 的面积最大,最大值是9. (3)①若Rt △POQ ∽Rt △AOB 时,∵Rt △POQ ∽Rt △AOB ,∴PO OQ AO OB =,即6268t t -=,解得:t=125②若Rt △QOP ∽Rt △AOB 时, ∵Rt △QOP ∽Rt △AOB ,∴PO OQ OB AO =,即6286t t -=,解得:t=1811.所以当t 为125或1811时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似. 【考点定位】相似三角形与一次函数综合题.10.【江苏省南京市2022模拟年中考数学试题】如图,△ABC 中,CD 是边AB 上的高,且AD CDCD BD=.(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小.【答案】(1)证明见试题解析;(2)90°. 【解析】【考点定位】相似三角形的判定与性质.。
2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)
2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)知识点总结1. 比例的性质:①基本性质:两内项之积等于量外项之积。
即若d c b a ::=,则ad bc =。
②合比性质:若d c b a =,则dd c b b a +=+。
③分比性质:若d c b a =,则dd c b b a −=−。
④合分比性质:若d c b a =,则dc d c b a b a −+=−+。
⑤等比性质:若n m d c b a ===...,则n m d c b a n d b m c a ====++++++.........。
2. 平行线分线段成比例:三条平行线被两条直线所截,所得的对应线段成比例。
即如图:有EFDE BC AB =; DFDE AC AB =; DFEF AC BC =。
推论:①平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
②如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
③平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
3. 相似三角形的性质:①相似三角形的对应角相等,对应边的比相等。
对应边的比叫做相似比。
②相似三角形的周长比等于相似比,面积比等于相似比的平方。
相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比。
4.相似三角形的判定:①平行线法判定:平行于三角形一边的直线与三角形的另两边或另两边的延长线相交所构成的三角形与原三角形相似。
②对应边判定:三组对应边的比相等的两个三角形相似。
③两边及其夹角判定法:两组对应边的比相等,且这两组对应边的夹角相等的两个三角形相似。
④两角判定:有两组角(三组角)对应相等的两个三角形相似。
练习题1.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB =∠AED ,∴∠C =∠AED ,∵AD ⊥BE ,∴∠D =∠ABC =90°,∴△ADE ∽△ABC .2.如图,在△ABC 与△A ′B ′C ′中,点D 、D ′分别在边BC 、B ′C ′上,且△ACD ∽△A ′C ′D ′,若 ,则△ABD ∽△A ′B ′D ′. 请从①''''=D C D B CD BD ;②''''=D C B A CD AB ;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.【分析】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【解答】解:③.理由如下:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A 'D 'C ',∴∠ADB =∠A 'D 'B ',又∵∠BAD =∠B ′A ′D ′,∴△ABD ∽△A 'B 'D '.同理,选①也可以.故答案是:③(答案不唯一).3.如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.4.如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.【分析】(1)根据矩形的性质可得∠ADE=∠ABF,∠∠DAE+∠BAE=90°,结合题干AF⊥AE可得∠BAF+∠BAE=90°,进而可得∠DAE=∠BAF,进而可得△ADE∽△ABF,利用相似三角形的性质可得BF的长度;(2)先根据AG∥CE,GC∥AE进而可得四边形AGCE是平行四边形,通过勾股定理可得GF2、EF2、AE2,再过点G作GM⊥AF于点M,易得△MGF∽△AEF,进而利用相似三角形的性质可得GM的长,即可得GM=GB,进而可得GF是∠AFB的角平分线,最后利用角平分线得性质可得EA=EC,即可得平行四边形AGCE是菱形.【解答】(1)解:∵四边形ABCD是矩形,∴∠ADE=∠ABF=∠BAD=90°,∴∠DAE+∠BAE=90°,∵AF⊥AE,∴∠BAF+∠BAE=90°,∴∠DAE=∠BAF,∴△ADE∽△ABF,∴,即,∴BF=2a,(2)证明:∵四边形ABCD是矩形,∴AG∥CE,∵GC∥AE,∴四边形AGCE是平行四边形.∴AG=CE=8﹣a,∴BG=AB﹣AG=8﹣(8﹣a)=a,在Rt△BGF中,GF2=a2+(2a)2=5a2,在Rt△CEF中,EF2=(2a+4)2+(8﹣a)2=5a2+80,在Rt△ADE中,AE2=42+a2=16+a2,如图,过点G作GM⊥AF于点M,∴GM∥AE,∴△MGF∽△AEF,∴,∴,∴=,∴GM =a ,∴GM =BG ,又∵GM ⊥AF ,GB ⊥FC ,∴GF 是∠AFB 的角平分线,∴EA =EC ,∴平行四边形AGCE 是菱形.5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,41=BC DE . (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.【分析】(1)证明△ADE ∽△ABC ,根据相似三角形对应边的比相等列式,可解答;(2)根据相似三角形面积的比等于相似比的平方可得△ABC 的面积是16,同理可得△EFC 的面积=9,根据面积差可得答案.【解答】解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,∴DE ∥BC ,∴△ADE ∽△ABC ,∴==,∵AB=8,∴AD=2;(2)∵△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为1,∴△ABC的面积是16,∵四边形BFED是平行四边形,∴EF∥AB,∴△EFC∽△ABC,∴=()2=,∴△EFC的面积=9,∴平行四边形BFED的面积=16﹣9﹣1=6.6.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.【分析】(1)根据两角相等可得两三角形相似;(2)根据(1)中的相似列比例式可得结论.【解答】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.7.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.【分析】(1)根据矩形的性质和角平分线的定义,求得∠3=∠6,从而求证BF⊥AC;(2)根据相似三角形的判定进行分析判断;(3)利用相似三角形的性质分析求解.【解答】(1)证明:如图,在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,∴∠2=∠3=∠4,∠3+∠5=90°,∵DE=BE,∴∠1=∠2,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,∴∠6+∠5=90°,∴BF⊥AC;(2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:∵∠1=∠3,∠EFC=∠BFO,∴△ECF∽△OBF,∵DE=BE,∴∠1=∠2,又∵∠2=∠4,∴∠1=∠4,又∵∠BFA=∠OFB,∴△BAF∽△OBF;(3)解:在矩形ABCD中,∠4=∠3=∠2,∵∠1=∠2,∴∠1=∠4.又∵∠OFB=∠BFA,∴△OBF∽△BFA.∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF.∴,∴,即3CF=2BF,∴3(CF+OF)=3CF+9=2BF+9,∴3OC=2BF+9∴3OA=2BF+9①,∵△ABF∽△BOF,∴,∴BF2=OF•AF,∴BF2=3(OA+3)②,联立①②,可得BF=1±(负值舍去),∴DE=BE=2+1+=3+.8.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.9.【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出CE BD 的值.【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且43==DE AD BC AB .连接BD ,CE . (1)求CEBD 的值; (2)延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.【分析】【问题呈现】证明△BAD CAE ,从而得出结论;【类比探究】证明△BAD ∽△CAE ,进而得出结果;【拓展提升】(1)先证明△ABC ∽△ADE ,再证得△CAE ∽△BAD ,进而得出结果;(2)在(1)的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果.【解答】【问题呈现】证明:∵△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴BD =CE ;【类比探究】解:∵△ABC 和△ADE 都是等腰直角三角形,∴==,∠DAE =∠BAC =45°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE ,∴==;【拓展提升】解:(1)∵==,∠ABC =∠ADE =90°,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,,∴∠CAE =∠BAD ,∴△CAE ∽△BAD ,∴==;(2)由(1)得:△CAE ∽△BAD ,∴∠ACE =∠ABD ,∵∠AGC =∠BGF ,∴∠BFC =∠BAC ,∴sin ∠BFC ==.10.如图,在矩形ABCD 中,AB =6,BC =4,点M 、N 分别在AB 、AD 上,且MN ⊥MC ,点E 为CD 的中点,连接BE 交MC 于点F .(1)当F 为BE 的中点时,求证:AM =CE ;(2)若BF EF=2,求ND AN的值;(3)若MN ∥BE ,求NDAN 的值. 【分析】(1)根据矩形的性质,利用AAS 证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得,从而求出BM 的长,再利用△ANM ∽△BMC ,得,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得,可得BM 的长,由(2)同理可得答案.【解答】(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =DE ,∴BM =CE =DE ,∵AB =CD ,∴AM =CE ;(2)解:∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.11.在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE 交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.【分析】(1)连接CG,过点G作GJ⊥CD于点J.证明△EAG≌△DAG(SAS),可得EG=DG,∠AEG =∠ADG,再证明△OBE∽△OGC,推出=,可得结论;(2)过点D作DT⊥BC于点T,连接GT.证明△EAG≌△DAG(SAS),推出EG=DG,∠AEG=∠ADG,再证明△OBE∽△OGT,推出=,可得结论.【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∴∠AFB=∠BAF=45°,∴BA=BF,∵BE=CF,∴AE=AB+BE=BF+CF=BC=AD,∵AG=AG,∴△EAG≌△DAG(SAS),∴EG=DG,∠AEG=∠ADG,∵AD∥FC,AG=GF,∴DJ=JC,∵GJ⊥CD,∴GD=GC,∴∠GDC=∠GCD,∵∠ADC=∠BCD=90°,∴∠ADG=∠GCO,∴∠OEB=∠OCG,∵∠BOE=∠GOC,∴△OBE∽△OGC,∴=,∵GC=GD,BE=CF,∴BO•GD=GO•FC;(2)解:过点D作DT⊥BC于点T,连接GT.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAG=∠AFB,∵AF平分∠DAB,∴∠DAG=∠BAF,∴BAF=∠AFB,∴AE =AB +BE =BF +CF =BC =AD , ∵AG =AG ,∴△EAG ≌△DAG (SAS ), ∴∠AEG =∠ADG , ∵AD ∥FT ,AG =GF , ∴DJ =JT , ∵GJ ⊥DT , ∴GD =GT , ∴∠GDT =∠GTD , ∵∠ADT =∠BTD =90°, ∴∠ADG =∠GTO , ∴∠OEB =∠OTG , ∵∠BOE =∠GOT , ∴△OBE ∽△OGT , ∴=,∵GT =GD ,BE =CF , ∴BO •GD =GO •FC . 12.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证CDBDAC AB =.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明CDBDAC AB =.(1)请参照小慧提供的思路,利用图2证明:CDBDAC AB =; 应用拓展:(2)如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处. ①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【分析】(1)证明△CED ∽△BAD ,由相似三角形的性质得出,证出CE =CA ,则可得出结论;(2)①由折叠的性质可得出∠CAD =∠BAD ,CD =DE ,由(1)可知,,由勾股定理求出BC=,则可求出答案;②由折叠的性质得出∠C =∠AED =α,则tan ∠C =tan α=,方法同①可求出CD =,则可得出答案.【解答】(1)证明:∵CE ∥AB , ∴∠E =∠EAB ,∠B =∠ECB , ∴△CED ∽△BAD , ∴,∵∠E =∠EAB ,∠EAB =∠CAD , ∴∠E =∠CAD , ∴CE =CA ,(2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,由(1)可知,,又∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴BC===,∴BD+CD=,∴3CD=,∴CD=;∴DE=;②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,∴tan∠C=tanα=,由(1)可知,,∴tanα=,∴BD=CD•tanα,又∵BC=BD+CD=m,∴CD•tanα+CD=m,∴CD=,∴DE =.13.【基础巩固】(1)如图1,在△ABC 中,D ,E ,F 分别为AB ,AC ,BC 上的点,DE ∥BC ,BF =CF ,AF 交DE 于点G ,求证:DG =EG .【尝试应用】(2)如图2,在(1)的条件下,连结CD ,CG .若CG ⊥DE ,CD =6,AE =3,求BCDE的值. 【拓展提高】(3)如图3,在▱ABCD 中,∠ADC =45°,AC 与BD 交于点O ,E 为AO 上一点,EG ∥BD 交AD 于点G ,EF ⊥EG 交BC 于点F .若∠EGF =40°,FG 平分∠EFC ,FG =10,求BF 的长.【分析】(1)证明△AGD ∽△AFB ,△AFC ∽△AGE ,根据相似三角形的性质得到=,进而证明结论;(2)根据线段垂直平分线的性质求出CE ,根据相似三角形的性质计算,得到答案;(3)延长GE 交AB 于M ,连接MF ,过点M 作MN ⊥BC 于N ,根据直角三角形的性质求出∠EFG ,求出∠MFN =30°,根据直角三角形的性质、勾股定理计算即可. 【解答】(1)证明:∵DE ∥BC , ∴△AGD ∽△AFB ,△AFC ∽△AGE , ∴=,=,∴=,∵BF =CF , ∴DG =EG ;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.14.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【分析】(1)由矩形的性质及直角三角形的性质证出∠DCE=∠AEF,根据相似三角形的判定可得出结论;(2)①连接AM,由直角三角形的性质得出MB=CM=GM=,则点G在以点M为圆心,3为半径的圆上,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,由勾股定理求出AM=5,则可得出答案;②方法一:过点M作MN∥AB交FC于点N,证明△CMN∽△CBF,由相似三角形的性质得出,设AF=x,则BF=4﹣x,得出MN=BF=(4+x),证明△AFG∽△MNG,得出比例线段,列出方程,解得x=1,求出AF=1,由(1)得,设DE=y,则AE=6﹣y,得出方程,解得y=3+或y=3﹣,则可得出答案.方法二:过点G作GH∥AB交BC于点H,证明△MHG∽△MBA,由相似三角形的性质得出,求出GH=,MH=,证明△CHG∽△CBF,得出,求出FB=3,则可得出AF=1,后同方法一可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x =1, 即AF =1, 由(1)得,设DE =y ,则AE =6﹣y , ∴,解得:y =3+或y =3﹣, ∵0<6,0<3﹣<6, ∴DE =3+或DE =3﹣.15.已知矩形ABCD ,点E 为直线BD 上的一个动点(点E 不与点B 重合),连接AE ,以AE 为一边构造矩形AEFG (A ,E ,F ,G 按逆时针方向排列),连接DG .(1)如图1,当1==AE AGAB AD 时,请直接写出线段BE 与线段DG 的数量关系与位置关系; (2)如图2,当2==AEAGAB AD 时,请猜想线段BE 与线段DG 的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BG ,EG ,分别取线段BG ,EG 的中点M ,N ,连接MN ,MD ,ND ,若AB =5,∠AEB =45°,请直接写出△MND 的面积.【分析】(1)证明△BAE ≌△DAG ,进一步得出结论; (2)证明BAE ∽△DAG ,进一步得出结论;(3)当点E在线段BD上时,解斜三角形ABE,求得BE=3,根据(2)可得DG=6,从而得出三角形BEG的面积,可证得△MND≌△MNG,△MNG与△BEG的面积比等于1:4,进而求得结果;同理可得点E在DB的延长线时的情形.【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(2)BE=,BE⊥DG,理由如下:由(1)得:∠BAE=∠DAG,∵==2,∴△BAE∽△DAG,∴,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(3)如图,当B在线段BD上时,作AH⊥BD于H,∵tan∠ABD=,∴设AH=2x,BH=x,在Rt△ABH中,x2+(2x)2=()2,∴BH=1,AH=2,在Rt△AEH中,∵tan∠AEB=,∴,∴EH=AH=2,∴BE=BH+EH=3,∵BD==5,∴DE=BD﹣BE=5﹣3=2,由(2)得:,DG⊥BE,∴DG=2BE=6,∴S△BEG===9,在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,∴DM=GM=,∵NM=NM,∴△DMN≌△GMN(SSS),∵MN是△BEG的中位线,∴MN∥BE,∴△BEG∽△MNG,∴=()2=,∴S△MND=S△MNG=S△BEG=,如图,同上可得:BE=EH﹣BH=2﹣1=1,DG=2BE=2,∴=1,∴S△BEG=,综上所述:△DMN的面积是或.。
中考数学相似综合题含答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
山东省聊城市2012年中考数学综合验收评估测试题 相似(附答案)
综合验收评估测试题(时间:120分钟满分:120分)一、选择题1.要做甲、乙两个形状相同(相似).的三角形框架,已知三角形框架甲的三边长分别为50 cm,60 cm,80 cm,三角形框架乙的一边长为20 cm,那么符合条件的三角形框架乙共有( )A.1种 B.2种 C.3种 D.4种2.如图27-107所示,在△ABC中,已知∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为 ( )A. 154 B.7 C.152 D.2453.如图27-108所示,在△ABC中,D,E分别为AB,AC的中点,若△ABC的面积为12cm2,则△ADE的面积为 ( )A.2 cm2 B.3 cm2 C.4 cm2 D.6 cm24.厨房角柜的台面是三角形,如果把各边中点的连线所围成的三角形铺上黑色大理石,如图27—109所示,其余部分铺上白色大理石,那么黑色大理石与白色大理石的面积比为( )A.1:4 B.4:1 C.1:3 D.3:45.如图27-110所示,D是△ABC的边AB上一点,过D作DE∥BC交AC于E,若AD: DB =2:3,则S△ADE:S四边形BCED等于 ( )A.2:3 B.4:9 C.4;5 D.4:216.如图27-111所示,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则AH:HE等于 ( )A.1:1 B.2:1 C.1 D.3:27.△ABC,2,△A′B′C′的两边长分别为1ABC ∽△A′B′C′,那么△A′B′C′的第三边长应为 ( )B8.如图27-112所示,在△ABC中,DE∥BC,且S△ADE=S四边形BDEC,则DE:BC等于( )A.1:2 B 2 C.1:4 D.2:39.如图27-113所示,在ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE:EF:FB等于 ( )A.1:2:3 B.2:1:3 C.3:2:1 D.3:1:210.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,则满足这样条件的直线最多有 ( )A.2条 B.3条 C.4条 D.5条二、填空题11.如图27-114所示,在△ABC中,DE∥BC交AB于D,交AC于E,若AD=3.2,DB=2.4,AE=2.8,则AC=.12.一根2米长的竹竿直立在操场上,影长为1.6米,在同一时刻,测得旗杆的影长为17.6米,则旗杆高米.13.若△ABC∽△A′B′C′,AC=5,A′C′=8,则 S△ABC:S△A′B′C′= .14.已知两个相似多边形的一组对应边长分别为3 cm和4 cm,如果它们的面积和为50 cm2,则较大多边形的面积为 cm2.15.若一个多边形在图上的面积为 4 cm2,比例尺为1:1000,则该多边形的实际面积为m2.16.已知△ABC∽△DEF,相似比为3,△ABC的周长为54 cm,若△DEF的三边长之比为2:3:4,则△DEF的最短边长为 cm.三、解答题17.如图27-115所示,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,在AB上找一点E,使得△ADE与原三角形相似,这样的点E有几个?求出AE的长.18.如图27-116所示,已知在矩形ABCD中,AB=5,AD=20,点M分BC为BM:MC=1:2,DE⊥AM于点E,求DE的长.19.如图27-117所示,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM,垂足为E,求DE的长.20.如图27-118所示,在△ABC中,已知AB=AC=8,BC=6,BD⊥AC于D,AE⊥BC于E,求CD的长.21.如图27-119所示,已知CD是Rt△ABC的斜边AB上的高,若AD=10,BD=5,求CD 的长.22.如图27-120所示,在△ABC中,DE∥BC,且S△ADE:S四边形BCED=1:3,求AD:DB.23.在Rt△ABC中,CD为斜边上的高,试确定AC是哪两条线段的比例中项,用比例式或等积式写出你的结论,并加以证明.24.如图27-121所示,在正方形ABCD中,E是AB上一点,EF⊥CE交AD于F.(1)求证△AEF∽△BCE;(2)求证AE AF CD BE.25.如图27-122所示,已知∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a,b之间满足怎样的关系时,△ABC∽△CDB;(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB,试判断四边形AEDC 是什么四边形.26.如图27-123所示,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上,点Q 在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;(3)在AB上是否存在点M,使△PQM为等腰直角三角形?若存在,求出PQ的长;若不存在,请说明理由.参考答案 1.C 2.C 3.B 4.C 5.D 6.B 7.A 8.B 9.B 10.C11.4.9 12.22 13.25:64 14.32 15.400 16.417.解:这样的点正有两个.若△AED ∽△ABC ,则AE AD AB AC =,∴286AE =,∴AE =83;△AED∽△ACB ,则AE AD AC AB =,∴268AE =,∴AE =32. 18.解:∵AD ∥BC ,∴∠DAE =∠AMB ,又∵∠E =∠ABM =90°,∴△ABM ∽△DEA ,∴AB AM DE AD =.∵BM=203,AB=5,∴AM=253,∴255320DE =,∴DE =12.19.解:∵四边形ABCD 为矩形,∴AD ∥BC ,∴△ABM ∽△DEA ,∴DE ADAB AM =.在Rt △ABM 中,=5,∴645DE =,∴DE=245. 20.解:∵AE ⊥BC ,BD ⊥AC ,∴∠AEC =∠BDC =90°.又∵∠C =∠C ,∴△BCD ∽△ACE ,∴BC AC CD CE =,∴683CD =,∴CD =94.21.解:∵CD ⊥AB ,∴∠CDB=90°,∴∠B+∠DCB =90°.又∵∠A+∠B =90°,∴∠A =∠DCB ,∴△ADC ∽△CDB ,∴CD BDAD CD =,∴CD2=AD ·BD=50,∴. 22.解:∵S △ADE :S 四边形BCED=1:3,∴S △ADE :S △ABC :1:4,∵DE ∥BC ,∴△ADE∽△ABC ,∴AD :AB =1:2,∴AD :DB =1:1.23.解:AC2=AB ·AD 或AB ACAC AD =.证明过程如下.∵∠A +∠ACD =90°,∠A +∠B =90°,∴∠B =∠ACD .又∵∠A =∠A ,∴△ACD ∽△ABC ,∴AB ACAC AD =,即AC2=AB ·AD . 24.证明:(1)∵∠AEF +∠BEC =90°,∠BEC +∠ECB =90°,∴∠AEF =∠BCE ,又∠A =∠B =90°,∴△AEF ∽△BCE .(2)∴△AEF ∽△BCE ,∴AE AF BC BE =,又CD=BC ,∴AE AFCD BE =. 25.解:(1)若△ABC ∽△CDB ,则AC BCBC BD =,∴BD =2b a ,∴当BD =2b a 时,△ABC ∽△CDB . (2)∵△ABC ∽△CDB ,∴∠ACD =90°.又∵∠D =∠E =90°,∴四边形AEDC 为矩形. 26.解:(1)∵S △PQC = S 四边形PABQ ,∴S △PQC :S △ABC =1:2.∵PQ ∥AB ,∴△PQC ∽△ABC ,∴2PQCABCS PC S AC ⎛⎫= ⎪⎝⎭△△=1:2,∴PC2=12·AC2=12×42=8,∴PC =(2)∵△PQC 的周长与四边形PABQ 的周长相等,∴PC+CQ =PA+AB+QB =△ABC 的周长的一半=6.又∵PQ ∥AB ,∴CP CQ CA CB =,即643CP CP -=,∴CP =247. (3)存在点M 使△PQM 为等腰直角三角形.①如图27-124所示,当∠MPQ =90°,PM =PQ 时,∠C =90°,△ABC 中AB 边上的高为125,设PM =PQ =x .∵PQ ∥AB ,∴△CPQ ∽△CAB ,∴1251255x x -=,∴x =6037,即PQ =6037.当∠M ′QP =90°,QP =QM ′时,同理可得PQ =6037.②如图27-125所示,当∠PMQ =90°,MP =MQ 时,可得点M 到PQ 的距离为12PQ.设PQ =x ,∵PQ ∥AB ,∴△CPQ ∽△CAB ,∴5x =12152125x -,解得x=12049,即PQ=12049.。
2024年江苏省苏州市中考真题数学试卷含答案解析
2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。
2024年江苏省盐城市中考真题数学试卷含答案解析
2024年江苏省盐城市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数2024的相反数是( )A .2024B .2024-C .12024D .12024-【答案】B【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A .工作中的雨刮器B .移动中的黑板C .折叠中的纸片D .骑行中的自行车【答案】C【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键.【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3.下列运算正确的是( )A .624a a a ÷=B .22a a -=C .326a a a ⋅=D .()235a a =【答案】A【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案.【详解】解:A 、624a a a ÷=,正确,符合题意;B 、2a a a -=,错误,不符合题意;C 、325a a a ⋅=,错误,不符合题意;D 、()236a a =,错误,不符合题意;故选:A .4.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A .70.2410⨯B .52410⨯C .72.410⨯D .62.410⨯5.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A .湿B .地C .之D .都【答案】C 【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6.小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒,∴21802335∠=︒-∠-∠=︒,故选:B7,设其面积为2cm S ,则S 在哪两个连续整数之间( )A .1和2B .2和3C .3和4D .4和58.甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢【答案】A【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A.二、填空题9.若分式11x-有意义,则x的取值范围是.故答案为:1x ≠.10.分解因式:x 2+2x +1= 【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.两个相似多边形的相似比为12∶,则它们的周长的比为 .12.如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠= ︒.【答案】50【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠.【详解】解: 40C ∠=︒,∴280AOB C ∠=∠=︒,13.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是.【答案】20π【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520=⨯⨯=Sππ故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14.中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.15.如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B的俯角为45︒,则教学楼AB的高度约为m.(精确到1m,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)由题意知30m AH =,在Rt PHA △中,tan AH PHA PH∠=解得40m PH =,∴4026.613.4QH PH PQ =-=-=16.如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF = .∵CF ∥AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且22BC =,∴22222CG BG BC ===⨯=,三、解答题17.计算:()0214sin30π--++︒18.求不等式113x x +≥-的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥-,去括号得,133x x +≥-,移项得,331x x -≥--,合并同类项得,24x -≥-,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19.先化简,再求值:22391a a a a a---÷+,其中4a =.20.在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙):C.新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.21.已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌ ,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =, E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;故答案为:①或③(答案不唯一)22.小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫- ⎪⎝⎭,则CE ∴63BE OE OB m=-=--, 矩形直尺对边平行,23.如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.∵CD 是O 的切线,点∴OCD OCA ∠∠=+∴ACD OCB ∠∠=,24.阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25.如图1,E、F、G、H分别是平行四边形ABCD各边的中点,连接AF CE、交于点M,连接AG、CH交于点N,将四边形AMCN称为平行四边形ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;、交于点O,可得M、N两点都在BD上,当平行四边形ABCD满(2)①如图2,连接AC BD足________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)(2)①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==(或作BM=MN=ND ),然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽,∴12BF BM BC BN ==,∴点F 为BC 的中点,同理得:点E 为AB 的中点,点26.请根据以下素材,完成探究任务.制定加工方案背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.生产背景背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.探究任务任务3拟定加工方案制定使每天总利润最大的加工方案.27.发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k均为正整数,>≥,0n k3d>),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.。
2021年上海市中考数学考点必杀500题专练09(三角形相似大题)(30题)(解析版)
2021中考考点必杀500题专练09(三角形相似大题)(30道)1.(2021·上海九年级专题练习)已知:如图,在△ABC 中,DE△BC ,AD 2=AE•AC .求证:(1)△BCD△△CDE ;(2)22CD AD BC AB=. 【答案】(1)详见解析;(2)详见解析.【分析】(1)由2·AD AE AC =,易证得ADC AED ∆∆∽,即可得ACD ADE =∠∠,又由//DE BC ,易证得ECD B ∠=∠,则可证得BCD CDE ∆∆∽;(2)由BCD CDE ∆∆∽,根据相似三角形的对应边成比例,即可得CD DE BC CD=,又由//DE BC ,可得ADE ABC ∆∆∽,即可得AD DE AB BC =,继而得到结论. 【详解】证明:(1)2·AD AE AC =, ∴AD AC AE AD=, A ∠是公共角,ADC AED ∴∆∆∽,ACD ADE ∴∠=∠,//DE BC ,ADE B ∴∠=∠,BCD CDE ∠=∠,ECD B ∴∠=∠,BCD CDE ∴∆∆∽;(2)BCD CDE ∆∆∽, ∴CD DE BC CD=, 2CD DE BC∴=, //DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AB BC=, ∴22CD AD BC AB=. 【点睛】此题考查了相似三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用. 2.(2021·上海九年级其他模拟)如下图,已知在△AB C 中,AD 平分△BAC ,EM 是AD 的中垂线,交BC 延长线于E .(1)连接AE ,证明:△EAC =△B .(2)求证:DE 2=BE ·CE .【答案】(1)证明见解析(2)2DE BE CE =⋅【详解】试题分析:(1)由中垂线的性质得,EAD EDA ∠=∠,由三角形的外角定理得出EAD B CAD ∠=∠+∠,故EAC B ∠=∠.(2)由(1)的结论∠EAC =∠B 和共公角,判断出∠EAC∠∠EBA ,根据相似三角形的性质即可得出等积式即可.试题解析:(1)EM 是AD 的中垂线,∴ EA=ED ,EAD EDA ∠=∠,又AD 平分BAC ∠,∴ CAD DAB ∠=∠EAD EAC CAD EDA B DAB∠=∠+∠∴∠=∠+∠ EAD B CAD ∠=∠+∠由上知:EAC B ∠=∠ (2在EAC ∆与EBA ∆中,,AEC BEA EAC B ∠=∠∠=∠∠∠EAC∠∠EBA ∠2,EA CE AE BE CE BE AE=⇒=⋅. 即2DE BE CE =⋅点睛:本题的关键是对于几何定理的熟悉程度,可以观察已知条件和图形的关系,第二问根据给出结论,找到要证明的相似三角形即可.3.(2021·上海九年级其他模拟)如图,AB 为△O 的直径,直线CD 切△O 于点M ,BE△CD 于点E . (1)求证:△BME=△MAB ;(2)求证:BM 2=BE•AB ;(3)若BE=185,sin△BAM=35,求线段AM 的长.【答案】(1)详见解析;(2)详见解析;(3)8.【详解】试题分析:(1)由切线的性质得出∠BME+∠OMB=90°,再由直径得出∠AMB=90°,利用同角的余角相等判断出结论;(2)由(1)得出的结论和直角,判断出∠BME∠∠BAM ,即可得出结论,(3)先在Rt∠BEM 中,用三角函数求出BM ,再在Rt∠ABM 中,用三角函数和勾股定理计算即可. 试题解析:(1)如图,连接OM ,∠直线CD切∠O于点M,∠∠OMD=90°,∠∠BME+∠OMB=90°,∠AB为∠O的直径,∠∠AMB=90°.∠∠AMO+∠OMB=90°,∠∠BME=∠AMO,∠OA=OM,∠∠MAB=∠AMO,∠∠BME=∠MAB;(2)由(1)有,∠BME=∠MAB,∠BE∠CD,∠∠BEM=∠AMB=90°,∠∠BME∠∠BAM,∠BM BE AB BM∠BM2=BE•AB;(3)由(1)有,∠BME=∠MAB,∠sin∠BAM=35,∠sin∠BME=35,在Rt∠BEM中,BE=185,∠sin∠BME=BEBM=35,∠BM=6,在Rt∠ABM 中,sin∠BAM =35, ∠sin∠BAM =BM AB =35, ∠AB =53BM =10,据勾股定理得,AM =8. 4.(2021·上海九年级专题练习)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC =,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.【答案】(1)见解析;(2)DE=6-;(3).【分析】(1)先证∠B=∠DCE ,再由∠DEC=∠CEB ,得出∠DEC∠∠CEB ,进而得出结论;(2)由∠DEC∠∠CEB 得BC=BE ,再由∠DEC∠∠DCA ,得AD=AC ,最后利用勾股定理求解即可;(3)连接EF ,先证∠BDC∠∠EDF ,得出FD DE CD BD =,进而得出FD MF=y ,然后结合已知条件得出结果. 【详解】解:(1)∠∠ACB=90°,∠∠B=45°,∠∠DCE=45°,∠∠B=∠DCE ,∠∠DEC=∠CEB ,∠∠DEC∠∠CEB ,∠EC DEBE CE=,故CE²=BE·DE;(2)由题意得∠DCE是等腰三角形,DC=CE,由∠DEC∠∠CEB得BC=BE,同理可得∠DEC∠∠DCA,AD=AC,∠BC=AC,∠BE=AD=BC=AC,∠AC=3,∠在Rt∠ABC中,AB²=BC²+AC²=9+9=18,,∠AD=2BD,∠BD=AB-AD=AB-3,-6,-3,∠DE=AB-BD--3)=6-.(3)连接EF,由三角形相似可得∠FED=∠DBC,∠EF∠BC,∠∠EFD=∠BCD,∠∠EDF=∠BDC,∠∠BDC∠∠EDF,∠FD DE CD BD=,∠tan∠FMD=y,∠FDMF=y,在Rt∠MFC中,∠MCF=45°,∠MF=CF , ∠FD FD CF MF==y , ∠BD x BC=,BE=BC , ∠BD BD x BE BC==, ∠,FD BD y x CF BE==, ∠DE=1x BD x -,CD=1y FD x -, ∠FD DE CD BD =,11y x y x=--, 则y(1-y)=x(1-y),y -xy=x -xy ,..【点睛】本题考查了相似三角形的性质与判定及勾股定理的应用,解题的关键是灵活运用相似三角形的性质与判定.5.(2021·上海九年级专题练习)如图,点E 为ABC 边BC 上一点,过点C 作CD BA ⊥,交BA 的延长线于点D ,交EA 的延长线于点F ,且AF CD BC AD ⋅=⋅.(1)求证:AE BC ⊥;(2)如果BE CE =,求证:22BC BD AC =⋅.【答案】(1)证明见解析;(2)证明见解析【分析】(1)先证明ADF CDB △△,再根据相似三角形的性质、对顶角相等和三角形内角和即可得证; (2)根据等腰三角形的三线合一即可得出1B ∠=∠,再证明BCD CAE △△,根据相似三角形的性质得出BC CE BD AC ⋅=⋅,根据等式的性质和等量代换即可得证.【详解】(1)CD BD ⊥,90ADF CDB ∴∠=∠=︒,AF CD BC AD ⋅=⋅,AD CD AF BC∴=, 在ADF 和CDB △中AD BC AF CD ADF CDB⎧=⎪⎨⎪∠=∠⎩, ADF CDB ∴△△,F B ∴∠=∠,FAD EAB ∠=∠,90FDA BEA ∴∠=∠=︒,AE BC ∴⊥;(2)BE CE AE BC =⊥,AB AC ∴=1B ∴∠=∠又90BDC AEC ︒∠=∠=,BCD CAE ∴△△BC BD AC CE∴= BC CE BD AC ∴⋅=⋅22BC CE BD AC ∴⋅=⋅BE CE =∴2BC CE =∠22BC BD AC =⋅.【点睛】本题考查了相似三角形的判定及性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.6.(2021·上海松江区·九年级一模)如图,已知//AB CD ,AD 、BC 相交于点E ,6AB =,4BE =,9BC =,连接AC .(1)求线段CD 的长;(2)如果3AE =,求线段AC 的长.【答案】(1)CD=152;(2)92. 【分析】(1)利用线段的和差关系可求出CE 的长,由AB//CD 可得∠ABE∠∠DCE ,根据相似三角形的性质即可得答案; (2)由AB 、BE 、BC 的长可得BE AB AB BC=,即可证明∠ABE∠∠CBA ,根据相似三角形的性质即可得答案. 【详解】∠BC=9,BE=4,∠CE=5,∠AB//CD ,∠∠ABE∠∠DCE , ∠BE AB CE CD =,即465CD=, 解得:CD=152. (2)∠6AB =,4BE =,9BC =, ∠BE AB AB BC ==23, ∠∠B 为∠ABE 和∠CBA 的公共角,∠∠ABE∠∠CBA , ∠AC BC AE AB =,即936AC =, 解得:AC=92. 【点睛】本题考查相似三角形的判定与性质,平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似;如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.7.(2021·上海九年级专题练习)已知△MAN 是锐角,点B 、C 在边AM 上,点D 在边AN 上,△EBD =△MAN ,且CE △BD ,sin△MAN =35, AB =5,AC =9. (1)如图1,当CE 与边AN 相交于点F 时,求证:DF ·CE =BC ·BE ;(2)当点E 在边AN 上时,求AD 的长;(3)当点E 在△MAN 外部时,设AD =x ,△BCE 的面积为y ,求y 与x 之间的函数解析式,并写出定义域.【答案】(1)证明见解析;(2)AD=4±(3)224825x y x x =-+.定义域为:44x <<. 【分析】(1)根据CE∠BD ,得出∠CEB=∠DBE ,∠DBA=∠BCE 结合题干证明出∠ABD∠∠ECB ,进而得到AD EB AB EC=,再等量代换即可得到DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .根据条件先证明出∠CEB∠∠CAE ,得到2CE =CB CA ⋅,代入求出CE ,再根据BD ABCE AC=求出BD ,利用三角函数求出BH ,根据勾股定理即可求出AD . (3)过点B 作BH∠AN ,垂足为H .BH=4,AH=3,DH=4x -根据∠ECB∠∠ABD 得到22EBC ADB S BC S BD △△=,代入化简为224825xy x x =-+即可求解.【详解】解:(1)∠CE∠BD , ∠∠CEB=∠DBE ,∠DBA=∠BCE . ∠∠A=∠DBE , ∠∠A=∠BEC . ∠∠ABD∠∠ECB , ∠AD EBAB EC=. ∠AD DFAB BC=, ∠EB DFEC BC=, ∠DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .∠CE∠BD , ∠∠CEB=∠EBD=∠A ,又∠∠BCE=∠ECA,∠∠CEB∠∠CAE,∠CE CA CB CE=,∠2CE=CB CA⋅.∠AB=5,AC=9,∠BC=4,∠24936 CE==⨯,∠CE=6.∠BD AB CE AC=,∠561093AB CEBD==AC⋅⨯=.在Rt∠ABH中,3sin535BH AB A=⋅=⨯=,4.==.AD=4.(3)过点B作BH∠AN,垂足为H.BH=4,AH=3,DH=4x-.2222224)3825BD=DH+BH x x x=-+=-+(.∠∠ECB∠∠ABD,∠22EBCADBS BCS BD△△=.∠1322ABDS AD BH x=⋅△=,∠21638252yx xx=-+,∠224825xyx x=-+.定义域为44x<.【点睛】此题属于平面几何的综合应用,主要利用三角形相似,找到相似比,根据相似比求值,计算量较大,有一定难度.8.(2021·上海九年级专题练习)如图,已知点B 、E 、C 、F 在同一条直线上,//AB DE ,//AC DF ,AC 与DE 相交于点G ,12AG DG GC GE ==,2BE =.(1)求BF 的长;(2)设EG a =,BE b =,那么BF = ,DF = (用向量a 、b 表示). 【答案】(1)8BF =;(2)4b ,332b a - 【分析】(1)先证∠CEG∠∠CBA ,再证∠ECG∠∠EFD ,然后求解即可; (2)先证22EC BE b ==,CF b =,再证32ED EG CD a =+=,然后再由23EF EC CF b b b =+=+=得出结论即可. 【详解】解:(1)∠AB∠GE , ∠∠B=∠DEC , ∠∠ACB=∠ACB , ∠∠CEG∠∠CBA , ∠1=2AG BE GC CE =, ∠CE=2BE=4, 同理∠ECG∠∠EFD , ∠1=2DG FC GE CE =, ∠CE=2FC=4, ∠FC=2,∠BF=BE+EC+FC=2+4+2=8;(2)BE b =,由(1)可知BE=CF=12EC , ∠22EC BE b ==,CF b =, ∠4BF BE EC CF b =++= , ∠EG a = ,∠1122GD EG a ==, ∠32ED EG CD a =+=,∠23EF EC CF b b b =+=+=, ∠332DF EF ED b a =-=-. 【点睛】本题考查了相似三角形的性质与判定与向量,解题的关键是掌握相似三角形的性质与判定.9.(2021·上海九年级专题练习)如图,在ABC 中,点D 、G 在边AC 上,点E 在边BC 上,DB DC =,//EG AB ,AE 、BD 交于点F ,BF AG =.(1)求证:BFE CGE △△;(2)当AEG C ∠=∠时,求证:2AB AG AC =⋅.【答案】(1)证明见详解;(2)证明见详解. 【分析】(1)由//EG AB 易证∠CGE∠∠CAB ,由性质得CG CE =CA CB 由比例性质得CG CE=AG BE,由已知BF=AG 比例式变为CG CE=BF BE,由已知DB DC =,利用等边对等角得∠FBE=∠GCE ,利用两边成比例夹角相等知BFE CGE △∽△;(2)由//EG AB ,利用性质内错角相等∠BAE=∠AEG ,由已知AEG C ∠=∠,推出∠BAE=∠C ,又∠ABE=∠CBA 共用,可证∠ABE∠∠CBA ,由性质AB BE=BC AB,∠BEA=∠BAC ,把比例变等积得2AB =BC BE ,由(1)BFE CGE △∽△利用性质∠BEF=∠CEG ,∠BFE=∠CGE ,推出∠BAC=∠GEC=∠ABC=∠EGC ,利用等角对等边得AC=BC ,GC=EC ,利用等量代换得AG=BE ,可证2AB =AC AG . 【详解】(1)∠//EG AB ,∠∠CGE=∠CAB ,∠CEG=∠CBA , ∠∠CGE∠∠CAB ,∠CG CE=CA CB , ∠CG CE =CA-CG CB-CE 即CG CE=AG BE,∠BF=AG ∠CG CE=BF BE, ∠DB DC =,∠∠DBC=∠DCB ,即∠FBE=∠GCE , ∠BFE CGE △∽△, (2)∠//EG AB , ∠∠BAE=∠AEG , 又∠AEG C ∠=∠, ∠∠BAE=∠C ,又∠∠ABE=∠CBA 共用, ∠∠ABE∠∠CBA , ∠AB BE=BC AB,∠BEA=∠BAC , ∠2AB =BC BE ,由(1)BFE CGE △∽△,∠∠BEF=∠CEG,∠BFE=∠CGE,EG AB,∠//∠∠ABC=∠GEC,∠BAC=∠EGC,∠∠BAC=∠GEC=∠ABC=∠EGC,∠AC=BC,GC=EC,∠AG=BE,2AB=BC BE=AC AG..【点睛】本题考查相似三角形的判定与性质,等腰三角形的判定与性质,掌握相似三角形的判定与性质,等腰三角形的判定与性质,会利用换比的方法证三角形相似,会利用相似证角等转化边角关系是解题关键.10.(2021·上海九年级专题练习)如图,已知矩形DEFG的边DE在ABC的边BC上,顶点G,F分别在边AB,AC上.ABC的高AH交GF于点I.(1)求证:BD EH DH CE ⋅=⋅; (2)设DE n EF =⋅(n 为正实数),求证:11n BC AH EF+=. 【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)证明,BDG BHA CEF CHA ∆∆∆∆∽∽,根据相似三角形的性质列出比例关系,整理即可证得结论; (2)要证明11n BC AH EF +=只需证明1nEF EF BC AH +=即1DE EFBC AH+=,证明∠AGF∠∠ABC ,根据相似三角形的性质以及比例的性质即可证明. 【详解】解:(1)证明:∠四边形DEFG 为矩形,ABC 的高AH 交GF 于点I , ∠GD=EF,90GDH GDB FEC FEB AHB AHC ∠=∠=∠=∠=∠=∠=︒, 又∠∠B=∠B,∠C=∠C ,∠,BDG BHA CEF CHA ∆∆∆∆∽∽,∠GD BD BD AH BH BD DH ==+,EF CE CE AH CH CE EH ==+, ∠=BD CEBD DH CE EH++,∠BD EH DH CE ⋅=⋅;(2)证明:∠四边形DEFG 为矩形,∠,//GF DE GF BC =,90FEB EFG ∠=∠=︒, ∠,AGF B AFG C ∠=∠∠=∠, ∠∠AGF∠∠ABC , ∠AH 为∠ABC 的高, ∠∠AIF=∠AHC=90°,GF AI BC AH =,即DE AIBC AH=, ∠90FEB EF C G AH ∠=∠=∠=︒, ∠四边形IHEF 为矩形, ∠EF=IH , ∠DE n EF =⋅,∠1nEF EF DE IH AI IH AI IH AHBC AH BC AH AH AH AH AH ++=+=+===, ∠11n BC AH EF+=.【点睛】本题考查相似三角形的性质与判定,矩形的性质和判断.本题中相似三角形有很多,能结合结论判断是需要证明哪组三角形相似是解题关键.11.(2021·上海九年级专题练习)如图,已知在平行四边形ABCD 中,E 是边AD 上一点,联结BE 、CE ,延长BA 、CE 相交于点F ,2CE DE BC =⋅(1)求证:EBC DCE ∠=∠; (2)求证:··BE EF BF AE =. 【答案】(1)见解析;(2)见解析 【分析】(1)根据2CE DE BC =⋅得CE BCED CE=,再由BCE CED ∠=∠,可以证明BCE CED ,即可得到结论;(2)根据平行四边形的性质结合(1)的结论,证明BFE AEB ∠=∠,即可证明EBF ABE ,就能得到结论. 【详解】解:(1)∠2CE DE BC =⋅, ∠CE BCED CE=, ∠四边形ABCD 是平行四边形, ∠//AD BC , ∠BCE CED ∠=∠, ∠BCECED ,∠EBC DCE ∠=∠;(2)∠四边形ABCD 是平行四边形, ∠//AD BC ,∠AEB EBC ∠=∠, ∠EBC DCE ∠=∠, ∠AEBDCE ,∠//AB CD , ∠BFE DCE ∠=∠, ∠BFE AEB ∠=∠, ∠EBF ABE ∠=∠, ∠EBF ABE ,∠EF BFAE BE=, ∠BE EF BF AE ⋅=⋅. 【点睛】本题考查相似三角形,解题的关键是掌握相似三角形的性质和判定.12.(2021·上海九年级专题练习)已知:如图,在Rt△ABC 中,△ACB =90°,CH△AB ,垂足为点H .点D 在边BC 上,联结AD ,交CH 于点E ,且CE =CD .(1)求证:△ACE△△ABD ;(2)求证:△ACD 的面积是△ACE 的面积与△ABD 的面积的比例中项. 【答案】(1)见解析;(2)见解析 【分析】(1)先证ACH B ∠=∠,再证AEC ADB ∠=∠,利用相似三角形的判定求解即可;(2)根据同高的三角形的面积比等于底边的比,得出ACE ACDS AE SAD =和ACD ABDSCDSBD=,再根据∠ACE∠∠ABD ,得出结果. 【详解】证明(1)∠∠ACB=90°,CH∠AB ,∠∠CHA=90°=∠ACB , ∠∠ACH+∠CAH=∠CBH+∠CAH , ∠ACH B ∠=∠, ∠CE CD =, ∠CED CDE ∠=∠,∠∠CED+∠AEC=∠CDE+∠ADB=180°, ∠AEC ADB ∠=∠, ∠ACE ABD ∽; (2)∠∠ACE 与∠ACD 同高,∠ACE ACDS AESAD=, ∠∠ACD 与∠ABD 同高,∠ACD ABDS CDSBD=, ∠CD=CE ,∠ACD ABDS CESBD=, ∠∠ACE∠∠ABD , ∠AE CEAD BD = , ∠ACE ACD ACDABDS S SS=,∠∠ACD 的面积是∠ACE 的面积与∠ABD 的面积的比例中项. 【点睛】本题考查了相似三角形的判定与性质、解题的关键是掌握相似三角形的判定与性质.13.(2021·上海九年级专题练习)Rt ABC 中,△ACB=90°,点D 、E 分别为边AB 、BC 上的点,且CD=CA ,DE△AB .(1)求证:2CA CE CB =⋅.(2)联结AE ,取AE 的中点M ,联结CM 并延长与AB 交于点H .求证:CH△AB .【答案】(1)见解析;(2)见解析【分析】(1)证明∠DCE∠∠BCD,根据相似三角形的对应边成比例即可得证;(2)证明∠CAE∠∠CBA,可得∠CEA=∠CAB,由直角三角形的性质可证CM=AM,从而∠CAE=∠ACM,然后由等量代换可证∠CAB+∠ACM=90°,进而可证结论成立.【详解】证明:(1)∠CA=CD,∠∠A=∠CDA.∠∠ACD=90°,∠∠A+∠B=90°.∠DE∠AB,∠∠CDA+∠CDE=90°,∠∠B=∠CDE.∠∠DCE=∠BCD,∠∠DCE∠∠BCD,∠CD CB CE CD=.∠CD=CA,∠CA CB CE CA=,∠2CA CB CE=⋅;(2)∠CA CBCE CA=,∠ACE=∠BCA,∠∠CAE∠∠CBA,∠∠CEA=∠CAB.∠∠ACB=90°,∠∠CEA+∠CAE=90°.∠M 为AE 的中点,∠ACE=90°,∠CM=AM ,∠∠CAE=∠ACM .∠∠CEA=∠CAB ,∠∠CAB+∠ACM=90°,∠∠AHC=90°,∠CH∠AB .【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的中线,熟练掌握相似三角形的判定与性质是解答本题的关键.14.(2021·上海青浦区·九年级一模)如图,在平行四边形ABCD 中,8BC =,点E 、F 是对角线BD 上的两点,且BE EF FD ==,AE 的延长线交BC 于点G ,GF 的延长线交AD 于点H .(1)求HD 的长;(2)设BGE △的面积为a ,求四边形AEFH 的面积.(用含a 的代数式表示)【答案】(1)2HD =;(2)7=2四边形AEFH a S 【分析】(1)由∠ADE∠∠GBE ,可求出BG 的长,再由∠HDF∠∠GBF ,即可求出HD 的长;(2)由∠ADE∠∠GBE ,可求出S ∠ADE =4S ∠BGE =4a ,再由∠HDF∠∠GBF ,即可求出S ∠DHF =14S ∠BGF ,由三角形的面积公式可求出S ∠DHF =14S ∠BGF ,进而可求四边形AEFH 的面积.【详解】解:(1)∠四边形ABCD是平行四边形,∠AD//BC,AD=BC=8,∠∠ADE∠∠GBE,∠AD DE BG BE=.∠BE EF FD==,∠BG=12AD=4.∠AD//BC,∠∠HDF∠∠GBF,∠HD DF BG BF=.∠BE EF FD==,∠HD=12BG=2;(2)∠∠ADE∠∠GBE,BE EF FD==,∠S∠ADE=4S∠BGE=4a.∠∠HDF∠∠GBF,∠S∠DHF=14S∠BGF.∠BE EF=,∠S∠BGF=2S∠BGE,∠S∠DHF=12S∠BGE=12a,∠17=4-=22AEFHaS a a四边形.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.15.(2021·上海浦东新区·九年级一模)如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【答案】(1)37;(2)11【分析】(1)根据AD//BE//CF可得DE ABDF AC=,由此计算即可;(2)过点A作AG//DF交BE于点H,交CF于点G,得出AD=HE=GF=5,由平行线分线段成比例定理得出比例式求出BH=6,即可得出结果.【详解】解:(1)∠AD//BE//CF,∠DE AB DF AC=,∠AB=6,BC=8,∠63687 DEDF==+,故DEDF的值为37;(2)如图,过点A作AG//DF交BE于点H,交CF于点G,∠AG//DF,AD//BE//CF,∠AD=HE=GF=5,∠CF=19,∠CG=CF-GF=14,∠BE//CF,∠BH AB CG AC =, ∠3147BH =, 解得BH=6,∠BE=BH+HE=11.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.16.(2021·上海九年级专题练习)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且MAN ABD ∠=∠.(1)求证:2AB BF DE =⋅;(2)若BE DN DE DC=,求证://EF MN .【答案】(1)见解析;(2)见解析.【分析】(1)先根据菱形的性质和角的和差可证AED ∆∠FAB ∆,再根据相似的性质得到AD DE BF AB =结合AB AD =即可证明;(2)先根据菱形的性质得到AD BC =、//AD BC ,再根据平行线分线段成比例定理可得BE BM DE AD =,再结合BE DN DE DC =可得BM DN AD DC =即BM DN BC DC=即可证明. 【详解】证明:(1)∠四边形ABCD 是菱形;∠AB AD =;∠ABD ADB ∠=∠;∠AED ABD BAE ∠=∠+∠,BAF MAN BAE ∠=∠+∠;又∠MAN ABD ∠=∠;∠AED BAF ∠=∠;∠AED ∆∠FAB ∆; ∠AD DE BF AB=,即AD AB BF DE ⋅=⋅; ∠2AB BF DE =⋅;(2)∠四边形ABCD 是菱形;∠AD BC =,//AD BC ; ∠BE BM DE AD=; ∠BE DN DE DC=; ∠BM DN AD DC=, ∠BM DN BC DC =; ∠//MN BD ,即//EF MN .【点睛】本题主要考查了相似三角形的判定与性质、平行线分线段成比例定理以及菱形的性质,灵活应用相关性质定理成为解答本题的关键.17.(2021·上海九年级专题练习)已知:如图,D 、E 分别是ABC 的边AB 、AC 上的点,且AED ABC ∠=∠,连接BE 、CD 相交于点F .(1)求证:ABE ACD ∠=∠;(2)如果ED EC =,求证:22DF EF BD EB=.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)先说明ADE ACB 可得AE AB AD AC =,再说明ADC AEB △△,最后根据相似三角形对应角相等即可证明:(2)先说明EDF EBD △△得到DF EF DE BD DE BE ==,进一步可得2DF EF DE BD DE BE ⎛⎫=⋅ ⎪⎝⎭即可证明. 【详解】证明:(1)∠AED ACB ∠=∠,A A ∠=∠,∠ADE ACB , ∠AE AB AD AC=, 又∠A A ∠=∠,∠ADC AEB △△,∠ABE ACD ∠=∠;(2)∠ED EC =,∠EDC ACD ∠=∠,∠ABE ACD ∠=∠∠EDC ABE ∠=∠,又∠DEF DEF ∠=∠,∠EDF EBD △△, ∠DF EF DE BD DE BE==, ∠2DF EF DE BD DE BE ⎛⎫=⋅ ⎪⎝⎭, ∠22DF EF BD EB=. 【点睛】本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键. 18.(2021·上海九年级专题练习)如图,在ACB △中,点D 、E 分别在边BC 、AC 上,AD AB =,BE CE =,AD 与BE 交于点F ,且AF DF BF EF ⋅=⋅.求证:(1)ADC BEC ∠∠=;(2)AF CD EF AC ⋅=⋅.【答案】(1)见解析(2)见解析【分析】(1)根据题意证明∠AFE∠∠BFD ,即可得到∠FDB=∠AEF ,故可求解;(2)根据题意证明∠AEF∠∠CBA ,得到AF AC EF AB =,再得到AB=CD ,故可求解. 【详解】证明:(1)∠AF DF BF EF ⋅=⋅ ∠AF EF BF DF= ∠∠BFD=∠AFE∠∠AFE∠∠BFD∠∠FDB=∠AEF ,∠180°-∠FDB=180°-∠AEF ,即ADC BEC ∠∠=(2)∠ADC BEC ∠∠=∠180°-∠ADC -∠C=180°-∠BED -∠C即∠DAC=∠EBC∠BE=CE,∠∠C=∠DAC=∠EBC∠AD=AB ,∠∠ADB=∠ABD∠∠ADB=∠C+∠DAC ,∠ABD=∠ABE+∠EBC ,∠∠ABE=∠DAC=∠C=∠EBC∠∠AEB=∠C+∠EBC∠∠BEA=∠ABE+∠EBC=∠ABC∠∠AEF∠∠CBA , ∠AF AC EF AB= ∠AF AB EF AC ⋅=⋅∠∠C=∠DAC∠CD=AD∠AB=AD∠AB=CD∠AF CD EF AC ⋅=⋅.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等腰三角形的性质及相似三角形的判定定理. 19.(2021·上海九年级专题练习)已知:如图,//AD BC ,ABD C ∠=∠,AE BD ⊥,DF BC ⊥,点E 、F 分别为垂足.(1)求证:AE BD DF BC=; (2)连结EF ,如果ADB BDF ∠=∠,求证:DF DC EF BC ⋅=⋅.【答案】(1)见解析;(2)见解析【分析】(1)先证ABD △与DCB 相似,再根据相似三角形对应线段成比例再进行证明,问题得证; (2)先证ABD EFD ∽,再证DCB EFD △∽△,最后根据相似三角形对应线段成比例进行证明,问题得证.【详解】证明(1)/AD/BCADB DBC ∠=∠∴ABD C ∠=∠∠ABD DCB △∽△,又∠AE 、DF 分别是ABD △与DCB 对应边上的高,AE BD DF BC∴= (2)如图,连结EF/AD/BC ,DF BC ⊥,∠90ADF ∠=︒,ADB BDF ∠=∠,∠45ADB BDF ∠==︒AE BD ⊥,∠90∠=︒AED ∠cos45DE DF DA DB=︒= ABD EFD ∴△∽△DCB EFD ∴△∽△DC BC EF DF∴= DF DC EF BC ∴⋅=⋅【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.20.(2021·上海九年级专题练习)如图,在四边形ABCD 中,,B DCB ∠=∠联结AC .点E 在边BC 上,且,CDE CAD DE ∠=∠与AC 交于点,F CE CB AB CD ⋅=⋅.()1求证://AD BC ;()2当AD DE =时,求证:2AF CF CA =⋅.【答案】(1)见解析;(2)见解析【分析】(1)证明ACB EDC ∆∆可得∠ACB=∠EDC=∠CAD ,从而可得结论;(2)根据ASA 证明ADF DEC ∆≅∆,得到AF=DC ,再证明FCDDCA ∆∆,得到2FC CA CD =,即可得到结论.【详解】解:(1)∠B DCB ∠=∠,且CE CB AB CD ⋅=⋅,即CE CD AB CB = ∠ACB EDC ∆∆∠ACB CDE ∠=∠∠CDE CAD ∠=∠∠∠ACB=∠CAD∠//AD BC(2)∠//AD BC∠∠ADE=∠CED在∠ADF 和∠DEC 中,FAD EDC AD CEADF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠ADF∠∠DEC∠AF=DC又∠∠CDF=∠CAD ,∠FCD=∠ACD∠FCDDCA ∆∆ ∠FC CD CD CA=,即2FC CA CD = ∠2AF CF CA =⋅【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解题的关键是利用相似三角形的性质找出比例式.21.(2021·上海长宁区·九年级一模)如图,在ABC 中,点D 在边AB 上,点E 、点F 在边AC 上,且//DE BC ,AF AE FE EC=.(1)求证://DF BE ;(2)如果AF =2,EF =4,AB =DE BE的值.【答案】(1)见解析;(2【分析】 (1)由平行线分线段成比例,得到AE AD AF EC BD FE==,即可得到//DF BE ; (2)根据题意,由相似三角形的判定定理,先证明ADE AEB ∽△△,即可求出DE BE的值. 【详解】证明:(1)∠//DE BC , ∠AE AD ECBD =, ∠AF AE FEEC =, ∠AD AF BD FE=, ∠//DF BE ;(2)∠AF =2,EF =4,AB = ∠2142AD AF BD FE ===,∠AD =BD =AE=AF+EF=6,∠63AD AE ==,3AE AB ==, ∠=AD AE AE AB ,又A A ∠=∠,∠ADE AEB ∽△△,∠DE AE BE AB ==; 【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例.解题的关键是利用平行线得出相似三角形及比例,从而进行解题.22.(2021·上海九年级专题练习)已知:如图,在梯形ABCD 中,//AD BC ,对角线BD 、AC 相交于点E ,过点A 作//AF DC ,交对角线BD 于点F .(1)求证:DF DE BD BE=; (2)如果ADB ACD ∠=∠,求证:线段CD 是线段DF 、BE 的比例中项.【答案】(1)见解析;(2)见解析【分析】(1)延长AF 交BC 于点G ,可证AD=GC ,由//AF DC ,可证DF CG AD BD BC BC ==,由ADE CBE △△,可证AD DE BC BE=,进而可证结论成立; (2)证明ADE CBE △△,可证2CD BD DE =⋅,由(1)得AD DE BC BE=,即DF BE BD DE ⋅=⋅,进而可证线段CD 是线段DF 、BE 的比例中项.【详解】证明:(1)如图,延长AF 交BC 于点G ,∠//AD BC ,//AF DC ,∠四边形AGCD 是平行四边形,∠AD=GC .∠//AF DC ,∠DF CG AD BD BC BC==,∠//AD BC,∠ADE CBE △△,∠AD DE BC BE=,∠DF DE BD BE=;(2)∠//AD BC,∠CBD ADB ∠=∠.∠ADB ACD ∠=∠,∠CBD ACD ∠=∠,∠CDE BDC ∠=∠,∠CDE BDC,∠CD DE BD CD=,∠2CD BD DE=⋅.∠DF DE BD BE=,∠DF BE BD DE⋅=⋅,∠2CD DF BE=⋅.【点睛】本题考查了平行四边形的判定与性质,相似三角形的判定与性质,以及平行线分线段成比例定理,熟练掌握相似三角形的判定与性质是解答本题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.23.(2020·上海宝山区·九年级二模)已知:如图,△O与△P相切于点A,如果过点A的直线BC交△O于点B,交△P点C,OD△AB于点D,PE△AC于点E.(1)求DEBC的值:(2)如果△O和△P的半径比为3:5,求ABAC的值.【答案】(1)12;(2)35【分析】(1)由垂径定理可得AD=12AB、AE=12AC,然后根据线段的和差求得DE和BC并代入DEBC即可解答;(2)连接OP、OB、CP,然后说明一系列角相等,证明OB//PC,然后判定∠BOA∠∠CPA,最后利用相似三角形的性质解答即可.【详解】解:(1)∠OD∠AB,PE∠AC,∠AD=12AB,AE=12AC,∠1=2 DE AD AEBC BA AC+=+;(2)连接OP,OP必过切点A,连接OB、CP ∠OB=OA,PA=PC∠∠OBA=∠OAB=∠PAC=∠PCA∠OB//PC∠∠BOA∠∠CPA∠3=5 AB OAAC AP=.【点睛】本题考查了垂径定理和相似三角形的判定和性质,掌握垂径定理和相似三角形的判定和性质是解答本题的关键.24.(2020·上海杨浦区·九年级一模)如图,已知在ABC中,AD是ABC的中线,△DAC=△B,点E在边AD上,CE=CD.(1)求证:AC BD AB AD=;(2)求证:22AC AE AD=⋅.【答案】(1)见解析;(2)见解析.【分析】(1)由CE=CD=BD转化比例式,再证出∠ACE∠∠BAD即可;(2)由(1)中相似可得出,DC2=AD•AE①,再证∠ACD∠∠BCA,得出AC2=BC·CD=2CD2②,结合①②即可得出结果.【详解】证明:(1)∠AD为∠ABC的中线,∠BD=CD,∠CD=CE,∠BD=CD=CE,∠∠CDE=∠CED,∠∠CDE=∠B+∠BAD,∠CED=∠DAC+∠ACE,∠DAC=∠B,∠∠BAD=∠ACE∠∠ACE∠∠BAD,∠AC EC AB AD=∠AC BD AB AD=;(2)∠∠ACE∠∠BAD,∠AE EC BD AD=,∠BD•CE=AE•AD,∠DC2=AD•AE①.∠∠DAC=∠B,∠ACD=∠ACB,∠∠ACD∠∠BCA,∠AC CD BC AC=∠AC2=BC·CD=2CD2②,∠由①②可得,22AC AE AD=⋅.【点睛】本题考查了相似三角形的判定与性质,证明三角形相似得出比例式是解题的关键.25.(2020·上海金山区·九年级二模)如图,已知C是线段AB上的一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和正方形CBGF,点F在CD上,联结AF、BD,BD与FG交于点M,点N是边AC上的一点,联结EN交AF与点H.(1)求证:AF=BD;(2)如果AN GMAC GF=,求证:AF EN⊥.【答案】(1)见解析;(2)见解析【分析】(1)根据SAS证明∠ACF∠∠DCB即可得到结论;(2)根据正方形的性质得到AE=AC,GF=GB,由AN GMAC GF=证得AN GMAE GB=得到∠EAN∠∠BGM,再证明∠MBG∠∠BDC,由∠BDC∠∠FAC,得到∠EAN∠∠ACF,推出∠CAF+∠ANE=90°,即可得到结论.【详解】(1)在正方形ACDE和正方形CBGF中,AC=CD,CF=CB,∠ACD=∠BCD=90°,∠∠ACF∠∠DCB,∠AF=BD;(2)在正方形ACDE和正方形CBGF中,AE=AC,GF=GB,∠AN GM AC GF=,∠AN GM AE GB=,∠∠EAN=∠G=90°,∠∠EAN∠∠BGM,∠CD∠BG,∠∠CDB=∠MBG,∠∠DCB=∠G=90°,∠∠MBG∠∠BDC,∠∠BDC∠∠FAC,∠∠EAN∠∠ACF,∠∠AEN=∠CAF,∠∠AEN+∠ANE=90°,∠∠CAF+∠ANE=90°,∠∠AHN=90°,∠AF EN⊥.【点睛】此题考查全等三角形的判定及性质,正方形的性质,相似三角形的判定及性质.26.(2020·上海大学附属学校九年级三模)已知:如图,在等腰梯形ABCD中,AD△BC,AB=DC,过点D 作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC△△DCB;(2)DE·DC=AE·BD.【答案】(1)详见解析;(2)详见解析【分析】(1)根据三角形全等的判定条件找到相应的条件:AC =DB ,AB =DC ,BC =CB ,即可证明;(2)根据题意证明∠ADE∠∠CBD ,对应边成比即可求证.【详解】证明:(1)∠四边形ABCD 是等腰梯形,∠AC =DB ,∠AB =DC ,BC =CB ,∠∠ABC∠∠BCD ,(2)∠∠ABC∠∠BCD ,∠∠ACB =∠DBC ,∠ABC =∠DCB ,∠AD∠BC ,∠∠DAC =∠ACB ,∠EAD =∠ABC ,∠ED∠AC ,∠∠EDA =∠DAC ,∠∠EDA =∠DBC ,∠EAD =∠DCB ,∠∠ADE∠∠CBD ,∠DE ︰BD =AE ︰CD ,∠DE·DC =AE·BD .【点睛】此题考查三角形全等的判定定理,相似三角形的证明及性质.27.(2020·上海浦东新区·九年级三模)如图,在Rt ABC ∆中,90ACB ∠=︒,60BAC ∠=︒,6AC =,AD 平分BAC ∠,交边BC 于点D ,过点D 作CA 的平行线,交边AB 于点E .(1)求线段DE 的长;(2)取线段AD 的中点M ,联结BM ,交线段DE 于点F ,延长线段BM 交边AC 于点G ,求EF DF 的值. 【答案】(1)4;(2)23 【分析】(1)分别求出CD ,BC ,BD ,证明BDE BCA ∽,根据相似性质即可求解;(2)先证明DF AG =,再证明BEF BAG △∽△,根据相似三角形性质求解即可.【详解】解:(1)∠AD 平分BAC ∠,60BAC ∠=︒,∠30DAC ∠=︒.在Rt ACD ∆中,90ACD ∠=︒,30DAC ∠=︒,6AC =,∠CD =在Rt ACB ∆中,90ACB ∠=︒,60BAC ∠=︒,6AC =,∠BC =∠BD BC CD =-=.∠//DE CA ,∠BDE BCA ∽ ∠23DE BD CA BC ==. ∠4DE =.(2)∠点M 是线段AD 的中点,∠DM AM =.∠//DE CA ,∠DFM AGM △∽△ ∠DF DM AG AM=. ∠DF AG =.∠//DE CA ,∠BEF BAG △∽△ ∠23EF BE BD AG BA BC === ∠23EF DF =.【点睛】本题考查了含30°角的直角三角形性质,相似的判定与性质,解题的关键是能根据题意确定相似三角形,并根据相似性质解题.28.(2020·上海九年级一模)如图,在△ABC 中,D 为AC 上一点,E 为CB 延长线上一点,且EB BH BG FH=,DG △AB ,求证:DF =BG .【答案】详见解析【分析】证明∠DFH∠∠EBH ,证出DF‖BC ,可证出四边形BGDF 平行四边形,则DF=BG .【详解】证明:∠DG ∠AB , ∠=EB EH BG DH, ∠EB BH BG FH= , ∠EH BH DH FH =, ∠∠EHB =∠DHF ,∠∠DFH ∠∠EBH ,∠∠E =∠FDH ,∠四边形BGDF 平行四边形,∠DF =BG .【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,平行四边形的判定与性质等知识,解题的关键是熟练掌握相似三角形的判定与性质.29.(2020·上海长宁区·)如图,在ABC 中,点D 、E 分别在边AB 、BC 上,AE 与CD 交于点F ,若AE 平分BAC ∠,AB AF AC AE ⋅=⋅.(1)求证:AFD AEC ∠=∠;(2)若//EG CD ,交边AC 的延长线于点G ,求证:CD CG FC BD ⋅=⋅.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)先证∠BAE∠∠CAF ,推出∠AEB =∠AFC ,由等角的补角相等可得出结论;(2)先后证明∠DCB =∠CEG ,∠G =∠ACF =∠B ,推出∠BDC∠∠GCE ,由相似三角形的性质可得出结论.【详解】(1)证明:∠AB•AF =AC•AE , ∠AB AC AE AF=, ∠AE 平分∠BAC ,∠∠BAE =∠CAE ,∠∠BAE∠∠CAF ,∠∠AEB =∠AFC ,∠180°−∠AEB =180°−∠AFC ,∠∠AEC =∠AFD ;(2)证明:∠∠CFE =∠AFD =∠CEF ,∠DC∠EG,∠∠DCB=∠CEG,∠G=∠ACF=∠B,∠∠BDC∠∠GCE,∠BD GC GC DC CE CF==,∠CD•CG=FC•BD.【点睛】本题考查了相似三角形的判定与性质,解题关键是能够灵活运用相似三角形的判定与性质.30.(2020·上海闵行区·九年级二模)如图,已知在平行四边形ABCD中,AE△BC,垂足为E,CE=AB,点F 为CE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且△DFC=△EGC.(1)求证:CG=DG;(2)求证:2CG GM AG=⋅.【答案】(1)见解析;(2)见解析【分析】(1)首先证明∠ECG∠∠DCF,则有CG=CF,因为CF=12CE,则有CG=12CD,则结论可证;(2)延长AG、BC交于点H,首先证明∠ADG∠∠HCG,则有AG=HG,然后根据直角三角形斜边中线有AG=HG=EG,进而得出∠CDF=∠DAH,进一步可证∠ADG∠∠DMG,则有MG DGDG AG=,即2DG GM AG=⋅,又因为CG=DG即可证明结论.【详解】证明:(1)∠四边形ABCD是平行四边形,CE=AB,∠AB=CD=EC.又∠∠DFC=∠EGC,∠FCD=∠GCE,∠∠ECG∠∠DCF,∠点F为CE的中点,∠CF=12 CE,∠CG=12 CD,即:CG=DG.(2)延长AG、BC交于点H.∠∠ECG∠∠DCF,∠∠CEG=∠CDF,DG=CG.∠四边形ABCD是平行四边形,∠AD∠BC,∠∠DAH=∠H,∠ADC=∠DCH.∠∠ADG∠∠HCG,∠AG=HG.∠AE∠BC,∠∠AEC=90°,∠AG=HG=EG.∠∠CEG=∠H,∠∠CDF=∠DAH.又∠∠AGD=∠DGM,∠∠ADG∠∠DMG.∠MG DG DG AG=,∠2DG GM AG=⋅又∠CG=DG,。
2024年湖北省中考数学试题含答案解析
2024年湖北省中考数学试卷一、选择题(每小题3分,共30分)1. 在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A. 10+元B. 10−元C. 20+元D. 20−元【答案】B【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果收入20元记作20+元,那么支出10元记作10−元,故选:B .2. 如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A.B. C. D.【答案】A【解析】 【分析】本题考查了简单组合体的三视图.根据主视图的意义,从正面看该组合体所得到的图形对每一项判断即可.【详解】解:从正面看该组合体,所看到的主视图与选项A 相同,故选:A .3. 223x x ⋅的值是( )A. 25xB. 35xC. 26xD. 36x【答案】D【解析】【分析】本题主要考查单项式与单项式的乘法.运用单项式乘单项式运算法则求出结果即可判断.【详解】解:23236x x x ⋅=,故选:D .4. 如图,直线AB CD ∥,已知1120∠=°,则2∠=( )A. 50°B. 60°C. 70°D. 80°【答案】B【解析】【分析】本题主要考查了平行线性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=°,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=°,∵1120∠=°,∴218012060∠=°−°=°,故选:B .5. 不等式12x +≥的解集在数轴上表示为( )A.B. C.D.【答案】A【解析】【分析】本题考查了一元一次不等式的解法即在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案.【详解】解:12x +≥ , 1x ∴≥.∴在数轴上表示如图所示:故选:A .6. 下列各事件是,是必然事件的是( )A. 掷一枚正方体骰子,正面朝上恰好是3B. 某同学投篮球,一定投不中的C. 经过红绿灯路口时,一定是红灯D. 画一个三角形,其内角和为180°【答案】D【解析】 【分析】本题考查了随机事件和必然事件,解题的关键是掌握一定会发生的是必然事件,有可能发生,也有可能不发生的是随机事件,据此逐个判断即可.【详解】解:A 、掷一枚正方体骰子,正面朝上恰好是3,是随机事件,不符合题意;B 、某同学投篮球,一定投不中,是随机事件,不符合题意;C 、经过红绿灯路口时,一定是红灯,是随机事件,不符合题意;D 、画一个三角形,其内角和为180°,是必然事件,符合题意;故选:D .7. 《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值x 金,每只羊值y 金,可列方程为( )A. 5210258x y x y += +=B. 2510528x y x y += +=C. 5510258x y x y += +=D. 5210228x y x y += +=【答案】A【解析】【分析】本题考查了二元一次方程组的应用.根据未知数,将今有牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,两个等量关系具体化,联立即可.【详解】解:设每头牛值x 金,每头羊值y 金,∵牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,∴5210258x y x y += +=, 故选:A .8. AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=°.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A. 40°B. 25°C. 20°D. 15°【答案】C【解析】 【分析】本题主要考查圆周角定理以及角平分线定义,根据直径所对的圆周角是直角可求出=40ABC ∠°,根据作图可得1202ABP ABC ∠==°,故可得答案 【详解】解:∵AB 为半圆O 的直径, ∴90ACB ∠=°, ∵50CAB ∠=°,∴=40ABC ∠°,由作图知,AP 是ABC ∠的角平分线, ∴1202ABP ABC ∠==°, 故选:C9. 平面坐标系xOy 中,点A 的坐标为()4,6−,将线段OA 绕点O 顺时针旋转90°,则点A 的对应点A ′的坐标为( )A. ()4,6B. ()6,4C. ()4,6−−D. ()6,4−−【答案】B【解析】 【分析】本题考查坐标系下的旋转.过点A 和点A ′分别作x 轴的垂线,证明()AAS AOB OA C ′ ≌,得到4A C OB ′==,6OC AB ==,据此求解即可.【详解】解:过点A 和点A ′分别作x 轴的垂线,垂足分别为B C ,,∵点A 的坐标为()4,6−,∴4OB =,6AB =,∵将线段OA 绕点O 顺时针旋转90°得到OA ′,∴OA OA ′=,90AOA ′∠=°,∴90AOB A OC OA C ′′∠=°−∠=∠,∴()AAS AOB OA C ′ ≌,∴4A C OB ′==,6OC AB ==,∴点A ′坐标为()6,4,故选:B .10. 抛物线2y ax bx c ++的顶点为()1,2−−,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( )A. 0a <B. 0c <C. 2a b c −+=−D. 240b ac −=【答案】C【解析】【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数2y ax bx c ++的图像,如图所示:的∵开口向上,与y 轴的交点位于x 轴上方,∴0a >,0c >,∵抛物线与x 轴有两个交点,∴240b ac ∆=−>,∵抛物线2y ax bx c ++的顶点为()1,2−−,∴2a b c −+=−, 观察四个选项,选项C 符合题意,故选:C .二、填空题(每小题3分,共15分)11. 写一个比1−大的数______.【答案】0【解析】【分析】本题考查了有理数比较大小.根据有理数比较大小的方法即可求解.【详解】解:10−<.故答案为:0(答案不唯一).12. 中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽是概率是______. 【答案】15【解析】【分析】本题主要考查运用概率公式求概率,根据概率公式即可得出答案.【详解】解:共有5位数学家,赵爽是其中一位,所以,从中任选一个,恰好赵爽是概率是15, 故答案为:1513. 计算:111m m m +=++______. 【答案】1【解析】【分析】本题主要考查了分式的加减运算.直接按同分母分式加减运算法则计算即可.是【详解】解:111111m m m m m ++==+++. 故选:1.14. 铁的密度约为37.9kg /m ,铁的质量()kg m 与体积()3mV 成正比例.一个体积为310m 的铁块,它的质量为______kg .【答案】79【解析】【分析】本题考查了正比例函数的应用.根据铁的质量()kg m 与体积()3mV 成正比例,列式计算即可求解.【详解】解:∵铁的质量()kg m 与体积()3mV 成正比例, ∴m 关于V 的函数解析式为7.9m V =,当10V =时,()7.91079kg m =×=,故答案为:79.15. DEF 为等边三角形,分别延长FD DE EF ,,,到点A B C ,,,使DA EB FC ==,连接AB AC ,,BC ,连接BF 并延长交AC 于点G .若2AD DF ==,则DBF ∠=______,FG =______.【答案】 ①. 30°##30度 ②.【解析】 【分析】本题考查了相似三角形的判定和性质,等边三角形的判定和性质,勾股定理.利用三角形的外角性质结合EB EF =可求得30DBF ∠=°;作CH BG ⊥交BG 的延长线于点H ,利用直角三角形的性质求得1CH =,FH =AGF CGH ∽,利用相似三角形的性质列式计算即可求解.【详解】解:∵DEF 为等边三角形,DA EB FC ==,∴2AD DF EB EF ====,60DEF DFE ∠=∠=°,∴1302DBF EFB DEF ∠=∠=∠=°,90AFB EFB DFE ∠=∠+∠=°,30EFB HFC ∠=∠=°,作CH BG ⊥交BG 的延长线于点H ,∴112CH CF ==,FH =,∵90AFB H ∠=∠=°,∴AF CH ∥,∴AGF CGH ∽,∴AF FG CH GH=,即41=解得FG =故答案为:30° 三、解答题(75分)16. 计算:()201322024−×+− 【答案】3【解析】【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:()201322024−×+− 3341=−++−3=.17. 已知:如图,E ,F 为□ABCD 对角线AC 上的两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .【答案】证明见解析.【解析】【分析】利用SAS 证明△AEB ≌△CFD ,再根据全等三角形的对应边相等即可得.【详解】∵四边形ABCD 是平行四边形,∴AB //DC ,AB =DC ,∴∠BAE =∠DCF ,在△AEB 和△CFD 中,AB CD BAE DCF AE CF = ∠=∠ =, ∴△AEB ≌△CFD (SAS ),∴BE =DF .【点睛】本题考查了平行四边形性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.18. 小明为了测量树AB 的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得C 地与树AB 相距10米,眼睛D 处观测树AB 的顶端A 的仰角为32°: 方案二:如图(2),测得C 地与树AB 相距10米,在C 处放一面镜子,后退2米到达点E ,眼睛D 在镜子C 中恰好看到树AB 的顶端A .已知小明身高1.6米,试选择一个方案求出树AB 的高度.(结果保留整数,tan320.64°≈)【答案】树AB 的高度为8米【解析】【分析】本题考查了相似三角形的实际应用题,解直角三角形的实际应用题.方案一:作DE AB ⊥,在Rt ADE △中,解直角三角形即可求解;方案二:由光的反射规律知入射角等于反射角得到相似三角形后列出比例式求解即可.【详解】解:方案一:作DE AB ⊥,垂足为E ,的则四边形BCDE 是矩形,∴10DE BC ==米,在Rt ADE △中,32ADE ∠=°,∴tan 32100.64 6.4AE DE =⋅°≈×=(米), 树AB 的高度为6.4 1.68+=米.方案二:根据题意可得ACB DCE ∠=∠,∵90B E ∠=∠=°,∴ACB DCE ∽ ∴AB BC DE CE =,即101.62AB = 解得:8AB =米,答:树AB 的高度为8米.19. 为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了ABCD 四组,制成了不完整的统计图.分组:05A ≤<,510B ≤<,1015C ≤<,1520D ≤<.(1)A 组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个的有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.【答案】(1)12 (2)180(3)见解析【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)先根据C 组人数除以所占百分比求出总人数,再减去B ,C ,D 组人数即可得A 的人数;(2)求出C ,D 组人数在样本中所占百分比,再乘以400即可得答案;(3)根据众数、中位数、平均数的意义进行解答即可.【小问1详解】解:1435%40÷=(人), A 组人数为:401014412−−−=(人), 故答案为:12;【小问2详解】 解:14440018040+×=(人), 答:估计引体向上每分钟不低于10个的有180人;【小问3详解】解:从A ,B ,C ,D 组人数来看,最中间的两个数据是第20,21个,中位数落在B 组,说明B 组靠后的成绩处于中等水平;由于统计图中没有具体体现学生引体向上的训练成绩,只给出训练成绩的范围,无法计算出训练成绩的众数和平均数.20. 一次函数y x m =+经过点()3,0A −,交反比例函数k y x=于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.【答案】(1)3m =,1n =,4k =;(2)1a >.【解析】【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y x m =+经过点()30A −,,点(),4B n ,列式计算求得3m =,1n =,得到点()1,4B ,再利用待定系数法求解即可;(2)利用三角形面积公式求得6AOB S = ,得到362C y <,据此求解即可. 【小问1详解】解:∵一次函数y x m =+经过点()30A −,,点(),4B n , ∴304m n m −+= +=, 解得31m n = =, ∴点()1,4B , ∵反比例函数k y x=经过点()1,4B , ∴144k =×=;【小问2详解】 解:∵点()30A −,,点()1,4B , ∴3AO =, ∴1134622AOB B S AO y =×=××=△,1322AOC C C S AO y y =×=△, 由题意得362C y <, ∴4C y <,∴1C x >,∴C 的横坐标a 的取值范围为1a >.21. Rt ABC △中,90ACB ∠=°,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .且BD BC =.(1)求证:AB 是O 的切线.(2)连接OB 交O 于点F,若1AD AE =,求弧CF 的长.【答案】(1)见解析 (2)弧CF 的长为3π.【解析】【分析】(1)利用SSS 证明OBD OBC ≌△△,推出90ODB OCB ∠=∠=°,据此即可证明结论成立; (2)设O 的半径为x ,在Rt AOD 中,利用勾股定理列式计算求得1x =,求得60AOD ∠=°,再求得60COF ∠=°,利用弧长公式求解即可.【小问1详解】证明:连接OD ,在OBD 和OBC △中,BD BC OB OB OD OC = = =,∴()SSS OBD OBC ≌,∴90ODB OCB ∠=∠=°, ∵OD 为O 的半径,∴AB 是O 的切线;【小问2详解】解:∵90ODB ∠=°,∴90ODA =∠°,设O 的半径为x ,在Rt AOD 中,222AO OD AD =+,即()2221x x +=+, 解得1x =,∴1OD OC ==,2OA =,cos 12AODOD OA ==∠, ∴60AOD ∠=°,∵OBD OBC ≌△△, ∴()118060602BOD COF ∠=∠=°−°=°, ∴弧CF 的长为6011803ππ×=. 【点睛】本题考查了切线的判定,勾股定理,三角函数的定义,弧长公式.正确引出辅助线解决问题是解题的关键.22. 学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.【答案】(1)()8021940y x x =−≤<;2280s x x =−+(2)能,25x =(3)s 的最大值为800,此时20x【解析】【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据80AB BC CD ++=可求出y 与x 之间的关系,根据墙的长度可确定x 的范围;根据面积公式可确立二次函数关系式;(2)令750s =,得一元二次方程,判断此方程有解,再解方程即可 ;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【小问1详解】解:∵篱笆长80m ,∴80AB BC CD ++=,∵,,ABCD x BC y === ∴80,x y x ++=∴802y x =− ∵墙长42m ,∴080242x <−≤,解得,1940x ≤<,∴()8021940y x x =−≤<;又矩形面积s BC AB =⋅y x =⋅()802x x −2280x x =−+;【小问2详解】解:令750s =,则2280750x x −+=,整理得:2403750x x −+=,此时,()224404375160015001000b ac ∆=−=−−×=−=>,所以,一元二次方程2403750x x −+=有两个不相等的实数根,∴围成的矩形花圃面积能为2750cm ;∴x = ∴1225,15,x x == ∵1940x ≤<,∴25x =;【小问3详解】解:()22280220800s x x x =−+=−−+∵20,-<∴s 有最大值,又1940x ≤<,∴当20x 时,s 取得最大值,此时800s =,即当20x 时,s 最大值为80023. 如图,矩形ABCD 中,,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 的对称点P 落在AB 上,B 的对称点为G PG ,交BC 于H .(1)求证:EDP PCH △∽△.(2)若P 为CD 中点,且2,3AB BC ==,求GH 长. (3)连接BG ,若P 为CD 中点,H 为BC 中点,探究BG 与AB 大小关系并说明理由.【答案】(1)见详解 (2)34GH = (3)AB =【解析】 【分析】(1)根据矩形的性质得90A D C ∠=∠=∠=°,由折叠得出90EPH A ∠=∠=°,得出32∠=∠,证明EDP PCH △∽△;(2)根据矩形的性质以及线段中点,得出1DP CP ==,根据222EP ED DP =+代入数值得()2231x x =−+,进行计算53x =,再结合EDP PCH △∽△,则ED EP PC PH=,代入数值,得54PH =,所以34GH PG PH =−=; (3)由折叠性质,得AP EF BG ⊥⊥,直线EF ,,BG AP BAP GPA ∠=∠,MAP △是等腰三角形,则MA MP =,因为P 为CD 中点,H 为BC 中点,所以DPCP y ==,BH CH =,所以()ASA MBH PCH ≌,则CH y =,所以CH y =,证明的BMG MAP ∽,则BG y =,即可作答. 【小问1详解】解:如图:∵四边形ABCD 是矩形,∴90A D C ∠=∠=∠=°,∴1+3=90∠∠°,∵,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 的对称点P 落在DC 上,∴90EPH A ∠=∠=°,∴1290∠+∠=°, ∴32∠=∠,∴EDP PCH △∽△;【小问2详解】解:如图:∵四边形ABCD 是矩形,∴23CD AB BC ====,AD ,90A D C ∠=∠=∠=°, ∵P 为CD 中点, ∴1212DP CP ==×=, 设EP AP x ==,∴3ED AD x x =−=−,在Rt EDP △中,222EP ED DP =+,即()2231x x =−+,解得53x =, ∴53EP AP x ===, ∴43ED AD AE =−=, ∵EDP PCH △∽△, ∴ED EP PC PH=, ∴45331PH=, 解得54PH =, ∵2PG AB ==, ∴34GH PG PH =−=; 【小问3详解】解:如图:延长AB PG ,交于一点M ,连接AP∵,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 的对称点P 落在CD 上,∴AP EF BG ⊥⊥,直线EF ,BG AP ∴AE EP =EAP EPA ∴∠=∠,BAP GPA ∠=∠∴,∴MAP △是等腰三角形,∴MA MP =,∵P 为CD 中点,∴设DPCP y ==, ∴2ABPG CD y ===, ∵H 为BC 中点,∴BH CH =,∵BHM CHP ∠=∠,CBM PCH ∠=∠,∴()ASA MBH PCH ≌,∴BMCP y ==,HM HP =, 3MP MA MB AB y ==+=∴ ∴1322HP PM y ==, 在Rt PCH △中,CH y =,∴2BC CH ==,∴AD BC ==,在Rt APD中,AP =, ∵BG AP ∥,∴BMG MAP ∽, ∴13BGBM AP AM ==,∴BG y =,∴AB BG =∴AB =,【点睛】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.24. 如图1,二次函数23y x bx =−++交x 轴于()1,0A −和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标. (3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d ,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.【答案】(1)2b =;(2)103m =或83m =;(3)n n ≤<11n −≤≤−.【解析】【分析】(1)利用待定系数法求解即可;(2)先求得()3,0B ,()0,3C ,作MN x ⊥轴于点N ,设()2,23M m m m −++,分当M 点在x 轴上方和M 点在x 轴下方时,两种情况讨论,利用相似三角形的判定和性质,列式求解即可;(3)①利用平移的性质得图象L 的解析式为()24y x n =−−+,得到图象L 与y 轴交于点D 的坐标()20,4n −+,据此列式计算即可求解; ②先求得10n −≤≤或1n ≥,ABC 中含()0,1,()0,2,()1,1三个整数点(不含边界),再分三种情况讨论,分别列不等式组,求解即可.【小问1详解】解:∵二次函数23y x bx =−++交x 轴于()1,0A −,∴013b =−−+,解得2b =;【小问2详解】解:∵2b =,∴()222314y x x x =−++=−−+,令0y =,则()2140x −−+=,解得=1x −或3x =,令0y =,则3y =,∴()1,0A −,()3,0B ,()0,3C ,作MN x ⊥轴于点N ,设()2,23M m m m −++,当M 点在x 轴上方时,如图,∵MAB ACO ∠=∠,∴MAN ACO ∽△△, ∴OC AN OA MN =,即231123m m m +=−++, 解得83m =或1−(舍去); 当M 点在x 轴下方时,如图,∵MAB ACO ∠=∠,∴MAN ACO ∽△△,∴OC AN OA MN =,即()231123m m m +=−−++, 解得103m =或1−(舍去); ∴103m =或83m =; 【小问3详解】解:①∵将二次函数沿水平方向平移,∴纵坐标不变是4,∴图象L 的解析式为()222424y x n x nx n =−−+=−+−+,∴()20,4D n −+, ∴22431CD d n n ==−+−=−+, ∴()()22111111n n n d n n −≥≤ = −−<<或; ②由①得()()22111111n n n d n n −≥≤ = −−<< 或, 则函数图象如图,∵d 随n 增加而增加,∴10n −≤≤或1n ≥,ABC 中含()0,1,()0,2,()1,1三个整数点(不含边界), 当W 内恰有2个整数点()0,1,()0,2时,当0x =时,2L y >,当1x =时,1L y ≤,∴()2242141n n −+> −−+≤ ,∴n <<,1n ≥+或1n ≤−∴1n <≤∵10n −≤≤或1n ≥,∴11n −≤≤;当W 内恰有2个整数点()0,1,()1,1时,当0x =时,12L y <≤,当1x =时,1L y >,∴()22142141n n <−+≤ −−+> ,∴n <≤n ≤<,11n <<,n ≤<;∵10n −≤≤或1n ≥,n ≤<;当W 内恰有2个整数点()0,2,()1,1时,此情况不存在,舍去,综上,n n ≤<或11n −≤≤−.【点睛】本题主要考查了用待定系数法求二次函数的表达式及二次函数与线段的交点问题,也考查了二次函数与不等式,相似三角形的判定和性质.熟练掌握二次函数图象的性质及数形结合法是解题的关键.。
北京市大兴区重点中学2024届中考数学模试卷含解析
北京市大兴区重点中学2024届中考数学模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+2.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:33.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-14.估计624 ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.如果关于x 的方程x 2k 有实数根,那么k 的取值范围是( ) A .k >0B .k≥0C .k >4D .k≥46.在⊙O 中,已知半径为5,弦AB 的长为8,则圆心O 到AB 的距离为( ) A .3B .4C .5D .67.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=18,则△ABD 的面积是( )A .18B .36C .54D .728.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点9.规定:如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x 2+2x ﹣8=0是倍根方程; ②若关于x 的方程x 2+ax+2=0是倍根方程,则a=±3;③若关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax 2﹣6ax+c 与x 轴的公共点的坐标是(2,0)和(4,0); ④若点(m ,n )在反比例函数y=4x的图象上,则关于x 的方程mx 2+5x+n=0是倍根方程. 上述结论中正确的有( ) A .①②B .③④C .②③D .②④10.4的平方根是( ) A .4B .±4C .±2D .2二、填空题(共7小题,每小题3分,满分21分) 11.已知654a b c==,且26a b c +-=,则a 的值为__________. 12.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.13.如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么⊙O 2的半径等于________.14.如图,P(m,m)是反比例函数9yx在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.15.四张背面完全相同的卡片上分别写有0、·392、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.16.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.17.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级餐厅五星四星三星二星一星合计甲538 210 96 129 27 1000乙460 187 154 169 30 1000丙486 388 81 13 32 1000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.三、解答题(共7小题,满分69分)18.(10分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.19.(5分)如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC .求证:四边形ABCD 是菱形;过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.20.(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈,cos32.30.85≈,tan32.30.63≈,sin55.70.83≈,cos55.70.56≈,tan55.7 1.47)≈21.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.(10分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E .(1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cos A 的值; (3)联结PD ,如果BP 2=2CD 2,且CE =2,ED =3,求线段PD 的长. 23.(12分)计算:24.(14分) 如图,在平面直角坐标系中,直线y 1=2x+b 与坐标轴交于A 、B 两点,与双曲线2ky x= (x >0)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,点B 的坐标为(0,﹣2). (1)求直线y 1=2x+b 及双曲线2ky x=(x >0)的表达式; (2)当x >0时,直接写出不等式2kx b x>+的解集; (3)直线x =3交直线y 1=2x+b 于点E ,交双曲线2ky x=(x >0)于点F ,求△CEF 的面积.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【题目详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:3,则3.故选C.【题目点拨】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.2、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.3、D【解题分析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.4、C【解题分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【题目详解】=∵49<54<64,∴,∴的值应在7和8之间,故选C.【题目点拨】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.5、D【解题分析】由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【题目详解】∵关于x的方程x2有实数根,∴24110k≥⎧⎪⎨∆-⨯⨯≥⎪⎩,解得:k≥1.故选D.【题目点拨】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.6、A【解题分析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=12AB=12×8=1.在Rt△AOC中,OA=5,∴OC3==,即圆心O到AB的距离为2.故选A.7、B 【解题分析】根据题意可知AP 为∠CAB 的平分线,由角平分线的性质得出CD=DH ,再由三角形的面积公式可得出结论. 【题目详解】由题意可知AP 为∠CAB 的平分线,过点D 作DH ⊥AB 于点H ,∵∠C=90°,CD=1, ∴CD=DH=1. ∵AB=18, ∴S △ABD =12AB•DH=12×18×1=36 故选B . 【题目点拨】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键. 8、B 【解题分析】 二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误; 当x=2时,取得最大值,最大值为-3,选项B 正确; 顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误, 故答案选B.考点:二次函数的性质. 9、C 【解题分析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设2x =21x ,得到1x •2x =221x =2,得到当1x =1时,2x =2,当1x =-1时,2x =-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y=4x的图象上,得到mn=4,然后解方程m 2x +5x+n=0即可得到正确的结论; 详解:①由2x -2x-8=0,得:(x-4)(x+2)=0, 解得1x =4,2x =-2, ∵1x ≠22x ,或2x ≠21x , ∴方程2x -2x-8=0不是倍根方程;故①错误;②关于x 的方程2x +ax+2=0是倍根方程, ∴设2x =21x , ∴1x •2x =221x =2, ∴1x =±1, 当1x =1时,2x =2, 当1x =-1时,2x =-2, ∴1x +2x =-a=±3, ∴a=±3,故②正确; ③关于x 的方程a 2x -6ax+c=0(a≠0)是倍根方程, ∴2x =21x ,∵抛物线y=a 2x -6ax+c 的对称轴是直线x=3, ∴抛物线y=a 2x -6ax+c 与x 轴的交点的坐标是(2,0)和(4,0), 故③正确;④∵点(m ,n )在反比例函数y=4x的图象上, ∴mn=4, 解m 2x +5x+n=0得 1x =2m -,2x =8m-, ∴2x =41x , ∴关于x 的方程m 2x +5x+n=0不是倍根方程; 故选C .点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键. 10、C 【解题分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 1=a ,则x 就是a 的平方根,由此即可解决问题. 【题目详解】 ∵(±1)1=4, ∴4的平方根是±1. 故选D . 【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题(共7小题,每小题3分,满分21分) 11、1 【解题分析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.12、1【解题分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【题目详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,.故答案为1.【题目点拨】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.13、【解题分析】由题意得出△ABP 为等边三角形,在Rt △ACO 2中,AO 2=AC sin 60︒即可. 【题目详解】由题意易知:PO 1⊥AB ,∵∠APB=60°∴△ABP 为等边三角形,AC=BC=3∴圆心角∠AO 2O 1=60° ∴在Rt △ACO 2中,AO 2=AC sin 60︒故答案为【题目点拨】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.14、9332+.【解题分析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3. ∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得3.∴OB3∴S△POB=12OB•PH=9332+.15、3 4【解题分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】∵在0.·392、227这四个实数种,有理数有0.·39227这3个,∴抽到有理数的概率为34,故答案为34.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16、1:4【解题分析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【题目点拨】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.17、丙【解题分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【题目详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【题目点拨】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.三、解答题(共7小题,满分69分)18、(1)13(2)14【解题分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【题目详解】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为13;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为21 84 .【题目点拨】本题主要考查了列表法与树状图法;概率公式.19、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22BE BD=6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD =8,∴DE =22BE BD -=6,∵四边形ABCD 是菱形,∴AD =AB =BC =5,∴四边形ABED 的周长=AD+AB+BE+DE =1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.20、(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【解题分析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【题目详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===.在Rt PCM 中,()tan32.30.63PM x x m =⋅=,在Rt PDN 中,()tan55.7 1.47PN x x m =⋅=,42CD MN m ==,1.470.6342x x ∴-=,50x ∴=,AB ∴的长为50m .()2由()1可知:31.5PM m =,()904231.516.5AD m ∴=--=,9031.558.5AC =-=,16.53 5.5÷=,58.5319.5÷=,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【题目点拨】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解题分析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x 的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【题目详解】(1). (2) 根据题意,得: ∵∴当时,随x 的增大而增大 ∵∴当时,取得最大值,最大值是144 答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【题目点拨】熟悉掌握图中所给信息以及列方程组是解决本题的关键.22、(141332)63(3) 15【解题分析】(1)由勾股定理求出BP 的长, D 是边AB 的中点,P 为AC 的中点,所以点E 是△ABC 的重心,然后求得BE 的长. (2)过点B 作BF ∥CA 交CD 的延长线于点F ,所以BD FD BF DA DC CA ==,然后可求得EF =8,所以14CP CE BF EF ==,所以13CP PA =,因为PD ⊥AB ,D 是边AB 的中点,在△ABC 中可求得cosA 的值. (3)由22BP CD CD BD AB =⋅=⋅,∠PBD=∠ABP ,证得△PBD ∽△ABP ,再证明△DPE ∽△DCP 得到2PD DE DC =⋅,PD 可求.【题目详解】解:(1)∵P 为AC 的中点,AC =8,∴CP =4,∵∠ACB =90°,BC =6,∴BP =213, ∵D 是边AB 的中点,P 为AC 的中点,∴点E 是△ABC 的重心,∴241333BE BP ==, (2)过点B 作BF ∥CA 交CD 的延长线于点F ,∴BD FD BF DA DC CA==, ∵BD=DA ,∴FD=DC ,BF=AC ,∵CE=2,ED=3,则CD =5,∴EF =8,∴2184CP CE BF EF ===, ∴14CP CA =, ∴13CP PA =,设CP=k ,则PA=3k , ∵PD ⊥AB ,D 是边AB 的中点,∴PA=PB=3k,∴22BC k =,∴26AB k =,∵4AC k =, ∴6cos 3A =, (3)∵∠ACB =90°,D 是边AB 的中点,∴12CD BD AB ==, ∵222BP CD =,∴22BP CD CD BD AB =⋅=⋅,∵∠PBD=∠ABP ,∴△PBD ∽△ABP ,∴∠BPD=∠A ,∵∠A=∠DCA ,∴∠DPE=∠DCP ,∵∠PDE=∠CDP ,△DPE ∽△DCP ,∴2PD DE DC =⋅,∵DE=3,DC=5,∴.【题目点拨】本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键. 23、-1【解题分析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.【题目详解】原式=1﹣4﹣+1﹣=﹣1.【题目点拨】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.24、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2=4x(x>0);(2)0<x<2;(3)4 3【解题分析】(1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA =AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2=kx,可得k=4,则双曲线的表达式为y2=4x(x>0).(2)由x的取值范围,结合图像可求得答案.(3)把x=3代入y2函数,可得y=43;把x=3代入y1函数,可得y=4,从而得到EF83,由三角形的面积公式可得S△CEF=4 3 .【题目详解】解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得﹣2=b,∴直线解析式为y1=2x﹣2,令y=0,则x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴点C的坐标为(2,2),把(2,2)代入双曲线y2=kx,可得k=2×2=4,∴双曲线的表达式为y2=4x(x>0);(2)当x>0时,不等式kx>2x+b的解集为0<x<2;(3)把x=3代入y2=4x,可得y=43;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣43=83,∴S△CEF=12×83×(3﹣2)=43,∴△CEF的面积为43.【题目点拨】本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.。
2023年山东省枣庄市中考数学真题(解析版)
2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I卷和第II卷两部分,第I卷为选择题,30分;第II卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I卷和第II卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1. 下列各数中比1大的数是()A. 2B. 0C. -1D. -3【答案】A【解析】【详解】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.3. 随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为( )A. 61.5910×B. 515910×.C. 415910×D. 215910×. 【答案】A【解析】【分析】根据科学记数法的表示方法进行表示即可.【详解】解:159万61590000 1.5910=×;故选A . 【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100≤×<n a a ,n 为整数,是解题的关键.4. 我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A. 24015015012x x +=×B. 24015024012x x −=×C. 24015024012x x +=×D. 24015015012x x −=× 【答案】D【解析】【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解.【详解】解:设快马x 天可以追上慢马,依题意,得: 240x -150x =150×12.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5. 下列运算结果正确的是( )A. 4482x x x +=B. ()32626x x −=−C. 633x x x ÷=D. 236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意;B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ?,选项计算错误,不符合题意; 故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.6. 4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示: 人数 6 7 10 7课外书数量(本) 6 7 9 12 则阅读课外书数量的中位数和众数分别是( )A 8,9B. 10,9C. 7,12D. 9,9 【答案】D【解析】【分析】利用中位数,众数的定义即可解决问题.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】解:中位数为第15个和第16个的平均数为:9992+=,众数为9. 故选:D .【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.7. 如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=°∠=°,,则B ∠的度数为( ).A. 32°B. 42°C. 48°D. 52°【答案】A【解析】 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=° ,,48D ∴∠=°,80APD APD B D ∠=°∠=∠+∠ ,,804832B APD D ∴∠=∠−∠=°−°=°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.8. 如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=°,则2∠的度数为( )A. 14°B. 16°C. 24°D. 26°【答案】B【解析】 【分析】如图,求出正六边形的一个内角和一个外角的度数,得到460,25120∠=°∠+∠=°,平行线的性质,得到3144∠=∠=°,三角形的外角的性质,得到534104∠=∠+∠=°,进而求出2∠的度数.【详解】解:如图:∵正六边形的一个外角的度数为:360606°=°, ∴正六边形的一个内角的度数为:18060120°−°=°,即:460,25120∠=°∠+∠=°, ∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=°,∴3144∠=∠=°,∴2120516∠=°−∠=°;故选B .【点睛】本题考查正多边形的内角和、外角和的综合应用,平行线的性质.熟练掌握多边形的外角和是360°,是解题的关键.9. 如图,在ABC 中,9030ABC C ∠=°∠=°,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是( )A. BE DE =B. AE CE =C. 2CE BE =D. EDC ABCS S =△△【答案】D【解析】 【分析】利用等腰三角形的性质和线段垂直平分线的性质可以判断①的正确;利用等边三角形的性质结合①的结论和等腰三角形的三线合一的性质可以判断②正确;利用直有三角形中30度角所对的直角边等于斜边的一半判断③的正确;利用相似三角形的面积比等于相似比的平方即可判断④的错误.【详解】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=° ,30C ∠=°, 60BAC ∴∠=°,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=°,60ADB ∠=°,30DBE ∴∠=°,BE DE = ,90ADE ADB EDB ∴∠=∠+∠=°,DE AC ∴⊥.90ABC ∠=° ,30C ∠=°, 2AC AB ∴=,AB AD = ,AD CD ∴=,DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=°,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=° ,C C ∠=∠, CDE CBA ∴ ∽, ∴2()CDE CBA S DE S AB∆∆=, = AD AB ,∴tan tan 30DE DE DAE AB AD ==∠=°= ∴21()3CDE CBA S DE S AB∆∆==, 故D 的结论错误;故选:D .【点睛】本题主要考查了含30°角的直角三角形的性质,角平分线,线段垂直平分线的判定与性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰三角形的性质,熟练掌握含30°角的直角三角形的性质和相似三角形的判定与性质是解题的关键.10. 二次函数2(0)y ax bx c a ++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是( )A. 5B. 4C. 3D. 2【答案】C【解析】 【分析】根据抛物线的开口方向,对称轴,与y 轴的交点位置,判断①;对称性判断②;增减性,判断③;对称轴和特殊点判断④;最值判断⑤. 【详解】解:∵抛物线开口向上,对称轴为直线12b x a=−=,与y 轴交于负半轴, ∴0,20,0a b a c >=−<<, ∴0abc >;故①错误; 由图可知,抛物线与x 轴一个交点的横坐标的取值范围为:10x −<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;�②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y 是抛物线上的两点,且30112−>−, ∴12y y >;故③错误;∵0,2a b a >=− ∴()112522252a c a a b c a a b c +=+−+=+−+,由图象知:=1x −,0y a b c =−+>,∴()112520a c a a b c ++−+>;故④正确;的∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .【点睛】本题考查二次函数的图象和性质,正确的识图,熟练掌握二次函数的性质,是解题的关键.第II 卷(非选择题 共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11. 计算)10112− += _________. 【答案】3【解析】【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【详解】解:)10112− −+ 12=+3=故答案为:3.【点睛】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.12. 若3x =是关x 的方程26ax bx −=的解,则202362a b −+的值为___________.【答案】2019【解析】【分析】将3x =代入方程,得到32a b −=,利用整体思想代入求值即可.【详解】解:∵3x =是关x 的方程26ax bx −=的解,∴2336a b ⋅−=,即:32a b −=, ∴202362a b −+()202323a b =−−202322=−×20234−2019=;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.13. 银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)−,将银杏叶绕原点顺时针旋转90°后,叶柄上点A 对应点的坐标为___________.【答案】()3,1−【解析】【分析】根据点的坐标,确定坐标系的位置,再根据旋转的性质,进行求解即可.【详解】解:∵B ,C 的坐标分别为(3,2),(4,3)−,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3−−,连接OA ,将OA 绕点O 顺时针旋转90°后,如图,叶柄上点A 对应点的坐标为()3,1−;故答案:()3,1−【点睛】本题考查坐标与旋转.解题的关键是确定原点的位置,熟练掌握旋转的性质.14. 如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=°,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)【答案】(3+##)3 【解析】 【分析】过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,易得四边形MDCN 为矩形,分别解Rt ANO ,Rt ACB △,求出,,ON BC CD 长,利用BDBC CD =+进行求解即可.【详解】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,为的∴243AO AB ==, 在Rt ANO 中,4AO =,45AOM ∠=°,∴cos 454ON OA =⋅°=;∴3CD MN OM ON ==−=− 在Rt ACB △中,6AB =,45AOM ∠=°,∴cos 456BC AB ⋅°;∴33BD BC CD =+=−=+;故答案为:3+.【点睛】本题考查解直角三角形的实际应用,矩形的性质与判定.解题的关键是添加辅助线,构造直角三角形.15. 如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.【答案】172【解析】【分析】利用斜边上的中线等于斜边的一半和CEF △的周长,求出,CF EF 的长,进而求出DE 的长,勾股定理求出CD 的长,进而求出BE 的长,利用三角形的中位线定理,即可得解. 【详解】解:7,CE CEF = 的周长为32,32725CF EF ∴+=−=.F 为DE 的中点,DF EF ∴=.90BCD ∠=° ,12CF DE ∴=,112.52EF CF DE ∴===, 225DE EF ∴,24CD ∴=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=−=−=. 故答案为:172. 【点睛】本题考查正方形的性质,斜边上的中线,三角形的中位线定理.熟练掌握斜边上的中线等于斜边的一半,是解题的关键. 16. 如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= ___________.【答案】2023253【解析】【分析】求出1234,,,P P P P …的纵坐标,从而可计算出1234,,,S S S S …的高,进而求出1234,,,S S S S …,从而得出123n S S S S +++…+的值. 【详解】当1x =时,1P 的纵坐标为8, 当2x =时,2P 的纵坐标为4, 当3x =时,3P 的纵坐标为83, 当4x =时,4P 的纵坐标为2, 当5x =时,5P 的纵坐标为85, …则11(84)84S =×−=−; 2881(4)433S =×−=−;3881(2)233S =×−=−;481(2)2558S =×−=−;…881n S n n =−+; 1238888888844228335111n nS S S S n n n n +++…+=−+−+−+−++−=−=+++ ,�12320238202320242532023S S S S ×+++…+==.故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881nS n n =−+. 三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17. 先化简,再求值:222211a a a a a −÷ −−,其中a 的值从不等式组1a −<<的整数.【答案】21a a a−−,12 【解析】【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.【详解】解:原式222223111a a a a a a a =−÷ − −−− ()2222111a a a a a a ⋅−−−− 21a aa =−−; ∵220,10a a ≠−≠, ∴0,1a a ≠≠±,23=<<=,∴1a −<<的整数解有:0,1,2, ∵0,1a a ≠≠±, ∴2a =,原式2122221−−=. 【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.18. (1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析 【解析】【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等; 故答案为:观察发现四个图形都是轴对称图形,且面积相等; (2)如图:【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案. 19. 对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b −≥=+−<※,例如:31312=−=※,545463=+−=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)−−=※___________; (2)若(32)(1)5x x +−=※,求x 的值. 【答案】(1)1;2; (2)1x =, 【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x 的值即可. 【小问1详解】4× <32,434361∴=+−=※, ()132−−× >(1)(3)1(3)2∴−−=−−−=※;故答案为:1;2; 【小问2详解】若322(1)x x +≥−时,即4x ≥−时,则(32)(1)5x x +−−=,解得:1x =,若322(1)x x +−<时,即4x −<时,则(32)(1)65x x ++−−=,解得:52x =,不合题意,舍去, 1x ∴=,【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键. 20. 《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名. (2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C 家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率. 【答案】(1)20,2,1 (2)图见解析 (3)35【解析】【分析】(1)利用A 组人数除以所占的百分比求出总数,总数乘以C 组的百分比,求出C 组人数,进而求出C 组女生人数,总数乘以D 组的百分比,求出D 组的人数,进而求出D 组男生人数; (2)根据(1)中所求数据,补全图形即可; (3)利用列表法求出概率即可. 【小问1详解】解:()1215%20+÷=(人),�一共调查了20人;∴C 组人数为:2025%5×=(人), ∴C 组女生有:532−=(人); 由扇形统计图可知:D 组的百分比为115%25%50%10%−−−=, ∴D 组人数为:2010%2×=(人), ∴D 组男生有:211−=(人); 故答案为:20,2,1 【小问2详解】 补全图形如下:【小问3详解】用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下: A BCDEA(),A B(),A C (),A D (),A E B (),B A(),B C(),B D (),B E C (),C A (),C B(),C D(),C E D (),D A(),D B(),D C(),D EE(),E A(),E B(),E C(),E D共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==. 【点睛】本题考查扇形图与条形图的综合应用,以及利用列表法求概率.从统计图中有效的获取信息,利用频数除以百分比求出总数,熟练掌握列表法求概率,是解题的关键.21. 如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n −两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象; (2)观察图象,直接写出不等式4kx b x+<的解集; (3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.【答案】(1)112y x =−,图见解析 (2)<2x −或04x << (3)30,2P或70,2P−【解析】【分析】(1)先根据反比例函数的解析式,求出,A B 的坐标,待定系数法,求出一次函数的解析式即可,连接AB ,画出一次函数的图象即可; (2)图象法求出不等式的解集即可;(3)分点P 在y 轴的正半轴和负半轴,两种情况进行讨论求解. 【小问1详解】解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n −两点, ∴24m n =−=, ∴4,2m n ==−, ∴(4,1),(2,2)A B −−,∴4122k b k b += −+=− ,解得:121k b==− ,∴112y x =−, 图象如图所示:【小问2详解】解:由图象可知:不等式4kx b x+<的解集为<2x −或04x <<; 【小问3详解】解:当点P 在y 轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =−, 当0x =时,1y =−,当0y =时,2x =,∴()()2,0,0,1C D −,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =−=×+×−×+×= , 解得:32a =; ∴30,2P; 当点P 在y 轴负半轴上时:1PD a =−−,∴1151412222APC APD PCD S S S a a =−=×−−×−×−−×= 解得:72a =−或32a =(不合题意,舍去); ∴70,2P−. 综上:30,2P或70,2P−. 【点睛】本题考查一次函数与反比例函数的综合应用.正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.22. 如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长; (3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示). 【答案】(1)见解析;(2)BC =;(3)23π 【解析】【分析】(1)连接OC ,证明OC BE ∥,即可得到结论;(2)连接AC ,证明ACB CEB ∽,从而可得AB BC BC BE=,再代入求值即可; (2)连接OD CD ,,证明CD AB ∥,从而可得COD CBD S S = ,,求出扇形COD 的面积即可得到阴影部分的面积.【小问1详解】证明:连接OC ,∵点C 是 AD 的中点,, ∴ AC DC=, ∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;【小问2详解】连接AC ,∵AB 是O 的直径,∴90ACB ∠=°,∴90ACB CEB ∠=∠=°,∵ABC EBC ∠=∠,∴ACB CEB ∽, ∴AB BCBC BE =, ∴43BCBC =,∴BC =;【小问3详解】连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE =,∴cos BE CBE BC ∠=, ∴30CBE ∠=°,∴60COD ∠=°,∴60AOC ∠=°,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=°, ∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ×=, 【点睛】本题主要考查了相似三角形的性质及判定、切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23. 如图,抛物线2y x bx c =−++经过(1,0),(0,3)A C −两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由. 【答案】(1)223y x x =−++的(2(3)存在,()1,3Q 或()1,1Q 或()1,5Q【解析】【分析】(1)待定系数法求出函数解析式即可;(2)作点D 关于x 轴的对称点D ¢,连接D M ′,D M ′与x 轴的交点即为点H ,进而得到MH DH +的最小值为D M ′的长,利用两点间距离公式进行求解即可;(3)分DM ,DP ,MP 分别为对角线,三种情况进行讨论求解即可.【小问1详解】解:∵抛物线2y x bx c =−++经过(1,0),(0,3)A C −两点,∴103b c c −−+= = ,解得:23b c = = , ∴223y x x =−++;【小问2详解】∵()222314y x x x =−++=−−+,∴()1,4M ,设直线)0:(A y k M x m k =+≠,则:04k m k m −+= += ,解得:22k m = = , ∴22:A y M x =+,当0x =时,2y =,∴()0,2D ;作点D 关于x 轴的对称点D ¢,连接D M ′,则:()0,2D ′−,MH DH MH D H D M ′′+=+≥,∴当,,M H D ′三点共线时,MH DH +有最小值为D M ′的长,∵()0,2D ′−,()1,4M ,∴D M ′,即:MH DH +;【小问3详解】解:存在;∵()222314y x x x =−++=−−+,∴对称轴为直线1x =,设(),P p t ,()1,Q n ,当以D ,M ,P ,Q 为顶点的四边形是平行四边形时:①DM 为对角线时:10142p t n +=+ +=+ ,∴06p t n = += ,当0p =时,3t =, ∴3n =,∴()1,3Q ;②当DP 为对角线时:01124p t n +=+ +=+ ,∴224p t n = +=+, 当2p =时,222233t =−+×+=,∴1n =,∴()1,1Q ;③当MP 为对角线时:10142p t n +=+ +=+ ,∴02p n t = −= ,当0p =时,3t =,∴3n =,∴()1,5Q ;综上:当以D ,M ,P ,Q 为顶点的四边形是平行四边形时,()1,3Q 或()1,1Q 或()1,5Q .【点睛】本题考查二次函数的综合应用,是中考常见的压轴题.正确的求出函数解析式,熟练掌握二次函数的性质,利用数形结合和分类讨论的思想进行求解,是解题的关键.24. 问题情境:如图1,在ABC 中,1730AB AC BC ===,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.【答案】(1)四边形AEDG 是菱形,理由见解析(2)30【解析】【分析】(1)利用等腰三角形的性质和折叠的性质,得到AE DE DG AG ===,即可得出结论. (2)先证明四边形AMKG 为平行四边形,过点H 作HE CG ⊥于点E ,等积法得到CG HE ⋅的积,推出四边形MKGA 的面积CG HE ⋅,即可得解.【小问1详解】解:四边形AEDG 是菱形,理由如下:∵在ABC 中,AB AC =,AD 是BC 边上的中线, ∴1,2AD BC BD CD BC ⊥==, ∵将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合, ∴11,,,,,22EF BC GH BC BE DE CG CD BF FD BD CH DH CD ⊥⊥======, ∴EF AD ∥,∴1BFBE FD AE==, ∴12BE AE AB ==, 同法可得:12CGAG AC ==, ∴,AE DEAG DG ==, ∵AB AC =,∴AE DE DG AG ===,∴四边形AEDG 是菱形;【小问2详解】解:∵折叠,∴,GDC C MHB B ∠=∠∠=∠, ∵AB AC =,∴B C ∠=∠,∴,GDC B MHB C ∠=∠∠=∠, ∴,MH AC DG AB ∥∥,∴四边形AMKG 为平行四边形,∵1730ABAC BC ===,, 由(1)知:1151522BDCD BC DH CH =====,,11722DG AG AB ===,∴4GH ==,过点H 作HE CG ⊥于点E ,∵1122CHG S CH HG CG HE =⋅=⋅ , ∴154302CG HE ⋅×, ∵四边形MKGA 的面积AG HE ⋅,AG CG =,∴四边形MKGA 的面积30CG HE =⋅=. 【点睛】本题考查等腰三角形的性质,折叠的性质,平行线分线段对应成比例,菱形的判定,平行四边形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.。
备战中考数学相似的综合题试题附详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)
2020初中数学中考一轮复习基础达标训练:相似三角形(附答案)1.△ABC∽△A1B1C1,且相似比为23,△A1B1C1∽△A2B2C2,且相似比为54,则△ABC与△A2B2C2的相似比为()A.56B.65C.56或65D.8152.如图,l1∥l2∥l3,若32ABBC,DF=6,则DE等于()A.3 B.3.2 C.3.6 D.43.小明的身高为1.8米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A.3.2米B.4.8米C.5.4米D.5.6米4.如图,在平行四边形ABCD中,E在DC边上,若DE:EC=1:2,则△CEF与△ABF 的面积比为()A.1:4 B.2:3 C.4:9 D.1:95.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.126.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF的值为()A .45B .35C .56D .677.如图,∠ABD =∠BCD =900,AD =10,BD =6。
如果两个三角形相似,则CD 的长为A 、3.6B 、4.8C 、4.8或3.6D 、无法确定8.若ABC V 的各边都分别扩大到原来的2倍,得到111A B C V ,下列结论正确的是( ) A .ABC V 与111A B C V 的对应角不相等B .ABC V 与111A B C V 不一定相似 C .ABC V 与111A B C V 的相似比为1:2D .ABC V 与111A B C V 的相似比为2:19.如图,已知点P 在△ABC 的边AC 上,下列条件中,不能判断△ABP ∽△ACB 的是( )A .∠ABP=∠CB .∠APB=∠ABC C .AB 2=AP•ACD .=10.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP=∠CB .∠APB=∠ABC C .=D .=11.如图,已知点 A 在反比例函数k y x(x <0) 上,作 Rt △ABC ,点 D 是斜边 AC的中点,连DB 并延长交y 轴于点E,若△BCE 的面积为12,则k 的值为_____.12.已知线段AB=2,点C为AB的黄金分割点,且AC<BC,那么BC=_____.13.如图,点P是矩形ABCD的对角线AC上的一点(异于两个端点),AB=2BC=2,若BP的垂直平分线EF经过该矩形的一个顶点,则BP的垂直平分线EF与对角线AC 的夹角(锐角)的正切值为_____.14.如图,在Rt△ABC中,∠C=90°,点D在边BC上,且∠ADC+∠B=90°,DC=3,BD=6,则cosB=.15.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为10m,人的正常视力能看清的最小物体所形成的视角为1',且已知月、地两球之间的距离为380000km,根据学过的数学知识,)你认为这个传说________.(请填“可能”或“不可能”,参考数据:tan0.5'0.000145416.如图,△ABC中,AB=AC=4cm,点D在BA的延长线上,AE平分∠DAC,按下列步骤作图.步骤1:分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点F,连接AF,交BC于点G;步骤2:分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点M和点N,作直线MN,交AG于点I;步骤3:连接BI并延长,交AE于点Q.若,则线段AQ的长为_____cm.17.如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P是l上一动点,l到AB的距离为6,M,N分别为P A,PB的中点下列说法中:①线段MN的长始终为1;②△P AB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是_____.18.若7x=3y,则xy=_____.19.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC 等于_____.20.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.21.如图,在ABCV中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且12DCB EBC A ∠=∠=∠. ()1求证:BOD V ∽BAE V ;()2求证:BD CE =;()3若M 、N 分别是BE 、CD 的中点,过MN 的直线交AB 于P ,交AC 于Q ,线段AP 、AQ 相等吗?为什么?22.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AC =9.(1)试说明:△ABD ∽△ACB ;(2)求线段CD 的长.23.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PA 、PB 、AB 、OP ,已知PB 是⊙O 的切线.(1)求证:∠PBA=∠C ;(2)若OP ∥BC ,且OP=9,⊙O 的半径为32,求BC 的长.24.在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E 在OB 上,且∠OAE =∠OBA .(1)如图①,求点E 的坐标(2)如图②,将△AEO 沿x 轴向右平移得到△A′E′O′,连接A′B ,BE′.①设AA′=m ,其中0<m<2,试用含m 的式子表示A′B 2+BE′2,并求出使A′B 2+BE′2取得最小值时点E′的坐标;②当A′B +BE′取得最小值时,求点E′的坐标(直接写出结果即可).25.如图,已知AC ,EC 分别为正方形ABCD 和正方形EFCG 的对角线,点E 在△ABC 内,连接BF ,∠CAE+∠CBE=90°.(1)求证:△CAE ∽△CBF ;(2)若BE=1,AE=2,求CE 的长.26.如图,AD 是Rt △ABC 斜边BC 上的高.(1)尺规作图:作∠C 的平分线,交AB 于点E,交AD 于点F (不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F 画BC 的平行线交AC 于点H,线段FH 与线段CH 的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE 、DH.求证:ED ⊥HD .27.如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O .过点O 作OE BC ⊥于点E ,连接DE 交OC 于点F ,过点F 作FG BC ⊥于点G ,则ABC V 与FGC V 是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.28.如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP的垂线,垂足为F,交BD于点E,交CD于点G.(1)当AB=AD,且P是AD的中点时,求证:AG=BP;(2)在(1)的条件下,求DEBE的值;(3)类比探究:若AB=3AD,AD=2AP,DEBE的值为.(直接填答案)参考答案1.A【解析】∵△ABC ∽△A 1B 1C 1,相似比为210=315, △A 1B 1C 1∽△A 2B 2C 2 ,相似比为515=412 , ∴△ABC 与△A 2B 2C 2的相似比为105=126, 故选A .2.C【解析】试题解析:根据平行线分线段成比例定理,可得: 3,2AB DE BC EF == 设3,2,DE x EF x ==5 6.DF x ∴==解得: 1.2.x =3 3.6.DE x ∴==故选C.3.C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,设这棵树的高度为xm , 则可列比例为:1.826x =, 解得,x=5.4.故选C .【点睛】本题主要考查了同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力. 4.C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB ,∴△DFE ∽△BF A .∵DE :EC =1:2,∴EC :DC =CE :AB =2:3,∴△CEF 与△ABF 的面积比49=. 故选C .【点睛】本题考查了相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,周长的比等于相似比,面积比等于相似比的平方是解答此题的关键.5.D【解析】【分析】由已知条件求出△DEF 的面积,根据平行四边形的性质得到AD ∥BC 和△DEF ∽△BCF ,根据相似三角形的面积比是相似比的平方即可得到答案.【详解】∵E 是边AD 的中点,∴DE 12=AD 12=BC ,∴12EF CF =,∴△DEF 的面积13=S △DEC =3。
2015年上海中考数学专题-等腰相似直角三角形存在性问题试题一和参考答案
2015年上海中考数学专题-等腰相似直角三角形存在性问题试题一和参考答案研究创造才智,知识成就未来。
以下是上海市初中数学考试的几道题目。
题目一:等腰相似直角三角形存在性问题给定顶点为P(4,-4)的二次函数图像,经过原点,并且点A在该图像上。
连接OA与对称轴l的交点为M,点M和N 关于点P对称,连接AN和ON。
1) 求该二次函数的关系式。
2) 若点A的坐标是(6,-3),求△ANO的面积。
3) 当点A在对称轴l右侧的二次函数图像上运动时,请回答以下问题:①证明:∠ANM=∠XXX。
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由。
题目二:等腰三角形的存在性问题在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△XXX与△XXX重合在一起,△XXX不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。
1) 求证:△ABE∽△ECM。
2) 探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由。
3) 当线段AM最短时,求重叠部分的面积。
题目三:抛物线问题已知抛物线y=3/2x^2+bx+63经过A(2,0)。
设顶点为点P,与x轴的另一交点为点B。
1) 求b的值,求出点P、点B的坐标。
2) 如图,在直线y=3x上是否存在点D,使四边形OPBD 为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由。
3) 在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,请举例验证你的猜想;如果不存在,请说明理由。
题目四:三角形问题在△ABC中,∠ABC=45°,tan∠ACB=1.把△XXX的一边BC放置在x轴上,有OB=14,OC=AC与y轴交于点E。
1) 求AC所在直线的函数解析式。
2) 过点O作OG⊥AC,垂足为G,求△OEG的面积。
重庆市广益中学2024届中考数学全真模拟试卷含解析
重庆市广益中学2024学年中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .2.二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y =ax +c 的图象不经第四象限C .m (am +b )+b <a (m 是任意实数)D .3b +2c >03.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A .22B 3C .1D 64.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80 人数124 332这些运动员跳高成绩的中位数是( ) A .1.65mB .1.675mC .1.70mD .1.75m5.如图,菱形ABCD 的对角线相交于点O ,过点D 作DE ∥AC , 且DE=12AC ,连接CE 、OE ,连接AE ,交OD 于点F ,若AB=2,∠ABC=60°,则AE 的长为( )A .3B .5C .7D .226.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是( )A .B .C .D .7.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .22C .3D 58.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°9.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个10.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .11.将抛物线221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( ) A .()2212y x =--- B .()2212y x =-+- C .()2214y x =--+D .()2214y x =-++12.下列关于x 的方程中,属于一元二次方程的是( ) A .x ﹣1=0B .x 2+3x ﹣5=0C .x 3+x=3D .ax 2+bx+c=0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a、b为实数,且b =22117a aa-+-++4,则a+b=_____.14.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.15.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.16.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.17.当x为_____时,分式3621xx-+的值为1.18.不等式组42348xx-+<⎧⎨-≤⎩①②的解集是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.20.(6分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.21.(6分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k的取值范围.22.(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3). (1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2; (3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)23.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格: 组别 成绩(分)频数(人数) 频率 一20.04二100.2 三 14b 四 a0.32 五80.16请根据表格提供的信息,解答以下问题: (1)本次决赛共有 名学生参加; (2)直接写出表中a= ,b= ; (3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .24.(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?25.(10分)化简求值:212(1)211x x x x -÷-+++,其中x 是不等式组273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩①②的整数解. 26.(12分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F .(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF 的余切值. 27.(12分)如图①,在正方形ABCD 中,点E 与点F 分别在线段AC 、BC 上,且四边形DEFG 是正方形.(1)试探究线段AE 与CG 的关系,并说明理由.(2)如图②若将条件中的四边形ABCD 与四边形DEFG 由正方形改为矩形,AB=3,BC=1.①线段AE 、CG 在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由. ②当△CDE 为等腰三角形时,求CG 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C 【解题分析】解:把点(0,2)(a ,0)代入,得b=2.则a=,∵, ∴,解得:k≥2. 故选C . 【题目点拨】本题考查一次函数与一元一次不等式,属于综合题,难度不大. 2、D 【解题分析】解:A .由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,由x =﹣1,得出2ba=﹣1,故b >0,b =2a ,则b >a >c ,故此选项错误;B .∵a >0,c <0,∴一次函数y =ax +c 的图象经一、三、四象限,故此选项错误;C .当x =﹣1时,y 最小,即a ﹣b ﹣c 最小,故a ﹣b ﹣c <am 2+bm +c ,即m (am +b )+b >a ,故此选项错误;D .由图象可知x =1,a +b +c >0①,∵对称轴x =﹣1,当x =1,y >0,∴当x =﹣3时,y >0,即9a ﹣3b +c >0② ①+②得10a ﹣2b +2c >0,∵b =2a ,∴得出3b +2c >0,故选项正确; 故选D .点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y =a +b +c ,然后根据图象判断其值. 3、C 【解题分析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON ∽△CHM ,再利用相似比可计算出ON 的长. 【题目详解】试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD 为正方形, ∴∠MAH=45°,∴△AMH 为等腰直角三角形, ∴AH=MH=22AM=22×2, ∵CM 平分∠ACB , ∴2∴,∴+2,∴OC=12,CH=AC ﹣+2 ∵BD ⊥AC , ∴ON ∥MH , ∴△CON ∽△CHM ,∴ON OCMH CH ==, ∴ON=1. 故选C . 【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质. 4、C 【解题分析】根据中位数的定义解答即可. 【题目详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1. 所以这些运动员跳高成绩的中位数是1.1. 故选:C . 【题目点拨】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 5、C 【解题分析】在菱形ABCD 中,OC=12AC ,AC ⊥BD ,∴DE=OC ,∵DE ∥AC ,∴四边形OCED 是平行四边形,∵AC ⊥BD ,∴平行四边形OCED 是矩形,∵在菱形ABCD 中,∠ABC=60°,∴△ABC 为等边三角形,∴AD=AB=AC=2,OA=12AC=1,在矩形OCED 中,由勾股定理得:=在Rt△ACE中,由勾股定理得:AE=2222AC CE+=+=;故选C.2(3)7点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.6、A【解题分析】解:分析题中所给函数图像,-段,AP随x的增大而增大,长度与点P的运动时间成正比.O E-段,AP逐渐减小,到达最小值时又逐渐增大,排除C、D选项,E FF G-段,AP逐渐减小直至为0,排除B选项.故选A.【题目点拨】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.7、A【解题分析】先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;【题目详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt△DBE中,223110+=故选A.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8、C【解题分析】首先求得AB 与正东方向的夹角的度数,即可求解.【题目详解】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°,故选:C .【题目点拨】本题考查了方向角,正确理解方向角的定义是关键.9、C【解题分析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【题目详解】解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选C .【题目点拨】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.10、B【解题分析】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小;当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小;故选B .11、A【解题分析】根据二次函数的平移规律即可得出.【题目详解】解:221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为()2212y x =---故答案为:A .【题目点拨】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.12、B【解题分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【题目点拨】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5或1【解题分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【题目详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=1,故答案为5或1.【题目点拨】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.14、8【解题分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【题目点拨】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.15、214【解题分析】先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可.【题目详解】由根与系数的关系得:m+n=52,mn=12, ∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214, 故答案为:214. 【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211 x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 16、(-1,2)【解题分析】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P 点,然后求得平移后的直线,联立方程,解方程即可.【题目详解】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P 点,设平移后的直线为y=-x-2+b ,∵直线y=-x-2+b 与抛物线y=x 2+x+2相切,∴x 2+x+2=-x-2+b ,即x 2+2x+4-b=0,则△=4-4(4-b )=0,∴b=3,∴平移后的直线为y=-x+1,解212y x y x x -+⎧⎨++⎩==得x=-1,y=2, ∴P 点坐标为(-1,2),故答案为(-1,2).【题目点拨】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P 点是解题的关键.17、2【解题分析】分式的值是1的条件是,分子为1,分母不为1.【题目详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【题目点拨】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.18、2<x≤1【解题分析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【题目详解】由①得x >2,由②得x≤1,∴不等式组的解集为2<x≤1.故答案为:2<x≤1.【题目点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)62+45【解题分析】分析:(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:22++222422+=42+25+22+25=62+45.++22++224424故答案为62+45.点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.20、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解题分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【题目详解】(1)∵捐 2 本的人数是 15 人,占 30%,∴该班学生人数为 15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为 360°×550=36°. (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=15750, ∴全校 2000 名学生共捐 2000×15750=6280(本), 答:全校 2000 名学生共捐 6280 册书.【题目点拨】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.21、(2)见解析;(2)k<2.【解题分析】(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k+2,根据方程有一根小于2,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【题目详解】(2)证明:∵在方程()23220x k x k -+++=中,△=[-(k+3)]2-4×2×(2k+2)=k 2-2k+2=(k-2)2≥2, ∴方程总有两个实数根.(2) ∵x 2-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x 1=2,x 2=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范围为k<2.【题目点拨】此题考查根的判别式,解题关键在于掌握运算公式.22、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解题分析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【题目详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA12253+34+=A1224117即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解题分析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图24、A、B两种型号的空调购买价分别为2120元、2320元【解题分析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:200 2311200y xx y-=⎧⎨+=⎩解得:21202320 xy=⎧⎨=⎩答:A、B两种型号的空调购买价分别为2120元、2320元25、当x=﹣3时,原式=﹣12,当x=﹣2时,原式=﹣1.【解题分析】先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【题目详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x ﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【题目点拨】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.26、(1)见解析;(2)25cot 5CDF ∠=. 【解题分析】(1)矩形的性质得到AD BC AD BC =,∥,得到AD AE DAF AEB ∠∠=,=,根据AAS 定理证明ABE DFA ≌;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【题目详解】解:(1)证明:四边形ABCD 是矩形, AD BC AD BC ∴=,∥,AD AE DAF AEB ∴∠∠=,=,在ABE △和DFA 中,DAF AEB AFD EBA AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DFA ∴≌,AF BE ∴=;(2)ABE DFA ≌,AD AE DAF AEB ∴∠∠=,=,设CE k =,21BE EC :=:, 2BE k ∴=,3AD AE k ∴==,225AB AE BE k ∴-=,9090ADF CDF ADF DAF ∠+∠︒∠+∠︒=,=,CDF DAE ∴∠∠=,CDF AEB ∴∠∠=, 225cot cot 55BE k CDF AEB AB k∴∠=∠===.【题目点拨】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.27、(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为34CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158. 【解题分析】 试题分析:()1AE CG AE CG =⊥,,证明ADE ≌CDG ,即可得出结论.()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,,理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,,∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒∴ADE CDG ∠=∠,∴ADE ≌CDG ,∴45AE CG DCG DAE =∠=∠=︒,,∵45ACD ∠=︒,∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形,∴OE OF OG OD ===,Rt DGF △中,OG=OF ,Rt DCF 中,OC OF ,=∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上,∵90DGF ∠=︒,∴DF 为O 的直径,∵DF EG =,∴EG 也是O 的直径,∴∠ECG =90°,即AE CG ⊥,∴90DCG ECD ,∠+∠=︒∵90DAC ECD ∠+∠=︒, ∴DAC DCG ∠=∠,∵ADE CDG ∠=∠,∴ADE CDG ∽,∴3.4CG DC AE AD ==②由①知:3.4CG AE = ∴设34CG x AE x ==,,分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =,∴85x =,5.8x = 1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,,∴CDH CAD ∽,∴,CD CH CA CD= 3,53CH ∴= ∴95CH =, ∴97425255AE x AC CH ==-=-⨯=,720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=,12x =, ∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.。
中考数学相似综合经典题及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.综合题(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】(1)解:∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF= BC,ED= AB,又∠B=90°,∴四边形FEDB是矩形,则;(2)解:∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a- PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a- x)=- x2+ax=- (x- )2+ ,∴当PQ= 时,S矩形PQMN最大值为 .(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI= =24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG• BF= ×(40+20)× (32+16)=720,答:该矩形的面积为720;(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC= ,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH= BC=54cm,∵tanB= = ,∴EH= BH= ×54=72cm,在Rt△BHE中,BE= =90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.【解析】【分析】(1)由三角形的中位线定理可得ED∥AB,EF∥BC,EF= BC,ED= AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB是平行四边形,而∠B=90°,根据一个角是直角的平行四边形是矩形可得四边形FEDB是矩形,所以;(2)因为PN∥BC,由相似三角形的判定可得△APN∽△ABC,则可得比例式,即,解得,设PQ=x,则S矩形PQMN=PQ•PN=x(),因为0,所以函数有最大值,即当PQ=时,S矩形PQMN有最大值为;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由矩形的判定可得四边形ABCH是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△AEF≌△HED,所以AF=DH=16,同理可得△CDG≌△HDE,则CG=HE=20,所以=24,BI=24<32,所以中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由(1)得矩形的最大面积为×BG• BF=×(40+20)×(32+16)=720;(4)延长BA、CD交于点E,过点E作EH⊥BC于点H,因为tanB=tanC,所以∠B=∠C,则EB=EC,由等腰三角形的三线合一可得BH=CH=BC=54cm;由tanB可求得EH=BH=×54=72cm,在Rt△BHE中,由勾股定理可得BE=90cm,所以AE=BE-AB=40cm,所以BE的中点Q在线段AB上,易得CE的中点P在线段CD上,由(2)得矩形PQMN的最大面积为BC•EH=1944cm2。
2024届湖北省襄阳市四中学义教部重点中学中考数学全真模拟试题含解析
2024届湖北省襄阳市四中学义教部重点中学中考数学全真模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A (4,0),B (1,3),以OA 、OB 为边作□OACB ,反比例函数k y x=(k ≠0)的图象经过点C .则下列结论不正确的是( )A .□OACB 的面积为12B .若y <3,则x >5C .将□OACB 向上平移12个单位长度,点B 落在反比例函数的图象上.D .将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上.2.在平面直角坐标系内,点P (a ,a+3)的位置一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限3.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k C .1k > D .1k <4.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)19802x x -=B .x (x +1)=1980C .2x (x +1)=1980D .x (x -1)=1980 6.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A .3.65×103B .3.65×104C .3.65×105D .3.65×1067.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()A.﹣13B.﹣3 C.13D.310.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为( )A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A .7B .11C .13D .1612.下列运算正确的是( )A .5ab ﹣ab=4B .a 6÷a 2=a 4C .112a b ab+= D .(a 2b )3=a 5b 3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .14.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC =_____.15.分解因式:a 3﹣a=_____.16.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x 个白球,然后从箱中随机取出一个白球的概率是,则x 的值为_____17.如图,已知点E 是菱形ABCD 的AD 边上的一点,连接BE 、CE ,M 、N 分别是BE 、CE 的中点,连接MN ,若∠A=60°,AB=4,则四边形BCNM 的面积为_____.18.分解因式:22x y -=_______________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.20.(6分)如图,已知一次函数y=12x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=12x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.21.(6分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.(1)求证:AE是⊙O的切线;(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,tanB=22,求DF的值22.(8分)计算:|﹣1|+9﹣(1﹣3)0﹣(12)﹣1.23.(8分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.24.(10分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.25.(10分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.26.(12分)已知如图,在△ABC 中,∠B =45°,点D 是BC 边的中点,DE ⊥BC 于点D ,交AB 于点E ,连接CE .(1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.27.(12分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O .画出△AOB 平移后的三角形,其平移后的方向为射线AD 的方向,平移的距离为AD 的长.观察平移后的图形,除了矩形ABCD 外,还有一种特殊的平行四边形?请证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解题分析】先根据平行四边形的性质得到点C 的坐标,再代入反比例函数k y x=(k ≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【题目详解】 解:A (4,0),B (1,3),4BC OA ==, ∴ ()5,3C , 反比例函数k y x=(k ≠0)的图象经过点C , ∴5315k =⨯=,∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确;当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确.故选:B.【题目点拨】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键. 2、D【解题分析】判断出P 的横纵坐标的符号,即可判断出点P 所在的相应象限.【题目详解】当a 为正数的时候,a+3一定为正数,所以点P 可能在第一象限,一定不在第四象限, 当a 为负数的时候,a+3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限,故选D.【题目点拨】本题考查了点的坐标的知识点,解题的关键是由a 的取值判断出相应的象限.3、B【解题分析】求出不等式组的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【题目详解】解:解不等式组29611x x x k +>+⎧⎨-<⎩,得21x x k <⎧⎨<+⎩. ∵不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2, ∴k +1≥2,解得k≥1.故选:B .【题目点拨】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.4、A【解题分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【题目详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【题目点拨】此题考负数的大小比较,应理解数字大的负数反而小.5、D【解题分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【题目详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【题目点拨】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.6、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:将365000这个数用科学记数法表示为3.65×1.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、D【解题分析】解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可证EC=CG.∵DH=CG,∴DF=CE,故B正确.无法证明AE=AB,故选D.8、A【解题分析】由平面图形的折叠及正方体的表面展开图的特点解题.【题目详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【题目点拨】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.9、B【解题分析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【题目详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y值随着x值的增大而减小,∴k=﹣1.故选:B.【题目点拨】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.10、B【解题分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【题目详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【题目点拨】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.11、C【解题分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【题目详解】∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.【题目点拨】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.12、B【解题分析】由整数指数幂和分式的运算的法则计算可得答案.【题目详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【题目点拨】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p pa a -=(a≠0, p 是正整数).二、填空题:(本大题共6个小题,每小题4分,共24分.)13m . 【解题分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【题目详解】解:易得扇形的圆心角所对的弦是直径,m ,∴扇形的弧长为:902180π⨯m ,∴圆锥的底面半径为:4π÷2π=8m . 【题目点拨】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.14、1【解题分析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【题目详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【题目点拨】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.15、a(a+1)(a﹣1)【解题分析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).16、1.【解题分析】先根据概率公式得到,解得.【题目详解】根据题意得,解得.故答案为:.【题目点拨】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.17、3【解题分析】如图,连接BD .首先证明△BCD 是等边三角形,推出S △EBC =S △DBC =34×42=43,再证明△EMN ∽△EBC ,可得EMN EBC S S ∆∆=(MN BC )2=14,推出S △EMN =3,由此即可解决问题. 【题目详解】 解:如图,连接BD .∵四边形ABCD 是菱形, ∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD ∥BC ,∴△BCD 是等边三角形,∴S △EBC =S △DBC 3423 ∵EM=MB ,EN=NC ,∴MN ∥BC ,MN=12BC , ∴△EMN ∽△EBC , ∴EMN EBC S S ∆∆=(MN BC )2=14, ∴S △EMN 3,∴S 阴333故答案为3【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、 (x +y )(x -y )【解题分析】直接利用平方差公式因式分解即可,即原式=(x +y )(x -y ),故答案为(x +y )(x -y ).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1) 3.4棵、3棵;(2)1.【解题分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【题目详解】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是12233124854613.430⨯+⨯+⨯+⨯+⨯+⨯=(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有73007030⨯=户,故答案为:1.【题目点拨】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.20、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解题分析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【题目详解】(1)∵y=12x+1交x轴于点A(﹣4,0),∴0=12×(﹣4)+m,∴m=1,与y 轴交于点B ,∵x=0,∴y=1∴B 点坐标为:(0,1),(1)∵二次函数y=ax 1+bx+c 的图象与x 轴只有唯一的交点C ,且OC=1∴可设二次函数y=a (x ﹣1)1把B (0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x 1﹣1x+1;(3)(Ⅰ)当B 为直角顶点时,过B 作BP 1⊥AD 交x 轴于P 1点由Rt △AOB ∽Rt △BOP 1 ∴1AO BO BO OP =, ∴1422OP =, 得:OP 1=1,∴P 1(1,0),(Ⅱ)作P 1D ⊥BD ,连接BP 1,将y=0.5x+1与y=0.5x 1﹣1x+1联立求出两函数交点坐标:D 点坐标为:(5,4.5),则, 当D 为直角顶点时∵∠DAP 1=∠BAO ,∠BOA=∠ADP 1,∴△ABO ∽△AP 1D , ∴2AB AO AP AD =2= , 解得:AP 1=11.15,则OP 1=11.15﹣4=7.15,故P 1点坐标为(7.15,0);∴点P的坐标为:P1(1,0)和P1(7.15,0).【题目点拨】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.21、(1)见解析;(2)3【解题分析】分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;(2)由△ACD∽△CFD,可得DF CDCD AD=,想办法求出CD、AD即可解决问题.详解:(1)证明:连接CD.∵∠B=∠D,AD是直径,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切线.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴AC AB AG AC=,∴AC2=AG•AB=36,∴AC=6,∵tanD=tanB=22,在Rt△ACD中,tanD=ACCD=22CD=262⨯=62,AD=()22662+=63,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴DF CD CD AD=,∴3,点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.22、1【解题分析】试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.试题解析:解:|﹣1|9130﹣(12)﹣1=1+3﹣1﹣2=1.点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.23、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为1856分.【解题分析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.【题目详解】解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),300×5=1500(米),∴两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x﹣10)=4500﹣500,解得x=1856.答:小丽离距离图书馆500m时所用的时间为1856分.【题目点拨】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.24、(1)y6x=;(2)y12=-x+1.【解题分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【题目详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y6x=的图象经过点B(a,b),∴b6a =,∴AD=36a -,∴S△ABC12=BC•AD12=a(36a-)=6,解得a=6,∴b6a==1,∴B(6,1),设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【题目点拨】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.25、m 的值是12.1.【解题分析】根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m 的值【题目详解】由题意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%) 解得,m 1=0(舍去),m 2=12.1,即m 的值是12.1.【题目点拨】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m 的值,注意解答中是m%,最终求得的是m 的值.26、(1)90°;(1)AE 1+EB 1=AC 1,证明见解析.【解题分析】(1)根据题意得到DE 是线段BC 的垂直平分线,根据线段垂直平分线的性质得到EB =EC ,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【题目详解】解:(1)∵点D 是BC 边的中点,DE ⊥BC ,∴DE 是线段BC 的垂直平分线,∴EB =EC ,∴∠ECB =∠B =45°,∴∠AEC =∠ECB +∠B =90°;(1)AE 1+EB 1=AC 1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【题目点拨】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.27、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解题分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【题目详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【题目点拨】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.。
宣威市来宾一中学2022年中考联考数学试卷含解析
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个2.要使式子1xx有意义,x的取值范围是()A.x≠1B.x≠0C.x>﹣1且≠0D.x≥﹣1且x≠03.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°4.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为()A.780×105B.78×106C.7.8×107D.0.78×1085.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A .15°B .22.5°C .30°D .45°6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .67. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .8.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( )A .B .C .D .9.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 10.下列各数中,最小的数是( ) A .0B 2C .1D .π-11.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+12.下列各式中的变形,错误的是(( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.请写出一个 开口向下,并且与y 轴交于点(0,1)的抛物线的表达式_________ 14.一组数据1,4,4,3,4,3,4的众数是_____.15.在△ABC 中,AB=AC ,∠A=36°,DE 是AB 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接BE .下列结论①BE 平分∠ABC ;②AE=BE=BC ;③△BEC 周长等于AC+BC ;④E 点是AC 的中点.其中正确的结论有_____(填序号)16.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.17.在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成一个圆锥,则圆锥的高为______.18.已知⊙O 的半径为5,由直径AB 的端点B 作⊙O 的切线,从圆周上一点P 引该切线的垂线PM ,M 为垂足,连接PA ,设PA=x ,则AP+2PM 的函数表达式为______,此函数的最大值是____,最小值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在平面直角坐标系中,已知直线y =﹣x+4和点M(3,2) (1)判断点M 是否在直线y =﹣x+4上,并说明理由;(2)将直线y =﹣x+4沿y 轴平移,当它经过M 关于坐标轴的对称点时,求平移的距离;(3)另一条直线y =kx+b 经过点M 且与直线y =﹣x+4交点的横坐标为n ,当y =kx+b 随x 的增大而增大时,则n 取值范围是_____.20.(6分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.21.(6分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1、y 2的图象;结合函数图象,解决问题: ①连接BE ,则BE 的长约为 cm .②当以A 、B 、C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .22.(8分)如图,已知平行四边形ABCD ,将这个四边形折叠,使得点A 和点C 重合,请你用尺规做出折痕所在的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).(1)直接写出点C坐标及OC、BC长;(2)连接PQ,若△OPQ与△OBC相似,求t的值;(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,∴A(0,),令y=0,则x=10,∴B(10,0),由,解得,∴C(,).∴OC= =8,BC= =10(2)解:①当时,△OPQ∽△OCB,∴,∴t= .②当时,△OPQ∽△OBC,∴,∴t=1,综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.∵OC=8,BC=6,OB=10,∴OC2+BC2=OB2,∴∠OCB=90°,∴当∠PCH=∠CBQ时,PC⊥BQ.∵∠PHO=∠BCO=90°,∴PH∥BC,∴,∴,∴PH=3t,OH=4t,∴tan∠PCH=tan∠CBQ,∴,∴t= 或0(舍弃),∴t= s时,PC⊥BQ.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。
2.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。
(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。
3.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。
4.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.(1)当AP=CP时,求QP;(2)若四边形PMQN为菱形,求CQ;(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?【答案】(1)解:∵AB=10,sinA= ,∴BC=8,则AC= =6,∵PA=PC.∴∠PAC=∠PCA,∵PQ平分∠CPB,∴∠BPC=2∠BPQ=2∠A,∴∠BPQ=∠A,∴PQ∥AC,∴PQ⊥BC,又PQ平分∠CPB,∴∠PCQ=∠PBQ,∴PB=PC,∴P是AB的中点,∴PQ= AC=3(2)解:∵四边形PMQN为菱形,∴MQ∥PC,∴∠APC=90°,∴ ×AB×CP= ×AC×BC,则PC=4.8,由勾股定理得,PB=6.4,∵MQ∥PC,∴ = = = ,即 = ,解得,CQ=(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴∠B=∠BPQ,∴∠B=∠CPQ,∴△CPQ∽△CBP,∴ = = ,∴ = ,∴CP=4× =4× =5,∴CQ= ,∴BQ=8﹣ = ,∴BM= × = ,∴AP=AB﹣PB=AB﹣2BM=【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得PC=4.8,PB=3.6,因为MQ//PC,所以,可得;(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.5.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点(1)求、两点的坐标;(2)求直线的解析式;(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,∴x1=-2,x2=4,∴A(-2,2),C(4,8)(2)解:①设直线l的解析式为y=kx+b(k≠0),∵A(-2,2)在直线l上,∴2=-2k+b,∴b=2k+2,∴直线l的解析式为y=kx+2k+2①,∵抛物线y= x2②,联立①②化简得,x2-2kx-4k-4=0,∵直线l与抛物线只有一个公共点,∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,∴k=-2,∴b=2k+2=-2,∴直线l的解析式为y=-2x-2;②平行于y轴的直线和抛物线y= x2只有一个交点,∵直线l过点A(-2,2),∴直线l:x=-2(3)解:由(1)知,A(-2,2),C(4,8),∴直线AC的解析式为y=x+4,设点B(m,m+4),∵C(4.8),∴BC= |m-4|= (4-m)∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,∴D(m, m2),E(m,-2m-2),∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,∵DC∥EF,∴△BDC∽△BEF,∴,∴,∴BF=6 .【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.6.如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接 .(1)求证: .(2)求证:(3)若,求的值.【答案】(1)解:∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴(2)解:∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,(3)解:由(1)得,,,∴,由(2) ,∴,∵,∴,在中,,∴【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.7.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.8.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.(1)写出点E的坐标;抛物线的解析式.(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q 在线段BD上从点B向点D以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M 的坐标.【答案】(1)解:将点D(-3,5)点B(2,0)代入y=ax2+bx+5解得∴抛物线解析式为:y=- x2- x+5(2)解:由已知∠QBE=45°,PE=t,PB=5-t,QB= t当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB= PB∴ t=(5−t)解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5-t)= t•5解得:t=∴t= 或时,△PQB为直角三角形(3)点M坐标为(﹣4,3)或(0,5).【解析】【解答】(3)由已知tan∠ABG= ,且直线GB过B点则直线GB解析式为:y= x−1延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,- x2- x+5)∵F(0,2)∴点K坐标为(-x, x2+ x-1)把K点坐标代入y= x−1解得x1=0,x2=-4,把x=0代入y=- x2- x+5,解得y=5,把x=-4代入y=- x2- x+5解得y=3则点M坐标为(-4,3)或(0,5)【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论∠PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.9.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.【答案】(1)解:当y=0时,﹣x2+2x+3=0,解得x1=3,x2=﹣1,则C(﹣1,0),A′(3,0),当x=0时,y=3,则A(0,3)(2)解:∵四边形ABOC为平行四边形,∴AB OC,AB=OC,而C(﹣1,0),A(0,3),∴B(1,3),∴OB==,S△AOB= ×3×1=,又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,∴∠ACO=∠OC′D,OC′=OC=1,又∵∠ACO=∠ABO,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB,∴△C′OD∽△BOA,∴=( )2=()2=,∴S△C′OD= × =(3)解:设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴S△AMA′=S△ANM+S△MNA′=MN•3=(﹣m2+3m)=﹣m2+ m=﹣(m﹣)2+ ,∴当m=时,S△AMA'的值最大,最大值为,此时M点坐标为(,).【解析】【分析】(1)利用抛物线与x轴的交点问题可求出C(﹣1,0),A′(3,0);计算自变量为0时的函数值可得到A(0,3);(2)先由平行四边形的性质得AB∥OC,AB=OC,易得B(1,3),根据勾股定理和三角形面积公式得到OB=,S△AOB=,再根据旋转的性质得∠ACO=∠OC′D,OC′=OC=1,接着证明△C′OD∽△BOA,利用相似三角形的性质得=( )2,则可计算出S△C′OD;(3)根据二次函数图象上点的坐标特征,设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN y轴交直线AA′于N,求出直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),于是可计算出MN=﹣m2+3m,再利用S△AMA′=S△ANM+S△MNA′和三角形面积公式得到S△AMA′=﹣m2+ m,然后根据二次函数的最值问题求出△AMA′的面积最大值,同时即可确定此时M点的坐标.10.如图所示,在△ABC中,AB=AC=5,O为BC边中点,BC=8,点E、G是线段AB上的动点(不与端点重合),点H、F是线段AC上的动点,且EF∥GH∥BC.设点O到EF、GH的距离分别为x、y.(1)若△EOF的面积为S:①用关于x的代数式表示线段EF的长;②求S的最大值;(2)以点O为圆心,当以OE为半径的圆与以OG为半径的圆重合时,求x与y应满足的关系式,并求x的取值范围.【答案】(1)解:①如图1,连接OA,交EF于M,∵AB=AC,O为BC边中点,∴OA⊥BC,∵EF∥BC,∴AM⊥EF,∵BC=8,∴OB=BC=4,在Rt△AOB中,根据勾股定理得,OA==3,∵点O到EF的距离为为x,∴OM=x,∴AM=OA﹣OM=3﹣x,∵EF∥BC,∴△AEF∽△ABC,∴,∴,∴;②由①知,,∴S=S△OEF===,∵﹣<0,∴当x=时,S最大=3(2)解:如图2,∵以OE为半径的圆与以OG为半径的圆重合,∴OE=OG,过点O作OD⊥AB于D,∴DE=DG,连接OA,由(1)知,OA⊥BC,OA=3,在Rt△AOB中,sin B= ,cos A=,过点E作EP⊥BC于P,PE=x,在Rt△BPE中,sin B=,∴BE=,过点G作DQ⊥BC于Q,GQ=y,在Rt△BQG中,BG=,∴DE==,在Rt△BDO中,BD=OB•cos B=,∴DE=BD﹣BE=,∴=,∴(Ⅰ)∵点E、G是线段AB上的动点(不与端点重合),∴0<y<3(Ⅱ),由(Ⅰ)(Ⅱ)得,,∵x>0,∴,即:.【解析】【分析】(1)①连接OA,判断出AO是△ABC的高,AM是△AEF的高,再利用相似三角形的对应边上的高的比等于相似比,即可得出结论;②利用三角形面积公式得出S与x的函数关系式,即可得出结论;(2)先判断出DE=DG,再用三角函数表示出BE,BD,BG,即可得出结论.11.如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s 的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N同时出发,用t(s)表示移动时间(0≤t≤9),求:(1)当t为何值时,∠ANM=45°?(2)计算四边形AMCN的面积,根据计算结果提出一个你认为合理的结论;(3)当t为何值时,以点M、N、A为顶点的三角形与△BCD相似?【答案】(1)解:对于任何时刻t,AM=2t,DN=t,NA=9-t,当AN=AM时,△MAN为等腰直角三角形,即:9-t=2t,解得:t=3(s),所以,当t=3s时,△MAN为等腰直角三角形(2)解:在△NAC中,NA=9-t,NA边上的高DC=12,∴S△NAC= NA•DC= (9-t)•18=81-9t.在△AMC中,AM=2t,BC=9,∴S△AMC= AM•BC= •2t•9=9t.∴S四边形NAMC=S△NAC+S△AMC=81(cm2).由计算结果发现:在M、N两点移动的过程中,四边形NAMC的面积始终保持不变.(也可提出:M、N两点到对角线AC的距离之和保持不变)(3)解:根据题意,可分为两种情况来研究,在矩形ABCD中:①当NA:AB=AM:BC 时,△NAP∽△ABC,那么有:( 9-t):18=2t:9,解得t=1.8(s),即当t=1.8s时,△NAP∽△ABC;②当 NA:BC=AM:AB时,△MAN∽△ABC,那么有:( 9-t):9=2t:18,解得t=4.5(s),即当t=4.5s时,△MAN∽△ABC;所以,当t=1.8s或4.5s时,以点N、A、M为顶点的三角形与△ABC相似【解析】【分析】(1)根据题意可得:因为对于任何时刻t,AM=2t,DN=t,NA=9-t.当NA=AM时,△MAN为等腰直角三角形,可得方程式,解可得答案。