2018-2019学年高中数学人教版A版必修一学案:第三单元 3.2.1 几类不同增长的函数模型
高中数学第三章三角函数3.1弧度制与任意角3.1.2弧度制学案湘教版必修2(2021年整理)
2018-2019学年高中数学第三章三角函数3.1 弧度制与任意角3.1.2 弧度制学案湘教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第三章三角函数3.1 弧度制与任意角3.1.2 弧度制学案湘教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第三章三角函数3.1 弧度制与任意角3.1.2 弧度制学案湘教版必修2的全部内容。
3。
1.2 弧度制[学习目标] 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换。
2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3。
掌握并能应用弧度制下的弧长公式和扇形面积公式.[知识链接]1.初中几何研究过角的度量,当时是用度来做单位度量角的.那么1°的角是如何定义的?它的大小与它所在圆的大小是否有关?答规定周角的错误!做为1°的角;它的大小与它所在圆的大小无关.2.用度做单位来度量角的制度叫做角度制,在初中有了它就可以计算扇形弧长和面积,其公式是什么?答l=错误!,S=错误!.[预习导引]1.弧度制(1)定义:单位圆上长度为1的圆弧所对的圆心角取为度量的单位,称为弧度,这样的单位制称为弧度制.(2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是零.(3)角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是|α|=错误!. 2.角度制与弧度制的换算(1)角度化弧度弧度化角度360°=2π2π=360°180°=ππ=180°1°=错误!≈0。
人教版A版高中数学必修一_第3章_321几类不同增长的函数模型(有答案)
人教版A版高中数学必修一第3章 3.2.1几类不同增长的函数模型3一、单选题1. 甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.乙比甲跑的路程多B.甲比乙先出发C.甲比乙先到达终点D.甲、乙两人的速度相同2. y1=2x,y2=x2,y3=log2x,当2<x<4时,有()A.y2>y1>y3B.y1>y2>y3C.y2>y3>y1D.y1>y3>y23. 有一组实验数据如表所示:下列所给函数模型较适合的是()A. B.C. D.4. 若,则下列结论正确的是()A. B. C. D.5. 如果某林区的森林蓄积量每年平均比上一年增长10.4%,那么经过年可增长到原来的倍,则函数的图象大致为() A. B. C. D.参考答案与试题解析人教版A版高中数学必修一第3章 3.2.1几类不同增长的函数模型3一、单选题1.【答案】此题暂无答案【考点】在实三问葡中建湖三量函数模型函数根气居调与导数的关系【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】对数函数表础象与性质函表的透象对数值于小的侧较【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】归都读理相验周数极差、使差与标香差【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】幂函射空图象指数表数层图象对数函数表础象与性质【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】函表的透象【解析】此题暂无解析【解答】此题暂无解答。
【配套K12】2018-2019学年高中数学人教版A版必修一学案:第三单元 3.2.2 函数模型的应
3.2.2 函数模型的应用实例学习目标 1.会利用已知函数模型解决实际问题(重点).2.能建立函数模型解决实际问题(重、难点).预习教材P102-P106,完成下面问题: 知识点1 常见的函数模型一个矩形的周长是40,矩形的长y 关于宽x 的函数解析式为( ) A .y =20-x (0<x <10) B .y =20-2x (0<x <20) C .y =40-x (0<x <10)D .y =40-2x (0<x <20)解析 由题意可知2y +2x =40,即y =20-x ,又20-x >x ,所以0<x <10,故选A . 答案 A知识点2 解决函数应用问题的步骤利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行: (一)审题;(二)建模;(三)求模;(四)还原. 这些步骤用框图表示如图:【预习评价】某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.解析L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500,当Q=300时,L(Q)的最大值为2 500万元.答案 2 500题型一一次函数、二次函数模型【例1】商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?解(1)设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,则x∈(100,300],n=kx+b(k<0),∵0=300k+b,即b=-300k,∴n=k(x-300).∴利润y=(x-100)k(x-300)=k(x-200)2-10 000k(x∈(100,300])∵k<0,∴x=200时,y max=-10 000k,即商场要获取最大利润,羊毛衫的标价应定为每件200元.(2)由题意得,k(x-100)(x-300)=-10 000k·75%,x2-400x+37 500=0,解得x=250或x=150,所以,商场要获取最大利润的75%,每件标价为250元或150元.规律方法利用二次函数求最值的方法及注意点(1)方法:根据实际问题建立函数模型解析式后,可利用配方法、判别式法、换元法利用函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题.(2)注意:取得最值时的自变量与实际意义是否相符.【训练1】某水厂的蓄水池中有400吨水,每天零点开始由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t小时内向居民供水总量为1006t(0≤t≤24),则每天何时蓄水池中的存水量最少.解设t小时后,蓄水池中的存水量为y吨,则y=400+60t-1006t(0≤t≤24).设u =t ,则u ∈[0,26],y =60u 2-1006u +400=60⎝⎛⎭⎫u -5662+150,∴当u =566即t =256时,蓄水池中的存水量最少. 题型二 指数型函数、对数型函数模型【例2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数v =12log 3θ100,单位是m/s ,θ是表示鱼的耗氧量的单位数.(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?(2)某条鲑鱼想把游速提高1 m/s ,那么它的耗氧量的单位数是原来的多少倍. 解 (1)由v =12log 3θ100可知,当θ=900时,v =12log 3900100=12log 39=1(m/s).所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1 m/s.(2)由v 2-v 1=1,即12log 3θ2100-12log 3θ1100=1,得θ2θ1=9.所以耗氧量的单位数为原来的9倍.规律方法 指数型、对数型函数问题的类型及解法(1)指数型函数模型:y =ma x (a >0且a ≠1,m ≠0),在实际问题中,有关人口增长,银行利率,细胞分裂等增长率问题都可用指数型函数模型来表示.(2)对数型函数模型:y =m log a x +c (m ≠0,a >0且a ≠1),对数型函数模型一般给出函数关系式,然后利用对数的运算求解.(3)指数型、对数型函数应用题的解题思路:①依题意,找出或建立数学模型,②依实际情况确立解析式中的参数,③依题设数据解决数学问题,④得出结论.【训练2】 一片森林原来面积为a ,计算每年砍伐一些树,且使森林面积每年比上一年减少p %,10年后森林面积变为a 2.为保护生态环境,所剩森林面积至少要为原面积的14.已知到今年为止,森林面积为22a . (1)求p %的值;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年? 解 (1)由题意得a (1-p %)10=a2,即(1-p %)10=12,解得p %=1-⎝⎛⎭⎫12110 .(2)设经过m 年森林面积为22a , 则a (1-p %)m =22a ,即⎝⎛⎭⎫12m 10 =⎝⎛⎭⎫1212 ,得m 10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年开始,n 年后森林面积为22a ·(1-p %)n , 令22a (1-p %)n ≥14a ,即(1-p %)n ≥24, ⎝⎛⎭⎫12n10 ≥⎝⎛⎭⎫1232 ,得n 10≤32,解得n ≤15, 故今后最多还能砍伐15年. 题型三 分段函数模型【例3】 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足于f (t )=⎩⎨⎧15+12t ,(0≤t ≤10)25-12t ,(10<t ≤20)(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 解 (1)由已知,由价格乘以销售量可得:y =⎩⎨⎧⎝⎛⎭⎫15+12t (80-2t ),(0≤t ≤10)⎝⎛⎭⎫25-12t (80-2t ),(10<t ≤20)=⎩⎪⎨⎪⎧(t +30)(40-t ),(0≤t ≤10)(50-t )(40-t ),(10<t ≤20) =⎩⎪⎨⎪⎧-t 2+10t +1 200,(0≤t ≤10),t 2-90t +2 000,(10<t ≤20). (2)由(1)知①当0≤t ≤10时y =-t 2+10t +1 200= -(t -5)2+1 225,函数图象开口向下,对称轴为t =5,该函数在t ∈[0,5]递增,在t ∈(5,10]递减,∴y max =1 225(当t =5时取得),y min =1 200(当t =0或10时取得); ②当10<t ≤20时y =t 2-90t +2 000=(t -45)2-25,图象开口向上,对称轴为t =45,该函数在t ∈(10,20]递减,∴y max =1 200(当t =10时取得),y min =600(当t =20时取得).由①②知y max =1 225(当t =5时取得),y min =600(当t =20时取得). 规律方法 应用分段函数时的三个注意点(1)分段函数的“段”一定要分得合理,不重不漏. (2)分段函数的定义域为对应每一段自变量取值范围的并集.(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论.【训练3】 某车间生产一种仪器的固定成本为10 000元,每生产一台该仪器需要增加投入100元,已知总收入满足函数:H (x )=⎩⎪⎨⎪⎧400x -x 2,0≤x ≤200,x ∈N ,40 000,x >200,x ∈N ,其中x 是仪器的月产量.(1)将利润表示为月产量的函数(用f (x )表示);(2)当月产量为何值时,车间所获利润最大?最大利润为多少元?(总收入=总成本+利润) 解 (1)设每月产量为x 台,则总成本为t =10 000+100x .又f (x )=H (x )-t .∴f (x )=⎩⎪⎨⎪⎧-x 2+300x -10 000,0≤x ≤200,x ∈N ,30 000-100x ,x >200,x ∈N.(2)当0≤x ≤200时,f (x )=-(x -150)2+12 500, 所以当x =150时,有最大值12 500; 当x >200时,f (x )=30 000-100x 是减函数, f (x )<30 000-100×200<12 500.所以当x =150时,f (x )取最大值,最大值为12 500.所以每月生产150台仪器时,利润最大,最大利润为12 500元. 题型四 建立拟合函数模型解决实际问题【例4】 为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x 与当年灌溉面积y .现有连续10年的实测资料,如表所示.(1)(2)建立一个能基本反映灌溉面积变化的函数模型,并画出图象;(3)根据所建立的函数模型,估计若变今年最大积雪深度为25 cm ,则可以灌溉土地多少公顷?解 (1)描点、作图,如图(甲)所示:(2)从图(甲)中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y 与最大积雪深度x 满足一次函数模型y =a +bx (a ,b 为常数且b ≠0).取其中的两组数据(10.4,21.1),(24.0,45.8),代入y =a +bx ,得⎩⎪⎨⎪⎧21.1=a +10.4b ,45.8=a +24.0b ,用计算器可得a ≈2.2,b ≈1.8.这样,得到一个函数模型:y =2.2+1.8x ,作出函数图象如图(乙),可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系.(3)由(2)得到的函数模型为y =2.2+1.8x ,则由y =2.2+1.8×25,求得y =47.2,即当最大积雪深度为25 cm 时,可以灌溉土地约为47.2公顷.规律方法 建立拟合函数与预测的基本步骤【训练4】我国1999年至2002年国内生产总值(单位:万亿元)如下表所示:(1)(2)利用得出的关系式求生产总值,与表中实际生产总值比较.解(1)画出函数图形,如图.从函数的图形可以看出,画出的点近似地落在一条直线上.设所求的函数为y=kx+b,把直线通过的两点(0,8.206 7)和(3,10.239 8)代入上式,解方程组,可得k=0.677 7,b=8.206 7.因此,所求的函数关系式为y=f(x)=0.677 7x+8.206 7.(2)由得到的关系式计算出2000年和2001年的国内生产总值分别为f(1)=0.677 7×1+8.206 7=8.884 4,f(2)=0.677 7×2+8.206 7=9.562 1.与实际的生产总值相比,误差不超过0.1万亿元.课堂达标1.某商场在销售空调旺季的4天内的利润如下表所示.A .y =log 2xB .y =2xC .y =x 2D .y =2x解析 逐个检验可得答案为B . 答案 B2.一辆匀速行驶的汽车90 min 行驶的路程为180 km ,则这辆汽车行驶的路程y (km)与时间t (h)之间的函数关系式是( )A .y =2tB .y =120tC .y =2t (t ≥0)D .y =120t (t ≥0)解析 90 min =1.5 h ,所以汽车的速度为180÷1.5=120 km/h ,则路程y (km)与时间t (h )之间的函数关系式是y =120t (t ≥0).答案 D3.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.解析 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,∴0.12a =270,解得a =2 250.∴每台彩电的原价为2 250元.答案 2 2504.2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1).解析 设x 年我国人口将超过20亿,由已知条件:14(1+1.25%)x -2 008>20,x -2 008>lg 107lg 8180=1-lg 74lg 3-3lg 2-1=28.7,则x >2 036.7,即x =2 037.答案 2 0375.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +x b ,若生产出的产品能全部卖掉,且当产量为150吨时利润最大,此时每吨价格为40元,求实数a ,b 的值.解 设利润为y 元,则y =Qx -P =ax +x 2b -1 000-5x -110x 2=⎝⎛⎭⎫1b -110x 2+(a -5)x -1 000,依题意得⎩⎪⎨⎪⎧-a -52⎝⎛⎭⎫1b -110=150,40=a +150b ,化简得⎩⎨⎧a +300b=35,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.课堂小结1.函数模型的应用实例主要包括三个方面: (1)利用给定的函数模型解决实际问题; (2)建立确定性的函数模型解决实际问题; (3)建立拟合函数模型解决实际问题.2.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.3.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化.4.根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程,如下图所示.。
2018学年高中数学新课标人教a版必修1同步学案:3.2第2
用己知的函数模型解决问题一、课前准备1.课时目标(1)掌握函数的思想方法,即通过求出或构造出函数来解决问题;(2)学会运用函数知识解决某些简单的实际问题;(3)梳理社会生活中普遍使用的函数模型,并进行简单的应用。
2.基础预探(1)叫做一次函数;叫做二次函数;叫做指数函数;叫做对数函数;叫做幂函数。
(2)指数函数的主要性质有,指数函数与对数函数的关系是。
二、基本知识习题化1. 按复利计算,若存入银行5万元,年利率2%,3年后支取,则可得利息(单位:万元) 为().A. 5(1+0.02)B. 5(1+0.02)C. 5(1+0.02) -5 C. 5(1+0.02) -52. x克a%盐水中,加入y克b%的盐水,浓度变为c%,则x与y的函数关系式为().A. y=c ac b--x B. y=c ab c--x C. y=a cb c--x D. y=b cc a--x3. 现有含盐15%的盐水400克,张老师要求将盐水浓度变为12%,某同学由于计算错误加进了110克水,要使浓度重新变为12%,该同学该()A、倒出10千克盐水B、再加入10千克盐水C、加入10千克盐水D、再加入1411克盐4. 拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.5×[m]+1)元给出,其中m>0,[m]是大于或等于m的最小整数(职[3]=3,[3.7]=4),则从甲地到乙地通话时间为5.5分钟的话费为元.5. 已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则()y f x=的函数解析式为.三、学习引领1、函数应用题的解题步骤求解函数应用题,关键是考虑该题考查的是何种函数模型,并要注意定义域,然后建立其解析式,最后结合其实际意义作出解答。
解题步骤:第一步:阅理解读审清题意读题主要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上分析出已知是什么,求什么,从中提炼出相应的数学问题。
2018学年高中数学新课标人教a版必修1同步学案:3.1第3
函数与方程的综合应用 一、学习引领1.函数的零点与方程的根的关系:一般地,对于函数()y f x =(x D ∈)我们称方程()0f x =的实数根x 也叫做函数的零点,即函数的零点就是使函数值为零的自变量的值. 求综合方程f(x)=g(x)的根或根的个数就是求函数()()y f x g x =-的零点. 2.函数的图像与方程的根的关系:一般地,函数()y f x =(x D ∈)的图像与x 轴交点的横坐标就是()0f x =的根.综合方程f(x)=g(x)的根,就是求函数y =f(x)与y=g(x)的图像的交点或交点个数,或求方程()()y f x g x =-的图像与x 轴交点的横坐标.3.判断一个函数是否有零点的方法:如果函数()y f x =在区间(,)a b 上图像是连续不断的曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 上至少有一个零点,即至少存在一个数(,)c a b ∈使得()0f c =,这个c 就是函数()y f x =的零点.对于我们学习的简单函数,可以借助()y f x =图像判断解的个数,或者把()f x 写成()()g x h x -,然后借助()y g x =、()y h x =的图像的交点去判断函数()f x 的零点情况.4. 二次函数、一元二次方程、二次函数图像之间的关系:二次函数2y ax bx c =++的零点,就是二次方程20ax bx c ++=的根,也是二次函数2y ax bx c =++的图像与x 轴交点的横坐标.5. 二分法:对于区间(,)a b 上的连续不断,且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 二、疑难解析1.关于函数()()y f x g x =-的零点,就是方程()()f x g x =的实数根,也就是()y f x =与函数()y g x =图像的交点的横坐标. 要深刻理解,解题中灵活运用.2.如果二次函数2()y f x ax bx c ==++,在闭区间[m,n]上满足()()0f m f n ⋅<,那么方程20ax bx c ++=在区间(m,n )上有唯一解,即存在唯一的1(,)x m n ∈,使1()0f x =,方程20ax bx c ++=另一解2(,)(,)x m n ∈-∞⋃+∞.3. 二次方程20ax bx c ++=的根在某一区间时,满足的条件应据具体情形而定.如二次方程()f x =20ax bx c ++=的根都在区间(,)m n 时应满足:02()0()0b m n a f m f n ∆≥⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩4.用二分法求二次方程的近似解一般步骤是 (1)取一个区间(,a b )使()()0f a f b ⋅<(2)取区间的中点,02a bx +=(3)计算0()f x ,①若0()0f x =,则0x 就是()0f x =的解,计算终止;②若0()()0f a f x ⋅<,则解位于区间(0,a x )中,令110,a a b x ==;若0()()0f x f b ⋅<则解位于区间(0,x b )令101,a x b b ==(4)取区间是(11,a b )的中点,1112a b x +=重服第二步、第三骤直到第n 步,方程的解总位于区间(,n n a b )内(5)当,n n a b 精确到规定的精确度的近似值相等时,那么这个值就是所求的近似解.三、典例导析1、函数方程中参数问题:例1、已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 思路导析:根据方程210mx x ++=,可创设函数2()1f x mx x =++,利用函数的性质求解。
【配套K12】2018-2019学年高中数学人教版A版必修一学案:第三单元 3.1.1 方程的根与函
§3.1 函数与方程3.1.1 方程的根与函数的零点学习目标 1.理解函数零点的定义,会求某些函数的零点(重点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与方程的根的联系(重点).预习教材P86-P88,完成下面问题: 知识点1 函数的零点(1)概念:函数f (x )的零点是使f (x )=0的实数x .(2)函数的零点与函数的图象与x 轴的交点、对应方程的根的关系:【预习评价】(1)函数f (x )=x 2-4x 的零点是________.(2)若2是函数f (x )=a ·2x -log 2x 的零点,则a =________.解析 (1)令f (x )=0,即x 2-4x =0,解得x =0或x =4,所以f (x )的零点是0和4.(2)由f (2)=4a -1=0得a =14.答案 (1)0和4 (2)14知识点2 函数零点的判断(1)条件:①函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0. (2)结论:函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.【预习评价】 (正确的打“√”,错误的打“×”)(1)设f (x )=1x ,由于f (-1)f (1)<0,所以f (x )=1x 在(-1,1)内有零点( )(2)若函数f(x)在(a,b)内有零点,则f(a)f(b)<0.()(3)若函数f(x)的图象在区间[a,b]上是一条连续不断的曲线,且f(a)·f(b)<0,则f(x)在(a,b)内只有一个零点.()提示(1)×由于f(x)=1x的图象在[-1,1]上不是连续不断的曲线,所以不能得出其有零的结论.(2)×反例:f(x)=x2-2x,区间为(-1,3),则f(-1)·f(3)>0.(3)×反例:f(x)=x(x-1)(x-2),区间为(-1,3),满足条件,但f(x)在(-1,3)内有0,1,2三个零点.题型一函数零点的概念及求法【例1】(1)函数y=1+1x的零点是()A.(-1,0) B.x=-1C.x=1D.x=0(2)设函数f(x)=21-x-4,g(x)=1-log2(x+3),则函数f(x)的零点与g(x)的零点之和为________.(3)若3是函数f(x)=x2-mx的一个零点,则m=________.解析(1)令1+1x=0,解得x=-1,故选B.(2)令f(x)=21-x-4=0解得x=-1,即f(x)的零点为-1,令g(x)=1-log2(x+3)=0,解得x=-1,所以函数f(x)的零点与g(x)的零点之和为-2.(3)由f(3)=32-3m=0解得m=3.答案(1)B(2)-2(3)3规律方法函数零点的两种求法(1)代数法:求方程f(x)=0的实数根,若存在实数根,则函数存在零点,否则函数不存在零点.(2)几何法:与函数y=f(x)的图象联系起来,图象与x轴的交点的横坐标即为函数的零点.【训练1】函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是________.解析∵函数f(x)=ax+b有一个零点是2,∴2a+b=0⇒b=-2a,∴g(x)=bx2-ax=-2ax 2-ax =-ax (2x +1),∵-ax (2x +1)=0⇒x =0,x =-12,∴函数g (x )=bx 2-ax 的零点是0,-12. 答案 0,-12题型二 确定函数零点的个数 【例2】 判断下列函数零点的个数. (1)f (x )=x 2-34x +58;(2)f (x )=ln x +x 2-3.解 (1)由f (x )=0,即x 2-34x +58=0,得Δ=⎝⎛⎭⎫-342-4×58=-3116<0, 所以方程x 2-34x +58=0没有实数根,即f (x )零点的个数为0.(2)法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一直角坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而方程ln x +x 2-3=0有一个根,即函数y =ln x +x 2-3有一个零点. 法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0, 所以f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的, 所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个. 规律方法 判断函数零点个数的四种常用方法(1)利用方程根,转化为解方程,有几个不同的实数根就有几个零点.(2)画出函数y =f (x )的图象,判定它与x 轴的交点个数,从而判定零点的个数. (3)结合单调性,利用零点存在性定理,可判定y =f (x )在(a ,b )上零点的个数. (4)转化成两个函数图象的交点问题. 【训练2】 函数f (x )=ln x -1x -1的零点的个数是( ) A .0B .1C .2D .3解析 如图画出y =ln x 与y =1x -1的图象,由图知y =ln x 与y =1x -1(x >0,且x ≠1)的图象有两个交点.故函数f (x )=ln x -1x -1的零点有2个.答案 C题型三 判断函数零点所在的区间【例3】 (1)二次函数f (x )=ax 2+bx +c 的部分对应值如下表:不求a ,A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)(2)已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析 (1)易知f (x )=ax 2+bx +c 的图象是一条连续不断的曲线,又f (-3)f (-1)=6×(-4)=-24<0,所以f (x )在(-3,-1)内有零点,即方程ax 2+bx +c =0在(-3,-1)内有根,同理方程ax 2+bx +c =0在(2,4)内有根.故选A .(2)∵f (x )=6x -log 2x ,∴f (x )为(0,+∞)上的减函数,且f (1)=6>0,f (2)=3-log 22=2>0,f (4)=32-2=-12<0,由零点存在性定理,可知包含f (x )零点的区间是(2,4).答案 (1)A (2)C规律方法 确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上.(2)利用函数零点存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 【训练3】 (1)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0)C .(0,1)D .(1,2)(2)若方程x lg(x +2)=1的实根在区间(k ,k +1)(k ∈Z)上,则k 等于( ) A .-2B .1C .-2或1D .0解析 (1)∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.(2)由题意知,x ≠0,则原方程即为lg(x +2)=1x ,在同一平面直角坐标系中作出函数y =lg(x +2)与y =1x 的图象,如图所示,由图象可知,原方程有两个根,一个在区间(-2,-1)上,一个在区间(1,2)上,所以k =-2或k =1.故选C .答案 (1)C (2)C课堂达标1.函数f (x )=2x 2-4x -3的零点有( ) A .0个B .1个C .2个D .不能确定解析 由f (x )=0,即2x 2-4x -3=0,因为Δ=(-4)2-4×2×(-3)=40>0.所以方程2x 2-4x -3=0有两个根,即f (x )有两个零点.答案 C2.函数f (x )=4x -2x -2的零点是( ) A .(1,0)B .1C .12D .-1解析 由f (x )=4x -2x -2=(2x -2)(2x +1)=0得2x =2,解得x =1. 答案 B3.函数f (x )=2x -1x 的零点所在的区间是( ) A .(1,+∞) B .⎝⎛⎭⎫12,1C .⎝⎛⎭⎫13,12 D .⎝⎛⎭⎫14,13解析 f (1)=2-1=1,f ⎝⎛⎭⎫12=212 -2=2-2<0,即f ⎝⎛⎭⎫12f (1)<0,且f (x )的图象在⎝⎛⎭⎫12,1内是一条连续不断的曲线,故f (x )的零点所在的区间是⎝⎛⎭⎫12,1.答案 B4.函数f (x )=x 2-2x 在R 上的零点个数是________.解析 由题意可知,函数f (x )=x 2-2x 的零点个数,等价于函数y =2x ,y =x 2的图象交点个数.如图,画出函数y =2x ,y =x 2的大致图象.由图象可知有3个交点,即f (x )=x 2-2x 有3个零点. 答案 35.若32是函数f (x )=2x 2-ax +3的一个零点,求f (x )的零点.解 由f ⎝⎛⎭⎫32=2×94-32a +3=0得a =5,则f (x )=2x 2-5x +3,令f (x )=0,即2x 2-5x +3=0,解得x 1=32,x 2=1,所以f (x )的零点是32和1.课堂小结1.在函数零点存在性定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时可以转化为方程问题,这正是函数与方程思想的基础.。
高中数学人教A版(2019)必修一 第三章 第二节 函数的奇偶性的性质(二)
高中数学人教A版(2019)必修一第三章第二节函数的奇偶性的性质(二)一、单选题(共14题;共70分)1.(5分)函数f(x)为R上的奇函数,x>0时,f(x)=lgx+1,则f(−10)=()A.-6B.2C.-2D.62.(5分)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=4x+m+2(m为常数),则f(−log48)的值为()A.4B.-4C.7D.-73.(5分)已知f(x)是定义在R上的奇函数,且x>0时,f(x)=x(x−2√x),则f(9)+f(−4)=()A.27B.-27C.54D.-544.(5分)函数f(x)=x3−ax+sinx+1,若f(m)=4,则f(−m)=()A.-2B.-4C.3D.25.(5分)已知f(x)是定义在[m−9,2m+3]上的奇函数,且当x≤0时,f(x)=x2−x,则f(m)的值为()A.-2B.-6C.2D.66.(5分)若f(x)=ax3+bsinx+1,且f(5)=7,则f(−5)=()A.-7B.-5C.5D.77.(5分)已知函数f(x)=ax3−bx+1,若f(2)=5,则f(−2)=()A.-5B.-3C.3D.58.(5分)已知函数f(x)是定义在R上的奇函数,g(x)=f(x)+1,若g(2)=5,则g(−2)=()A.-5B.5C.3D.-39.(5分)已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,g(x)=f(x)+1,已知g(2)=5,则g(−2)=()A.-5B.5C.-3D.310.(5分)已知f(x)是R上的奇函数,g(x)是R上的偶函数,且f(x)+g(x)=2x3+x2+ 3x+1,则f(1)+g(2)=()A.5B.6C.8D.1011.(5分)若函数f(x)=ax2+bx+1是定义在[−1−a,2a]上的偶函数,则该函数的最大值为()A.5B.4C.3D.212.(5分)已知函数f(x)是奇函数,当x>0时f(x)=2x+x2,则f(1)+f(−2)=()A.-8B.-4C.-5D.1113.(5分)已知函数f(x)=(a+1)x3−(a+2)x−bx2是定义在[a−3,a+1]上的奇函数,则f(a+b)=()A.-2B.-1C.2D.514.(5分)若函数f(x)为偶函数,g(x)为奇函数,且满足f(x)−g(x)=x3+x2+1,则f(2)+g(2)=()A.-3B.3C.5D.-5二、填空题(共2题;共15分)15.(10分)若f(x)=ln|a+11−x|+b是奇函数,则a=,b=.16.(5分)定义在R上的函数f(x)满足f(x)+f(−x)=0.当x≥0时,f(x)=x2−x+a−1,则f(−3)=.三、解答题(共2题;共25分)17.(10分)已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=−x2+2x.(1)(5分)求x<0时,函数f(x)的解析式;(2)(5分)若函数f(x)在区间[−1,a−2]上单调递增,求实数a的取值范围.18.(15分)已知定义域为R的函数f(x)=−2x+b2x+1+2是奇函数.(1)(5分)求b的值;(2)(5分)判断函数f(x)的单调性;(3)(5分)若对任意的t∈R,不等式f(t2−2t)+f(2t2−k)<0恒成立,求k的取值范围.答案解析部分1.【答案】C【解析】【解答】x>0时,f(x)=lgx+1,故f(10)=1+lg10=2,又函数f(x)为R上的奇函数,故f(−10)=−f(10)=−2.故答案为:C【分析】根据奇偶性,f(−10)=−f(10)=−2.2.【答案】D【解析】【解答】根据题意,函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=4x+m+2,必有f(0)=1+m+2=0,解可得:m=−3,则当x≥0时,f(x)=4x−1,有f(log48)=8−1=7,又由函数f(x)是定义在R上的奇函数,则f(−log48)=−f(log48)=−7。
新教材2020-2021学年高中数学人教A版第一册学案:3.2.1 第1课时函数的单调性含解析
新教材2020-2021学年高中数学人教A版必修第一册学案:3.2.1 第1课时函数的单调性含解析3.2函数的基本性质3.2。
1单调性与最大(小)值第1课时函数的单调性[目标]1.记住函数的单调性及其几何意义,会证明简单函数的单调性;2。
会用函数的单调性解答有关问题;3.记住常见函数的单调性.[重点] 函数的单调性定义及其应用;常见函数的单调性及应用;函数单调性的证明.[难点]函数单调性定义的理解及函数单调性的证明.知识点一增函数与减函数的定义[填一填]一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1〈x2时,都有f(x1)〈f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.如果∀x1,x2∈D,当x1<x2时,都有f(x1)〉f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.[答一答]1.在增函数与减函数的定义中,能否把“∀x1,x2∈D"改为“∃x1,x2∈D”?提示:不能,如图所示:虽然f(-1)〈f(2),但原函数在[-1,2]上不是增函数.2.设x1、x2是f(x)定义域某一个子区间M上的两个变量,如果f(x)满足以下条件,该函数f(x)是否为增函数?(1)对任意x1〈x2,都有f(x1)<f(x2);(2)对任意x1,x2,都有[f(x1)-f(x2)](x1-x2)〉0;(3)对任意x1、x2都有错误!>0.提示:是增函数,它们只不过是增函数的几种等价命题.3.由2推广,能否写出减函数的几个等价命题?提示:减函数(x1,x2∈M)⇔任意x1<x2,都有f(x1)>f(x2)⇔错误! <0⇔[f(x1)-f(x2)]·(x1-x2)〈0.知识点二函数的单调性与单调区间[填一填]如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.[答一答]4.函数的单调区间与其定义域是什么关系?提示:函数的单调性是对函数定义域内的某个子区间而言的,故单调区间是定义域的子集.5.函数f(x)=错误!的单调减区间是(-∞,0)∪(0,+∞)吗?提示:不是.例如:取x1=1,x2=-1,则x1>x2,这时f(x1)=f (1)=1,f(x2)=f(-1)=-1,故有f(x1)〉f(x2).这样与函数f(x)=错误!在(-∞,0)∪(0,+∞)上单调递减矛盾.事实上,f(x)=错误!的单调减区间应为(-∞,0)和(0,+∞).知识点三常见函数的单调性[填一填]1.设一次函数的解析式为y=kx+b(k≠0),当k〉0时,函数y =kx+b在R上是增函数;当k<0时,函数y=kx+b在R上是减函数.2.设二次函数的解析式为y=ax2+bx+c(a≠0).若a>0,则该函数在错误!上是减函数,在错误!上是增函数.若a<0,则该函数在错误!上是增函数,在错误!上是减函数.3.设反比例函数的解析式为y=错误!(k≠0).若k〉0,则函数y=错误!在(-∞,0)上是减函数,在(0,+∞)上也是减函数;若k 〈0,则函数y=错误!在(-∞,0)上是增函数,在(0,+∞)上也是增函数.[答一答]6.函数y=x2-x+2的单调区间如何划分?提示:函数在错误!上是减函数,在错误!上是增函数.类型一判断或证明函数的单调性[例1]证明:函数y=x+错误!在(0,3]上递减.[证明]设0<x1<x2≤3,则有y1-y2=错误!-错误!=(x1-x2)-错误!=(x1-x2)错误!。
2018学年高中数学新课标人教a版必修1同步学案:3.2第1
几类不同增长的函数模型一、课前准备1.课时目标1、借助绘图技术,利用函数图像及数据表格,比较一次函数,指数函数,幂函数,对数函数的增长差异;2、结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;3、重点体会现代信息技术在解决实际问题中的作用,将实际问题转化为函数模型,利用手持技术比较一次函数,指数函数,幂函数,对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
2.基础预探1、实际应用问题的解答关键是、解模并返回到实际问题;2、教材中例1、例2分别是和模型的应用;3、我们学过的函数模型类型由、、、等。
二、基本知识习题化1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为().A.1= B. y=21x- C. y=2 D. y=2x2xy+2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用().A. 一次函数B. 二次函数C. 指数型函数D. 对数型函数3. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成. 5. 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有台计算机被感染. (用式子表示)三、学习引领1. 两类实际问题:投资回报、设计奖励方案;2. 几种函数模型:一次函数、对数函数、指数函数;3. 应用建模(函数模型);4.解决应用题的一般程序:⑴审题:弄清题意,分清条件和结论,理顺数量关系;⑵建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;⑶解模:求解数学模型,得出数学结论;⑷还原:将用数学知识和方法得出的结论,还原为实际问题的意义。
高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案
第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。
(全国通用版)2018-2019高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换 第1课时
=cosx2+sincxos2x.
证法二:cosx2+sincxos2x=coEs3v2xa2-sliu2xna+32txic-oons2x32ox+nl2xy.
Copyright 2004-2011 Aspose Pty Ltd.
3
课时作业学案
Evaluation only.
Created withCAosppyorsigeh.St 自2li0d0e主4s-预f2o0r1习.1NEA学Tsp案3o.s5eCPliteynLt tPdr.ofile 5.2.0.0.
2.常见的三角恒等变换
(1)asinx+bcosx=___a_2_+__b_2 __sin(x+φ)(ab≠0),其中
Evaluation only.
tanφ=ba,φ
所在象限由
Care和abte的d符w号it确h定A.sp仅o仅s讨e.论Sbali=de±1s,fo±r3.,N±E3T3的3情.5况C.lient Profile 5.2.0.0.
C.-
1C+ocopsαyright
2
2004-201D1.Asp1o+s2ceosαPty
Ltd.
2.已知 sinθ=35,52π<θ<3π,那么 tan2θ+cos2θ的值为
( B)
A. 1100-3
EvaluatioBn.o3-nly11.00
CreaCte.d-w3-ith1C10A0osppyorsigห้องสมุดไป่ตู้h.St 2li0d0e4s-f2o0r1.D1N.EA3Ts+p31o1.0s05eCPliteynLt tPdr.ofile 5.2.0.0.
θ
∴tan2θ=sinC2θo=p3y.right 2004-2011 Aspose Pty Ltd.
高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案
【新教材】3.2.1 单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。
1.增函数、减函数的定义2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=1x在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4] B.[-4,-3],[1,4]C.[-3,1] D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 4.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +15.函数f (x )=2x,x ∈[2,4],则f (x )的最大值为______;最小值为________. 题型一 利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-1x . 跟踪训练一1. 已知x ∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二 利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)={1x ,0<x<1,x,1≤x ≤2.(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三 证明函数的单调性 例3 求证:函数f(x)=x+1x 在区间(0,1)内为减函数. 跟踪训练三1.求证:函数f(x)=21x在(0,+∞)上是减函数,在(-∞,0)上是增函数. 题型四 利用函数的单调性求最值例4 已知函数f(x)=x+ 4x .(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=6x−1(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f34⎛⎫⎪⎝⎭的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有f(a)−f(b)a−b>0,则必有( )A.函数f(x)先增后减 B.函数f(x)先减后增C.函数f(x)是R上的增函数 D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为( )A.-1 B.0C.1 D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( ) A.[160,+∞) B.(-∞,40]C.(-∞,40]∪[160,+∞) D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f (1-a)<f(2a-1),则a的取值范围是。
2018学年高中数学新课标人教a版必修1同步学案:3.2第3
第三课时建立实际问题的函数模型一、课前准备1.课时目标(1).能用指数函数、对数函数解决如复利、人口增长等与增长率有关的问题,(2).提高学生根据实际问题建立函数关系的能力.2.基础预探常见实际问题的函数模型(1)设原有人口a人,人口的自然增长率为b,则经过x年后,人口数为y ;(2)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,在计算下一期的利息;(3)本金为a元,每期利率为r,设本利和为y,存期为x,则本利和y随存期x变化的函数式为(4)放射性元素剩流量为所需要的时间叫做半衰期。
二、基本知识习题化1.复利把前一期的利息和本金加在一起做本金,再计算下一期的利息.(就是人们常说的“利滚利”).设本金为p,每期利率为r,存期为x,则本金与利息和.2.单利在计算每一期的利息时,本金还是第一期的本金.设本金为p,每期利率为r,存期为x,则本金与利息和.3.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,可以用公式表示.三、学习引领1、知识梳理2、解函数应用的基本步骤:第一步:阅读理解,审清题意读题要做到逐字逐句,读懂题中的文字叙述,理解叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题。
第二步:引进数学符号,建立数学模型一般设自变量x,函数y,必要时可引入其他相关辅助变量,并用,x y和辅助变量表示各相关量,然后根据已知条件运用已掌握的数学知识、物理知识及其相关知识建立关系式,在此基础上,将实际问题转化为一个函数问题,实现问题的数学化,即所谓建立数学模型。
第三步:利用数学方法将得到的常规函数问题(即数学模型)予以解答,得到结果;第四步:将所得的结论转译成具体问题的解答。
四、典例导析1、指、对函数的实际应用:例1:物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是O T ,经过一定时间后的温度是T ,则1()()2th a o a T T T T -=-⋅,其中a T 表示环境温度,h 称为半衰期.现有一杯用88c热水冲的速容咖啡,放在24c的房间中,如果咖啡降到40c需要20min ,那么降温到35c 时,需要多长时间?思路导析:根据题设条件,常设变量,用变量表达函数关系,利用函数知识求解。
2018版高中数学人教版A版必修一学案:第三单元 3.2.1 几类不同增长
§3.2 函数模型及其应用3.2.1 几类不同增长的函数模型学习目标 1.掌握常见增长函数的定义、图象、性质、并体会增长快慢;理解直线上升,对数增长,指数爆炸的含义(重点).2.会分析具体的实际问题,并进行数学建模解决实际问题(重点).预习教材P95-P101,完成下面问题: 知识点 三种函数模型的性质(1)当x 每增加一个单位时,y 增加或减少的量为定值,则y 是x 的一次函数.( ) (2)函数y =log 12x 衰减的速度越来越慢.( )(3)不存在一个实数m ,使得当x >m 时,1.1x >x 100.( )提示 (1)√ 因为一次函数的图象是直线,所以当x 增加一个单位时,y 增加或减少的量为定值.(2)√ 由函数y =log 12x 的图象可知其衰减的速度越来越慢.(3)× 根据指数函数和幂函数增长速度的比较可知存在一个实数m ,使得当x >m 时,1.1x >x 100.题型一 几类函数模型的增长差异【例1】(1)下列函数中,增长速度最快的是()A.y=2 017x B.y=x2 017C.y=log2 017x D.y=2 017x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如下表:解析(1)比较幂函数、指数函数与对数函数可知,指数函数增长速度最快,故选A.(2)以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.答案(1)A(2)y2规律方法常见的函数模型及增长特点(1)线性函数模型:线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.(3)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m>0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(4)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定.【训练1】下列函数中随x的增大而增长速度最快的是()A.y=1100ex B.y=100 ln x C.y=x100D.y=100·2x解析指数函数y=a x,在a>1时呈爆炸式增长,并且a值越大,增长速度越快,应选A.答案 Ay1),1B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数.(2)结合函数图象,判断f(6),g(6),f(2 011),g(2 011)的大小.解(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2 011>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2 011)>g(2 011).又因为g(2 011)>g(6),所以f(2 011)>g(2 011)>g(6)>f(6).【迁移1】(变换条件)在例2中,若将“函数f(x)=2x”改为“f(x)=3x”,又如何求解第(1)题呢?解由图象的变化趋势以及指数函数和幂函数的增长速度可知:C1对应的函数为g(x)=x3,C2对应的函数为f(x)=3x.【迁移2】(变换所求)本例条件不变,例2(2)题中结论改为:试结合图象,判断f(8),g(8),f(2 015),g(2 015)的大小.解因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<8<x2,2 015>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(8)<g(8),当x>x2时,f(x)>g(x),所以f(2 015)>g(2 015),又因为g(2 015)>g(8),所以f(2 015)>g(2 015)>g(8)>f(8).规律方法由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.题型三函数模型的选择问题【例3】 某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100t,120t,130t .为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产量y (t )与月序数x 之间的关系.对此模拟函数可选用二次函数y =f (x )=ax 2+bx +c (a ,b ,c 均为待定系数,x ∈N *)或函数y =g (x )=pq x +r (p ,q ,r 均为待定系数,x ∈N *),现在已知该厂这种新产品在第四个月的月产量为137t ,则选用这两个函数中的哪一个作为模拟函数较好?解 根据题意可列方程组⎩⎪⎨⎪⎧f (1)=a +b +c =100,f (2)=4a +2b +c =120,f (3)=9a +3b +c =130.解得⎩⎪⎨⎪⎧a =-5,b =35,c =70.所以y =f (x )=-5x 2+35x +70.① 同理y =g (x )=-80×0.5x +140.② 再将x =4分别代入①与②式得f (4)=-5×42+35×4+70=130(t ),g (4)=-80×0.54+140=135(t ).与f (4)相比,g (4)在数值上更为接近第四个月的实际月产量,所以②式作为模拟函数比①式更好,故选用函数y =g (x )=pq x +r 作为模拟函数较好.规律方法 建立函数模型应遵循的三个原则(1)简化原则:建立函数模型,原型一定要简化,抓主要因素,主要变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.(3)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.【训练2】 某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?解 A 种债券的收益是每100元一年到期收益3元;B 种债券的半年利率为51.4-5050,所以100元一年到期的本息和为100⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝ ⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.通过以上分析,应购买B 种债券.课堂达标1.如表是函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型为( )A C .指数函数模型D .对数函数模型解析 随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型.故选A .答案 A2.当x 越来越大时,下列函数中,增长速度最快的应是( ) A .y =3x B .y =log 3xC .y =x 3D .y =3x解析 几种函数模型中,指数函数增长最快,故选D . 答案 D3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致是( )解析 设该林区的森林原有蓄积量为a , 由题意,ax =a (1+0.104)y ,故y =log 1.104x (x ≥1), ∴y =f (x )的图象大致为D 中图象. 答案 D4.当2<x <4时,2x ,x 2,log 2x 的大小关系是( ) A .2x >x 2>log 2x B .x 2>2x >log 2x C .2x >log 2x >x 2D .x 2>log 2x >2x解析 法一 在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x 在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x .法二 比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B .答案 B5.有甲乙两种商品,经销这两种商品所能获得的利润分别是p 万元和q 万元,它们与投入资金m (万元)的关系式为p =15m ,q =35m .今有3万元资金投入这两种商品.若设甲商品投资x 万元,投资两种商品所获得的总利润为y 万元. (1)写出y 关于x 的函数表达式;(2)如何分配资金可使获得的总利润最大?并求最大利润的值. 解 (1)由题意知,对甲种商品投资x 万元,获总利润为y 万元, 则对乙种商品的投资为(3-x )万元, 所以y =15x +35·3-x (0≤x ≤3).(2)令t =3-x (0≤t ≤3), 则x =3-t 2,所以y =15(3-t 2)+35t =-15⎝⎛⎭⎫t -322+2120, 所以当t =32时,y max =2120=1.05(万元).由t =3-x =32可求得x =0.75(万元),3-x =2.25(万元),所以为了获得最大利润,对甲乙两种商品的资金投入应分别为0.75万元和2.25万元, 此时获得最大利润为1.05万元.课堂小结三种函数模型的选取(1)当增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型. (3)幂函数模型y =x n (n >0),则可以描述增长幅度不同的变化:n 值较小(n ≤1)时,增长较慢;n 值较大(n >1)时,增长较快.。
2018学年高中数学新课标人教a版必修1同步学案:3.2第4
第四课时,函数模型的综合应用一、课前准备 1.课时目标(1) 掌握函数的思想方法,即通过求出或构造出函数来解决问题; (2)学会运用函数知识解决某些简单的实际问题;(3)梳理社会生活中普遍使用的函数模型,并进行简单的应用。
2.基础预探(1).一次函数求最值主要是利用它的 ;(2). 二次函数求最值也是要利用它的单调性,一般我们都先 . (3).无论什么函数求最值都要注意 .例如 等.二、基本知识习题化1. 向高为H 的圆锥形漏斗内注入化学溶液(漏斗下口暂且关闭),注入溶液量V 与溶液深度h 的大概图象是( ).2. 某种生物增长的数量A .21y x =-B .21x y =-C .21y x =-D .21.5 2.52y x x =-+3. 某企业近几年的年产值如下图:则年增长率(增长率=增长值/原产值)最高的是( ). A. 97年 B. 98年 C. 99年 D. 00年4. 某商店已按每件80元的成本购进某种上装1000件,根据市场预测,当每件售价100元时可全部售完,若定价每提高1元时销售量就减少5件,若要获得最大利润,则销售价应定为( )A 、110元B 、130元C 、150元D 、190元5. 某新型电子产品2002年投产,计划2004年使其成本降低36℅. 则平均每年应降低成本 %.三、学习引领1.数学模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述的一种数学结构。
数学模型剔除了事物中一切与研究目标无本质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是最重要的数学模型,用函数解决方程问题,使求0099989796(年)2004006008001000(万元)解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.2.关于数学建模中的假设就一般的数学建模来说,是离不开假设的,如果在问题的原始状态下不作任何假设,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手。
人教统编部编版高中数学必修一A版第三章《函数概念与性质》全章节教案教学设计(含章末综合复习)
⼈教统编部编版⾼中数学必修⼀A版第三章《函数概念与性质》全章节教案教学设计(含章末综合复习)【新教材】⼈教统编版⾼中数学必修⼀A版第三章教案教学设计3.1《函数的概念及其表⽰》教材分析:课本从引进函数概念开始就⽐较注重函数的不同表⽰⽅法:解析法,图象法,列表法.函数的不同表⽰⽅法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两⽅⾯的结合得到更充分的表现,使学⽣通过函数的学习更好地体会数形结合这种重要的数学思想⽅法.因此,在研究函数时,要充分发挥图象的直观作⽤.在研究图象时,⼜要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的⼀种推⼴,这与传统的处理⽅式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学⽣将更多的精⼒集中理解函数的概念,同时,也体现了从特殊到⼀般的思维过程.教学⽬标与核⼼素养:课程⽬标1、明确函数的三种表⽰⽅法;2、在实际情境中,会根据不同的需要选择恰当的⽅法表⽰函数;3、通过具体实例,了解简单的分段函数,并能简单应⽤.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利⽤图像表⽰函数;5.数学建模:由实际问题构建合理的函数模型。
教学重难点:重点:函数的三种表⽰⽅法,分段函数的概念.难点:根据不同的需要选择恰当的⽅法表⽰函数,什么才算“恰当”?分段函数的表⽰及其图象.课前准备:多媒体教学⽅法:以学⽣为主体,采⽤诱思探究式教学,精讲多练。
教学⼯具:多媒体。
教学过程:⼀、情景导⼊初中已经学过函数的三种表⽰法:列表法、图像法、解析法,那么这三种表⽰法定义是?优缺点是?要求:让学⽣⾃由发⾔,教师不做判断。
⽽是引导学⽣进⼀步观察.研探. ⼆、预习课本,引⼊新课阅读课本67-68页,思考并完成以下问题1.表⽰两个变量之间函数关系的⽅法有⼏种?分别是什么?2.函数的各种表⽰法各有什么特点?3.什么是分段函数?分段函数是⼀个还是⼏个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学⽣独⽴完成,以⼩组为单位,组内可商量,最终选出代表回答问题。
2018版高中数学人教版A版必修一学案第三单元 章末复习课 Word版含答案
章末复习课网络构建核心归纳.函数的零点与方程的根的关系函数()的零点就是方程()=的解,函数()的零点的个数与方程()=的解的个数相等,也可以说方程()=的解就是函数()的图象与轴交点的横坐标,即函数()的函数值等于时自变量的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数..函数零点的存在性定理()该定理的条件是:①函数()在区间[,]上的图象是连续不断的;②()·()<,即()和()的符号相反.这两个条件缺一不可.()该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数..函数应用()要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.()在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.()根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一函数的零点与方程的根函数的零点与方程的根的关系及应用.函数的零点与方程的根的关系:方程()=有实数根⇔函数=()的图象与轴有交点⇔函数=()有零点..确定函数零点的个数有两个基本方法:利用图象研究与轴的交点个数或转化成两个函数图象的交点个数进行判断.【例】()函数()=(\\(-,≤,-+,>))的零点个数是.()若函数()=--有两个零点,则实数的取值范围是.解析()①当≤时,由()=,即-=,解得=或=-.因为≤,所以=-.②法一(函数单调性法)当>时,()=-+.而()=×-+=-<,()=×-+=>,所以()·()<,又函数()的图象是连续的,故由零点存在性定理,可得函数()在()内至少有一个零点.而函数=-在(,+∞)上单调递增,=在(,+∞)上单调递增,所以函数()=-+在(,+∞)上单调递增.故函数()=-+在(,+∞)内有且只有个零点.综上,函数()共有个零点.法二(数形结合法)当>时,由()=,得-+=,即=-.如图,分别作出函数=和=-的图象.显然,由图可知,两函数图象只有一个交点,且在轴的右侧,故当>时,()=只有一个解.综上,函数()共有个零点.()由()=得-=,在同一坐标系中作出函数=-和=的图象,如图所示,由图可知<<,即若()有两个零点,则的取值范围是().答案() ()()【训练】已知关于的方程·+·+=(≠),常数,同号,,异号,则下列结论中正确的是( ).此方程无实根.此方程有两个互异的负实根。
人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念
第三章函数的概念与性质3.1 函数的概念及其表示3.1.1函数的概念课前自主学习知识点1函数的定义及相关概念(1)函数的定义:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个实数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)相关概念:x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,函数值的集合{f(x)| x∈A }叫做函数的. 显然,值域是集合B的.(3)同一个函数:如果两个函数的相同,并且完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.『微思考』(1)任何两个集合之间都可以建立函数关系吗?(2)什么样的对应可以构成函数关系?知识点2区间及相关概念(1)一般区间的表示设a,b是两个实数,而且,我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间(2)实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示定义区间数轴表示{x|x≥a}{x|x>a}{x|x≤b}{x|x<b}『微体验』1.下列区间与集合{x|x<-2或x≥0}相对应的是()A.(-2,0)B.(-∞,-2』∪『0,+∞)C.(-∞,-2)∪『0,+∞)D.(-∞,-2』∪(0,+∞)2.下列集合不能用区间的形式表示的个数为()①A={0,1,5,10};②{x|2<x≤10,x∈N};③∅;④{x|x是等边三角形};⑤{x|x≤0或x≥3};⑥{x|x>1,x∈Q}.A.2B.3 C.4D.53.{x|x>1且x≠2}用区间表示为________.课堂互动探究探究一函数关系的判断例1 下列对应中是A 到B 的函数的个数为( ) (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =『-1,1』,B ={0},f :x →y =0;(4)A ={1,2,3},B ={a ,b },对应关系如下图所示:(5)A ={1,2,3},B ={4,5,6},对应关系如下图所示:A .1B .2C .3D .4『方法总结』判断对应关系是否为函数,主要从以下三个方面去判断 (1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应; (3)A 中任何一个元素在B 中的对应元素必须唯一. 跟踪训练1 对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x 值,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个探究二 求函数定义域问题 例2 求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3;(3)y =ax -3(a 为常数).变式探究 将本例(1)改为y =(x +1)2x +1-1-x 2,其定义域如何?『方法总结』求函数定义域的常用依据(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的『解 析』式,则应符合实际问题,使实际问题有意义. 跟踪训练2 (1)设全集为R ,函数f (x )=2-x 的定义域为M ,则∁R M 为( ) A .(2,+∞)B .(-∞,2)C .(-∞,2』D .『2,+∞)(2)函数f (x )=xx -1的定义域为________.探究三 求函数值和函数值域问题例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.『方法总结』求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算确定其值域.(2)常用方法:①逐个求法:当定义域为有限集时,常用此法;②观察法:如y=x2,可观察出y≥0;③配方法:对于求二次函数值域的问题常用此法;④换元法:对于形如y=ax+b+cx+d的函数,求值域时常用换元法,令t=cx+d,将原函数转化为关于t的二次函数;⑤分离常数法:对于形如y=cx+dax+b的函数,常用分离常数法求值域;⑥图象法:对于易作图象的函数,可用此法,如y=1x-1.跟踪训练3求下列函数的值域:(1)y=3x-1,x∈{1,3,5,7};(2)y=-x2+2x+1,x∈R;(3)y=x+1-2x.探究四同一个函数的判定例4 下列各组函数是同一个函数的是________.(填序号)①f(x)=-2x3与g(x)=x-2x;②f(x)=x0与g(x)=1x0;③f(x)=x2-2x-1与g(t)=t2-2t-1.『方法总结』判断同一个函数的三个步骤和两个注意点(1)判断函数是否相等的三个步骤.(2)两个注意点.①在化简『解析』式时,必须是等价变形;②与用哪个字母表示变量无关.跟踪训练4下列各组中的两个函数是否为同一个函数?(1)y1=(x+3)(x-5)x+3,y2=x-5;(2)y1=x+1·x-1,y2=(x+1)(x-1).随堂本课小结1.对函数概念的五点说明(1)对数集的要求:集合A,B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.求函数的定义域就是求使函数『解析』式有意义的自变量的取值范围,列不等式(组)是求函数定义域的基本方法.3.求函数的值域常用的方法有:观察法、配方法、换元法、分离常数法、图象法等.——★参*考*答*案★——课前自主学习知识点1函数的定义及相关概念(2)自变量定义域函数值值域子集(3)定义域对应关系『微思考』(1)提示:不一定,两个集合必须是非空的数集.(2)提示:两个非空数集之间是一一对应关系或多对一可构成函数关系.知识点2区间及相关概念(1)a<b『a,b』(a,b) 『a,b) (a,b』(2) (-∞,+∞)(3) 『a,+∞)(a,+∞)(-∞,b』(-∞,b)『微体验』1.C『『解析』』集合{ x|x<-2或x≥0}可表示为(-∞,-2)∪『0,+∞).2.D『『解析』』用区间表示的集合必须是连续的实数构成的集合,只有⑤是连续实数构成的集合,因此只有⑤可以用区间表示.3.(1,2)∪(2,+∞)『『解析』』{x|x>1且x≠2}用区间表示为(1,2)∪(2,+∞).课堂互动探究探究一函数关系的判断例1 B『『解析』』(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A到集合B的函数;(3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合B的函数;(4)集合B 不是确定的数集,故不是A 到B 的函数;(5)集合A 中的元素3在B 中没有对应元素,且A 中元素2在B 中有两个元素5和6与之对应,故不是A 到B 的函数. 跟踪训练1 B『『解 析』』①③正确,②是错误的,对于不同的x 值,y 的值可以相同,这符合函数的定义,④是错误的,f (x )表示的是函数,而函数并不是都能用具体的式子表示出来. 探究二 求函数定义域问题例2 解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(3)要使函数有意义,必须使ax -3≥0.当a >0时,原函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥3a ; 当a <0时,原函数的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≤3a; 当a =0时,ax -3≥0的解集为∅,不符合函数的定义,故此时不是函数.变式探究 解 由⎩⎪⎨⎪⎧x +1≠0,1-x 2≥0,解得{x |-1<x ≤1}.跟踪训练2 (1)A『『解 析』』由2-x ≥0,解得x ≤2,所以M =(-∞,2』,所以∁R M =(2,+∞). (2){x |x ≥0,且x ≠1}『『解 析』』要使xx -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0,且x ≠1,故函数f (x )的定义域为{x |x ≥0,且x ≠1}.探究三 求函数值和函数值域问题例3 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)f (g (2))=f (6)=11+6=17. (3)f (x )=11+x 的定义域为{x |x ≠-1},∴值域是{y |y ≠0}.g (x )=x 2+2的定义域为R ,最小值为2,∴值域是{y |y ≥2}.跟踪训练3 解 (1)(逐个求法)将x =1,3,5,7依次代入『解 析』式,得y =2,8,14,20.∴函数的值域是{2,8,14,20}.(2)(配方法)∵y =-x 2+2x +1=-(x -1)2+2≤2, ∴函数的值域是(-∞,2』.(3)(换元法或配方法)令1-2x =t ,则x =1-t 22,且t ≥0,∴原函数化为y =1-t 22+t =-12t 2+t +12=-12(t -1)2+1≤1.∴所求函数的值域是(-∞,1』. 探究四 同一个函数的判定 例4 ②③『『解 析』』①f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数;②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 跟踪训练4 解 (1)两函数定义域不同,所以不是同一个函数.(2)y 1=x +1·x -1的定义域为{x |x ≥1},而y 2=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},定义域不同,所以不是同一个函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2 函数模型及其应用3.2.1 几类不同增长的函数模型学习目标 1.掌握常见增长函数的定义、图象、性质、并体会增长快慢;理解直线上升,对数增长,指数爆炸的含义(重点).2.会分析具体的实际问题,并进行数学建模解决实际问题(重点).预习教材P95-P101,完成下面问题: 知识点 三种函数模型的性质(1)当x 每增加一个单位时,y 增加或减少的量为定值,则y 是x 的一次函数.( ) (2)函数y =log 12x 衰减的速度越来越慢.( )(3)不存在一个实数m ,使得当x >m 时,1.1x >x 100.( )提示 (1)√ 因为一次函数的图象是直线,所以当x 增加一个单位时,y 增加或减少的量为定值.(2)√ 由函数y =log 12x 的图象可知其衰减的速度越来越慢.(3)× 根据指数函数和幂函数增长速度的比较可知存在一个实数m ,使得当x >m 时,1.1x >x 100.题型一 几类函数模型的增长差异【例1】 (1)下列函数中,增长速度最快的是( )A.y=2 017x B.y=x2 017C.y=log2 017x D.y=2 017x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如下表:解析(1)比较幂函数、指数函数与对数函数可知,指数函数增长速度最快,故选A.(2)以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.答案(1)A(2)y2规律方法常见的函数模型及增长特点(1)线性函数模型:线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.(3)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m>0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(4)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定.【训练1】下列函数中随x的增大而增长速度最快的是()A.y=1100ex B.y=100 ln x C.y=x100D.y=100·2x解析指数函数y=a x,在a>1时呈爆炸式增长,并且a值越大,增长速度越快,应选A.答案 A【例2】函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数.(2)结合函数图象,判断f(6),g(6),f(2 011),g(2 011)的大小.解(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2 011>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2 011)>g(2 011).又因为g(2 011)>g(6),所以f(2 011)>g(2 011)>g(6)>f(6).【迁移1】(变换条件)在例2中,若将“函数f(x)=2x”改为“f(x)=3x”,又如何求解第(1)题呢?解由图象的变化趋势以及指数函数和幂函数的增长速度可知:C1对应的函数为g(x)=x3,C2对应的函数为f(x)=3x.【迁移2】(变换所求)本例条件不变,例2(2)题中结论改为:试结合图象,判断f(8),g(8),f(2 015),g(2 015)的大小.解因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<8<x2,2 015>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(8)<g(8),当x>x2时,f(x)>g(x),所以f(2 015)>g(2 015),又因为g(2 015)>g(8),所以f(2 015)>g(2 015)>g(8)>f(8).规律方法由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.题型三函数模型的选择问题【例3】某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100t,120t,130t.为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产量y (t )与月序数x 之间的关系.对此模拟函数可选用二次函数y =f (x )=ax 2+bx +c (a ,b ,c 均为待定系数,x ∈N *)或函数y =g (x )=pq x +r (p ,q ,r 均为待定系数,x ∈N *),现在已知该厂这种新产品在第四个月的月产量为137t ,则选用这两个函数中的哪一个作为模拟函数较好?解 根据题意可列方程组⎩⎪⎨⎪⎧f (1)=a +b +c =100,f (2)=4a +2b +c =120,f (3)=9a +3b +c =130.解得⎩⎪⎨⎪⎧a =-5,b =35,c =70.所以y =f (x )=-5x 2+35x +70.① 同理y =g (x )=-80×0.5x +140.② 再将x =4分别代入①与②式得f (4)=-5×42+35×4+70=130(t ),g (4)=-80×0.54+140=135(t ).与f (4)相比,g (4)在数值上更为接近第四个月的实际月产量,所以②式作为模拟函数比①式更好,故选用函数y =g (x )=pq x +r 作为模拟函数较好.规律方法 建立函数模型应遵循的三个原则(1)简化原则:建立函数模型,原型一定要简化,抓主要因素,主要变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.(3)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.【训练2】 某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?解 A 种债券的收益是每100元一年到期收益3元;B 种债券的半年利率为51.4-5050,所以100元一年到期的本息和为100⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝ ⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.通过以上分析,应购买B 种债券.课堂达标1.如表是函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型为( )A C .指数函数模型D .对数函数模型解析 随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型.故选A .答案 A2.当x 越来越大时,下列函数中,增长速度最快的应是( ) A .y =3x B .y =log 3xC .y =x 3D .y =3x解析 几种函数模型中,指数函数增长最快,故选D . 答案 D3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致是( )解析 设该林区的森林原有蓄积量为a ,由题意,ax =a (1+0.104)y ,故y =log 1.104x (x ≥1), ∴y =f (x )的图象大致为D 中图象. 答案 D4.当2<x <4时,2x ,x 2,log 2x 的大小关系是( ) A .2x >x 2>log 2x B .x 2>2x >log 2x C .2x >log 2x >x 2D .x 2>log 2x >2x解析 法一 在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x 在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x .法二 比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B .答案 B5.有甲乙两种商品,经销这两种商品所能获得的利润分别是p 万元和q 万元,它们与投入资金m (万元)的关系式为p =15m ,q =35m .今有3万元资金投入这两种商品.若设甲商品投资x 万元,投资两种商品所获得的总利润为y 万元. (1)写出y 关于x 的函数表达式;(2)如何分配资金可使获得的总利润最大?并求最大利润的值. 解 (1)由题意知,对甲种商品投资x 万元,获总利润为y 万元, 则对乙种商品的投资为(3-x )万元, 所以y =15x +35·3-x (0≤x ≤3).(2)令t =3-x (0≤t ≤3), 则x =3-t 2,所以y =15(3-t 2)+35t =-15⎝⎛⎭⎫t -322+2120, 所以当t =32时,y max =2120=1.05(万元).由t =3-x =32可求得x =0.75(万元),3-x =2.25(万元),所以为了获得最大利润,对甲乙两种商品的资金投入应分别为0.75万元和2.25万元, 此时获得最大利润为1.05万元.课堂小结三种函数模型的选取(1)当增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型. (3)幂函数模型y =x n (n >0),则可以描述增长幅度不同的变化:n 值较小(n ≤1)时,增长较慢;n 值较大(n >1)时,增长较快.。