专题训练之平衡问题及整体与隔离法

合集下载

整体法与隔离法解平衡问题

整体法与隔离法解平衡问题

整体法与隔离法在平衡中的应用例1如图所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ.质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱的支持力和摩擦力各为多少?方法提炼1.对整体法和隔离法的理解整体法是指将相互关联的各个物体看成一个整体的方法,整体法的优点在于只需要分析整个系统与外界的关系,避开了系统内部繁杂的相互作用.隔离法是指将某物体从周围物体中隔离出来,单独分析该物体的方法,隔离法的优点在于能把系统内各个物体所处的状态、物体状态变化的原因以及物体间的相互作用关系表达清楚.2.整体法和隔离法的使用技巧当分析相互作用的两个或两个以上物体的受力情况及分析外力对系统的作用时,宜用整体法;而在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法.整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法.练习1.(2013•山东)如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A、B、C、1:2 D、2:12. 如图,物体P静止于固定的斜面上,P的上表面水平,现把物体Q轻轻地叠放在P上,则()A、P向下滑动B、P静止不动C、P所受的合外力增大D、P与斜面间的静摩擦力增大3.如图所示,一个半球形的碗放在桌面上,碗口水平,O是球心,碗的内表面光滑.一根轻质杆的两端固定有两个小球,质量分别是m1、m2.当它们静止时,m1、m2与球心的连线跟水平面分别成60°、30°角,则两小球质量m1与m2的比值是()A.1∶2 B.3∶1 C.2∶1 D.3∶24. 把用金属丝做成的直角三角形框架ABC竖直地放在水平面上,AB边与BC边夹角为α,直角边AC上套一小环Q,斜边AB上套另一小环P,P、Q的质量分别为m1、m2,中间用细线连接,如图所示.设环与框架都是光滑的,且细线的质量可忽略,当环在框架上平衡时,求细线与斜边的夹角β及细线中的张力.5. 用轻质细线把两个未知质量的小球悬挂起来,如图所示,今对小球a持续施加一个向左偏下30度的恒力,并对小球b持续施加一个向右偏上30度的同样大的恒力,最后达到平衡,表示平衡状态的是图中的哪一幅?( )6、(2010福建惠安模拟)一光滑圆环固定在竖直平面内,环上套着两个小球A 和B (中央有孔),A 、B 间由细绳连接着,它们处于如图所示位置时恰好都能保持静止状态。

物体的平衡的整体法和隔离法

物体的平衡的整体法和隔离法

整体法和隔离法解决平衡问题:(1)整体法:把几个物体视为一个整体,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力。

(2)隔离法:对单个物体进行分析、研究。

使用原则:通常在分析外力对系统的作用时,用整体法,在分析系统内部物体间相互作用力时,用隔离法;有时候整体法和隔离法交替使用。

适用条件:两物体对地静止或作匀速直线运动,或两物体虽作加速运动但相对静止(即对地有共同的加速度)实战巩固练习:1 .如图所示,三个完全相同的物体叠放在水平面上,用大小相同、方向相反的两个水平力F分别拉物块A和B三物体均处于静止状态()A.A对B的摩擦力大小为F,方向向左B .水平面对C没有摩擦力作用C.B对A没有摩擦力作用D.C对B的摩擦力大小为F,方向向左2 .在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放着质量为mRD m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止状态,则关于粗糙地面对三角形木块下列说法正确的是()A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C.有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力作用3 .如图,斜面放在光滑地板上并紧靠左边墙壁,两滑块叠放在一起沿斜面匀速下滑,则4 .如图所示,两只均匀光滑的相同小球,质量均为m ,置于静止的半径为R 的圆柱形容器, 已知小球的半径r(r<R),则以下说法正确的是:()5 .如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为e .斜 面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜 面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对 楔形物块的支持力为:A.(M + m)gB.(M + m)g-FC.(M + m)g +Fsin0D.(M + m)g - Fsine 6 .如图,一物体静止在一倾角为e=30°的斜面上,斜面又静止在水平地面 上.若用竖直向上大小为5N 的力F 拉物体,物体仍然静止,则 A .物体受到的合外力减小5N B .斜面体受到的压力减小2.5NA .斜面受到墙壁的弹力.C .斜面受到M 滑块的压力. B .斜面受到滑块的摩擦力沿斜面向上D - M 受到N 的摩擦力沿斜面向上.①容器底部对球的弹力等于2mg②两球间的弹力大小可能大于、等于或小于mg ③容器两壁对球的弹力大小相等 ④容器壁对球的弹力可能大于、小于或等于2mgA .①②③B .①②④ C.①③④ D.②③④C .斜面受到的摩擦力减小2.5ND .地面受到的压力减小5N5N7 .如图所示,在一根水平的粗糙的直横梁上,套有两个质量均为m的铁环,两铁环系有等长的细绳,共同拴着质量为M的小球,两铁环与小球均保持静止。

微专题07 整体法与隔离法在平衡中的应用-2025版高中物理微专题

微专题07  整体法与隔离法在平衡中的应用-2025版高中物理微专题

微专题07整体法与隔离法在平衡中的应用【核心要点提示】1.系统:几个相互作用的物体组成的整体2.内力与外力:系统内物体之间作用力为内力,外界对系统内任何一个物体的作用力即为外力。

【核心方法点拨】1.当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法;(注意整体法不分析内力)2.当分析系统内各物体(或一个物体各部分)间的相互作用时,宜用隔离法.【微专题训练】【经典例题选讲】【例题1】(2018·杭州七校联考)如图所示,甲、乙两个小球的质量均为m,两球间用细线连接,甲球用细线悬挂在天花板上。

现分别用大小相等的力F水平向左、向右拉两球,平衡时细线都被拉紧。

则平衡时两球的可能位置是下面的()解析:用整体法分析,把两个小球看作一个整体,此整体受到的外力为竖直向下的重力2mg、水平向左的力F(甲受到的)、水平向右的力F(乙受到的)和细线1的拉力,两水平力相互平衡,故细线1的拉力一定与重力2mg等大反向,即细线1一定竖直;再用隔离法,分析乙球受力的情况,乙球受到向下的重力mg,水平向右的拉力F,细线2的拉力F2。

要使得乙球受力平衡,细线2必须向右倾斜。

答案:A【变式1-1】(2016·河北省邯郸市高三教学质量检测)如图所示,用等长的两根轻质细线把两个质量相等的小球悬挂起来。

现对小球b施加一个水平向左的恒力F,同时对小球a施加一个水平向右的恒力3F,最后达到稳定状态,表示平衡状态的图可能是图中的()【解析】把两球连同之间的细线看成一个整体,对其受力分析,水平方向受向左的F和向右的3F ,故上面绳子一定向右偏,设上面绳子与竖直方向夹角为α,则T sin α=2F ,T cos α=2mg ,设下面绳子与竖直方向夹角为β,则T ′sin β=F ,T ′cos β=mg ,联立可得α=β,故选D 。

【答案】D【变式1-2】a 、b 两个带电小球的质量均为m ,所带电荷量分别为+q 和-q ,两球间用绝缘细线连接,a 球又用长度相同的绝缘细线悬挂在天花板上,在两球所在的空间有方向斜向下的匀强电场,电场强度为E ,平衡时细线都被拉紧,则平衡时可能位置是()【解析】首先取整体为研究对象,整体受到重力、电场力和上面绳子的拉力,由于两个电场力的矢量和为:0电()F qE qE =+-=,所以上边的绳子对小球的拉力与总重力平衡,位于竖直方向,所以上边的绳子应保持在绳子竖直位置,再对负电荷研究可知,负电荷受到的电场力斜向右上方,所以下面的绳子向左偏转,故A 正确,BCD 错误。

平衡问题的整体法和隔离法

平衡问题的整体法和隔离法
探究: M,m均静止,求地面对M的摩擦力
m
M
16:48
平衡问题的 整体法和隔离法
平衡状态:物体处于静止或匀速直线运动状态
整体法:把整个系统作为一个研究对象来分析 (即当作一个质点来考虑) 条件:系统中个部分运动状态相同
隔离法:把系统中某一部分隔离作为一个单独的 研究对象来分析
16:48
探究1:
FA f NA
θ
A T mg T C B
T
16:48
mg
【例4】如图所示,半径为R,重为G的均匀 球靠竖直墙放置,左下方有厚为h的木块, 若不计摩擦,用至少多大的水平推力F 推 木块才能使球离开地面.
F O ·
N1
N2
θ
G
16:48
A F1=5N C F1=5N
16:48
F2=0 F3=5N F2=5N F3=0
B F1=0 F2=5N F3=5N DF1=0 F2=10N F3=5N
探究3: A与墙,A与B 之间的摩擦力大小
变形:
A B
F F F
F F
1 1 2 3
F
16:48
试一试:在两块相同的竖直木板之间有 质量均为m的4块相同的砖,用两个大 小均为F的水平力压木板使砖静止不动, 则第2块对第3块的摩擦力大小为多少?
m
16:48
D以上结论都不对
探究5:在天花板下用弹簧秤悬挂一个 吊篮,吊篮内静止站着一个运动员。当 此人用10牛的力向下拉吊篮的上端时弹 簧秤的示数将(C )
A增大10N B减小10N C不变 D不能确定是否变化
16:48
人重600N平板重200N如果人要拉 住木板他必须用多少牛的力?(忽 略滑轮的重力) 200N

高三专题 处理平衡问题的常用方法和特例

高三专题  处理平衡问题的常用方法和特例
所以
热身训练
方法二:力的分解法 如图将mg根据效果分解为沿斜面向下的分力 和垂直斜面的分力 由平衡条件有:
热身训练
方法三:力的三角形法 将 平移后,与mg 构成首尾相连的封闭 直角三角形。根据直角三角形边角关系,有
mg
题型一 用图解法分析动态平衡问题
.
(2009年天津质检)如图所示,把球夹在竖直墙面AC和木板BC之 F F 间,不计摩擦。设球对墙的压力为 N1 ,球对板的压力为 N2 ,在将板 BC逐渐放至水平的过程中,下列说法中正确的是( )

F
NB=G+FN′cos
45°

G
2 2 (1 )

另有Ffm=
FNB
由②③④式可得:FN′=
而FN=FN′,代入①式可得: G
反思归纳:
A


1
G.
处理平衡物理中的临界问题和极值问题,
首先仍要正确受力分析,搞清临界条件并且要利用好 临界条件,列出平衡方程,对于分析极值问题,要善于 选择物理方法和数学方法,做到数理的巧妙结合. 对于不能确定的临界状态,我们采取的基本思维方法
要点·疑点·考点
2. 常用的数学方法
(1)菱形转化为直角三角形。如果两分力大小相等,则以这两分力 为邻边所作的平行四边形是一个菱形,根据菱形的两条对角线相互 垂直平分,可将菱形转化成直角三角形。 (2)相似三角形法。在具体问题中,当表示力的大小的矢量三角形与 其相应的几何三角形相似时,可利用相似三角形对应边的比例关系求解力 的大小,特别是当几何三角形的边长为已知时,利用此法解题尤为简单。 (3)正弦定理法:如果在共点的3个力的作用下,物体处于平衡状态, 那么各力的大小分别与另外两个力夹角的正弦成正比,如图所示,表达式为

共点力作用下的平衡3之整体法隔离法求解多对象的平衡问题

共点力作用下的平衡3之整体法隔离法求解多对象的平衡问题

整体法与隔离法
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法时不仅可以把几个物体作为整体, 也可以把几个物理过程作为一个整体,采用整 体法可以避免对整体内部进行繁锁的分析,常 常使问题解答更简便、明了。
二、隔离法:把所研究对象从整体中隔离出 来进行研究,最终得出结论的方法称为隔离 法。可以把整个物体隔离成几个部分来处理 ,也可以把整个过程隔离成几个阶段来处理 ,还可以对同一个物体,同一过程中不同物 理量的变化进行分别处理。采用隔离物体法 能排除与研究对象无关的因素,使事物的特 征明显地显示出来,从而进行有效的处理。
ቤተ መጻሕፍቲ ባይዱ
如图所示,质量为m的滑块Q,沿质量为M的斜面 P匀速下滑,斜面P静止在水平上,则在滑块下滑 的过程中地面对P的作用力,下列说法错误的是()
【例1】 在粗糙水平面上有一个三角形木块a,在它的 两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c,如图所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( ) A.有摩擦力作用,摩擦力 的方向水平向右 B.有摩擦力作用,摩擦力 的方向水平向左 C.有摩擦力作用,但摩擦 力的方向不能确定 D.没有摩擦力的作用

整体法与隔离法处理平衡问题.

整体法与隔离法处理平衡问题.

解析:(1)对整个链祭受力分析如图所示, 由正交分解与力的平衡条件得: F1cosθ =F2cos θ ① F1 sin θ=F2sin θ ② G 由① ②式得:F F2
1
2sin θ
(2)对左半段链条受力分析如图所示.由 正交分解及力的平衡务件有: F1 cosθ =F G G cos θ cot θ 所以:F
分析:取人和木块作为一个整体,向右运动过程中受到 的摩擦力 F uF u(G G ) 200N N 1 2 。 由平衡条件得,两绳的拉力均为100 N。B正确。 再取木块研究,受到人的摩擦力F ' F F拉 200N 100N 100N .方向向右。C正确。
例6.如图所示,轻绳的两端分别系在圆环A和小球 B上,圆环A套在粗糙的水平直杆MN上.现用水平 力F拉着绳子上的一点O,使小球B从图中实线位置 缓慢上升到虚线位置,但圆环A始终保持在原位置不 动.则在这一过程中,环对杆的摩擦力Ff和环对杆 的压力FN的变化情况是 ( ) B A.Ff不变,FN不变 B.Ff增大,FN不变 C.Ff增大,FN减小 D. Ff不变,FN诫小
• 5.在粗糙水平面上有一个三角形木块a,在它的 两个粗糙斜面上分别放着质量为m1和m2的两 个木块b和c,如图2所示,已知m1>m2,三木块均 处于静止状态,则粗糙地面对三角形木块 • A、有摩擦力作用,摩擦力的方向水平向右 • B、有摩擦力作用,摩擦力的方向水平向左 • C、有摩擦力作用,但摩擦力的方向不能确定 • D、没有摩擦力作用 解:由于三个物体的加 速度相同,又只需判断 地面对三角形木块的摩 擦力,所以以三个物体 整体为研究对象,很快 能得到正确答案D.
例1如图1-1-5所示,粗糙的水平地面上有一ቤተ መጻሕፍቲ ባይዱ劈,斜劈 上一物块正在沿斜面以速度v0匀速下滑,斜劈保持静止,则地 面对斜劈的摩擦力( )

专题强化5 动态平衡问题 整体法和隔离法的应用

专题强化5 动态平衡问题 整体法和隔离法的应用
典例剖析 素养迁移 随堂巩固 提升练习 课时作业 知能提升
人教物理 必修第一册
[解析] 以 O 点为研究对象,受力如图所示,当用水平向左的力缓慢拉 动 O 点时,绳 OA 与竖直方向的夹角 θ 变大,由共点力的平衡条件知:
FT=comsgθ,F=mg tan θ,所以 F 逐渐变大,FT 逐渐变大,选项 A 正确。
人教物理 必修第一册
专题强化5 动态平衡问题 整体法 和隔离法的应用
典例剖析 素养迁移 随堂巩固 提升练习 课时作业 知能提升
人教物理 必修第一册
[素养目标] 1.进一步熟练掌握平衡问题的解法。2.会利用解析法、图 解法和相似三角形法分析动态平衡问题。3.灵活运用整体法和隔离法 处理多个物体的平衡问题。4.掌握“活结”与“死结”,“动杆”与 “定杆”模型。
典例剖析 素养迁移 随堂巩固 提升练习 课时作业 知能提升
人教物理 必修第一册
如图所示,轻杆A端用铰链固定在墙上,B端吊一重物。通过轻绳 跨过定滑轮O用拉力F将B端缓慢上拉,滑轮在A点正上方(滑轮大小及摩 擦均不计),且OA>AB,在轻杆达到竖直位置前( D ) A.拉力F增大 B.拉力F大小不变 C.轻杆的弹力增大 D.轻杆的弹力大小不变
典例剖析 素养迁移 随堂巩固 提升练习 课时作业 知能提升
人教物理 必修第一册
如图所示,电线AB下端有一盏电灯,用绳子BC将其拉离墙壁, 在保证电线AB与竖直墙壁的夹角θ不变的情况下,使绳子BC由水平方向 逐渐向上转动至竖直方向,则绳子BC上的拉力的变化情况是( D ) A.逐渐增大 B.逐渐减小 C.先增大后减小 D.先减小后增大
受力分析时不要再考虑系统内物
注意问题
一般隔离受力较少的物体
体间的相互作用

第4讲 专题求解平衡问题的常用方法及特例

第4讲  专题求解平衡问题的常用方法及特例

7.正弦定理 .
图2-4-1 - - 如果物体受三个不平行力而处于平衡状态,如图 - - 所示 所示, 如果物体受三个不平行力而处于平衡状态,如图2-4-1所示, 则
"动态平衡"是指平衡问题中的一部分力是变力,是动态力,力的大小和方向 态平衡"是指平衡问题中的一部分力是变力,是动态力, 均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题. 均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问 题的一般思路是: 题的一般思路是:把"动"化为"静","静"中求"动". 化为" 中求"
式中G, , 均不变 逐渐变小 所以可知F 不变, 逐渐变小 均不变, 逐渐变小, 逐渐变小. 式中 ,H,L均不变,l逐渐变小,所以可知 N不变,F逐渐变小. 答案: 答案:B
2-1如图2-4-5所示,两球 ,B用劲度系数为 1的轻弹簧相连,球B用长为 的 - 如 所示, 用劲度系数为k 用长为L的 - - 所示 两球A, 用劲度系数为 的轻弹簧相连, 用长为 细绳悬于O点 固定在O点正下方 之间的距离恰为L, 细绳悬于 点,球A固定在 点正下方,且点 ,A之间的距离恰为 ,系统平 固定在 点正下方,且点O, 之间的距离恰为 衡时绳子所受的拉力为F 现把 现把A, 间的弹簧换成劲度系数为 的轻弹簧, 间的弹簧换成劲度系数为k 衡时绳子所受的拉力为 1.现把 ,B间的弹簧换成劲度系数为 2的轻弹簧,仍 使系统平衡,此时绳子所受的拉力为 的大小之间的关系为( 使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为 )
甲 FABcos 60°=FB Csin θ, ° , FABsin 60°+FB Ccos θ=FB, ° = 联立解得FBCsin(30°+θ)=FB/2,,故当θ变大时 变大时, 先变小后变大. 显然,当θ=60°时,FBC最小,故当 变大时,FBC先变小后变大. = ° 答案: 答案:B

专题拓展课三 动态平衡 整体法与隔离法

专题拓展课三 动态平衡 整体法与隔离法

专题拓展课三动态平衡整体法与隔离法[学习目标要求] 1.会用解析法和图解法处理动态平衡问题。

2.掌握整体法与隔离法处理平衡问题的思路。

拓展点1动态平衡问题1.动态平衡:平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的常见问题。

2.动态平衡问题的特点通过控制某一物理量,使其他物理量发生缓慢变化,而变化过程中的任何一个状态都看成是平衡状态。

3.处理动态平衡问题常用的方法解析法、图解法和相似三角形法。

(1)解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变量与自变量的一般函数式,然后依据自变量的变化确定应变量的变化(也叫函数法)。

(2)图解法:对研究对象进行受力分析,根据力的平行四边形定则或力的三角形定则画出不同状态时的力的矢量图(画在同一个图中),然后依据有向线段(表示力)的变化判断各个力的变化情况。

4.处理动态平衡问题的一般步骤(1)解析法①列平衡方程求出未知量与已知量的关系表达式。

②根据已知量的变化情况来确定未知量的变化情况。

(2)图解法①适用情况:物体只受三个力作用,且其中一个力的大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化。

②一般步骤:a.首先对物体进行受力分析,根据三角形定则将三个力的大小、方向放在同一个三角形中。

b.明确大小、方向不变的力,方向不变的力及方向变化的力的方向如何变化,画示意图。

③注意:由图解法可知,当大小、方向都可变的力(设为F1)与方向不变、大小可变的力垂直时,F1有最小值。

【例1】(2021·山东潍坊高一期末)如图所示,有一只小瓢虫在水平放置的半球形碗内,从最低点a缓慢的爬到接近碗沿的c点。

关于该过程中小瓢虫的受力情况,下列说法正确的是()A.在a点所受合力最大B.在b点所受支持力最大C.在c点所受摩擦力最大D.在c点所受支持力最大答案 C解析小瓢虫缓慢运动,处于平衡状态,合力处处为0,A错误;过a、b、c分别做切线,构建三个斜面,则过a的斜面倾角为0,过c的斜面倾角最大,支持力N=mg cos θ,a处支持力最大,静摩擦力f=mg sin θ,c处最大,C正确,B、D错误。

高中物理:整体法和隔离法在平衡问题中的应用

高中物理:整体法和隔离法在平衡问题中的应用

高中物理:整体法和隔离法在平衡问题中的应用在处理静力学问题时,首先就是研究对象的选取。

选取研究对象的基本方法有两种:一是整体法,即以两个或两个以上的物体组成的系统为研究对象进行分析。

它适用于处理不需要或不涉及整体内各物体间的相互作用的情况。

二是隔离法,即把研究对象从整体中隔离出来进行分析。

它适用于求解整体内物体间的相互作用的问题。

在有些较复杂的物理问题中整体法和隔离法往往要交替使用。

下面通过几个例子来介绍整体法和隔离法在解平衡问题中的应用。

例1、如图1所示,质量为m=2kg的物体,置于质量为M=10kg 的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角α=37°,始终保持静止,求地面对斜面体的摩擦力和支持力(取)。

图1分析:整体法有它的优点,但并非所有情况都可以用整体法,当求解物体和斜面之间的相互作用力时,就应选用隔离法(隔离物体或者隔离斜面体),因为整体法不能求出物体之间的相互作用力。

解析:(1)隔离法:先对物体m受力分析,如图2所示。

由平衡条件有图2垂直斜面方向:(1)平行斜面方向:(2)再对斜面体受力分析,如图3所示,由平衡条件有图3水平方向:(3)竖直方向:(4)结合牛顿第三定律知(5)联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。

(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图4所示,由平衡条件有图4水平方向:(1)竖直方向:(2)将题给数据代入,求得例2、如图5所示,在两块相同的竖直木板之间,有质量均为m 的四块完全相同的砖,用两个同样大小的水平力压木板,使四块砖均静止不动。

求:(1)木板对第1块砖和第4块砖的摩擦力各多大?(2)第2块砖和第3块砖之间的摩擦力?(3)第3块砖和第4块砖之间的摩擦力?图5分析:同一个情景,求解的力不同,研究对象的选取可以不同,但要注意使求解的力作为外力来出现。

整体法和隔离法在平衡问题中的应用

整体法和隔离法在平衡问题中的应用
因数μ与斜面倾角θ的关系为( )
A. tan C. 2 tan
B.
1 2
tan
D. 与 无关
B F θA
4、如图所示,固定在水平地面上的物体P,左侧是光 滑圆弧面,一根轻绳跨过物体P顶点上的小滑轮,一 端系有质量为m=4 kg的小球,小球与圆心连线跟水平 方向的夹角θ=60°,绳的另一端水平连接物块3,三 个物块重均为50 N,作用在物块2的水平力F=20 N,
aa
aa


b
b b
A
B
C
a
b
b
D
12、如图所示,a、b两个质量相同的球用线连接,a 球用线挂在天花板上,b球放在光滑斜面上,系统保持 静止(线的质量不计),以下图示哪个是正确的( )
13、如图所示两块相同的竖直木板A、B之间有质
量均为m的四块相同的砖,用两个大小均为F的水
平力压木板,使砖静止不动,设所有接触面间的摩
B.N=(ma+mb)g,N1≠N2
C.mag<N<(ma+mb)g,N1=N2 D.mag<N<(ma+mb)g,N1≠N2
11、用轻质线把两个质量未知的小球悬挂起来,如右图所 示今对小球a持续施加一个水平向左的恒力,并对小球b持 续施加一个水平向右的同样大的恒力,最后达到平衡。表
示平衡状态的图可能是:( A )
v
Q
P
B F θA
整体法和隔离法在平衡问 题中的应用
1、整体法:就是把两个或更多的物体组成的系统 作为研究对象。当研究外力对系统的作用时,一般选
用整体法。因为不用考虑系统内力,所以这种方法更
简便。
2、隔离法:把其中一个物体从系统中隔离出来作 为研究对象。在分析系统内各物体(各部分)间的相互 作用时,一般选用隔离法,一般情况下隔离受力较少

专题课:整体法和隔离法在平衡问题中的应用

专题课:整体法和隔离法在平衡问题中的应用

B. 可能等于
C. 一定大于1
D. 一定大于f
)
ACD
[解析] 受到重力2 、拉力 、弹簧弹力1 三力而平衡,根据平衡条件
知, 的水平分力与1 的水平分力大小相等,即
= cos = 1 cos = 1 , 的竖直分力比1 的竖直分力大,即
= sin = 1 sin + 2 = 1 + 2 ,则 = 1 , > 1 ,又知
=
2

tan =
+
1
1
2
,1
=
2
1
+
2
1 ,所以
> 1 ,故C正确;根据故A正确,B错误;根据整体法得cos = f ,所
以 > f ,故D正确.
平衡中的自锁现象
一个物体静止,当用外力试图使这个物体运动时,外力越大,物体被挤压得越紧,
越不容易运动,即最大静摩擦力的保护能力越强,这种现象叫自锁(定)现象.出
现自锁现象的原因是,自锁条件满足时,最大静摩擦力会随外力的增大而同比
例增大.
示例 已知一物块与水平面间的动摩擦因数为 ,最
大静摩擦力等于滑动摩擦力.如图所示,现对它作用一
推力 ,若 无论多大也推不动物块,则 与水平面
于三力平衡状态,故B、D错误;对物体 、 整体受力分析,
受到重力、恒力 ,假设墙壁对整体有支持力,则水平方向
上不能平衡,故墙壁对整体没有支持力,也就没有摩擦力;
对物体 受力分析,受到恒力 、重力、物体 对 的压力和
摩擦力,即物体 共受到4个力作用,故A正确,C错误.
变式1 如图所示,倾角为 、质量为 的斜面体静止在水平桌面上,质量

2024-2025学年高一物理必修第一册(人教版)专题提升7整体法和隔离法动态平衡问题

2024-2025学年高一物理必修第一册(人教版)专题提升7整体法和隔离法动态平衡问题

象时要注意整体法和隔离法的结合。具体应用中,一般先整体后隔离。
2.整体法、隔离法的比较
项目 整体法
概念
选用
原则
隔离法
将运动状态相同的几个物体作为一个整体 将研究对象与周围物体
来分析的方法
研究系统外的物体对系统整体的作用力
分隔开的方法
研究系统内物体之间的
相互作用力
注意 受力分析时不要再考虑系统内物体间的相 一般隔离受力较少的物

FC=kxC,FA=kxA,则

=
1

=2∶1,
=2∶1,D
sin30°

正确。
方法技巧
(1)整体法研究的对象不一定是所有物体组成的系统,也可以是
其中一部分物体;隔离法研究的对象也不一定是一个物体。
(2)整体法可以减少受力的个数,但不能分析内力;隔离法对多个受力了解
比较清楚,但计算时较麻烦。
个力的方向不变,第三个力大小、方向均变化。
对点演练
2. 一个光滑小球放在挡板与斜面之间,在挡板由竖直方向缓慢逆时针转到
水平位置的过程中,下列说法正确的是( A )
A.斜面对小球的支持力一直变小
B.斜面对小球的支持力一直变大
C.挡板对小球的弹力一直变大
D.挡板对小球的弹力与斜面对小球的弹力的合力一直变大
恒力F、N对M的弹力和摩擦力共4个力,故B、C错误;物体N受到重力、M
对N的弹力和摩擦力,根据平衡条件可知,M对N的作用力即M对N的弹力和
摩擦力的合力必然与物体N受到的重力等大反向,所以物体M对N的作用力
方向竖直向上,故D正确。
1 2 3 4
2.(用解析法处理动态平衡问题) 如图所示,一晒衣架静置于水平地面上,水

平衡整体法和隔离法总结

平衡整体法和隔离法总结

平衡整体法和隔离法总结嘿,朋友们!今天咱来聊聊平衡整体法和隔离法呀。

你说这平衡整体法呀,就像是看一场大戏,咱得把整个舞台都看在眼里,所有的演员、道具、场景一块儿考虑。

就好比你去看一场精彩的杂技表演,你不能光盯着一个演员看,得把整个舞台的热闹劲儿都感受了,这才叫真正领略到了这场表演的魅力嘛!它能让我们从宏观上把握问题,一下子就抓住关键所在。

那隔离法呢,就像是把一个演员从舞台上单独拎出来仔细端详。

咱就专门研究这一个演员的动作、表情、技巧,把他的每一个细节都琢磨透。

就好像你特别喜欢某个歌手,你就会专注于他的歌声、他的演唱风格,其他的都暂时忽略不计。

隔离法能让我们深入地去分析某个具体的对象,把它的特点和规律都找出来。

咱举个例子吧,比如说有一堆积木搭成的高塔,要是用平衡整体法呢,咱就看这个高塔整体稳不稳定呀,会不会倒呀。

要是用隔离法,那咱就单独拿出一块积木来,研究它在这个高塔中的位置、受力情况啥的。

你想想看,要是光用平衡整体法,可能有些小细节就被忽略掉了,就好像只看到了森林,没注意到里面的某棵特别的树。

可要是光用隔离法呢,又容易只见树木不见森林,只顾着研究那一块积木,却忘了整个高塔的情况。

所以啊,这俩方法就像是一对好兄弟,互相配合才能发挥出最大的作用呢!咱在生活中不也经常用到这俩方法嘛!比如说你在规划一次旅行,用平衡整体法就得考虑整个行程安排呀,交通呀,住宿呀这些大方面。

而用隔离法呢,你可能就会仔细研究某个特别想去的景点,它的开放时间呀,有啥特色呀。

再比如说学习,平衡整体法让你能把握整个学科的知识体系,知道哪些是重点,哪些是次要的。

而隔离法能让你深入地去理解一个具体的概念或者定理,把它彻底搞懂。

哎呀呀,这平衡整体法和隔离法可真是太重要啦!它们就像我们解决问题的两把利器呀!咱可不能小瞧了它们,得好好利用起来,让我们的生活和学习都变得更加轻松、更加高效呀!怎么样,朋友们,你们是不是也这么觉得呢?。

平衡复习和整体、隔离法

平衡复习和整体、隔离法

一、共点力平衡专题训练模型回顾:如图所示,(a)图中水平横梁AB的A端通过铰链连在墙上,横梁可绕A端上下转动,轻绳BC系在B端,并固定于墙上C点,B端挂质量为m的物体.(b)图中水平横梁的一端A插入墙内,另一端装有一滑轮,轻绳的一端固定在墙上,另一端跨过滑轮后挂质量也为m的物体.求两水平横梁作用力的大小.要点一物体平衡的基本概念1.重为G的均质杆一端放在粗糙的水平面上,另一端系在一条水平绳上,杆与水平面成α角,如图所示,已知水平绳中的张力大小F1,求地面对杆下端的作用力大小和方向.要点二平衡问题的解决办法2.如图所示,重物的质量为m,轻细线AO和BO的A、B端是固定的,平衡时AO是水平的,BO与水平面的夹角为θ,AO的拉力F1和BO的拉力F2的大小是()A.F2=mgcos θB. F1= mgcot θmgC. F2= mgsin θD. F2=sin要点三动态平衡问题3.如图所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A.绳子的拉力F不断增大4.(2009·宣武区模拟)如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物G.现将绳的一端拴在杆的B端,用拉力F将B端缓慢上拉(均未断),在AB杆达到竖直前,以下分析正确的是()要点四平衡中的临界与极值问题5.如图所示,能承受最大拉力为10 N的细线OA与竖直方向成45°角,能承受最大拉力为5 N的细线OB水平,细线OC能承受足够的拉力,为使OA、OB均不被拉断,OC下端所悬挂物体的重力最大是多少?要点五收尾速度问题6.v,且正比于球半径r,即阻力f=krv,k是比例系数,对于常温下的空气,比例系数k×10-4 N·s/m2.已知水的密度ρ×103 kg/m3,取重力加速度g=10 m/s2,试求半径r=0.10 mm的球形雨滴在无风情况下的终极速度v T.(结果取两位有效数字)二、整体法和隔离法在平衡问题中的应用例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,(取)求:(1)斜面对滑块的摩擦力;(2)地面对斜面体的摩擦力和支持力方法归纳:1. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。

整体法与隔离法解决平衡问题

整体法与隔离法解决平衡问题

整体法与隔离法解决平衡问题1.整体法:将加速度相同的几个相互关联的物体作为一个整体进行受力分析的方法。

2.隔离法:将所研究的对象从周围的物体中分离出来,单独进行受力分析的方法。

3.整体法和隔离法的使用技巧(1)当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法。

(2)在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法。

(3)整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法。

4.受力分析的四个步骤【例1】如图所示,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B接触面竖直),此时A 恰好不滑动,B 刚好不下滑。

已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力。

A 与B 的质量之比为( ) A.1μ1μ2 B.1-μ1μ2μ1μ2C.1+μ1μ2μ1μ2D.2+μ1μ2μ1μ2【例2】如图所示,光滑半球形容器固定在水平面上,O 为球心。

一质量为m 的小滑块,在水平力F 的作用下静止于P 点。

设滑块所受支持力为F N ,OP 与水平方向的夹角为θ。

下列关系正确的是( )A.F =mg tan θB.F =mg tan θC.F N =mg tan θD.F N =mg tan θ 【例3】(多选)如图所示,放置在水平地面上的质量为M 的直角劈上有一个质量为m 的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是( )A.直角劈对地面的压力等于(M +m )gB.直角劈对地面的压力大于(M +m )gC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力【例4】如图所示,质量为M 的物块被质量为m 的夹子夹住刚好能不下滑,夹子由长度相等的轻绳悬挂在A 、B 两轻环上,轻环套在水平直杆上,整个装置处于静止状态.已知物块与夹子间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g .求:(1)直杆对A 环的支持力的大小;(2)夹子右侧部分对物块的压力的大小.随堂练习1.(多选)如图所示,质量为m 的小物体(可视为质点)静止地放在半径为R 的半球体上,小物体与半球体间的动摩擦因数为μ,物体与球心的连线与水平地面的夹角为θ,整个装置静止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一:平衡问题及整体与隔离法方法一:(矢量三角形法则)(其中三力使物体平衡,且三力中有两个力方向不发生改变)1.如图,绳OA、OB等长,O点固定不动,在手持B点沿圆弧向C点运动的过程中,绳OB的力将()A.由大变小B.由小变大C.先变小后变大D.先变大后变小2.如图,用轻线悬挂的球放在光滑的斜面上,将斜面缓慢向左水平推动一小段距离,在这一过程中,关于线对球的拉力及球对斜面的压力的变化情况,正确的是()A.拉力变小,压力变大B.拉力变大,压力变小C.拉力和压力都变大D.拉力和压力都变小3.把一个均匀球放在光滑斜面和一个光滑挡板之间.斜面的倾斜角α一定,挡板与斜面的夹角是θ(如图),设球对挡板的压力为N A,球对斜面的压力为N B。

以下说确()A.θ=α时,N B=0B.θ=90°时,N A最小C.N B有可能大于小球所受的重力D.N A不可能大于小球所受的重力4.如图所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共同固定一个小球,这时绳b的拉力为T1。

现保持小球在原位置不动,使绳b在原竖直平面逆时转过θ角固定,绳b的拉力变为T2;再转过θ角固定,绳b的拉力为T3,则()A.T1=T3>T2B.T1<T2<T3C.T1=T3<T2D.绳a的拉力减小5.一个半径为r,重为G的圆球,被长为L的细绳挂在竖直的,光滑的墙壁上,若加长细绳的长度,则细绳对球的力T及墙对球的弹力N各将如何变化:如右图所示()A.T一直减小,N先增大后减小B.T一直减小,N先减小后增大C.T和N都减小D.T和N都增大。

6.(12)如图,一小球放置在木板与竖直墙面之间。

设墙面对球的压力大小为N1,球对木板的压力大小为N2。

以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中A.N 1始终减小,N 2始终增大B.N 1始终减小,N 2始终减小C.N 1先增大后减小,N 2始终减小D.N 1先增大后减小,N 2先减小后增大方法二:(相似三角形法)该方法适用于三力平衡时其中两个力的方向发生变化例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。

由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。

实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。

mg Rh RN +=运动中各量均为定值,支持力N 不变。

正确答案D 。

例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。

对小球漏电前和漏电过程中进行受力分析有如图2-2所示,由于漏电过程缓慢进行,则任意时刻均可视为平衡状态。

三力作用构成动态下的封闭三角形,而对应的实物质点A 、B 及绳墙和P 点构成动态封闭三角形,且有如图2-3不同位置时阴影三角形的相似情况,则有如下相似比例:AB FPB T PQ mg AB == 可得:mg PQPBT ⋅= 变化过程PB 、PQ 、mg 均为定值,所以T 不变。

正确答案C 。

练习题:1. 如图1所示,支架ABC ,其中,在B 点挂一重物,,求AB 、BC 上的受力。

答案:2. 两根等长的轻绳,下端结于一点挂一质量为m 的物体,上端固定在天花板上相距为S 的两点上,已知两绳能承受的最大拉力均为T ,则每根绳长度不得短于多少?答案:3.如图所示,竖直绝缘墙壁上的Q 处有一固定的质点A ,在Q 的正上方的P 点用丝线悬另一质点B ,A 、B 两质点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的带电荷量逐渐减少,在电荷漏电完之前悬线对悬点P 的拉力大小( ) A. 变小B. 变大C. 不变D. 无法确定答案:C4. 如图所示,两球A 、B 用劲度系数为k 1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F 1.现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F 2,则F 1与F 2的大小之间的关系为( ) A .F 1>F 2 B .F 1=F 2 C .F 1<F 2 D .无法确定 答案:B5.如图甲所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的重物,且B 端系有一根轻绳并绕过定滑轮A.现用力F 拉绳,开始时∠BCA >90°,使∠BCA 缓慢减小,直到杆BC 接近竖直杆AC.此过程中,杆BC 所受的力( ) A .大小不变 B .逐渐增大 C .逐渐减小 D .先增大后减小答案:A6、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D 用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变 答案 C7、如图所示,竖直杆CB 顶端有光滑轻质滑轮,轻质杆OA 自重不计,可绕O 点自由转动OA =OB .当绳缓慢放下,使∠AOB 由00逐渐增大到1800的过程中(不包括00和180°.下列说确的是( ) A .绳上的拉力先逐渐增大后逐渐减小 B .杆上的压力先逐渐减小后逐渐增大 C .绳上的拉力越来越大,但不超过2G D .杆上的压力大小始终等于G 答案:C D方法三(正交分解法)例2:(2010新课标)如图所示,一物块置于水平地面上。

当用与水平方向成060角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成030角的力2F 推物块时,物块仍做匀速直线运动。

若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数为 ( )A.31-B.23-C.3122-D.1-32A C B例2如图所示,质量为m,横截面为直角三角形的物块ABC,AB边靠在竖直墙面上,物块与墙面间的动摩擦因数为μ,F是垂直于斜面BC的推力,物块沿墙面匀速下滑,则物块所受到的摩擦力的大小为()A.αsinFmg+B.αsinFmg-C.mgμD.αμcosF练习1.如图,AB两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。

A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数值。

2.跨过定滑轮的轻绳两端,分别系着物体A和B,物体A放在倾角为θ的斜面上,如图。

已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量取值围。

方法四:正弦定理的应用正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

即CcBA sinsinbsina==例1.(2008年延理综考卷)两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连,放置在一个光滑的半球面,如图1所示。

己知小球a和b的质量之比为3,细杆长度是球面半径的2倍。

两球处于平衡状态时,细杆与水平面的夹角θ是A.450B.300 C.22.50D.150难点处理(“死节”和“活节”“死杆”和“活杆”问题)1.如图所示,长为5m的细绳的两端分别系于竖立在地面上相距为4m的两杆的顶端A、B,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N的物体,平衡时,问:①绳中的力T为多少?②B点向上移动少许,重新平衡后,绳与水平面夹角,绳中力如何变化?(T1=T2=10N B点向上移动少许,重新平衡后,绳与水平面夹角,绳中力均保持不变。

)ACBFα图12.如图,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m 。

求:①OA 、OB 、OC 三根绳子拉力的大小。

②A 点向上移动少许,重新平衡后绳中力如何变化? ( T 1=T 2sin θ ,G =T 2cos θ但A 点向上移动少许,重新平衡后,绳OA 、OB 的力均要发生变化)3.如图所示,质量为m 的物体用细绳OC 悬挂在支架上的O 点,轻杆OB 可绕B 点转动,求细绳OA 中力T 大小和轻杆OB 受力N 大小。

4.如图所示,水平横梁一端A 插在墙壁,另一端装有小滑轮B ,一轻绳一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量为m =10kg 的重物,︒=∠30CBA ,则滑轮受到绳子作用力为:A .50NB .N 350C .100ND .N 3100处理技巧(对称方法及应用)1.(对称原理与隔离法)如图所示,重为G 的均匀链条。

两端用等长的细线连接,挂在等高的地方,绳与水平方向成θ角。

试求:⑴绳子的力。

⑵链条最低点的力。

2.如图,在光滑的水平杆上,穿着两个重均为2N 的球A 、B ,在两球之间夹着一弹簧,弹簧的劲度系数为10N/m ,用两条等长的线将球C 与A ,B 相连,此时弹簧被压缩短10cm ,两条线的夹角为60°。

求。

⑴杆对A 球的支持力多大?⑵ C 球的重力多大?3.如图所示的装置中,绳子与滑轮的质量不计,滑轮轴上的摩擦不计。

A 、B 两物体的质量分别为m 1和m 2 ,处于静止状态,则以下说法不正确的是( ) A .m 2一定等于m 1 B .m 2一定大于m 1g/2 C .θ1角与θ2角一定相等D .当B 的质量m 2稍许增加时,θ1+θ2一定增大,系统仍能达到平衡状态4.质量为10kg 的均匀圆柱体放在倾角为60°的V 型槽上,圆柱体与槽间的动摩擦因数为0.25.沿着圆柱体的轴向施加一个推力F ,使圆柱体沿槽做匀速直线运动。

相关文档
最新文档