物理化学课件04多组分系统热力学
合集下载
物理化学:第4章_多组分系统热力学_
Vm*,B Vm*,C Vm*,B xC
真实混合物:实曲线
Vm xBVB xCVC VB (VC VB)xC
当混合物组成改变时,两组 分偏摩尔体积随之改变,且二者 变化相互关联。
组成接近某纯组分,其偏摩 尔体积也接近该纯组分摩尔体积。
5. 吉布斯 − 杜亥姆方程
对广度量 X (T , p, nB, nC , nD ,) 求全微分:
dX
X T
p,nB
dT
X p
T ,nB
dp
B
X nB
dnB T , p,nC
恒温、恒压
另一方面,由加和公式
,恒温恒压下求导:
比较两式,得
或
或
吉布斯-杜亥姆方程--在一定温度压力下,当混合物
组成变化时,各组分偏摩尔量变化的相互依赖关系。
➢ 系统中各组分的偏摩尔量并非完全独立,而是相 互依存的。
➢ 例:固体溶解、过饱和溶液析出、…
组分B在α、β两相中迁移达平衡的条件:该组分
在两相中的化学势相等。
➢ 物质总是从其化学势高的相向化学势低的相迁移, 直至物质迁移达平衡时为止,此时系统中每个组分在 其所处的相中的化学势相等。
化学势 判据
② 化学平衡
<0:自发不可逆; =0:平衡、可逆
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等: Bα B
B
B
整个系统中B组分物质的量的变化量: dnBα dnB
α
BdnB
B
化学平衡时
平衡条件:与化学反应达到平衡的方式无关。
§4.3 气体组分的化学势
1、纯理想气体的化学势 2、理想气体混合物中任一组分的化学势 3、纯真实气体的化学势 4、真实气体混合物中任一组分的化学势
真实混合物:实曲线
Vm xBVB xCVC VB (VC VB)xC
当混合物组成改变时,两组 分偏摩尔体积随之改变,且二者 变化相互关联。
组成接近某纯组分,其偏摩 尔体积也接近该纯组分摩尔体积。
5. 吉布斯 − 杜亥姆方程
对广度量 X (T , p, nB, nC , nD ,) 求全微分:
dX
X T
p,nB
dT
X p
T ,nB
dp
B
X nB
dnB T , p,nC
恒温、恒压
另一方面,由加和公式
,恒温恒压下求导:
比较两式,得
或
或
吉布斯-杜亥姆方程--在一定温度压力下,当混合物
组成变化时,各组分偏摩尔量变化的相互依赖关系。
➢ 系统中各组分的偏摩尔量并非完全独立,而是相 互依存的。
➢ 例:固体溶解、过饱和溶液析出、…
组分B在α、β两相中迁移达平衡的条件:该组分
在两相中的化学势相等。
➢ 物质总是从其化学势高的相向化学势低的相迁移, 直至物质迁移达平衡时为止,此时系统中每个组分在 其所处的相中的化学势相等。
化学势 判据
② 化学平衡
<0:自发不可逆; =0:平衡、可逆
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等: Bα B
B
B
整个系统中B组分物质的量的变化量: dnBα dnB
α
BdnB
B
化学平衡时
平衡条件:与化学反应达到平衡的方式无关。
§4.3 气体组分的化学势
1、纯理想气体的化学势 2、理想气体混合物中任一组分的化学势 3、纯真实气体的化学势 4、真实气体混合物中任一组分的化学势
物理化学课件第9讲-多组分体系
cB
nB V
mol.m-3 常用mol.dm-3
4. 质量分数 (mass fraction)
wB
mB mB
注:(1) 各种浓度的换算:选合适量的溶液
例:某H2SO4(B)溶液 wB = 5%,则
xB
5
5 98 98 95
18
0.0096
bB
5 98 95
1000
0.5371mol.kg-1
二、偏摩尔量
V = V (T, P, n1, n2, … nk)
dV
V T
P,n1 ,n2 ,nK
V P
T ,n1 ,n2 ,nK
V nB
T , p,nC (C B)
➢ 定义:
VB
V nB
T , p,nC (C B)
B的偏摩尔体积
(1) 物理意义:
(2) 注意:下标是 T,p,nC(C≠B) 均相 容量性质才有相应的偏摩尔量
质点数目可变 敞开系统 (质量不守恒)
2. 溶液的状态描述:
➢ 容量性质: V V (T , p, n1, n2,nk )共k+2个变量
二元溶液
V V (T , p, nA, nB)
➢ 强度性质:
(T , p, x1, xk-1,) 共k+1个变量
二元溶液
(T , p, xB) (T , p, x )
HB UB pVB AB UB TSB GB AB pVB HB TSB UB pVB TSB
三、集合公式 (Additive formula)
k
nBVB
B 1
(1) 意义: (2) 二元溶液,
nAVA nBVB V
(3) 其他偏摩尔量的集合公式: 自己写出
物理化学课件:第四章 多组分系统
指液态溶液。 液体与液体以任意比例相互混合成均相即形成
混合物,气体、液体或固体溶于液体溶剂中即形成 溶液。
溶质有电解质和非电解质之分,本章主要讨 论非电介质所形成的溶液。
按规律性来划分 混合物:理想混合物、真实混合物。
溶液:理想稀溶液、真实溶液。
理想混合物在全部浓度范围内,理想稀溶液在 适当小的范围内,均有简单的规律性。
组成表示 ① 质量摩尔浓度(molality) bB:
bB
def
nB mA
溶质物质的量,单位 mol 溶剂的质量,单位 kg
bB 的单位:mol kg 1 。
② 物质的量浓度(molarity) cB:
cB
def
nB V
cB 的单位:mol m 3 。如果文献中用 molarity,则指单位 为 mol dm 3 。
B
dnB
=0
B
dnB
BdnB 0
B
该平衡条件与化学反应达到平衡的方式无关。
23
§4.3 气体组分的化学势
标准态:温度 T,标准压力 p 100 kPa ,理想气体。
该状态下的化学势称为标准化学势,以符合μBΘ(g)表示。 对于纯气体则省略下标B。 1.纯理想气体的化学势
使某纯理想气体B在温度T下由标准压力pΘ变至某一压力p,
Bl
Bg
RT
ln
pB* p
RT lnxB
* Bl
Bg
RT
ln
pB* p
40
因此
Bl
B* l RT lnxB
由纯液体 B 标准态的定义可知,
p
* Bl
Bl
p Vm*,B l dp
最后得到理想液态混合物中 B 组分化学势表达式:
混合物,气体、液体或固体溶于液体溶剂中即形成 溶液。
溶质有电解质和非电解质之分,本章主要讨 论非电介质所形成的溶液。
按规律性来划分 混合物:理想混合物、真实混合物。
溶液:理想稀溶液、真实溶液。
理想混合物在全部浓度范围内,理想稀溶液在 适当小的范围内,均有简单的规律性。
组成表示 ① 质量摩尔浓度(molality) bB:
bB
def
nB mA
溶质物质的量,单位 mol 溶剂的质量,单位 kg
bB 的单位:mol kg 1 。
② 物质的量浓度(molarity) cB:
cB
def
nB V
cB 的单位:mol m 3 。如果文献中用 molarity,则指单位 为 mol dm 3 。
B
dnB
=0
B
dnB
BdnB 0
B
该平衡条件与化学反应达到平衡的方式无关。
23
§4.3 气体组分的化学势
标准态:温度 T,标准压力 p 100 kPa ,理想气体。
该状态下的化学势称为标准化学势,以符合μBΘ(g)表示。 对于纯气体则省略下标B。 1.纯理想气体的化学势
使某纯理想气体B在温度T下由标准压力pΘ变至某一压力p,
Bl
Bg
RT
ln
pB* p
RT lnxB
* Bl
Bg
RT
ln
pB* p
40
因此
Bl
B* l RT lnxB
由纯液体 B 标准态的定义可知,
p
* Bl
Bl
p Vm*,B l dp
最后得到理想液态混合物中 B 组分化学势表达式:
大学物理化学经典课件4-3-多组分体系热力学
教学目的
本课程旨在帮助学生掌握多组分体系热力学的基本概念、原理和 方法,培养学生运用热力学原理分析复杂体系的能力,为后续的 科研和工程实践打下基础。
多组分体系热力学概述
定义与特点
多组分体系是指由两种或两种以上不同物质组成的体系。多 组分体系热力学主要研究这类体系的热力学性质及其变化规 律,包括相平衡、化学平衡、能量转换等内容。
溶液的理论来处理真实溶液的问题。
活度系数
活度系数是描述真实溶液与理想溶液差异程度的物理量,它与溶液中的离子强度、溶剂 化作用等因素有关。活度系数的引入使得我们可以更准确地描述真实溶液的性质和行为。
03
多组分体系的相平衡
相律与相图
相律
描述多组分体系相平衡的基本规律, 即体系自由度、组分数和相数之间的 关系。
理论联系实际
将所学理论知识与实际问题相结合,通过分析和 解决具体问题来加深对理论知识的理解。
多做习题
通过大量的习题练习,可以巩固所学知识,提高 分析问题和解决问题的能力。
领域前沿与展望
新理论和新方法
随着科学研究的不断深入,多组分体系热力学领域不断涌现出新的理论和方法 ,如非平衡态热力学、微观热力学等,为相关领域的发展提供了新的思路。
电镀
利用电解原理在某些金属表面镀 上一薄层其他金属或合金的过程, 多组分体系热力学对于控制镀层 质量和厚度具有重要意义。
电解
通过电流作用使物质发生化学变 化的过程,多组分体系热力学研 究有助于降低能耗和提高产率。
高分子溶液中的应用
高分子合成
通过控制反应条件,合成具有特定结构和性能的高分子化合物,多 组分体系热力学研究有助于优化合成路线和提高产率。
相图
用图形表示多组分体系在不同条件下 的相平衡关系,包括温度、压力、组 成等。
本课程旨在帮助学生掌握多组分体系热力学的基本概念、原理和 方法,培养学生运用热力学原理分析复杂体系的能力,为后续的 科研和工程实践打下基础。
多组分体系热力学概述
定义与特点
多组分体系是指由两种或两种以上不同物质组成的体系。多 组分体系热力学主要研究这类体系的热力学性质及其变化规 律,包括相平衡、化学平衡、能量转换等内容。
溶液的理论来处理真实溶液的问题。
活度系数
活度系数是描述真实溶液与理想溶液差异程度的物理量,它与溶液中的离子强度、溶剂 化作用等因素有关。活度系数的引入使得我们可以更准确地描述真实溶液的性质和行为。
03
多组分体系的相平衡
相律与相图
相律
描述多组分体系相平衡的基本规律, 即体系自由度、组分数和相数之间的 关系。
理论联系实际
将所学理论知识与实际问题相结合,通过分析和 解决具体问题来加深对理论知识的理解。
多做习题
通过大量的习题练习,可以巩固所学知识,提高 分析问题和解决问题的能力。
领域前沿与展望
新理论和新方法
随着科学研究的不断深入,多组分体系热力学领域不断涌现出新的理论和方法 ,如非平衡态热力学、微观热力学等,为相关领域的发展提供了新的思路。
电镀
利用电解原理在某些金属表面镀 上一薄层其他金属或合金的过程, 多组分体系热力学对于控制镀层 质量和厚度具有重要意义。
电解
通过电流作用使物质发生化学变 化的过程,多组分体系热力学研 究有助于降低能耗和提高产率。
高分子溶液中的应用
高分子合成
通过控制反应条件,合成具有特定结构和性能的高分子化合物,多 组分体系热力学研究有助于优化合成路线和提高产率。
相图
用图形表示多组分体系在不同条件下 的相平衡关系,包括温度、压力、组 成等。
第四章 多组分系统热力学 物理化学课件.ppt
其它形式:
③适用条件:稀溶液中的挥发性溶质
亨利定律: 稀溶液中的挥发性溶质 pB(溶质)~ xB
拉乌尔定律:稀溶液中的溶剂
pA(溶剂)~ xA
亨利定律是化工单元操作“吸收”的依据,利用溶剂对混合气体中 各种气体的溶解度的差异进行吸收分离。把溶解度大的气体吸收下来, 达到从混合气体中回收或除去某种气体的目的。
几种纯液体在恒温恒压下,混合成理想液态混合物时,混合前后系 统的体积不变。
(2) mixH 0
几种纯液体在恒温恒压下,混合成理想液态混合物时,混合前后 系统的焓不变,因而混合(焓)热等于零。
恒压、恒温下液体的混合过程是一个自发过程 。
B
dnB
B
恒温恒压下非体积功等于零的条件下: dG
<0 自发过程 =0 平衡状态
>0 非自发过程
化学势判据
§4.3 气体组分的化学势
1.纯理想气体的化学势
纯理想气体:μ =GB =Gm
▲标准状态下的化学势:
B
(
g
)
▲任意压力下的化学势:μ *
T
2.理想气体混合物中任一组分的化学势
小结
★化学势判据 (恒温恒压)
B
dnB
B
★气体的化学势 ●理想气体
纯 混合物
纯 ●真实气体
混合物
<0 自发过程 =0 平衡状态 >0 非自发过程
★拉乌尔定律 适用条件:理想液态混合物 或理想稀溶液中的溶剂 pA(溶剂)~ xA ★亨利定律 适用条件:稀溶液中的挥发性溶质 pB(溶质)~ xB
③对于其他热力学性质如H、G、S、
U等亦有类似情况。
《多组分系统热力学》课件
02
03
气候变化
多组分系统热力学可用于研究温室气 体在大气中的分布和变化,为气候变 化研究提供数据支持。
在生物学中的应用
生物代谢过程
多组分系统热力学可用于研 究生物体内的代谢过程,分 析代谢产物的生成和能量转
换效率。
生物分子相互作用
利用多组分系统热力学模型 ,可以研究生物分子之间的 相互作用和结合机制,为药 物设计和生物工程提供理论
依据。
生物系统稳定性
通过多组分系统热力学模型 ,可以分析生物系统的稳定 性和动态变化,为生物保护 和生态平衡提供理论支持。
THANK YOU
感谢聆听
相变过程
相变的概念
物质在一定条件下,从一种相转变为另一种相的过程 。
相变的热力学条件
相变过程总是向着熵增加的方向进行,同时满足热力 学第一定律和第二定律。
相变过程的分类
根据相变过程中物质状态的变化,可以分为凝聚态物 质相变和气态物质相变等。
化学反应过程
化学反应的概念
化学反应是指分子破裂成原子,原子 重新排列组合生成新分子的过程。
化学势具有加和性,即对于多组分 系统中的某一组分,其化学势等于 其他组分的化学势之和。
相平衡和化学平衡
相平衡是指多组分系统中各相之间的平衡状态,是 热力学的基本概念之一。
化学平衡是指多组分系统中化学反应达到平衡状态 时的状态,是热力学的基本概念之一。
相平衡和化学平衡是相互关联的,可以通过化学势 来判断是否达到相平衡或化学平衡状态。
04
多组分系统的热力学过程
热力学过程
热力学第一定律
能量守恒定律,即在一个封闭系统中,能量不能被 创造或消灭,只能从一种形式转化为另一种形式。
物理化学 第四章 多组分系统热力学
AB
( nB
)T , p ,nC
G
GB
( nB
)T , p ,nC
注意:偏摩尔量的下脚标为:T,P,C(C≠ B)
使用偏摩尔量时应注意: 1.偏摩尔量的含义是:在等温、等压、保持B物质 以外的所有组分的物质的量不变的条件下,广度性 质X的随组分B的物质的量的变化率。
2.只有广度性质才有偏摩尔量,而偏摩尔量是强度 性质。
六、偏摩尔量之间的函数关系
对于组分B:VB、UB、HB、SB、AB、GB之间的关系:
HB= UB +PVB ,
AB= UB -TSB
GB = HB -TSB= UB +PVB -TSB UB =AB+PVB
(
GB P
)T
,nA
VB
(
GB T
)
P,nA
SB
( GB )
[T T
]P,nB
3.纯物质的偏摩尔量就是它的摩尔量。
4.任何偏摩尔量都是T,p和组成的函数。
偏摩尔量的集合公式
设一个均相体系由1、2、 、k个组分组成,则体 系任一广度量Z应是T,p及各组分物质的量的函数,即:
X X (T , p, n1, n2,, nk )
在等温、等压条件下:
X
X
dX
( n1
···········
dG= dG(α) + dG(β) +·········
恒T,p时 dG SdT Vdp
B
dnB
B
同理,有
dU TdS pdV B ( )dnB ( ) B
dH TdS Vdp B ( )dnB ( ) B
多组分体系热力学.ppt
常用的偏摩尔量:
XB
def
X nB
T , p,nC
U nBUB B
H nB HB B
A nB AB B
S nB SB B
G nBGB B
U
UB
( nB
)T , p,nC (CB )
偏摩尔热力学能
H
HB
( nB
)T ,
p,nC (CB)
A
AB
( nB
)T , p,nC (CB )
dp
B
nB
T , p,nC
dnB
偏摩尔量
X B def
X nB
T , p,nC
X
X
dX
T
p,nB
dT
p
T ,nB
dp
B
X BdnB
2、偏摩尔量的物理含义:
X B def
X nB
T , p,nC
偏摩尔量XB是在恒温、恒压及除组分B以外其余各 组分的物质的量均保持不变的条件下,系统广度量X随 组分B的物质的量的变化率
四、同一组分的各种偏摩尔量之间的关系 对单组分系统有:
H=U+pV A=U-TS G=H-TS
G S T p
对多组分系统有:
G p
T
V
HB=UB+pVB AB=UB-TSB GB=HB-TSB
GB T
p
SB
GB p
T
VB
§4.2 化学势
定义:
B
GB
( G nB
)T , p,nC (CB)
3、偏摩尔量的加和公式
X nB X B
B
多组分系统的广度量X为系统各组分的物质的量与其偏摩尔量 XB乘积的加和。
物理化学-溶液多组分体系热力学公开课获奖课件百校联赛一等奖课件
5. 溶质B旳质量摩尔浓度mB(molality)
mB def
nB WmmAAA
6. 溶质B旳摩尔比
rB nB / nA
(二) 偏摩尔量和化学势
(二) 偏摩尔量和化学势 1.偏摩尔量旳定义
2. 应注意旳问题
ZB
Z nB
T , p,nC (C B)
(1) 只有容量性质才有偏摩尔量,而偏摩尔量是强 度性质。 (2) 偏摩尔数量旳下标是 T , p, nC (C B) 。
XE= ΔmixXre -ΔmixXid
(九)渗透因子和超额函数
超额吉布斯自由能
GE
GE def G mix re G mix id
GE nB RT ln B B
当 GE 0 ,表达系统对理想情况发生正偏差;
当
,则发生负偏差。
GE 0
(十) 分配定律
“在定温、定压下,若一种物质溶解在两个同步存在旳 互不相溶旳液体里,到达平衡后,该物质在两相中浓度 之比等于常数” ,这称为分配定律。用公式表达为:
pB kccB
(b) 溶质在气相和在溶液中旳分子状态必须相同
(c) 溶液浓度愈稀,对亨利定律符合得愈好。
(四) 稀溶液中旳两个经验定律
在很稀旳溶液中,溶质旳蒸气压仅与溶质旳浓 度有关,且两者成正比。但是kx可能不等于pB*(环境 与纯溶质旳环境大不相同)。 kx与溶剂对溶质分子旳 引力F大小有关。
MA
合用条件: 稀溶液,且溶质不挥发
(七) 稀溶液旳依数性
若A,B组分都挥发:
Tb
kBmB (1
yB xB
)
xB为液相构成, yB为气相构成。
xB yB ΔTb 0
升高
xB yB
物理化学04多组分系统热力学
dG=dG( ) +dG()
当恒温恒压,W’=0 时
β相
dG() ()dn()
dG( ) ( )dn( )
dn( ) dn()
dX
X T
p,nB ,nc ,nD
X
dT
p
T ,nB ,nc ,nD
X
dp
nB
T , p,nc ,nD
dnB
X
X
nC
T , p,nB p,nB ,nc
dnD
2021/1/6
偏摩尔量XB的定义为: X B def
X ( nB )T , p,nc
2021/1/6
解:取1kg溶液
nH2O
mH2O M H2O
(1 0.12)1 18.015 103
mol
48.85mol
nAgNO3
mAgNO3 M AgNO3
0.12 1 169.89 103
mol
0.7064mol
xAgNO3
nAgNO3
n n AgNO3
H2O
0.01425
cAgNO3
2021/1/6
由题意:
VA 17.35cm3 / mol
VB 39.01cm3 / mol
由集合公式,混合后:
V nAVA nBVB {0.617.35 0.4 39.01}cm3 26.01cm3
混合前:
VA '
nAM A A
10.84cm3
VB'
nB M B B
16.19cm3
dA SdT pdV BdnB
dA
B
BdnB 0
自发 =平衡
B
(dT 0,dV 0, W ' 0)
物理化学课件04章_多组分系统热力学
上一内容 下一内容 回主目录
返回
2020/3/19
§4.2 多组分系统的组成表示法
1.B的质量浓度 B
B def m(B) /V
即用B的质量 m(B) 除以混合物的体积V。
B 的单位是: kg m3
上一内容 下一内容 回主目录
返回
2020/3/19
§4.2 多组分系统的组成表示法
2. B的质量分数 wB
§4.1 引言
溶液(solution) 广义地说,两种或两种以上物质彼此以分子或
离子状态均匀混合所形成的系统称为溶液。
溶液以物态有固态溶液和液态溶液之分,但没 有气态溶液。根据溶液中溶质的导电性又可分为电 解质溶液和非电解质溶液。
本章主要讨论液态的非电解质溶液。
上一内容 下一内容 回主目录
返回
2020/3/19
下一内容 回主目录
返回
2020/3/19
偏摩尔量的定义
偏摩尔量ZB的定义为:
ZB def
Z ( nB )T , p,nC (CB)
代入下式并整理得
k Z
dZ B=1 ( nB )T , p,nC (CB) dnB
上一内容
Z1dn1 Z2dn2 Zkdnk
k
ZBdnB B=1
下一内容 回主目录
wB def
m(B) mA
A
即B的质量 m(B) 与混合物的质量之比。
wB 的单位为1。
上一内容 下一内容 回主目录
返回
2020/3/19
§4.2 多组分系统的组成表示法
3. B的浓度 cB (又称为 B的物质的量浓度)
cB def
nB V
即B的物质的量与混合物体积V的比值。
多组分系统热力学ppt课件
U U m (B) ( nB )T , p,nc (cB)
Hm
(B)
(
H nB
)T
,
p , nc
(cB)
Fm
(B)
(
F nB
)T
,
p , nc
(cB)
Sm
(
B)
(
S nB
)T
,
p , nc
(cB)
Gm
(
B)
(
G nB
)T
,
p , nc
( c B)
=B
3.2 偏摩尔量
(抖G B p )T = V B
(抖G B T )p = - S B
3.2 偏摩尔量
例如 H U pV
(H nB )T , p,ncB (U nB )T , p,ncB p(V nB )T , p,ncB
H B U B pVB
3.2 偏摩尔量
例: 求证 (抖G B p )T ,nB = V。m (B)
106.93
60 76.02 40.16
116.18
112.22
80 101.36 20.08
121.44
118.56
原因:
① 水分子之间、乙醇分子之间和水分子与乙醇分子之
间的分子间相互作用不同;
② 水分子与乙醇分子体积及形状不同。
3.2 偏摩尔量
对所有广度量 X 均存在同样的结果:
å X ¹
n
BX
温度、压力及除了组分 B 以外其余各组分的物 质的量均不变时,组分 B的物质的量发生了微 小的变化引起系统广度 量X 随组分B 的物质的 量的变化率。
恒温、恒压下, 在足够大量的某 一定组成的混合 或 物中加入单位物 质的量的组分B 时所引起系统广 度量 X的增量
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
2.偏摩尔量的物理意义
20
Z ZB n B T , p ,nC (C B )
(1)在恒温恒压下,向有限量的体系中,加入dnB mol的物质B所引起体系中某个容量性质Z的变化为 dZ, dZ与dnB的比值即为偏摩尔量。 (2)在恒温恒压下,向无限大量的体系中,加入 1mol物质B所引起体系中某个容量性质Z的变化就 是偏摩尔量。
4.3 偏摩尔量
其他热力学函数:
27
U nBU B
B
U UB ( )T , p ,nC (C B ) nB H HB ( )T , p ,nC (C B ) nB S SB ( )T , p ,nC (C B ) nB
H nB H B
B
S nB S B
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
3. 应注意的问题
21
(1). 只有容量性质才有偏摩尔量,而偏摩尔量是强度性 质,与体系的总量无关。
(2). 偏摩尔量的下标是 T , p, nC (C B) 。
(3). 偏摩尔量与组成(浓度)有关。 (4). 偏摩尔量可正可负,它只是一个变化率。 (5). 纯物质的偏摩尔量就是它的摩尔量。 Z B Z m, B
9
经常用到的是:xB、 mB,因为 cB与温度有关 (体积是温度的函数),而xB和mB与温度无关。
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
10
nB xB n A nB
B
V n A nB
B
nB
V
w
n A M A nB M B
V
B
B
c B ( nA M A nB M B ) ( nA nB )
B
n
B
B
0
cB M A
适用于极稀溶液
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
11
nB xB n A nB
B
wA n A nBB源自nBmBwA
m M
B B
B
G nBGB
B
曲阜师范大学化学与化工学院
G GB ( )T , p ,nC (C B ) nB
2015-1-22
4.3 偏摩尔量
四、Gibbs-Duhem公式 如果在溶液中不按比例地添加各组分,则溶 液浓度会发生改变,这时各组分的物质的量和偏 摩尔量均会改变。
28
曲阜师范大学化学与化工学院
曲阜师范大学化学与化工学院
2015-1-22
2
4.1 引言 溶剂(solvent)和溶质(solute)
如果组成溶液的物质有不同的状态,通常将液
3
态物质称为溶剂,气态或固态物质称为溶质。 如果都是液态,则把含量多的一种称为溶剂,
含量少的称为溶质。
曲阜师范大学化学与化工学院
2015-1-22
4.1 引言 混合物(mixture)
2.质量摩尔浓度mB(molality)
7
mB
def nB
m wA A
溶质B的物质的量与溶剂A的质量之比称为 溶质B的质量摩尔浓度,单位是 mol kg -1 。这个 表示方法的优点是可以用准确的称重法来配制溶 液,不受温度影响,电化学中用的很多。
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
两式相比,得:
30
n1dZ1 n2dZ2 nk dZk 0
即
n dZ
B 1 B
k
B
0
x dZ
B 1 B
k
B
0
这就称为Gibbs-Duhem公式,说明偏摩尔量之间是具 有一定联系的。某一偏摩尔量的变化可从其它偏摩尔量的 变化中求得。
四、Gibbs-Duhem公式
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
一、引言
15
1. 单组分封闭体系(或组成不变的多组分封闭体系) (1)变量为两个
z f (T , p)
(2)容量性质具有简单的加和性 2. 组成变化的多组分体系
(1)变量为多个
z f (T , p, n1 , n2 , n3 )
曲阜师范大学化学与化工学院
2015-1-22
4.4 化学势
33
一、化学势定义
二、化学势在相平衡中的应用 三、化学势在化学平衡中的应用 四、化学势与温度、压力的关系
曲阜师范大学化学与化工学院
2015-1-22
4.4 化学势
一、化学势的定义: 1、广义定义:
34
U f (S ,V , n1, n2 nk )
U U U dU dn1 dS dV S V ,n V S ,n n1 S ,V ,n2 ,n3
U dn2 n 2 S ,V ,n1 ,n3
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
6
1.物质的量分数
xB (mole fraction)
xB
def
nB n(总)
溶质B的物质的量与溶液中总的物质的量之比 称为溶质B的物质的量分数,又称为摩尔分数,单 位为1。
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
3.物质的量浓度cB(molarity)
8
cB
def
nB V
溶质B的物质的量与溶液体积V的比值称为 溶质B的物质的量浓度,或称为溶质B的浓度, 单位是 ,但常用单位是 。 mol m 3 mol dm3
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
三者的比较与换算
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
31
n1dZ1 n2 dZ 2 0
若1组分的偏摩尔量随溶液浓度改变而增加, dZ1 0 则2组分的偏摩尔量随浓度变化而减小, dZ 2 0
由此在二组分体系中,Gibbs-Duhem公式表示 了两组分偏摩尔量间的消长关系。
曲阜师范大学化学与化工学院
A
1
1 mB MA B
适用于极稀溶液
mB M A
2015-1-22
曲阜师范大学化学与化工学院
4.2 溶液组成的表示法
12
xB mB M A
适用于极稀溶液 适用于极稀溶液
xB
cB M A
mB
对极稀水溶液
cB
适用于极稀溶液
A H O 1000kg m
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
Z Z Z dZ dp dnB dT T p ,n p T ,n nB T , p ,nC (C B )
令
18
Z ZB n B T , p ,nC (C B )
多组分均匀体系中,溶剂和溶质不加区分,各 组分均可选用相同的标准态,使用相同的经验定律, 这种体系称为混合物,也可分为气态混合物、液态 混合物和固态混合物。
4
曲阜师范大学化学与化工学院
2015-1-22
4.2 溶液组成的表示法
5
1.物质的量分数
xB (mole fraction)
2.质量摩尔浓度mB(molality) 3.物质的量浓度cB(molarity) 4.质量分数B%(mass fraction)
Z
0
dZ Z1dn1 Z 2 dn2 Z k dnk
0 0 0
n1
n2
nk
Z Z1n1 Z 2 n2 Z k nk
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
25
Z nB Z B
这就是偏摩尔量的集合公式,说明体系的总的容量性 质等于各组分偏摩尔量的加和。适用于恒温恒压组成 不变的多组分体系。
2015-1-22
4.3 偏摩尔量
32
对前面讨论过的纯物质的某些容量性质间的许多热力 学关系式,只要稍加变化也同样适用于均相多组分体系。
GB S B T p ,nB ,nC
GB p
VB T ,nB ,nC
GB H B TSB
曲阜师范大学化学与化工学院
2015-1-22
复 习
22
某种容量性质Z的偏摩尔量
Z ZB n B T , p ,nC (C B )
恒温恒压下
dZ Z B dnB
曲阜师范大学化学与化工学院
2015-1-22
复 习
其他热力学函数:
23
U UB ( )T , p ,nC (C B ) nB H HB ( )T , p ,nC (C B ) nB S SB ( )T , p ,nC (C B ) nB
G GB ( )T , p ,nC (C B ) nB
曲阜师范大学化学与化工学院
2015-1-22
4.3 偏摩尔量
三、偏摩尔量的集合公式
恒温恒压下