04章 多组分系统热力学

合集下载

物理化学:第4章_多组分系统热力学_

物理化学:第4章_多组分系统热力学_
Vm*,B Vm*,C Vm*,B xC
真实混合物:实曲线
Vm xBVB xCVC VB (VC VB)xC
当混合物组成改变时,两组 分偏摩尔体积随之改变,且二者 变化相互关联。
组成接近某纯组分,其偏摩 尔体积也接近该纯组分摩尔体积。
5. 吉布斯 − 杜亥姆方程
对广度量 X (T , p, nB, nC , nD ,) 求全微分:
dX
X T
p,nB
dT
X p
T ,nB
dp
B
X nB
dnB T , p,nC
恒温、恒压
另一方面,由加和公式
,恒温恒压下求导:
比较两式,得


吉布斯-杜亥姆方程--在一定温度压力下,当混合物
组成变化时,各组分偏摩尔量变化的相互依赖关系。
➢ 系统中各组分的偏摩尔量并非完全独立,而是相 互依存的。
➢ 例:固体溶解、过饱和溶液析出、…
组分B在α、β两相中迁移达平衡的条件:该组分
在两相中的化学势相等。
➢ 物质总是从其化学势高的相向化学势低的相迁移, 直至物质迁移达平衡时为止,此时系统中每个组分在 其所处的相中的化学势相等。
化学势 判据
② 化学平衡
<0:自发不可逆; =0:平衡、可逆
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等: Bα B
B
B
整个系统中B组分物质的量的变化量: dnBα dnB
α
BdnB
B
化学平衡时
平衡条件:与化学反应达到平衡的方式无关。
§4.3 气体组分的化学势
1、纯理想气体的化学势 2、理想气体混合物中任一组分的化学势 3、纯真实气体的化学势 4、真实气体混合物中任一组分的化学势

hx04多组分系统热力学

hx04多组分系统热力学

VB def
V n B T , p,nC(CB)
U B def
U n B T , p,nC(CB)
H B def
H n B T , p,nC(CB)
SB def
S n B T , p,nC(CB)
AB def
A n B T , p,nC(CB)
GB def
G n B T , p,nC(CB)
上一内容 下一内容 回主目录
返回
2024/7/4
4.2.2 偏摩尔量的定义
(4) 偏摩尔量是两个广度性质X、nB之比,因此它是一强度性质,与体积的量无关。
上一内容 下一内容 回主目录
返回
2024/7/4
4.2.3 偏摩尔量的加和公式
已知
k X
dX
B=1
nB
T , p,nC(CB)
dnB
量和除B以外的其他组分不变时,热力学函数对B 物质的量求偏导。
上一内容 下一内容 回主目录
返回
2024/7/4
4.3.2 化学势的定义
把化学势的广义定义代入热力学函数的微分式:
dU TdS pdV BdnB B
dH TdS Vdp BdnB B
dA SdT pdV BdnB B
溶剂,含量少的称为溶质。
上一内容 下一内容 回主目录
返回
2024/7/4
4.1.2 多组分系统的组成表示法
1. B的物质的量浓度
cB def
nB V
溶质 B 的物质的量与溶液体积V 的比
值称为溶质 B 的物质的量浓度,或称为溶
质 B 的浓度.
物质的量浓度的单位 mol ×m-3

mol ×dm-3

04章_多组分系统热力学8-13

04章_多组分系统热力学8-13

的化学势,它不是标准态。
溶质的化学势 Henry定律因浓度表示方法不同,有如下三种形式:
pB kx,B xB km,BmB kc,BcB
(1)浓度用摩尔分数表示 pB B (l,T , p) B (g,T , p) B (T ) RT ln p
p * B (T , p) B (T , p) RT ln xB B (T ) RT ln k x ,B RT ln xB
Tf Tf* Tf
称为凝固点降低值 称为凝固点降低常数, 与溶剂性质有关
R(T ) kf MA fus H m,A
* 2 f
常见溶剂的凝固点降低系数值有表可查
kf 单位
应用:
K mol 1 kg
实验测定凝固点降低值,求溶质摩尔质量。
kf 的计算方法
(1)作图法:
Tf mB mB 0
§4.11
活度与活度因子
非理想液态混合物中各组分的化学势——活度的概念
非理想稀溶液 双液系中活度因子之间的关系
活度与活度因子
非理想液态混合物中各组分的化学势—— 活度的概念 对于理想的液态混合物,任一组分B的化学势为
B (T , p) RT ln xB
* B
pB xB * pB pB x ,B xB * pB
* 2 b *ห้องสมุดไป่ตู้vap m,A
* b
Tb* 是纯溶剂的沸点
Tb 是溶液中溶剂的沸点 kb 称为沸点升高常数
R(T ) kb MA H
kb 的单位是 K mol1 kg
常用溶剂的 kb 值有表可查。 测定 Tb 值,查出 kb ,可以计算溶质的摩尔质量。

物理化学 第四章 多组分系统热力学

物理化学 第四章 多组分系统热力学

Vm
T,p一定
V*m,C VC
V*m,B VB
d c· b·
0 B
a xC
C
图4.1.2 二组分液态混合物的 偏摩尔体积示意图
若B,C形成真实液态混合物: 则混合物体积为由V*m,B至V*m,C的曲线。对于任一 组成a时,两组分的偏摩尔体积可用下法表示: 过组成点a所对应的系统体积点d作Vm-xC曲线的 切线,此切线在左右两纵坐标上的截距即分别 为该组成下两组分的偏摩尔体积VB,VC。
B
系统中各广度量的偏摩尔量: 对于多组分系统中的组分B,有: 偏摩尔体积: VB=(ƽV/ƽnB)T,p,n C 偏摩尔热力学能: UB=(ƽU/ƽnB)T,p,n C 偏摩尔焓: HB=(ƽH/ƽnB)T,p,n C 偏摩尔熵: SB=(ƽS/ƽnB)T,p,n C 偏摩尔亥姆霍兹函数:AB=(ƽA/ƽnB)T,p,n C 偏摩尔吉布斯函数: GB=(ƽG/ƽnB)T,p,n
C
几点说明: (1)偏摩尔量为两个广度性质之比,所以为强度 性质; (2)偏摩尔量的定义中明确是在恒温、恒压及系 统组成不变的条件下,偏导数式的下标为T,p 时才是偏摩尔量; (3)同一物质在相同温度、压力但组成不同的多 组分均相系统中,偏摩尔量不同; (4)若系统为单组分系统,则该组分的偏摩尔量 与该组分的摩尔量相等,即: XB=X*B,m
C
=VB (数学知识:二阶偏导与求导的顺序无关) 得证。
4.2化学势 4.2化学势
1.化学势的定义 混合物(或溶液中)组分B的偏摩尔吉布斯函数GB 定义为B的化学势,用符号μB表示:
μB = GB=(ƽG/ƽnB)T,p,n
def
C
对于纯物质,其化学势等于它的摩尔吉布斯函 数。

04章 多组分系统热力学及其在溶液中的应用

04章 多组分系统热力学及其在溶液中的应用
– 数值上等于每 100g 溶液中所含溶质的 克数(无量纲)。
在溶液中,表示溶质浓度的方法有:
(4)溶质B的当量浓度
组分 B的当量浓度:NB(N),每升溶液含B
的当量数(在分析化学中常用)。
• 物理化学中最常用的溶液浓度表示法为: – 摩尔分数(xB); – 质量摩尔浓度(mB); – 质量分数 ( WB) ;重量百分数( WB )。
§4.1 引言
多组分系统 两种或两种以上的物质(或称为组分)所形 成的系统称为多组分系统。 多组分系统可以是均相的,也可以是多相的。
混合物(mixture) 多组分均匀系统中,各组分均可选用相同的方 法处理,有相同的标准态,遵守相同的经验定律, 这种系统称为混合物。
混合物有气态、液态和固态之分。
溶体
若固体的晶型在温度变化范围内不变,则 溶解度-温度变化曲线是光滑连续的;
若在某温度点发生晶型转变,则在该温度 处其溶解度会突变,溶解度-温度曲线不连 续。
注意:
• 溶液中的所谓溶质和溶剂也是相对的。习 惯上: – 气体或固体溶于液体中时,后者称为溶 剂,前者称为溶质; – 如果是液体溶于液体时,量多者为溶剂, 量少者为溶质。
• 要确定该体系的强度性质(如密度),也 须规定各组分的浓度。
• 由此需要引入一个新的概念 —— 偏摩尔量
§4.3 偏摩尔量
多组分系统与单组分系统的差别
单组分系统的广度性质具有加和性
若1 mol单组分B物质的体积为
V* m,B
则2 mol单组分B物质的体积为
2
V* m,B
而1 mol单组分B物质和1 mol单组分C物质混合,
系统中任一容量性质Z(代表V,U,H,S, A,G等)除了与温度、压力有关外,还与各

04 多组分系统热力学-2(3学时2010材料)

04 多组分系统热力学-2(3学时2010材料)
□ B
* □ Δ A (T , p) A (T , p) A (T , p)
4.7 相对活度的概念
1. 非理想液态混合物 2. 非理想稀溶液中溶剂的活度 3. 非理想稀溶液中溶质的活度
非理想液态混合物
什么是非理想液态混合物? 由于组成混合物的各组分性质差异较大,使其 中任一组分在整个浓度范围内对Raoult定律发生偏 差,这种偏差可以是正的,也可以是负的。 由于发生了偏差,使溶剂或溶质的实测蒸气压 与计算值不符,这同样影响了化学势的值。因而 Lewis 引进了相对活度的概念,以后简称为活度。
pB k x ,B xB
p
B (T , p) B (T ) RT ln
kx,B p
RT ln xB
* B (T , p ) RT ln xB
* A (T , p) 是温度、压力的函数。当
xB 1
仍能服从Henry定律的那个假想状态的化学势
稀溶液中各组分的化学势
p/Pa
(T )
理想气体在标准压力和温度T时的化学势 因压力已指定,所以它仅是温度的函数
这个状态就是气体的标准态,其数值与气体的 种类和温度有关。 因为Gibbs自由能的绝对值不知道,则化学势的 绝对值也无法计算,规定了一个共同的标准态,在 计算相应的变化值时,可以将标准态消掉。
混合理想气体的化学势
将单种理想气体化学势式中的压力用分压代替,得
pB x ,B xB * pB
非理想液态混合物
pB x ,B xB * pB
定义:
ax ,B
def
x ,B xB
ax ,B 就称为组成用摩尔分数表示的活度
它是量纲一的量,是系统的强度性质 其数值与系统所处的状态和标准态的选择有关, 是温度、压力和组成的函数

第四章 多组分系统热力学

第四章 多组分系统热力学
多组分系统热力学
前两章-单组分均相封闭系统,如:纯物质或某种 理想气体系统。 科学研究及生产实践-多组分系统 纯物质单相封闭系统:确定n(对于单相封闭系统, 此为一定值)、T、p,系统的状态即可确定。此时, 系统的一切性质,不只是强度性质而且全部容量性 质都有了确定值。若以X代表任意一种容量性质, 如V、U、S、G等,对于物质的量固定的纯物质单 相系统,都有: X=f(T,p) 其微小改变量为:
10
XB物理意义为:在恒温、恒压、均相封闭系统中, 只增加任一组分B,同时不引起原来nj改变,且不 发生缔合、沉淀、化学反应时: (1)dnB量B物质的加入,系统容量性质X对nB的变 化率。或在原有nB中加入dnB的B,使X改变了dX的 比值; (2)条件同前,在一个无限大的系统中,加入1 mol 的B物质,引起容量性质X的改变量。 如:向一大缸某白酒中,加入1 mol的水,引起V增 大了17.0 ml (<18.0 ml), 则此时V水=17.0 ml· -1。 mol

X X X dp dX dT d n1 p n T p , ni T , ni 1 T , p , n2 , n3 ,nk
X n 2 X d n2 n T , p , n1 , n3 ,nk k d nk T , p , n1 , n2 ,nk 1

W (乙) 10
W (水) 90
V (乙) 12.67
V (水) 90.36
V 103.30
V (实) 101.84
V 1.19
20 g乙醇+180 g水,其V=2×1.19=2.38 ml
7
描述一多组分均相系统的状态,除指明系统的T和p, 还必须指明系统的组成ni。为此,需要引入偏摩尔 量(XB)来代替单组分系统中的摩尔量(Xm)。 一、偏摩尔量的定义 含有k个组分的均相系统,其任一容量性质X (可为 V, U, H, S, A, G)可写成下列函数式: X=f(T,p,n1,n2,…nk) 2+k个变量 当系统的T、p及各组分的n均发生一微小变化时, 该容量性质X也相应发生微小变化。根据状态函数的 性质,此变化可用全微分表示,即:

第4章 多组分系统热力学

第4章 多组分系统热力学

第四章多组分系统热力学多组分系统两种或两种以上的物质(或称为组分)所形成的系统本章主要研究均相多组分系统(包括混合物和溶液)简单系统:一种物质或多种纯物质组成不变的相多组分系统:两种或多种物质组成发生变化的相封闭系统内相的组成发生变化的原因:是发生了相变和化学变化。

混合物(mixture )溶液(Solution )区分为溶剂和溶质两相,两者的标准态、化学势不同一种以上组分的系统,溶剂和溶质不加区分。

往往各组分有相似的物理性质,如:苯--甲苯各组分均可选用同一方法处理,有相同的标准态,遵守相同的经验定律溶剂:液态物质,相对含量多的;溶质:溶解的气态或固态物质,相对含量少的。

(相同的状态下)1. B 的质量浓度Vm BB ≡ρ2. B 的质量分数∑≡BBBB m m w m B 为B 物质的质量∑m B 为物质的总质量无量纲m B 为B 物质的质量V 为总体积量纲kg·m-3多组分系统的组成表示法在均相的混合物中,任一组分 B 的浓度可表示为:4. B 的摩尔分数两种物质构成的体系:BA AA n n n x +=∑≡BBBBn n x BA BB n n n x +=无量纲3. B 的浓度(体积摩尔浓度)Vn c BB ≡n B 为溶质的摩尔数V 为溶液的体积单位:mol·m -3mol·dm -31. 质量摩尔浓度m B b BABB m n b ≡2. 溶质B 的摩尔比r BABB n n r ≡在溶液中,表示溶质浓度的方法有:溶质B 的物质的量与溶剂A 的质量之比mol·kg -1溶质B 的物质的量与溶剂A 的物质的量之比,单位是1§4.1 偏摩尔量1.问题的提出恒T 、P 下混合后,混合物的体积不等于混合前纯组分体积之和:**B m,BC m,CV n Vn V?混合后结果:*m,BV若1 mol 单组分B 物质的体积为:*m,B2 V⨯则2 mol 单组分B 物质的体积为:而1 mol 单组分B 物质和1 mol 单组分C 物质混合,得到的混合体积可能有两种情况:**m,B m,C (1) 1 mol 1 mol V VV=⨯+⨯**m,Bm,C(2) 1 mol 1 mol V V V⨯+⨯≠形成了混合物形成了溶液对所有广度量X 均存在同样的结果:(多组分系统与单组分系统的差别:单组分系统的广度性质具有加和性)B BBX n X¹å*对于单组分体系V ,U ,H ,S ,A ,G --广度性质,与物质的量有关,均有偏摩尔量;而摩尔量--强度性质。

71-88 第四章多组分系统热力学及其在溶液中的应用

71-88 第四章多组分系统热力学及其在溶液中的应用

= −SB
4.(1)理想气体中组分 B 的化学势
B = B (T , p) + RT ln xB
式中,xB 是气体 B 在理想气体混合物中的摩尔分数
( ) B = B (T ) + RT ln p / p ,p 是总压
(2)非理想气体混合物化学势
= (T ) + RT ln ( f / p )
p = f ,f 称为逸度
K
=
mB mB
( (
) )
=
cB cB
( (
) )
K
(T
,
p)
=
aB aB
( (
) )
典型例题讲解 例 1 在 60℃,把水和有机物(B)混合,形成两个液层。一层(a)为水中质量分数B=0.17 的有机物的稀溶液;另一层(B)为有机物液体中质量分数A=0.045 的水的稀溶液。若两液 层 均 可 看 作 理 想 溶 液 , 求 此 混 合 系 统 的 气 相 总 压 及 气 相 组 成 。 已 知 在 60 ℃ 时 ,
非理想溶液中: mixV 0 , mix H 0
mixG = nBRTlnxB + nBRln B
B
B
7.活度和活度因子求法 (1)蒸气压法
溶剂: aA = A xA = pA / pA
溶质: aB = C,BcA = pB / kC,B
(2)凝固点降低法
( ) ln aA
=
fus
H
m
(2)土壤溶液的渗透压大,水由庄稼向土壤渗透,造成失水过多,而影响作物生长,甚 至导致作物死亡。
(3)海水中盐分很大,海水的渗透压大于液体,口渴时,喝海水会感觉渴得更厉害; (4)由于渗透压的存在,使味觉器官两侧的浓度差越来越小,所以感觉甜味越来越淡; (5)溶液的依数性,砂锅中肉汤的沸点高于开水的沸点,所以肉汤烫伤的程度要比开水

多组分系统热力学

多组分系统热力学

第四章 多组分系统热力学§4.1 偏摩尔量 partial molar quantity 热力学状态函数:U 、H 、S 、A 、G 、 V 广度量X=X (T ,p ,n 1,n 2,…)偏摩尔量:,,,C B B mB T p n X X n ≠⎛⎫∂= ⎪∂⎝⎭1212,12,,,,,1,12,2,,0,01,12,2,.........i i i i i ip n T n T p n T p n m m p n T n dT dp m m B m BBX X X X dX dT dp dn dn T p n n X X dT dp X dn X dn T p X dn X dn X dn ≠≠==⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫=++++ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫∂∂⎛⎫=++++ ⎪ ⎪∂∂⎝⎭⎝⎭=++=∑ 恒温恒压恒组成条件下,X B ,m为定值,积分上式,得11,22,,...m m B B m BX n X n X n X =++=∑此即偏摩尔量的集合公式组成变化时,X B ,m 随之变化,恒温恒压下对集合公式求微分,得,,B B m B m B BBdX n dX X dn =+∑∑比较,可得,0B B mBn dX=∑ 或,0BB m Bx dX =∑此即吉布斯-杜亥姆方程 Gibbs-Duhem ’s equation§4.2 化学势 chemical potential,,,C BB B mB T p n G G n μ≠⎛⎫∂== ⎪∂⎝⎭∵ G=G(T ,p ,n 1,n 2,…)1212,12,,,,,...i i i i p n T n T p n T p n B BBG G G G dG dT dp dn dn T p n n SdT Vdp dn μ≠≠⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫=++++ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭=-++∑∵ U=G -pV +TS ,H=G +TS ,A=G -pV∴B BBB BBB BBdU TdS pdV dn dH TdS Vdp dn dA SdT pdV dn μμμ=-+=++=--+∑∑∑此即普遍形式的热力学基本方程。

第四章多组分系统热力学

第四章多组分系统热力学

溶液组成的表示
在液态的非电解质溶液中,溶质B的浓度表 示法主要有如下四种:
1.物质的量分数 2.质量摩尔浓度 3.物质的量浓度 4.质量分数
溶液组成的表示
1.物质的量分数 xB (mole fraction)
xB def
nB n(总)
溶质B的物质的量与溶液中总的物质的量之比 称为溶质B的物质的量分数,又称为摩尔分数,单 位为1。
2.只有广度性质才有偏摩尔量,而偏摩尔量是强度 性质。
3.纯物质的偏摩尔量就是它的摩尔量。
4.任何偏摩尔量都是T,p和组成的函数。
5.指体系某相中某种物质,整个体系无偏摩尔量。
偏摩尔量的集合公式
设一个均相体系由1、2、 、k个组分组成,则体
系任一容量性质Z应是T,p及各组分物质的量的函数,
即:
Z Z (T , p, n1, n2 , , nk )
第四章 多组分系统热力学
引言:
前几章介绍了简单系统发生PVT变化、相变化、 和化学变化时W、Q、 U、 H、 S、 A、 G的
计算。所谓简单系统是指由组成不变的系统。但常见 系统多数为多组分、组成发生变化的系统。
多组分系统可为单相或多相。若它为多相的,则 可将它分为几个单相系统。多组分单相系统由两种或 两种以上物质以分子 大小均匀混合组成。
V
V n B
T ,P ,nC
V* m ,B
V* m ,C VC
VB
nB xC = 0 xC
xC = 1
Gibbs-Duhem公式
如果在溶Байду номын сангаас中不按比例地添加各组分,则溶液浓 度会发生改变,这时各组分的物质的量和偏摩尔量均 会改变。
根据集合公式 Z n1Z1 n2Z2 nk Zk

多组分系统热力学

多组分系统热力学

第四章 多组分系统热力学 主要内容1.混合物和溶液(1)多组分系统的分类含一个以上组分的系统称为多组分系统。

多组分系统可以是均相(单相)的,也可以是非均相(多相)的。

将多组分均相系统区分为混合物和溶液,并以不同的方法加以研究:(Ⅰ)混合物:各组分均选用同样的标准态和方法处理;(Ⅱ)溶液:组分要区分为溶剂及溶质,对溶剂及溶质则选用不同的标准态和方法加以研究。

(2)混合物及溶液的分类混合物有气态混合物液态混合物和固态混合物;溶液亦有气态溶液液态溶液和固态溶液。

按溶液中溶质的导电性能来区分,溶液又分为电解质溶液和非电解质溶液(分子溶液)。

2.拉乌尔定律与亨利定律拉乌尔定律与亨利定律是稀溶液中两个重要的经验规律。

(1)拉乌尔定律平衡时,稀溶液中溶剂A 在气相中的蒸气分压A p 等于纯溶剂在同一温度下的饱和蒸气压与该溶液中溶剂的摩尔分数A x 的乘积。

这就是拉乌尔定律。

用数学式表达拉乌尔定律为 A *A Ax p p = (2)亨利定律一定温度下,微溶气体B 在溶剂A 中的溶解度B x 与该气体在气相中的分压B p 成正比。

也可表述为:一定温度下,稀溶液中挥发性溶质B 在平衡气相中的分压力B p 与该溶质B 在平衡液相中的摩尔分数B x 成正比。

这就是亨利定律。

用数学式表达亨利定律为: B B ,B x k p x =B ,x k 、B ,b k 为以不同组成标度表示的亨利系数,其单位分别为Pa ,Pa·kg·mol -1。

应用亨利定律时,要注意其不同表达式所对应的亨利系数及其单位。

还要注意亨利定律适用于稀溶液中的溶质分子同气相同种分子相平衡,即亨利定律适用于稀溶液中的溶质在液相及气相中具有相同分子形态的场合。

3.偏摩尔量(1)偏摩尔量的定义设X 代表V ,U ,H,S ,A ,G 这些广度性质,则对多组份系统(混合物或溶液)即 X =f (T ,p ,n A ,n B ,…)定义 ()B C C,,,B B def ≠⎪⎪⎭⎫ ⎝⎛∂∂n p T n X X式中,X B称为广度性质X (X=V ,U ,H ,S ,A ,G 等)的偏摩尔量,它们分别为只有系统的广延量才具有偏摩尔量,偏摩尔量是强度量。

第四章_多组分系统热力学及其在溶液中的应用习题课

第四章_多组分系统热力学及其在溶液中的应用习题课

66.66 kPa,101.325kPa。设A和B构成理想溶液。则当
A 在溶液中的物质的量分数为 0.5 时,气相中 A 的物质 的量分数为( C ) (A) 0.200 (B) 0.300 (C) 0.397 (D) 0.603
解:根据拉乌尔定律 pi=pi*xi pA = pA*xA=66.66×0.5 pB = pB*xB =101.325×0.5 p = pA+pB=(66.66+101.325) ×0.5 yA(g)= pA /p=66.66/(66.66+101.325)= 0.397
解:混合成理想溶液时,无热效应,故H=0,
SB S R ln xB
* B
SB R ln xB
mixS RnB ln xB
S = – R ln x苯= 7.617 J ·K-1 , G = RT ln x苯= - 2270 J ·mol-1
10.
已知在 373K 时液体 A 、 B 的饱和蒸气压分别为
11、 在25℃时,纯水的蒸气压为3167.7Pa。某溶液 x(水) =0.98,与溶液成平衡的气相中,水的分压为 3066Pa。以298K, p为纯水的标准态,则该溶液中 水的活度系数( B ) (A)大于1 解: (B)小于1 (C)等于1 (D)不确定
p p * ax
p p * x x
一、偏摩尔量及化学势的概念
为了确定组成可变的多组分系统的热力学性质,引入了 偏摩尔量的概念;为了判定组成可变的多组分系统中过程 的自发变化的方向和限度,引入了化学势的概念。
1. 偏摩尔量 (1) 定义
Z ZB n B T , p ,nC
(2) 基本公式 标准态时的化学势,均是T,p的函数,它们 分别为:当xB=1,mB=1molkg-1,cB=1moldm-3 时且服从亨利定律的那个假想态的化学势。

多组分体系热力学.ppt

多组分体系热力学.ppt

常用的偏摩尔量:
XB
def
X nB
T , p,nC
U nBUB B
H nB HB B
A nB AB B
S nB SB B
G nBGB B
U
UB
( nB
)T , p,nC (CB )
偏摩尔热力学能
H
HB
( nB
)T ,
p,nC (CB)
A
AB
( nB
)T , p,nC (CB )
dp
B
nB
T , p,nC
dnB
偏摩尔量
X B def
X nB
T , p,nC
X
X
dX
T
p,nB
dT
p
T ,nB
dp
B
X BdnB
2、偏摩尔量的物理含义:
X B def
X nB
T , p,nC
偏摩尔量XB是在恒温、恒压及除组分B以外其余各 组分的物质的量均保持不变的条件下,系统广度量X随 组分B的物质的量的变化率
四、同一组分的各种偏摩尔量之间的关系 对单组分系统有:
H=U+pV A=U-TS G=H-TS
G S T p
对多组分系统有:
G p
T
V
HB=UB+pVB AB=UB-TSB GB=HB-TSB
GB T
p
SB
GB p
T
VB
§4.2 化学势
定义:
B
GB
( G nB
)T , p,nC (CB)
3、偏摩尔量的加和公式
X nB X B
B
多组分系统的广度量X为系统各组分的物质的量与其偏摩尔量 XB乘积的加和。

物理化学04多组分系统热力学

物理化学04多组分系统热力学

dG=dG( ) +dG()
当恒温恒压,W’=0 时
β相
dG() ()dn()
dG( ) ( )dn( )
dn( ) dn()
dX
X T
p,nB ,nc ,nD
X
dT
p
T ,nB ,nc ,nD
X
dp
nB
T , p,nc ,nD
dnB
X
X
nC
T , p,nB p,nB ,nc
dnD
2021/1/6
偏摩尔量XB的定义为: X B def
X ( nB )T , p,nc
2021/1/6
解:取1kg溶液
nH2O
mH2O M H2O
(1 0.12)1 18.015 103
mol
48.85mol
nAgNO3
mAgNO3 M AgNO3
0.12 1 169.89 103
mol
0.7064mol
xAgNO3
nAgNO3
n n AgNO3
H2O
0.01425
cAgNO3
2021/1/6
由题意:
VA 17.35cm3 / mol
VB 39.01cm3 / mol
由集合公式,混合后:
V nAVA nBVB {0.617.35 0.4 39.01}cm3 26.01cm3
混合前:
VA '
nAM A A
10.84cm3
VB'
nB M B B
16.19cm3
dA SdT pdV BdnB
dA
B
BdnB 0
自发 =平衡
B
(dT 0,dV 0, W ' 0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章多组分系统热力学
1. 在298.15K时,9.47%(质量)的硫酸溶液,其密度为1060.3 kg·m-3 。

在该温度下纯水的密度为997.1 kg·m-3。

求:
(1)质量摩尔浓度(m).
(2)物质的量浓度(c).
(3)硫酸的物质的量分数(x).
2. 在301.2 K和101.325 kPa下,使干燥空气0.025 dm3通入水中,然后在水面上收集。

若忽略空气在水中的溶解度,已知301.2 K时,p(H2O)=3733 Pa,求:
(1)若使收集的气体体积仍为0.025 dm3,问其压力为多少?
(2)若压力为标准压力,问气体的体积为多少?
3. 在413.15K时,纯C6H5Cl 和纯C6H5Br的蒸汽压分别为125.238 kPa和66.104 kPa。

假定两液体组成理想溶液。

若有一混合液,在413.15 K,101.325 kPa下沸腾,试求该溶液的组成,以及在此情况下,液面上蒸汽的组成。

4. 液体A与液体B形成理想溶液。

在343.15 K时,1 mol A和2 mol B所形成的溶液的蒸汽压为50.663 kPa,若在溶液中再加入3 mol A,则溶液的蒸汽压增加到70.928 kPa,试求:
(1)和。

(2)对第一种溶液,气相中A,B的摩尔分数各为多少?
5. 苯和甲苯在293.15 K时蒸汽压分别为9.958和2.973 kPa,今以等质量的苯和甲苯在293.15 K时相混合,试求
(1)苯和甲苯的分压力。

(2)液面上面蒸汽的总压力。

(设溶液为理想气体)
6. 在293.15K时,当O2,N2,Ar的压力分别为101.325 kPa时,每1.0 kg水中分别能溶解O23.11× ;N21.57×;Ar 3.36×。

今在293.15K
标准压力下,使空气与水充分振摇,使之饱和。

然后将水煮沸,收集被赶出的气体,使之干燥。

求所得干燥气中各气体的摩尔分数。

假定空气组成的摩尔百分数为:N278.0%,O221.0%,Ar 0.94%, 其它组分如CO2等忽略不计。

7. 在298.15K时,等物质的量的A和B形成理想溶液,试求Δmix H, Δmix V,Δmix U, Δmix S, Δmix G。

8. 在298.15K时,要从下列混合物中分出 1 mol 的纯A,试计算最少必须作的功:
(1)大量的A和B的等物质的量混合物。

(2)含A和B物质的量各为2 摩尔的混合物。

9. 在293.15K时,乙醚的蒸汽压为58.95 kPa,今在0.10 kg乙醚中溶入某非挥发性有机物质0.01 kg,乙醚的蒸汽压降低到56.79 kPa,试求该有机物的摩尔质量。

10. 设某一新合成的有机化合物(x),其中含碳63.2%,氢8.8%,其余的是氧(均为质量百分数)。

今将该化合物7.02×kg溶于8.04× kg樟脑中,凝固点比纯樟脑低15.3K,求x的摩尔质量及化学式。

(樟脑的Kf 值较大,因此溶质的用量虽少,但ΔTf仍较大,相对于沸点升高的实验,其准确度较高。


11. (1)求4.40%葡萄糖(C6H12O6)的水溶液,在300.2 K时的渗透压。

(2)若将溶液与水用半透膜隔开,试问在溶液的一方需要多高的水柱才能使之平衡。

(溶液的密度为1015 kg·m-3)。

12. (1)人类血浆的凝固点为272.65 K(-0.5℃),求310.15 K(37℃)时血浆的渗透压。

(2)血浆的渗透压在310.15 K时为729.54 kPa,计算葡萄糖等渗透溶液的质量摩尔浓度。

(设血浆的密度为1000 kg·m-3)。

13. 某水溶液含有非挥发性溶质,在271.7 K时凝固,求:
(1)该溶液的正常沸点。

(2)在298.15 K时的蒸汽压(该温度时纯水的蒸汽压为3.178 kPa)。

(3) 298.15 K时的渗透压(假定溶液是理想的)。

14. 三氯甲烷(A)和丙酮(B)所成的溶液,若液相的组成为 x(B)=0.713,则在301.35K时的总蒸汽压为29.39 kPa,在蒸汽中y(B)=0.818。

已知在该温度时,纯三氯甲烷的蒸汽压为29.57 kPa,试求:
(1)混合液中三氯甲烷的活度。

(2)三氯甲烷的活度系数。

相关文档
最新文档