1生物氧化
医学生物化学(第八章)生物氧化
* 铁硫蛋白为单电子传递体 ( Fe2+-e Fe3+)
+e
20
3. 泛醌(ubiquinone , Q) 又称辅酶Q (Coenzyme Q , CoQ)
21
**泛醌的特点 1)是双电子传递体 2)不与蛋白结合的游离存在的电子载体 3)是复合物Ⅰ、Ⅱ、Ⅲ之间的连接者,
是多种底物的电子进入呼吸链的中心点
53
四、 ATP与能量的释放、储存和利用
H2O+CO2 ATP
有机物氧化 产能
生物大分子 主动
合成
运输
肌肉 收缩
遗传信 息传递
O2 ADP+Pi
54
一、 ATP分子中的高能磷酸基的来源 (一) 氧化磷酸化: 主要来源 (二) 底物水平磷酸化 概念: 在反应过程中,由于分子内部能 量重新分配,形成高能磷酸化合物,进一 步将高能磷酸基转移给ADP,形成ATP
67
AH2
2H+
2Cu2+
O2-
H2O
A 2Cu+
1/2O2
属氧化酶主要有:细胞色素氧化酶、 酚氧化酶、 抗坏血酸氧化酶等
68
(二)需氧脱氢酶 (aerobic dehydrogenase)
特点: 使作用物氢活化, 受氢体:除氧以外还有其他试剂 产物之一是H2O2
69
AH
FMN(FAD)
H2O2
氧化磷酸化
4
糖
脂肪
葡萄糖 脂肪酸 + 甘油
乙 酰CoA
蛋白质
氨基酸
TCA cycle
CO2
H++e (进 入 呼 吸 链 )
生成H2O 及释 放 出 能 量
5
生物氧化1
54
(四)复合体Ⅳ: 细胞色素c氧化酶
功能:将电子从细胞色素c传递给氧 复合体Ⅳ的电子传递:
还原型Cyt c → CuA→Cyt a→Cyt a3-CuB → O2 复合体Ⅳ也有质子泵功能,每传递2个电子 使2个H+跨内膜向胞质侧转移。
2. 生物体不直接利用营养物质的化学能,需 要使之转移成细胞可以利用的能量形式
3. ATP是最重要的高能化合物,是细胞可以 直接利用的最主要能量形式
14
生物化学中把化合物水解时释放的能量大 于21 kJ/mol者,所含的化学键称为高能键, 以“~”表示。
含有高能键的化合物称为高能化合物。 在体内所有高能化合物中,以高能磷酸化合 物种类最多,其中又以ATP最为重要。
17
底物水平磷酸化反应
磷酸甘油酸
(1) 1,3-二磷酸甘油酸
激酶
3-磷酸甘油酸
ADP
ATP
(2) 磷酸烯醇式丙酮酸 丙酮酸激酶
丙酮酸
ADP
ATP
琥珀酰CoA
(3) 琥珀酰CoA
合成酶
GDP+Pi GTP
琥珀酸 + HSCoA
18
(二)氧化磷酸化 定义:氧化磷酸化 (oxidative phosphorylation)是指在呼吸链电子 传递过程中偶联ADP磷酸化,生成 ATP,又称为偶联磷酸化。
。 Cyt a、a3中除了有2个铁卟啉辅基外,还有铜离 子可进行传递电子的反应。
Fe2+ Fe3++e Cu+ Cu2++e
42
组成呼吸链的蛋白质复合体
名称
质量 (kDa)
多肽数
组成(辅基)
第八章 生物氧化
第八章生物氧化一、内容提要生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O 并逐步释放能量的过程。
CO2的生成方式为有机酸脱羧。
脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。
有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。
线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。
细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。
从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。
CoQ、Cytc不包含在这些复合体中。
体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。
ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。
氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。
实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。
氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。
底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。
除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。
在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。
胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。
生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。
微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。
人教课标生物必修1生物氧化的概念、特点和方式
生物氧化的概念、特点和方式一、生物氧化的概念生物活动的能量主要来源是有机物质糖、蛋白质或脂肪在生物体内的氧化。
我们把糖、蛋白质、脂肪等有机物质在生物活细胞里进行氧化分解,最终生成CO2和H2O,同时释放大量能量的过程称广义的生物氧化(biological oxidation)。
高等动物通过肺部进行呼吸,吸入氧,排出二氧化碳,吸入氧用来氧化摄入体内的营养物质获得能量,微生物则以细胞直接进行呼吸,因此生物氧化又称组织呼吸、细胞呼吸。
生物氧化包括细胞呼吸作用中的一系列氧化还原反应。
糖、蛋白质、脂肪等有机物在生物体内彻底氧化之前,总是先进行分解代谢。
它们的分解代谢途径是复杂而又不相同的,但它们在彻底氧化为CO2和H2O 时,都经历一段相同的终端氧化过程,也就是狭义的生物氧化,即代谢中间物脱氢生成的还原型辅酶(NADH和FADH2)经电子传递链(呼吸链)传递给分子氧生成水,电子传递过程伴随着ADP 磷化生成ATP。
二、生物氧化的特点生物氧化与有机物质在体外燃烧(或非生物氧化)的化学本质是相同的,都是加氧、去氢、失去电子,最终的产物都是CO2和H2O,并且有机物质在生物体内彻底氧化伴随的能量释放与在体外完全燃烧释放的能量总量相等,但二者表现的形式和氧化条件不同。
生物氧化有其自身特点:第一,生物氧化是在活细胞内、在体温、常压、近于中性pH 及有水环境介质中进行的,是在一系列酶、辅酶和中间传递体的作用下逐步进行的;第二,生物氧化时,氧化还原过程逐步进行,能量逐步释放,这样不会因为氧化过程中能量骤然释放而损害机体,同时使释放的能量得到有效的利用;第三,生物氧化的主要方式是脱氢和电子转移的反应,脱下的氢最后与氧形成水。
生物氧化过程产生的能量通常都先贮存在一些特殊的高能化合物中,主要是腺苷三磷酸,即ATP,然后通过ATP 再供给机体的需能反应,因此ATP 相当于生物体内的能量“转运站”,是能量的“流通货币”。
而体外燃烧条件剧烈,有机物在体外燃烧需要高温及干燥条件;燃烧时,能量突然释放,产生大量的光和热,散失于环境中,同时引起高温。
第六章 生物氧化1
cyt.a和a3组成一个复合体,除了含有铁卟啉外, 还含有铜原子。cyt.a a3可以直接以O2为电子受体。 在电子传递过程中,分子中的铜离子可以发生 Cu+ Cu2+ 的互变,将cyt.c所携带的电子传递给 O2。
琥珀酸-Q还原酶
琥珀酸是生物代谢过程(三羧酸循环)中产生的中 间产物,它在琥珀酸-Q还原酶(复合物II)催化下, 将两个高能电子传递给Q。再通过QH2-cyt, c还原酶、 cyt.c和cyt氧化酶将电子传递到O2。 琥珀酸-Q还原酶也是存在于线粒体内膜上的蛋白复 合物, 它比NADH-Q还原酶的结构简单,由4个不同 的多肽亚基组成。其活性部分含有辅基FAD和铁硫 蛋白。 琥珀酸-Q还原酶的作用是催化琥珀酸的脱氢氧化和 Q的还原。
NADH:还原型
它是由NAD+接受多种代谢产物脱氢得到的产物。 NADH所携带的高能电子是线粒体呼吸链主要电子 供体之一。
铁硫蛋白
铁硫蛋白(简写为Fe-S)是一种与电子传递有关的 蛋白质,它与NADHQ还原酶的其它蛋白质组分 结合成复合物形式存在。它主要以 (2Fe-2S) 或 (4Fe-4S) 形式存在。(2Fe-2S)含有两个活泼的 无机硫和两个铁原子。铁硫蛋白通过Fe3+ Fe2+ 变化起传递电子的作用
离子载体抑制剂
一类脂溶性物质,位于脂双层中,能结合 质子之外的其他一价阳离子(K+/Na+)等, 从而破坏膜两侧的电位梯度,最终破坏氧 化磷酸化。
氧化磷酸化抑制剂
这类抑制剂对电子传递及ADP磷酸化均有抑 制作用。例如,寡霉素(oligomycin)可与ATP合 酶F1和F0之间柄部的寡霉素敏感蛋白结合,阻止 质子从F0质子通道回流,抑制ATP生成。此时由 于线粒体内膜两侧电化学梯度增高影响呼吸链质 子泵的功能,继而抑制电子传递和分子氧的消耗。
生物化学三大代谢重点总结
第八章生物氧化1. 生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成C02和H2O的过程。
2. 生物氧化中的主要氧化方式:加氧、脱氢、失电子3. CO2的生成方式:体内有机酸脱羧4. 呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。
组成(1) N ADH 氧化呼吸链:苹果酸-天冬氨酸穿梭NADH —复合物I —CoQ —复合物III —Cyt c —复合物IV f O 产2.5个ATP(2) 琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸—复合物II —CoQ —复合物III —Cyt c —复合物IV —O 产1.5个ATP含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5. 细胞质NADH 的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。
转运机制(1 ) 3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生 1.5个ATP(2 )苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6. ATP的合成方式:(1 )氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。
偶联部位:复合体I、III、IV(2 )底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。
磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。
7. 磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢寸一、糖的生理功能:(1 )氧化供能(2 )提供合成体内其它物质的原料(3 )作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1. 血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2. 血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1 )氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3. 血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1. 无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6- 磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴ 葡萄糖磷酸化为6- 磷酸葡萄糖-1ATP⑵ 6- 磷酸葡萄糖转变为6- 磷酸果糖⑶ 6- 磷酸果糖转变为1,6- 二磷酸果糖-1ATP⑷ 1,6- 二磷酸果糖裂解⑸ 磷酸丙糖的同分异构化⑹ 3- 磷酸甘油醛氧化为1,3- 二磷酸甘油酸【脱氢反应】⑺ 1,3- 二磷酸甘油酸转变成3- 磷酸甘油酸【底物磷酸化】+1*2ATP⑻ 3- 磷酸甘油酸转变为2- 磷酸甘油酸⑼ 2- 磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽ 磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化+1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。
生物化学__生物氧化
生物氧化(一)名词解释1.生物氧化2.呼吸链3.底物水平磷酸化(一)名词解释1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。
生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。
生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。
2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。
3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP的作用,称为氧化磷酸化。
氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。
5.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成A TP(或GTP)的过程称为底物水平磷酸化。
此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。
(二) 填空题1.生物氧化有3种方式:____脱氢_____、_脱电子__________和_____与氧结合_____ 。
2.生物氧化是氧化还原过程,在此过程中有___酶;______、______辅酶;___和_____电子传递体___ 参与。
7.生物体内高能化合物有___焦磷酸化合物;;;______、___酰基磷酸化合物______、____烯醇磷酸化合物;_____、__胍基磷酸化合物;_______、____硫酯化合物_____、______甲硫键化合物___等类。
8.细胞色素a的辅基是____血红素A;_____与蛋白质以_____非共价____键结合。
生物氧化的概念和特点
生物氧化的概念和特点
生物氧化是生物体中进行能量转换和代谢过程的一种重要机制。
它是指生物体利用氧气(O2)将有机物质(如葡萄糖、脂肪和蛋白质)分解为二氧化碳(CO2)和水(H2O),同时释放出能量的过程。
以下是生物氧化的一些特点:
1. 能量产生:生物氧化过程是能量产生的主要途径。
在细胞的线粒体中,通过氧化反应将有机物质断裂,并将化学能转化为细胞可以利用的能量(以ATP形式存储)。
这种能量转换是维持细胞生存和各种生物活动所必需的。
2. 基于酶催化:生物氧化反应是由酶催化的复杂酶系列反应组成。
每个反应都需要特定的酶来提供催化作用,使反应能够在生物体内发生,并保持反应速率适宜。
3. 发生在细胞呼吸中:生物氧化是细胞呼吸过程的一个重要部分。
在细胞呼吸中,有机物质被逐步分解,生成ATP和废物产物。
细胞呼吸包括三个主要的步骤:糖酵解、三羧酸循环和氧化磷酸化。
4. 有氧和无氧氧化:根据氧气的存在与否,生物氧化可以分为有氧氧化和无氧氧化。
有氧氧化是指在氧气存在的条件下进行的氧化过程,生成CO2和H2O,并释放大量的能量。
无氧氧化是指在氧气不充足或缺乏的条件下进行的氧化过程,产生其他底物(如乳酸、乙醇等)。
5. 营养物质的利用:生物体通过生物氧化途径将摄入的营养物转化
为能源,并用于生长、维持细胞功能和进行各种生理活动。
总之,生物氧化是一种基本的细胞代谢过程,通过氧化有机物质来产生能量,并维持生物体的正常功能和生存。
它是生命活动的核心过程之一。
动物生物化学课件9 生物氧化
2.3 其它氧化酶
微粒体、过氧化物酶体也是生物氧化 的场所 氧化过程中不伴有偶联磷酸化,不能生 成ATP
2.3.1 过氧化物酶体中的氧化酶类 (一)过氧化氢酶(catalase)
又称触酶,辅基为血红素,催化反应如下:
2H2O2
2H2O + O2
(二)过氧化物酶(perioxidase)
辅基为血红素,催化反应如下:
(1)鱼藤酮、异戊巴比妥、杀粉蝶霉素A (2)抗霉素A(antimycin A)、二巯基丙醇
(3)氰化物、硫化氢、叠氮化物(NaN3)和CO
鱼藤酮 异戊巴比妥 杀粉蝶霉素A
FAD.H2 (Fe-S)
抗霉素A 二巯基丙醇
氰化物 硫化氢 叠氮化 CO
NADH FMN (Fe-S)
Cytb Cytc1 Cytc
1.生物氧化概述
1.2 生物氧化的特点 ﹡生物体活细胞中进行;
﹡温和环境(37℃, 中性); ﹡在一系列酶、辅因子及中间递体的参与下逐 步进行;
﹡产生的能量一部分以热的形式散失 ,大部分 储存在ATP中,逐步释放。
生物氧化中物质的氧化方式:
脱氢(乳酸 丙酮酸)
失电子(Fe2+
加氧
Fe3+)
生物氧化的一般过程:
FADH呼吸链(琥珀酸呼吸链)的组成
a) 复 合 物 II ( 琥 珀 酸 -Q 脱 氢 酶 , 含 FAD 、 Fe-S Cytb560)
b) CoQ c) 复合物III(同 NADH 呼吸链)
d) Cytc
e) 复合物IV (同 NADH 呼吸链)
5. 胞液NADH进入线粒体的穿梭机制 A、α-磷酸甘油穿梭作用
c、铁硫蛋白
辅基:铁硫簇(iron-sulfer cluster, Fe-S)
生物氧化(一)
生物氧化(一)(总分:100.00,做题时间:90分钟)一、{{B}}名词解释{{/B}}(总题数:6,分数:12.00)1.生物氧化(biological oxidation)(分数:2.00)__________________________________________________________________________________________ 正确答案:(营养物质在生物体内氧化成二氧化碳和水并逐步释放能量的过程称为生物氧化。
)解析:2.电子传递链(electron transfer chain)(分数:2.00)__________________________________________________________________________________________ 正确答案:(代谢物脱下的氢经一系列递氢体和递电子体的传递,最后把电子传递给氧,氢离子和氧离子结合生成水。
这一系列由递氢体和递电子体构成的链称为电子传递链。
由于该过程与细胞呼吸联系紧密,故称呼吸链。
)解析:3.氧化磷酸化(oxidative phosphorylation)(分数:2.00)__________________________________________________________________________________________ 正确答案:(代谢物脱下的氢经呼吸链(电子传递链)传递与氧结合生成水的同时逐步释放能量,使ADP磷酸化生成ATP的过程称为氧化磷酸化。
具有电子传递与ADP磷酸化偶联的作用,是体内产生ATP的主要方式。
) 解析:4.底物水平磷酸化(substrate-level phosphorylation)(分数:2.00)__________________________________________________________________________________________ 正确答案:(糖酵解和三羧酸循环的某些反应步骤,由于脱氢或脱水等作用,使代谢物分子内部能量重新分布而形成高能磷酸化合物(或高能硫酯化合物),然后将高能键转移给ADP(或GDP)生成ATP(或GTP)的反应称为底物水平磷酸化。
生物化学生物氧化
二、生化反应中自由能的变化
1. 生物化学反应的自由能(free energy)变化
定义式:ΔG=ΔH-TΔS 物理意义:-ΔG=W* (体系中能对环境作功的能量)
自由能的变化能预示某一过程能否自发进行,即: ΔG<0,反应能自发进行 ΔG>0,反应不能自发进行 ΔG=0,反应处于平衡状态。
化学反应自由能的计算
a. 利用化学反应平衡常数计算 基本公式:ΔG′=ΔGº´+ RTlnQc (Qc-浓度商) ΔGº′= - RTlnKeq
b. 利用标准氧化还原电位(Eº)计算(限于氧化-还 原反应) 基本公式:ΔG º′=-nFΔE º′ (ΔE º′=E0+ ′-E0- ′)
计算磷酸葡萄糖异构酶反应的自由能变化
负极反应:NAD++H++2e NADH E-º′ -0.32V
ΔG º′-nFΔE º′ -2×96485×[0.82-(-0.32)] -220 KJ·mol-1
生物体通过 生物氧化所产生 的能量,除一部 分用以维持体温 外,大部分可以 通过磷酸化作用 转移至高能磷酸 化合物如ATP中 。
三、高能化合物
高能化合物:在生化反应中,发生水解或基团转移 反应时释放的自由能大于21kJ/mol的化合物。 1. 生物体系中的高能磷酸酯类化合物
高能磷酸键 水解时释放的能量大于21KJ/mol的磷酸酯
键,常表示为 P。 高能磷酸化合物
含有高能磷酸键的化合物
高 能 化 合 物 的 类 型
2. ATP的特点及其特殊作用
例题: 反应G-1-PG-6-P在38℃达到平衡时, G-1-P占 5%,G-6-P占95%,求 G0。如果反应未达到平 衡,设[G-1- P]=0.01mol.L, [G-6-P]=0.001mol.L, 求反应的 G是多少?
第一节:生物氧化概述
一、生物氧化的概念 二、生物氧化的特点 三、氧化还原电位与自由能 四、高能化合物
一切生命活动都需要能量,维持生命活动的能 量主要有两个来源:
光能(太阳能):光合自养生物通过光合作用将光 能转变成有机物中稳定的化学能。
化学能:异养生物或非光合组织通过生物氧化作 用将有机物质(主要是各种光合作用产物)氧化 分解,使存储的稳定的化学能转变成ATP中活跃 的化学能,ATP直接用于需要能量的各种生命活 动。
和Pi的某些电子的能量水平远远小于ATP。 c、H+的低浓度导致ATP4-向分解方向进行。 d、酸酐键溶剂化所需能量小于磷脂键。
总的来说:反应物的不稳定性和产物的稳定性或反应物内的 静电斥力和产物的共振稳定使ATP水解释放大量能量。
以无机磷酸为例说明几种能量近似的 共振形式:
(2)ATP在能量转化中的作用
能荷=
[ATP]+1/2[ADP] [ATP]+[ADP]+[AMP]
腺苷酸库
[ATP]+1/2[ADP] 能荷=
[ATP]+[ADP]+[AMP] ❖能荷是细胞所处能量状态的一个指标,当细胞内的 ATP全部转变为AMP时能荷值为0,当AMP全部转变 为ATP时,能荷值为1。 ❖高能荷抑制ATP的生成,促进ATP的应用,即促进机 体内的合成代谢。
举例:
生物体内一些氧化还原体系的生化氧化还
原电位 E0 P54
三、氧化还原电位与自由能
2、自由能(G):指在一个体系的总能量中,在恒温 恒压条件下能够做功的那一部分能量。 ❖自由能变化(ΔG):
AB ΔG= GB - GA
▪ΔG是衡量反应自发性的标准。 ΔG< 0,放能,自发进行,可以产生有用的功 ΔG >0,吸能,非自发进行,必须供给能量才能进行。 ΔG =0 ,平衡状态
生物化学(生物氧化)
程为:
E′=Eº′+
RT
C氧化态
nF In C还原态
(三)氧化还原电位与自由能的关系
△Gº’=-nF △Eº’
三. 高能磷酸化合物
(一)高能磷酸化合物的概念
高能磷酸化合物:一般将水解时释放20.9KJ/mol以上自由 能的化合物称之,含有高能量的键称为高能键,常 用” ~” 符号表示,典型的代表是三磷酸腺苷(ATP)含有 两个高能键。
二、三羧酸循环生成的ATP
乙酰CoA+3NAD++FAD + GDP+Pi+2H2O→
CO2+3NADH+FADH2+GTP+2H++CoASH 每个分子G彻底氧化为H2O和CO2,共能产生: 5(或7)+12.5×2=30(或32)分子ATP
三、三羧酸循环的回补反应
草酰乙酸的回补反应
1、丙酮酸的羧化 图6-25 丙酮酸的羧化
(二)呼吸链 呼吸链(respiratory chain,电子传递链ETC):指代谢物上
脱下的氢(质子和电子)经一系列递氢体或电子传递体按对电 子亲和力渐渐升高的顺序依次传递,最后传给分子氧而生 成水的全部体系。
NADH呼吸链
呼吸链
FADH2呼吸链
图5-17 NADH呼吸链(A)和FADH2呼吸链(B)
第五章 生物氧化
第一节 生物氧化概述 一.生物氧化 (一)生物氧化(biological oxidation):糖、脂、蛋白质等有机 物质在活细胞内氧化分解,产生CO2和H2O并放出能量的 作用称生物氧化。
特点:一系列酶引起的,在活细胞内发生氧化还原反应。 反应部位:真核线粒体、原核细胞膜
(二)生物氧化的方式 1.CO2的生成 脱羧作用:α 脱羧和β 脱羧两种类型 脱羧过程:氧化脱羧 直接脱羧 (1) α 直接脱羧 丙酮酸脱羧反应 (2) β 直接脱羧 草酰乙酸脱羧反应 (3) α 氧化脱羧 丙酮酸氧化脱羧反应 (4) β 氧化脱羧 苹果酸氧化脱羧反应
生物化学第八章 生物氧化
1 O2 2
H2O
实测得FADH2呼吸链: P/O~ 2
FADH2
线粒体是真核细胞的一种细胞器,是生物氧化和能 量转换的主要场所。是组织细胞的“发电厂”。 线粒体内,外膜的化学组成有显著的区别; 外膜:磷脂,胆固醇含量高,蛋白质含量低 内外膜间隙:腺苷酸激酶,核苷酸激酶等 内膜:有些脱氢酶,氧化呼吸链有关的酶, ATP 合成酶 基质: 催化糖有氧分解,脂肪酸氧化,氨基酸分 解和蛋白质生物合成的酶
3
二、生物氧化的一般过程
主要解决三个问题:
1.代谢物中C如何在酶催化下生成CO2;
2.细胞如何利用O2将代谢物中的H氧化成H2O;
3.氧化产生的自由能怎样被收集、转换和储存。
4
生物氧化的三个阶段
脂肪 多糖 蛋白质
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰 CoA等)
31
2. 高能化合物
生化反应中,在水解时或基团转移反应中可释
放出大量自由能( >20 千焦 / 摩尔)的化合物称为 高能化合物。
32
高 能 化 合 物 类 型
33
3. ATP的特点
在 pH=7 环 境 中 , ATP 分子中的三个磷 酸基团完全解离成带 4个负电荷的离子形 式 ( ATP4-), 具 有 较大势能,加之水解 产物稳定,因而水解 自由能很大( ΔG°′= -30.5千焦/摩尔)。
34
4.ATP的特殊作用
在机体的能量代谢中, ATP 就好像能量通币, 高能化合物虽有多种,只有 ATP 可为一切生 理机能与生物合成反应提供能量; ATP是细胞内磷酸基团转移的中间载体
第九章 生物氧化
• 生物氧化概述 • 电子传递链 • 生物氧化中ATP的生成
第一节 生物氧化概述
一、生物氧化的基本概念
• 生物氧化(biological oxidation):有机物质(糖、脂肪 和蛋白质)在生物体内氧化分解成CO2 和H2O,并释放能 量的过程。
• 又称为细胞氧化或细胞呼吸、组织呼吸。
三种假说: • 化学偶联假说 高能共价中间产物 • 构象偶联假说 高能构象中间产物 • 化学渗透假说 1961,P.Mitchell
化学偶联假说(1953年)
chemical coupling hypothesis
认为电子传递反应释放的能量通过一系列连续的 化学反应形成高能共价中间物,最后将其能量转 移到ADP中形成ATP。
HO OH ATP
ADP AMP
ATP
ATP在能量交换中的作用如同能量“货币”,是一种 可以流通的能量物质:即可从能量较高的化合物获得 能量,也可较容易地向能量较低的化合物传递能量。
表 各种磷酸化合物的水解自由能
磷酸化合物 磷酸烯醇式丙酮酸(PEP)
氨基甲酰磷酸 乙酰基磷酸 磷酸肌酸(CP) 焦磷酸(PPi) ATP(→ADP + Pi) 葡萄糖-1-磷酸(G-1-P) 葡萄糖-6-磷酸(G-6-P) α-磷酸甘油
三、生物氧化中CO2的生成
1. 直接脱羧作用
• α-直接脱羧:如氨基酸脱羧
• β-直接脱羧:如草酰乙酸脱羧
2. 氧化脱羧作用
• α-氧化脱羧:如丙酮酸的氧化脱羧
• β-氧化脱羧:如异柠檬酸的氧化脱羧
四、生物氧化过程中H2O的生成
1. 底物脱水
2. 由呼吸链生成水
在生物氧化中,水是代谢物上脱下的氢与生物体吸进的O2化合 生成的。代谢物上的氢需要在脱氢酶的作用下才能脱下,吸入的 O2要通过氧化酶的作用才能转化为高活性的氧。在此过程中, 还需要有一系列传递体才能把氢传递给氧,生成水。
生物氧化的概念和特点(一)
生物氧化的概念和特点(一)
生物氧化的概念和特点
一、生物氧化的概念 1. 生物氧化是指生物体内在新陈代谢过程中,有机物质通过与氧气发生化学反应而释放出能量的过程。
2. 生物氧化是一种氧化还原反应,其中有机物质被氧气氧化,同时氧气被还原产生水。
3. 生物氧化是细胞呼吸的最后一步,将有机物质中的化学能转化为三磷酸腺苷(ATP)的化学能。
二、生物氧化的特点 1. 高效能产能:生物氧化反应是细胞内能量产生的主要途径,通过细胞呼吸过程可以高效地产生ATP能量。
2. 氧气依赖性:生物氧化反应需要氧气的参与,没有氧气的情况下无法进行正常的细胞呼吸过程。
3. 燃烧过程:生物氧化反应与燃烧反应有相似之处,都是有机物质与氧气的氧化反应,只是生物氧化反应是在生物体内进行的。
4. 产生水和二氧化碳:生物氧化反应的产物包括水和二氧化碳,水是氧气还原的产物,二氧化碳是有机物质被氧化后释放出来的。
5. 能量释放顺序:生物氧化反应是通过一系列产生高能磷酸键的反应,将有机物质中的化学能转化为ATP能量。
6. 发生在细胞内膜:生物氧化反应大部分发生在细胞线粒体的内膜上,其中线粒体的内膜系统具有高度结构化和功能特异性。
综上所述,生物氧化是细胞内在新陈代谢过程中,有机物质与氧气发生氧化还原反应,并释放出能量的过程。
它具有高效能产能、氧
气依赖性、类似燃烧过程、产生水和二氧化碳、能量释放顺序、发生在细胞内膜等特点。
第五章 生物氧化
第二节
氧化还原酶类
1、脱氢酶 使代谢物的氢活化、脱落 Nhomakorabea 传递给受氢体或中间传递体 显著特点:体外实验中以甲烯蓝为受氢体 氧化型甲烯蓝:兰色 还原型甲烯蓝:无色
高能基团的传递
高能化合物的种类
烯醇式磷酸化合物 △Go Kcal/mol (-C=C-O~P(O)) -14.8 酰基磷酸化合物 (-C-O~P(O)) -10.1 O 焦磷酸化合物 ((O)P-O~P(O)) -7.3
磷氧型 -O~P 磷酸化合物
磷氮型 HN =C-N~P(O)
O
-10.3 -7.5
磷酸烯醇式丙酮酸 (PEP)
CH2OH
2-磷酸甘油酸
二、呼吸链生成水
(1)代谢脱下的氢原子通过多种酶和辅酶所催化的 连锁反应逐步传递,最终与氧结合生成水; (2)酶和辅酶有序排列在线粒体内膜; 传递氢的酶和辅酶——递氢体 传递电子的酶和辅酶——递电子体 (3)与细胞呼吸有关,此传递链称为呼吸链。 递氢体、递电子体都起传递电子的作用,称 电子传递链。
乙酰CoA
共同中间物进入 三羧酸循环,氧化 脱下的氢由电子 传递链传递生成 H2O,释放出大 量能量-ATP。
磷酸化
电子传递 (氧化)
+Pi
e-
三羧酸 循环
• 生物氧化主要的内容 • (1) CO2如何生成?脱羧反应
• (2) H2O如何生成?电子传递链 • (3)能量如何生成?ATP的生成
生物氧化的特点
O R C O~ P O O
CH2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物质代谢和能量代谢
同化作用:小分子合成大分子;需要能量 新陈代谢 物质代谢————能量代谢 异化作用:大分子分解为小分子:释放能量
能量代谢在新陈代谢各的重要地位
• 能量代谢概念? • ATP能量传递系统 • 异养生物将外界营养物质通过分解代谢产 生ATP的过程(三个阶段) • ATP的作用及特点
ATP是能量代谢的“货币”
ATP是生物体通用的能量货币。
ATP是能量的携带者和转运者,但并不是能量的贮 存者。起贮存能量作用的物质称为磷酸原,在脊推 动物中是磷酸肌酸。
ATP是磷酸基团转移反应的中间载体
磷酸基团往往从磷酸基团转移势能高的物质向势能低 的物质转移。 磷酸基团转移势能在数值上等于其水解反应的ΔG0’。
磷酸基团转移势能 /4.18kJ.mol-1
4、细胞色素还原酶(复合体Ⅲ)
细胞色素是一类含有血红素辅基的电子传递蛋白质 的总称。 (有颜色) 根据吸收光谱的不同将细胞色素分为a,b,c三类。
细胞色素还原酶血红素辅基的铁原子,在电子传 递中发生可逆的Fe3+ Fe2+ 的互变起传递电子的 作用。一个细胞色素每次传递一个电子。 功能:将电子从泛醌传递给细胞色素C
2、FMN和FAD递能作用
FAD(黄素-腺嘌呤二核苷酸)和FMN(黄素单核苷酸)
3、CoA在能量代谢中的作用
辅酶A是生物体内代谢反应中乙酰化酶的辅酶,它的前体 是维生素(B3)泛酸,乙酰-CoA水解可释放出大量能量。
新陈代谢的调节
• 分子水平 • 细胞水平 • 整体水平
代谢中常见的有机反应机制
• • • • 基团转移反应 氧化-还原反应 消除、异构化和重排反应 碳-碳键的形成或断裂反应
琥珀酸脱氢酶,它是嵌在线粒体内膜的酶蛋白。也 是此复合体的一部分,其辅基包括FAD和Fe-S聚簇。 琥珀酸脱氢酶催化琥珀酸氧化为延胡索酸,同时其 辅基FAD还原为FADH2,然后FADH2又将电子传递给 Fe-S聚簇。 最后电子由Fe-S聚簇传递给琥珀酸-Q还原酶的辅酶 CoQ。这一步不能形成的ATP. 功能 :将电子从琥珀酸传递给泛醌
一、电子传递链的概念
1.概念: 在生物氧化过程中,代谢物上脱下的氢经 过一系列的按一定顺序排列的氢传递体和电子传递 体的传递,最后传递给分子氧并生成水,这种氢和 电子的传递体系称为电子传递链。又称呼吸链。
FAD呼吸链
典型的呼吸链
NADH呼吸链
2、电子传递链分布
原核细胞存在于质膜上 真核细胞存在于线粒体的内膜上
• 氧化磷酸化是指代谢物(如α-酮戊二酸等)脱下的 氢进入呼吸链,经过一系列递氢、递电子体的氧化过 程,释放能量,使ADP磷酸化生成ATP的过程,简单说 就是与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程, 需要NAD+ 或FAD作辅助因子参与的脱氢氧化反应,脱 下的氢都要进入呼吸链通过氧化磷酸化产生能量。呼 吸链中的递氢、递电子体,是从低标准还原电位向高 标准还原电位进行氢和电子的传递,并释放出能量。 底物水平磷酸化是指在代谢物分解过程中,高能键 (如高能磷酸健、高能硫酯键等)断裂释放能量,使 ADP磷酸化生成ATP的过程,简单地说就是直接与代谢 底物高能键水解相偶联使ADP磷酸化的过程。如1分子 1,3-P2-甘油酸中的高能磷酸健断裂释放能量使1分子 ADP 磷酸化生成ATP。
~
2、高能化合物的类型
按其分子结构特点及所含高能键的 特征分:
磷氧键型 磷氮键型 硫酯键型 甲硫键型
(1)磷氧键型(—O-P)
(A)酰基磷酸化合物
O C O CH2 O P O
-
O CH3 C O
O
O P O O
-
O CH OH O O P O
-
1,3-二磷酸甘油酸
乙酰磷酸
O R C
O H3N
Chapter19 代 谢 总 论
metabolism
O CH3CCOOH O CH3C SCoA
2+ PO3
乙酸激酶 CH3COOH ATP
O CH3C O CH3CCH2COOH
磷酸乙酰转移酶 ADP
OH CH3CHCH2COOH CH3CH2CH2COOH
什么是生物代谢?
生物代谢是指生物活体与外界环境不断进行的物质(包 括气体、液体和固体)交换过程。其本质是活细胞中发生一 系列化学变化,每一变化均由酶催化。
•
生物氧化的一般过程
TCA
二、生物氧化的特点
• 1.酶的催化 • 2.氧化进行过程中,必然伴随生物还原反应的发生。 • 3.水是许多生物氧化反应的氧供体。通过加水脱氢作 用直接参予了氧化反应。 • 4. 氧化过程中脱下来的氢质子和电子,通常由各种载 体,如NADH等传递到氧并生成水。 • 5.生物氧化是一个分步进行的过程,能量通过逐步氧 化释放,不会引起体温的突然升高,而且可使放出的能 量得到最有效的利用。 • 6.生物氧化释放的能量一般都贮存于一些特殊的化合 物中,主要是ATP.
p121
呼吸链各复合体在线粒体内膜中的位置
(一)NADH-Q还原酶(复合体1)
由FMN + 铁硫蛋白为辅基 功能:先与NADH结合并将NADH上的两个高势能 电子转移到FMN辅基上,使NADH氧化,并使FMN 还原。 NADH+H++FMN FMNH2+NAD+
1.黄素蛋白 以FMN,FAD为辅酶
2.辅酶Q(CoQ)
辅酶Q(CoQ)又称泛醌,有时简称Q。是脂溶性 辅酶。在线粒体内膜中是一种均一的流动库,可以 结合到膜上,也可以游离状态存在。 CoQ和FMN都是NADH-Q还原酶的辅酶。 CoQ和 FMN一样,都能够接受或给出一个或两个电子,因 为它们都有稳定的半醌形式。
3、琥珀酸-Q还原酶(复合体Ⅱ )
(3) 硫酯键型
NH2
O R C SCoA
O O S O
-
N O O P O
-
N N N H H OH
OCH2 H H
O
酰基辅酶A
OH
3‘-磷酸腺苷-5’-磷酸硫酸
(4) 甲硫键型
COO CH2
S-腺苷甲硫氨酸
+
CH NH3 CH2 H3C S
+
A
3.最重要的高能化合物ATP (三磷酸腺苷)
NH2 N
H H OH
7.3千卡/摩尔
(C)烯醇式磷酸化合物
COOH O C O CH2 P O O
磷酸烯醇式丙酮酸 14.8千卡/摩尔
(2) 氮磷键型
O NH N CH3 CH2COOH P O
NH N CH3 O P O NH2 C NH O CH2CH2CH2CHCOOH
C NH O
磷酸肌酸 磷酸精氨酸 10.3千卡/摩尔 7.7千卡/摩尔 这两种高能化合物在生物体内起储存能量的作用
NH2 N O O P O
-
N N N H H
O O P O
-
O O P O
-
OCH2 H H
O
OH OH 三磷酸腺苷 (ATP)
ATP Pi
ADP Pi
AMP
能量代谢中辅酶的递能作用
1、辅酶I和辅酶II的递能作用
NAD+ (烟酰胺-腺嘌呤二核苷酸,又称为辅酶I) NADP+(烟酰胺-腺嘌呤磷酸二核苷酸,又称为辅酶II )
四、高能化合物
糖、脂肪、蛋白质
1、高能化合物的概念
生物氧化
CO2+H2O+能量 ATP
在标准条件下(pH7,25℃,1mol/L)发生水解时, 可释放出大量自由能的化合物,称为高能化合物。 习惯上把“大量”定为5kcal/mol(即20.92KJ/mol) 以上。
在高能化合物分子中,释放出大量自由能时水 解断裂的活泼共价键称为高能键。用 表示 但须注意:释放的能量并非集中在这个键上,而 是与分子结构和水解反应有关,生化上的“高能 键”,涵义不同于普通化学上的“键能”,不能把 “高能键”理解为“能键高”
生物氧化和有机物在体外氧化(燃烧)的实质相 同,都是脱氢、失电子或与氧结合,消耗氧气, 都生成CO2和H2O,所释放的能量也相同。但二者 进行的方式和历程却不同:
生物氧化
体外燃烧
1、细胞内温和条件 高温或高压、干燥 条(常温、常压、中性pH、水溶液) 2、一系列酶促反应 无机催化剂 逐步氧化放能,能量利用率高 能量爆发释放 3、释放的能量转化成ATP被利用 转换为光和热,散失
三、自由能与氧化还原电位
(一)自由能(G)(1878)
指在一个体系的总能量中,在恒温恒压条件下 能够做功的那一部分能量。用符号G表示。
自由能变化(ΔG) A B ΔG= GB - GA
(二)生化标准自由能变化(ΔG0)
指在标准条件下,即温度为25℃,参加 反应的物质浓度为1mol/L,若有气体,则为 1个大气压,pH为7时,测定的自由能变化。 单位为J/mol、KJ/mol。
二、电子传递链的组成
由NADH到O2的电子传递链主要包括:
FMN、辅酶Q(CoQ)、细胞色素b、c1、c、a、a3 以及一些铁硫蛋白。 这些电子传递体传递电子的顺序,按照它们的还 原电势大小可排成序列,它们对电子亲和力的不断 增加,推动电子从NADH向O2传递。
电子传递中有四个复合体参与:
NADH-Q还原酶(复合体I) 琥珀酸-Q还原酶(复合体Ⅱ ) 细胞色素还原酶(复合体 III ) 细胞色素氧化酶(复合体Ⅳ)
5、细胞色素C
是唯一能溶于水的细胞色素。 总的说来,两个QH2参与电子传递,使两个细胞 色素C还原,经过全过程又产生了一个QH2分子。因 此从化学反应计算是一个QH2分子的两个电子分别 传递给2分子细胞色素C。这种通过辅Q的电子传递 方式称为Q循环。 通过上述方式使电子由携带两个电子的载体— QH2转移给携带一个电子的载体—细胞色素C。这有 利于电子的有效利用。