《飞行器结构学》说课
西工大飞行器结构力学电子教案
西工大飞行器结构力学电子教案第一章:飞行器结构力学概述1.1 飞行器结构力学的定义介绍飞行器结构力学的概念和基本原理。
解释飞行器结构力学的研究对象和内容。
1.2 飞行器结构的特点与分类讨论飞行器结构的特点,包括轻质、高强度、耐腐蚀等。
介绍飞行器结构的分类,包括飞行器壳体、梁、板、框等。
1.3 飞行器结构力学的基本假设阐述飞行器结构力学分析的基本假设,如材料均匀性、连续性和稳定性。
第二章:飞行器结构受力分析2.1 飞行器结构受力分析的基本方法介绍飞行器结构受力分析的基本方法,包括静态分析和动态分析。
2.2 飞行器结构受力分析的实例通过具体实例,讲解飞行器结构受力分析的过程和方法。
2.3 飞行器结构受力分析的计算方法介绍飞行器结构受力分析的计算方法,包括解析法和数值法。
第三章:飞行器结构强度分析3.1 飞行器结构强度理论介绍飞行器结构强度理论的基本原理,包括最大应力理论和能量原理。
3.2 飞行器结构强度计算方法讲解飞行器结构强度计算的方法,包括静态强度计算和疲劳强度计算。
3.3 飞行器结构强度分析的实例通过具体实例,展示飞行器结构强度分析的过程和方法。
第四章:飞行器结构稳定分析4.1 飞行器结构稳定理论介绍飞行器结构稳定理论的基本原理,包括弹性稳定理论和塑性稳定理论。
4.2 飞行器结构稳定计算方法讲解飞行器结构稳定计算的方法,包括解析法和数值法。
4.3 飞行器结构稳定分析的实例通过具体实例,讲解飞行器结构稳定分析的过程和方法。
第五章:飞行器结构动力学分析5.1 飞行器结构动力学基本原理介绍飞行器结构动力学的基本原理,包括振动理论和冲击理论。
5.2 飞行器结构动力学计算方法讲解飞行器结构动力学计算的方法,包括解析法和数值法。
5.3 飞行器结构动力学分析的实例通过具体实例,展示飞行器结构动力学分析的过程和方法。
第六章:飞行器结构疲劳与断裂分析6.1 飞行器结构疲劳基本理论介绍飞行器结构疲劳现象的基本原理,包括疲劳循环加载、疲劳裂纹扩展等。
飞行器结构力学电子教案PPT课件
目
CONTENCT
录
• 飞行器结构力学概述 • 飞行器结构力学基础知识 • 飞行器结构静力学分析 • 飞行器结构动力学分析 • 飞行器结构疲劳与损伤容限分析 • 飞行器结构优化设计
01
飞行器结构力学概述
定义与特点
定义
飞行器结构力学是研究飞行器结构强度、刚度和稳定性的学科, 主要关注飞行器在各种载荷作用下的响应和行为。
迭代算法
通过不断迭代更新解,逐步逼近最优解,常用的 算法包括梯度下降法、牛顿法等。
飞行器结构优化设计方法
尺寸优化
通过改变结构件的尺寸,以达到最优化的结构性 能。
拓扑优化
在给定的设计区域内,寻找最优的材料分布和连 接方式。
形状优化
通过改变结构的形状,以实现最优的结构性能。
多学科优化
综合考虑多种学科因素,如气动、热、强度等, 进行多学科协同优化。
技术发展
飞行器结构力学的发展推动了航空航天技术的进步 ,为新型飞行器的设计和研发提供了技术支持。
飞行器结构力学的历史与发展
历史
飞行器结构力学的发展可以追溯到20世纪初期,随着航空工 业的快速发展,结构力学逐渐成为飞行器设计的重要学科。
发展
近年来,随着新材料、新工艺和计算技术的不断发展,飞行 器结构力学在理论和实践方面都取得了重要进展。未来,随 着环保要求的提高和新能源的应用,飞行器结构力学将面临 新的挑战和机遇。
损伤容限
指材料或结构在受到损伤后仍能保持一定承载能力的程度,是评估结构剩余寿命的重要 指标。
疲劳与损伤容限分析的必要性
飞行器在服役过程中受到各种复杂载荷的作用,结构疲劳与损伤是不可避免的现象,因 此进行疲劳与损伤容限分析是确保飞行器安全的重要手段。
西工大飞行器结构力学电子教案
西工大飞行器结构力学电子教案第一章:绪论1.1 课程简介1.2 飞行器结构力学的研究对象和内容1.3 飞行器结构力学的应用领域1.4 学习方法和教学要求第二章:飞行器结构的基本受力分析2.1 概述2.2 飞行器结构的受力分析方法2.3 飞行器结构的受力类型及特点2.4 飞行器结构的基本受力分析实例第三章:飞行器结构的弹性稳定性分析3.1 概述3.2 弹性稳定性的判别准则3.3 飞行器结构弹性稳定性分析方法3.4 飞行器结构弹性稳定性分析实例第四章:飞行器结构的强度分析4.1 概述4.2 飞行器结构强度计算方法4.3 飞行器结构材料的力学性能4.4 飞行器结构强度分析实例第五章:飞行器结构的刚度分析5.1 概述5.2 飞行器结构刚度计算方法5.3 飞行器结构刚度分析实例5.4 飞行器结构刚度优化设计第六章:飞行器结构的疲劳分析6.1 概述6.2 疲劳寿命的计算方法6.3 疲劳裂纹扩展规律6.4 飞行器结构疲劳分析实例第七章:飞行器结构的断裂力学分析7.1 概述7.2 断裂力学的基本概念7.3 断裂判据和裂纹扩展规律7.4 飞行器结构断裂力学分析实例第八章:飞行器结构的动力学分析8.1 概述8.2 飞行器结构动力学的基本方程8.3 飞行器结构的动力响应分析8.4 飞行器结构动力学分析实例第九章:飞行器结构复合材料分析9.1 概述9.2 复合材料的力学性能9.3 复合材料结构分析方法9.4 飞行器结构复合材料分析实例第十章:飞行器结构力学工程应用案例分析10.1 概述10.2 飞行器结构力学在飞机设计中的应用10.3 飞行器结构力学在航天器设计中的应用10.4 飞行器结构力学在其他工程领域的应用重点和难点解析重点环节一:飞行器结构的基本受力分析补充和说明:飞行器结构的基本受力分析是理解飞行器结构力学的基础,需要掌握各种受力类型的特点和分析方法,并通过实例加深理解。
重点环节二:飞行器结构的弹性稳定性分析补充和说明:弹性稳定性是飞行器结构设计中的关键问题,需要理解判别准则,掌握分析方法,并通过实例了解实际应用。
飞行器结构学第二版课程设计
飞行器结构学第二版课程设计一、设计背景飞行器结构学是航空航天工程领域的重要课程之一,它是研究飞行器的构造、强度和刚度等基本力学问题的学科。
通过飞行器结构学的学习可以深入了解飞行器的工作原理、性能及设计并掌握飞行器结构设计、计算和分析等技能。
本课程设计旨在提高学生的飞行器结构设计、计算和分析能力,加深对飞行器结构学的理解和实践应用,培养学生的实践能力以及创新精神,为其未来的工作做好充足准备。
二、设计内容1. 开题报告学生需要根据指导教师提供的教学大纲,选择一个广泛而富有挑战性的飞行器结构设计题目,进行详细的文献调查和初步方案设计。
开题报告需要包括研究背景、设计目的和任务、关键技术和方法、难点与挑战,设想的创新点等详细内容。
2. 中期检查和设计方案学生需要根据开题报告的方向,深入研究飞行器结构设计方案,完成初步的方案设计,并进行中期检查。
中期检查主要包括方案的整体性、可行性、合理性和具体实现方案等的评估和调整。
3. 设计计算和验证在深入研究飞行器结构设计方案后,学生需进行设计计算和验证,确定设计方案的合理性和可行性,包括材料力学计算、刚度、强度、振动和疲劳等方面的分析和计算,并对设计方案进行仿真和验证。
4. 结论汇报与答辩根据设计的成果,学生需要进行结论汇报和答辩,汇报完成的设计成果和研究创新点及其算法和技术特点,评估整个设计工作的质量和实用性以及工程应用的前景和展望等关键科学问题。
三、设计要求1. 设计原则设计方案应当具有实现性、可行性和可验证性,所有数据和结论必须合理可靠。
学生需要遵循工程标准和规范,切实减小设计的安全风险,并确保设计符合相关法律法规要求。
2. 设计流程设计工作应按时进行,并及时沟通指导教师,及时解决存在的问题和困难。
学生需要高效执行设计计划和作业,保证开题、中期检查、设计计算与验证和结论汇报与答辩等环节的顺利推进。
3. 设计文档设计过程中应当保留完整记录和文档,包括开题报告、中期检查、设计计算和验证,结论汇报与答辩的相关文档和记录。
飞行器结构力学课程教学大纲
期末考试:60%,期中考试:10%,作业:10%,课程设计:20% T.H.G. Megson, Aircraft Structures for Engineering Students, 4th Edition , Elsevier’s Science & Technology, 2007,ISBN-13:978-0-75066-7395
《飞行器结构力学》课程教学大纲
课程基本信息(Course Information) 课程代码 (Course Code) *课程名称 (Course Name) 课程性质 (Course Type) 授课对象 (Audience) 授课语言 (Language of Instruction) *开课院系 (School) 先修课程 (Prerequisite) 授课教师 (Instructor) 余音,于哲峰 Yu Yin,Yu Zhefeng *学时 (Credit Hours) *学分 (Credits) 飞行器结构力学 Aircraft Structural Mechanics 专业基础课 Professional core courses 三年级本科生 Junior 中文,英文 Chinese, English 航空航天学院 School of Aeronautics and Astronautics Material mechanics, Theoretical mechanics 课程网址 (Course Webpage)
*学习目标 (Learning Outcomes)
教学内容 序言 弹性力学基础 二维弹性力学问题 三维截面的扭转 课堂测验 *教学内容、 进度 安排及要求 (Class Schedule & Requirements) 薄板弯曲 薄壁的失稳 期中测验 薄壁梁的弯曲 薄壁梁的剪切 薄壁梁的扭转 开、闭剖面组合梁 结构模型简化 典型结构件计算 复习课 课程设计
飞行器结构力学基础电子教学教案
飞行器结构力学基础电子教学教案一、教案简介本教案旨在通过电子教学方式,让学生了解和掌握飞行器结构力学的基础知识。
通过本课程的学习,学生将能够理解飞行器结构的基本组成,掌握飞行器结构受力分析的方法,以及运用力学原理解决飞行器结构设计中的问题。
二、教学目标1. 了解飞行器结构的基本组成和分类。
2. 掌握飞行器结构受力分析的基本方法。
3. 学习飞行器结构力学的基本原理和计算方法。
4. 能够运用所学知识解决飞行器结构设计中的实际问题。
三、教学内容1. 飞行器结构概述:飞行器结构的基本组成、分类和特点。
2. 飞行器结构受力分析:飞行器结构的受力类型、受力分析方法。
3. 飞行器结构力学原理:力学基本概念、力学基本定律、飞行器结构力学基本原理。
4. 飞行器结构力学计算:弹性力学、塑性力学、飞行器结构强度计算、稳定性和振动分析。
5. 飞行器结构设计实例:飞行器结构设计原则、实例分析。
四、教学方法1. 采用电子教学课件,结合文字、图片、动画和视频等多种形式,生动展示飞行器结构力学的基本知识和实例。
2. 利用数值计算软件,进行飞行器结构受力分析和强度计算,提高学生的实践能力。
3. 组织课堂讨论和小组合作,培养学生的团队协作能力和创新思维。
4. 布置课后习题,巩固所学知识,提高学生的自主学习能力。
五、教学评估1. 课后习题:评估学生对飞行器结构力学基础知识的掌握程度。
2. 课堂讨论:评估学生在团队协作和分析解决问题方面的能力。
3. 课程报告:评估学生对飞行器结构设计实例的理解和应用能力。
4. 期末考试:全面评估学生对本门课程的掌握程度。
六、教学资源1. 电子教学课件:包括飞行器结构力学的基本概念、原理、实例等内容。
2. 数值计算软件:用于飞行器结构受力分析和强度计算。
3. 教学视频:展示飞行器结构设计和制造过程。
4. 案例资料:提供飞行器结构设计实例,供学生分析和讨论。
5. 课后习题集:包括各种类型的题目,巩固所学知识。
飞行器结构力学教学设计
飞行器结构力学教学设计介绍本文将为教师们提供一套完整的飞行器结构力学的教学设计,在教学过程中需要注意的重点内容以及教学方法。
教学目标本教学设计的目标是让学生掌握以下知识点:1.飞行器的结构组成及其特点;2.材料的机械特性及其在飞行器中的应用;3.飞行器受力分析及其方法;4.飞行器几何特征对其力学性能的影响;5.飞行器结构的设计和验证方法。
教学内容第一章飞行器结构组成及其特点本章将介绍飞行器结构的组成和特点,包括主要结构部件的分类、特点和作用、失效模式及其对飞行器性能的影响等方面。
第二章材料的机械特性及其在飞行器中的应用本章将介绍材料的机械特性及其在飞行器中的应用,包括材料的力学性能、选材原则、材料的应用范围和限制等。
第三章飞行器受力分析及其方法本章将介绍飞行器受力分析及其方法,在此基础上将进一步阐述针对不同载荷情况下的受力分析方法,包括静力学分析、动力学分析、稳定性和控制分析等。
第四章飞行器几何特征对其力学性能的影响本章将介绍飞行器几何特征对其力学性能的影响,包括重心、面积、弯矩等。
同时,将探讨飞行器几何特征的变化对其性能的影响,并给出具体案例说明。
第五章飞行器结构的设计和验证方法本章将介绍飞行器结构的设计和验证方法,在此基础上将阐述应用最新设计方法和先进技术的飞行器研制过程,以及对设计方案进行验证和评估的方法。
教学重点在教学过程中,需要重点关注以下内容:1.对材料和结构的认识深度,以及对其应用进行全面的评估和选择;2.飞行器受力分析的基本方法及其在设计和验证过程中的应用;3.飞行器几何特征对其性能的影响,以及不同方案的评估和比较;4.飞行器结构设计的基本流程和方法,以及如何客观地评估和验证设计方案。
教学方法在教学过程中,可以采用多种教学方法,具体包括:1.理论授课,通过讲授理论知识,让学生对相关概念和知识点有深入的了解;2.实验教学,通过让学生亲身体验、操作和观察实验现象,加深对知识点的理解;3.仿真教学,通过模拟实际情况,让学生掌握设计和验证方法,提高实际操作能力;4.讨论教学,通过让学生参与和讨论不同的设计方案,提高思辨和分析能力。
飞行器结构力学理论基础讲义
飞行器结构力学理论基础讲义第一章绪论1.1 结构力学在力学中的地位结构力学是飞行器结构计算的理论基础。
它研究飞行器在外载荷作用下,结构最合理的组成及计算方法。
所谓最合理的结构是指:在满足设计中关于强度与刚度的基本要求下,同时在结构空间允许的情况下,具有最轻的重量。
为了达到以上的目的,对从事结构设计者来说,必须较熟练地掌握结构力学的基本原理与方法。
对于本专业的学生来说,结构力学是飞行器强度与刚度计算的基础课程,并且为学习飞行器部件设计及传力分析打下必要的理论基础。
结构力学具体来说由以下四部分组成:(1)研究结构组成是否合理。
主要指结构在外力作用下是否几何不变,同时内力与变形又不至于过大。
(2)结构在外载荷作用下,结构内力的计算方法。
(3)结构在外载荷作用下,结构刚度的计算方法。
(4)研究结构中某些元件及组合件的弯曲及稳定性。
1.2 结构力学的研究内容不同的结构有其不同的结构力学,例如在建筑结构中主要涉及杆系,因此杆系所需的力学知识构成建筑结构力学。
船舶结构的设计和制造中,主要涉及开口薄壁杆件,因此开口薄壁杆件的弯曲和扭转便构成船舶结构力学的主要内容。
对于航天领域,飞行器结构大多是薄壁结构,薄壁结构力学构成飞行器结构力学的主要内容。
1.3 结构力学的计算模型工程结构,尤其是飞行器结构往往是很复杂的,要考虑所有的因素来分析其内力和变形几乎是不可能的,也是没有必要的。
为了适应实际计算,首先需要将真实的结构加以简化,保留起主要作用的因素,略去次要因素,用理想化的受力系统代替实际结构,以得到所需要的计算模型。
计算模型选取的原则是:(1)反映实际结构的主要受力和变形特征;(2)便于结构的力学分析。
计算模型的简化大致可分成以下5个方面的内容。
1.外载荷的简化(1)略去对强度和刚度影响不大的外载荷,着重考虑起主要作用的外载荷。
(2)将作用面积很小的分布载荷简化成集中载荷。
(3)将载荷集度变化不大的分布载荷简化成均布载荷。
第01讲—结构设计引论
模拟试验和强度的基本试验。如强度不能满足要求,
则修改尺寸或结构形式,使满足强度要求。
7. 绘制全套结构生产图纸,编制相应的技术文件。
8. 对全机进行疲劳寿命和疲劳强度计算。进行耐久性和 损伤容限分析、结构可靠性分析、动强度计算,给出 结构使用寿命和检查周期。 9. 根据试造、全机静力试验、试飞、全机疲劳试验、耐 久性和损伤容限中发现的问题,修改结构生产图纸和 技术文件。
4. 进行静强度初步估算,初步确定各部件结构的基本尺寸, 然后进行结构优化设计和进一步结构方案比较。最后通 过结构优化设计确定结构的基本尺寸。 5. 画出结构的详细打样图,进行细节设计。
飞机结构设计的基本内容:
6. 对结构进行强度计算(包括静、动强度,疲劳、耐久性 和损伤容限),在计算过程中如有必要需进行零、构件
飞机结构设计的原始条件有四:
1.结构的外载荷和受力特点
所设计的结构在承受各种规定的载荷状态下,应满足强度、 刚度、寿命和高可靠性等要求。
还必须明确结构的受力特点,如承受的是静载还是动载, 是热应力还是常温情况等。
2.结构外形和空间协调
飞机的理论外形、内部装载位置、主要结构型式等在结构 设计前均已确定,从而使结构外形和可利用的空间受到很大 限制,因此结构设计时要进行外形和空间协调设计,保证外 形与结构各元件间、结构与内部装载间的协调。
2.重量要刚度、寿命和可靠性要求, 并使结构的重量最轻——即最小重量要求。
飞机结构设计的主要要求
3.使用维护要求——主要对应于结构的使用过程
为了确保维护、检修工作的高质量、高效率,结构需要布置合 理的分离面和各种开口。
4.工艺要求——主要对应于结构的生产过程 飞机的制造工艺性与飞机的经济性。 5.经济性要求——对应于结构的全寿命过程
飞行器结构力学基础电子教学教案
飞行器结构力学基础电子教学教案第一章:飞行器结构力学概述1.1 教学目标了解飞行器结构力学的定义和研究内容掌握飞行器结构力学的基本原理和概念理解飞行器结构力学在航空航天工程中的应用1.2 教学内容飞行器结构力学的定义和研究内容飞行器结构力学的基本原理和概念飞行器结构力学在航空航天工程中的应用1.3 教学方法讲授和讲解飞行器结构力学的基本概念和原理通过实例和案例分析,让学生了解飞行器结构力学在实际工程中的应用开展小组讨论和问题解答,加深学生对飞行器结构力学知识的理解1.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构力学概念的理解程度布置课后作业,评估学生对飞行器结构力学原理的掌握情况第二章:飞行器结构受力分析2.1 教学目标掌握飞行器结构受力的基本原理和分析方法学会运用力学原理对飞行器结构进行受力分析了解飞行器结构受力分析在工程设计中的应用2.2 教学内容飞行器结构受力的基本原理和分析方法飞行器结构受力分析的步骤和技巧飞行器结构受力分析在工程设计中的应用2.3 教学方法讲授和讲解飞行器结构受力的基本原理和分析方法通过实例和案例分析,让学生掌握飞行器结构受力分析的步骤和技巧开展小组讨论和问题解答,加深学生对飞行器结构受力分析的理解2.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构受力分析方法的掌握程度布置课后作业,评估学生对飞行器结构受力分析的应用能力第三章:飞行器结构动力学基础3.1 教学目标了解飞行器结构动力学的定义和研究内容掌握飞行器结构动力学的基本原理和概念理解飞行器结构动力学在航空航天工程中的应用3.2 教学内容飞行器结构动力学的定义和研究内容飞行器结构动力学的基本原理和概念飞行器结构动力学在航空航天工程中的应用3.3 教学方法讲授和讲解飞行器结构动力学的基本概念和原理通过实例和案例分析,让学生了解飞行器结构动力学在实际工程中的应用开展小组讨论和问题解答,加深学生对飞行器结构动力学的理解3.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构动力学概念的理解程度布置课后作业,评估学生对飞行器结构动力学原理的掌握情况第四章:飞行器结构强度与稳定性4.1 教学目标掌握飞行器结构强度和稳定性的基本原理和方法学会运用力学原理对飞行器结构进行强度和稳定性分析了解飞行器结构强度和稳定性分析在工程设计中的应用4.2 教学内容飞行器结构强度和稳定性的基本原理和方法飞行器结构强度和稳定性分析的步骤和技巧飞行器结构强度和稳定性分析在工程设计中的应用4.3 教学方法讲授和讲解飞行器结构强度和稳定性的基本原理和方法通过实例和案例分析,让学生掌握飞行器结构强度和稳定性分析的步骤和技巧开展小组讨论和问题解答,加深学生对飞行器结构强度和稳定性的理解4.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构强度和稳定性分析方法的掌握程度布置课后作业,评估学生对飞行器结构强度和稳定性分析的应用能力第五章:飞行器结构优化设计了解飞行器结构优化设计的定义和方法掌握飞行器结构优化设计的基本原理和步骤学会运用优化方法对飞行器结构进行设计优化5.2 教学内容飞行器结构优化设计的定义和方法飞行器结构优化设计的基本原理和步骤飞行器结构优化设计中常用的优化方法5.3 教学方法讲授和讲解飞行器结构优化设计的基本原理和步骤通过实例和案例分析,让学生了解飞行器结构优化设计的方法和应用开展小组讨论和问题解答,加深学生对飞行器结构优化设计的理解5.4 教学第六章:飞行器结构材料力学性质6.1 教学目标理解飞行器结构材料的力学性质对结构性能的影响掌握常用飞行器结构材料的力学性能参数学会运用材料力学性质进行飞行器结构选材和设计6.2 教学内容飞行器结构材料的力学性质及其对结构性能的影响常用飞行器结构材料的力学性能参数飞行器结构选材和设计方法讲授和讲解飞行器结构材料的力学性质及其对结构性能的影响通过实例和案例分析,让学生了解常用飞行器结构材料的力学性能参数开展小组讨论和问题解答,加深学生对飞行器结构选材和设计的理解6.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构材料力学性质的理解程度布置课后作业,评估学生对飞行器结构选材和设计的掌握情况第七章:飞行器结构疲劳与断裂力学7.1 教学目标理解飞行器结构疲劳和断裂力学的原理掌握飞行器结构疲劳和断裂分析的方法学会运用疲劳和断裂力学进行飞行器结构的安全评估7.2 教学内容飞行器结构疲劳和断裂力学的原理飞行器结构疲劳和断裂分析的方法飞行器结构的安全评估方法7.3 教学方法讲授和讲解飞行器结构疲劳和断裂力学的原理通过实例和案例分析,让学生掌握飞行器结构疲劳和断裂分析的方法开展小组讨论和问题解答,加深学生对飞行器结构安全评估的理解7.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构疲劳和断裂力学的理解程度布置课后作业,评估学生对飞行器结构安全评估的掌握情况第八章:飞行器结构动力学分析方法8.1 教学目标理解飞行器结构动力学分析的方法和原理掌握飞行器结构动力学分析的计算方法学会运用动力学分析方法进行飞行器结构的动力学优化8.2 教学内容飞行器结构动力学分析的方法和原理飞行器结构动力学分析的计算方法飞行器结构动力学优化方法8.3 教学方法讲授和讲解飞行器结构动力学分析的方法和原理通过实例和案例分析,让学生掌握飞行器结构动力学分析的计算方法开展小组讨论和问题解答,加深学生对飞行器结构动力学优化的理解8.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构动力学分析方法的理解程度布置课后作业,评估学生对飞行器结构动力学优化的掌握情况第九章:飞行器结构力学数值分析9.1 教学目标理解飞行器结构力学数值分析的方法和原理掌握飞行器结构力学数值分析的计算方法学会运用数值分析方法进行飞行器结构力学问题求解9.2 教学内容飞行器结构力学数值分析的方法和原理飞行器结构力学数值分析的计算方法飞行器结构力学数值分析在实际工程中的应用9.3 教学方法讲授和讲解飞行器结构力学数值分析的方法和原理通过实例和案例分析,让学生掌握飞行器结构力学数值分析的计算方法开展小组讨论和问题解答,加深学生对飞行器结构力学数值分析的理解9.4 教学评价课堂问答和小组讨论,评估学生对飞行器结构力学数值分析方法的理解程度布置课后作业,评估学生对飞行器结构力学数值分析的掌握情况第十章:飞行器结构力学实验与验证10.1 教学目标理解飞行器结构力学实验的目的和方法掌握飞行器结构力学实验的操作技能学会运用实验结果验证飞行器结构力学理论10.2 教学内容飞行器结构力学实验的目的和方法飞行器结构力学实验的操作技能飞行器结构力学实验结果的分析和验证10.3 教学方法讲授和讲解飞行器结构力学实验的目的和方法通过实验操作,让学生掌握飞行器结构力学实验的操作技能开展小组讨论和问题解答,加深学生对飞行器结构力学实验结果分析和验证的理解10.4 教学评价课堂问答和小组讨论,评估重点和难点解析1. 飞行器结构力学概述难点解析:理解飞行器结构力学的概念和原理,以及如何将其应用于实际工程中。
飞行器结构力学电子教案2ppt课件
第二章 结构的组成分析
每个自由刚片 有多少个 自由度呢? N=3
第二章 结构的组成分析
每个单铰 起多少个 约束呢?
C=2
第二章 结构的组成分析
每个单链杆 起多少个 约束呢?
C=1
第二章 结构的组成分析
每个单刚结点 起多少个 约束呢? C=3
第二章 结构的组成分析
3
有几个单铰? 12个
还有3根单链杆
2
1
(外部约束)
C =2×12+3=27f = C-N 02有几
个 单
3
铰?
1
讨论
2
将等可杆于体变安多件系吗排少重f??新
3
f = 0,体系
1
是否一定
几何不变呢?
f = (2×12+3)-3×9 = 0
除去约束后,体系的自由度将增加, 这类约束称为必要约束。
C = 2(平面) C = 3(空间)
C = 3(平面) C = 6(空间)
第二章 结构的组成分析
2.3 几何特性的判断方法
将组成系统的所有元件,分为自由体 和约束体,计算所有自由体的自由度 数和所有约束体的约束数,通过比较 和分析来判断结构的几何特性。
无硬性规定, 哪些元件作为自由体? 需灵活运用。 哪些元件作为约束体?
第二章 结构的组成分析
复铰:连接两个以上刚片的铰
N=5
复铰 等于多少个
单铰?
1连接m个刚片的复铰 = (m-1)个单铰
第二章 结构的组成分析
A
A
B
单复刚结点 C = 3 m-1个
连接m个杆的 复刚结点等于多 少个单刚结点?
西工大飞行器结构力学电子教案1-1省公开课金奖全国赛课一等奖微课获奖PPT课件
第一章 绪论
刚接
刚接力学特征:
被连接元件在刚接点处,即不能 发生相对移动,也不能绕刚接点 发生相对转动。
所以,刚接即能够传递力,也能 够传递力矩。
夹角保持不变
将刚性连接处涂黑来表示刚接,
也称为刚结点。
19/38
飞行器结构力学基础
三、结构力学计算模型
第一章 绪论
组合结点
组合结点力学特征:
37/38
飞行器结构力学基础
六、基本关系和基本假设
第一章 绪论
2. 基本假设
(1)小变形假设
结构在外载荷作用下变形与几何尺寸 相比很小。建立力平衡方程时,能够 不考虑变形对结构几何关系影响。
(2)线弹性假设
结构在载荷作用下会产生内力和变形, 当载荷卸调后,内力和变形也随之消 失,结构恢复到原始状态,无残余变 形(弹性体)。
平面定向支座
36/38
飞行器结构力学基础
六、基本关系和基本假设
第一章 绪论
1. 基本关系
(1)平衡关系
作用在结构上力是平衡,结构系统中 全部元件也是平衡。
(2)协调关系 结构发生变形时,各个元件之间变形
是协调。
(3)物理关系 元件力和位移之间,满足材料物理性
质。
结构力学原理和计算方法均是基于这三种基本关系而 建立。
固定支座(或称固持) 定向支座
21/38
飞行器结构力学基础
三、结构力学计算模型
第一章 绪论
可动铰支座
可动铰支座几何特征:
结构含有绕铰A转动及平行 于基础平面方向平动,但在 垂直于基础平面方向上不能 发生平动。 相当于限制了结构一个平动。
22/38
飞行器结构力学基础
飞行器结构力学电子教案
结构在外界因素(诸如载荷、温度改变、支座移动、制造误差等)作用下几何形状发生的变化,称为结构变形。
1、结构的变形
一、结构位移计算概述
相对线位移:两个参考点沿某一方向上的相对变形量。
线位移:参考点沿某一方向上的变形量。
角位移:参考截面或元件的转动变形量,转角、扭转角等。
飞行器结构力学基础 ——电子教学教案
单击此处添加副标题
01
第三讲
单击此处添加正文
02
静定结构的位移计算
单击此处添加正文
第三章 静定结构的内力与变形计算 Internal Forces and Deformations of Statically Determinate Structures
CONTENT
06
实质:用静力平衡法解几何问题。
07
虚力原理对求解静不定结构内力具有重要的应用。
08
五、单位载荷法-求位移的Mohr公式 单位载荷法的一般表达式 利用虚功原理(虚力原理),可以求出变形结构中任意一点由于变形而产生的位移。 真实的位移状态 平衡的虚力状态 令 ,则有 虚功原理
因为,在发生虚位移的过程中,外力和内力保持不变,因此,在虚功的表达式中无系数“1/2”。
虚功的例子
真实外力 虚位移 虚功为:
1
虚力—— 一种假想的、满足平衡条件的任意力系。
2
假象的:是指虚力仅仅是想象中一种可能力系。
5
因此,在发生虚力的过程中,变形体的位移均保持不变,即保持原有的协调状态。
4
任意的:是指虚力与变形体的变形无关。
上式可写成:
五、单位载荷法-求位移的Mohr公式
飞行器结构力学电子教案73PPT课件
则:f =C-N = 6n-6n = 0 ,满足几何不变的必要条件。
飞行器结构力学基础
——电子教学教案
航空结构工程系
1
第七章
受剪板式薄壁结构内力和位移 计算
第三讲 7.4 静定空间薄壁结构内力计算
2
一、空间薄壁结构的组成分析
组成薄壁结构的各元件的中心点和中线不都在同一平面内,则称为空间薄 壁结构,它可以承受任意方向的外载荷。3Leabharlann 一、空间薄壁结构的组成分析
在研究空间薄壁结构的组成规律时,仍把结点看成为自由体,每个空间结 点具有3个自由度;把杆和板看成为约束,杆和四边形板均起1个约束作用。
f = 28
13
二、静定空间薄壁结构的内力计算
1、分析静不定度。 2、判断零力杆端,假设剪流方向。 3、利用结点法求杆端轴力,或由杆的平衡求剪流或另一端杆轴力。 4、绘制内力图。
零力杆端的判断:
三根不共面的杆交于无 载荷作用的点,则此三根 在该端处的轴力均为零。
14
【例1】 求图示空间薄壁结构的内力。已知:L=100mm,B=40mm, H=10mm,P 1=200N,P 2=300N,P 3=500N。
N84(q2q3)L4000 N73(q4q2)L4000
3、绘制力图。
4、校核。
X0 Mx 0 Y 0 My 0
Z 0 Mz 0
16
【例2】计算图示结构的内力。已知四缘条双层自由盒段,在两层交界5点处 将缘条切断,在杆子的切口处有大小相等方向相反的一对单位力。 解: 1、5点被切开,相当于去掉一个约束, 故该结构是静定的。 2、假定1-2-6-5和5-6-10-9两板的剪流 分别为q1和q2,其方向如图(b) 所示, 5-6-7-8板的剪流为q3,其方向如图(c) 所示。先判断零力杆端,再按平衡条 件确定各板剪流之间的关系。
《飞行器结构力学基础》课程教学大纲
《飞行器结构力学基础》课程教学大纲一、课程基本信息1、课程代码:(0120140)2、课程名称(中/英文):飞行器结构力学基础/Structural Mechanics for Aerocraft3、学时/学分:50/6.54、先修课程:理论力学、结构强度基础、弹性力学, /0120120/01201705、面向对象:飞行器设计与工程专业本科生6、开课院(系):航空学院(航空结构工程系)7、教材、教学参考书:《结构力学基础》, 黄其青,王生楠,西北工业大学出版社,2001.4《飞行器结构力学》,王生楠,西北工业大学出版社,1998.12二、课程性质和任务《飞行器结构力学基础》是航空高等院校飞行器结构设计和结构强度专业教学计划中的一门专业技术基础课,是航空飞行器设计、固体力学、流体力学、工程力学、理论与应用力学、人机环境与工程等学科或专业的必修课程。
本课程以杆系和薄壁结构为对象,研究杆系和薄壁结构的组成原理及其受力和变形分析的力法和位移法,薄壁工程梁理论,结构分析中的能量原理。
通过本课程的学习,使学生了解和掌握结构的受力和传力特点、薄壁工程梁和能量原理的基本理论和基本计算方法,培养学生对结构设计和强度计算的概念和综合处理能力,培养从事飞行器结构设计和强度计算的高技术人才。
三、教学内容和基本要求第一章绪论 2学时1.1 结构力学的研究对象和任务;1.2结构力学的计算模型简化;1.3结构的外载荷、内力和支反力;1.4 基本关系和基本假设。
第二章结构几何组成分析 4学时2.1 结构的几何特性;2.2 自由度和约束; 2.3 几何特性分析的运动学方法;2.4 几何特性分析的静力学方法; 2.5 几何不变系统的组成规则; 2.6 瞬变系统的判别方法。
第三章静定杆系结构的内力和变形计算 6学时3.1 桁架的组成,桁架的计算模型,桁架几何不变性分析,静定桁架内力计算(结点法、剖面法和混合法); 3.2 刚架的组成,刚架的计算模型,刚架几何不变性分析,静定刚架内力计算,混合杆系结构的内力计算; 3.3 元件的应变能,虚功原理,单位载荷法,静定杆系结构的位移计算。
飞行器结构学
飞行器结构学1.安全系数和过载系数的关系?安全系数:f=F d/nG 过载系数:n=R bi/G安全系数随过载系数的增大而减小,反之,随过载系数的减小而增大2.结构设计的基本要求?气动要求、质量要求、使用维护要求、可靠性要求、工艺要求、经济性要求3.翼面的功用:产生升力,平衡飞机或导弹的重力4.主要外载荷?○1空气动力○2翼面结构质量力○3其他部件和外挂物传来的集中力5.翼面主要受力构件和作用?蒙皮:形成流线形的翼面外形桁条:对蒙皮起支撑作用翼梁:缘条承受由弯矩M引起的拉压轴力。
腹板承受剪力Q以及扭矩Mt引起的剪流纵墙:纵墙一般不能承受弯矩,主要用来承受和传递剪力,并与蒙皮以及其他腹板构成闭式,共同承受翼面扭转引起的剪流翼肋:维持翼剖面的形状,并将蒙皮上的局部气动载荷和桁条上的载荷传递给翼梁和蒙皮。
6.翼面的主要结构形式?翼面的主要结构形式是指结构中主承力系统的组成形式,翼面结构典型的受力形式有,蒙皮骨架式、整体壁板式、夹层结构。
7.梁式翼面结构的结构特点、受力特点和优缺点?特点:蒙皮很薄,纵向翼梁很强,纵向长桁较小且弱,有时在与翼肋相交断开,梁缘条的截面面积比长桁的大得多可近似的认为翼面弯矩的绝大部分或全部由梁缘条承担优点:结构比较简单,对接点少连接简单,适宜集中连接缺点:气动性能差,总体受力性能较差,生存性能较低8.单块式翼面结构的结构特点,受力特点和优缺点?单块式翼面结构:蒙皮较薄,与长桁且密,弱梁,翼梁缘条组成可受轴力的壁板承受绝大部分弯矩,纵向长桁布置较低密,长桁截面积与梁的横截面比较接近梁与墙与蒙皮壁板形成封闭盒段,增强翼面结构的扭转刚度优点:蒙皮在气动载荷作用下变形较小,气流质量高,材料想翼剖面外缘分散,抗弯,抗扭刚度与强度均比较高,安全可靠性比梁式结构好缺点:结构比较复杂,大开口后,需加强周围结构以补偿承弯能力,如果加口盖,需要对口盖和口框加强,以保证传力连续。
9.多腹板式翼面结构特点,受力特点和优缺点?多腹板式翼面结构特点:蒙皮厚,无长桁,多腹板,梁弱,解决了高速薄翼型翼面的强度和刚度与结构承重之间的矛盾优点:气动性能好,总体受力性能较强,结构简单,破损安全性好,生存性高缺点:不宜大开口,与机身或弹身连接点多10.什么是传力分析?(弄清楚受力元件在结构中的地位和作用)对结构的各种外载荷通过各种元件逐点、向结构支持基础传递的过程进行分析,了解各主要元件的受力情况及其传力特点11.传力分析的方法主要有?○1弄清结构所收的载荷最后应传向何处○2分清结构主要和次要的受力元件以及主要和次要的受力部分○3弄清各主要元件的连接关系和连接方式,以便正确地确定支持形式和传力方式○4从结构的外载荷作用开始,依次取出各个构件部分或元件为分离体,按它们各自的受力特性合理化简成典型的受力元件○5分析传力必须具备刚度概念12.刚度分配的依据是什么?“刚度是指元件(构件)在载荷作用下抵抗变形的能力”刚度大分配到的载荷大,刚性支持分配到的载荷大,弹性支持分配到载荷小13.板件的主要受力特点?板可以承受垂直于板平面的分布载荷,不适宜承受集中力14.杆件的主要受力特点?杆只能承受和传递沿杆轴方向的集中力和分布力,杆本身受拉能力强,受压易发生局部或总体失稳,承受能力极低15.板杆结构件的主要受力特点?适宜承受横向分布的载荷和板杆平面内的载荷。
飞行器结构力学基础电子教学教案
飞行器结构力学基础电子教学教案第一章:飞行器结构力学概述1.1 飞行器结构力学的定义1.2 飞行器结构力学的研究内容1.3 飞行器结构力学的重要性1.4 飞行器结构力学的发展历程第二章:飞行器结构的基本类型2.1 飞行器结构的基本组成2.2 飞行器结构的主要类型2.3 不同类型结构的特点与应用2.4 飞行器结构的选择原则第三章:飞行器结构力学分析方法3.1 飞行器结构力学的分析方法概述3.2 弹性力学的分析方法3.3 塑性力学的分析方法3.4 动力学分析方法第四章:飞行器结构强度与稳定性分析4.1 飞行器结构强度分析4.2 飞行器结构稳定性分析4.3 强度与稳定性的关系4.4 强度与稳定性分析的工程应用第五章:飞行器结构优化设计5.1 结构优化设计的基本概念5.2 结构优化设计的方法5.3 结构优化设计的原则与步骤5.4 结构优化设计的工程应用实例第六章:飞行器结构动力学6.1 飞行器结构动力学基本理论6.2 飞行器结构的自振特性6.3 飞行器结构的动力响应分析6.4 飞行器结构动力学在设计中的应用第七章:飞行器结构疲劳与断裂力学7.1 疲劳现象的基本概念7.2 疲劳寿命的预测方法7.3 断裂力学的基本理论7.4 飞行器结构疲劳与断裂的检测与控制第八章:飞行器结构的环境适应性8.1 飞行器结构环境适应性的概念8.2 飞行器结构在各种环境力作用下的响应8.3 环境适应性设计原则与方法8.4 提高飞行器结构环境适应性的措施第九章:飞行器结构材料力学性能9.1 飞行器结构常用材料9.2 材料的力学性能指标9.3 材料力学性能的测试方法9.4 材料力学性能在结构设计中的应用第十章:飞行器结构力学数值分析方法10.1 数值分析方法概述10.2 有限元法的基本原理10.3 有限元法的应用实例10.4 其他结构力学数值分析方法简介第十一章:飞行器结构力学实验与测试技术11.1 结构力学实验概述11.2 材料力学性能实验11.3 结构强度与稳定性实验11.4 结构动力学实验与测试技术第十二章:飞行器结构力学计算软件与应用12.1 结构力学计算软件概述12.2 常见结构力学计算软件介绍12.3 结构力学计算软件的应用流程12.4 结构力学计算软件在工程实践中的应用实例第十三章:飞行器结构力学在航空航天领域的应用13.1 航空航天领域结构力学问题概述13.2 飞行器结构设计中的应用13.3 飞行器结构分析与优化13.4 航空航天领域结构力学发展趋势第十四章:飞行器结构力学在其他工程领域的应用14.1 结构力学在建筑工程中的应用14.2 结构力学在机械工程中的应用14.3 结构力学在交通运输工程中的应用14.4 结构力学在其他工程领域的应用前景第十五章:飞行器结构力学发展趋势与展望15.1 飞行器结构力学发展历程回顾15.2 当前飞行器结构力学面临的挑战与机遇15.3 飞行器结构力学未来发展趋势15.4 飞行器结构力学发展展望与建议重点和难点解析本文主要介绍了飞行器结构力学的基础知识,包括飞行器结构力学的定义、研究内容、重要性、发展历程,以及飞行器结构的基本类型、力学分析方法、强度与稳定性分析、优化设计等方面。
飞行器结构力学讲义
飞行器结构力学讲义飞行器结构力学是指对飞行器结构在受力下的力学行为进行分析和设计的一门学科。
在飞行器设计过程中,结构力学是一个非常重要的领域,因为它关系到飞行器的安全性和可靠性。
本讲义将介绍飞行器结构力学的基本理论和应用。
首先,飞行器结构力学的基本理论包括静力学和动力学。
静力学研究飞行器在平衡状态下的受力和变形情况。
而动力学则研究飞行器在动力作用下的受力和变形情况。
这两个理论是相互关联的,飞行器的设计需要同时考虑静力学和动力学的影响。
静力学的核心是受力分析和变形分析。
受力分析是指研究飞行器在受外力作用下各个零部件受力的情况。
通过受力分析,可以确定飞行器结构的受力状态和关键零部件的负荷。
变形分析是指研究飞行器在受力后的变形情况。
通过变形分析,可以确定飞行器结构的刚度和变形限制。
这些信息对于设计强度和刚度合理的飞行器结构非常重要。
动力学的核心是动力分析和振动分析。
动力分析是指研究飞行器在动力作用下各个零部件的受力和变形情况。
通过动力分析,可以确定飞行器结构在不同工况下的受力情况,从而指导设计材料和结构。
振动分析是指研究飞行器在受到外界激励后的振动情况。
振动分析是飞行器结构动力特性的重要参数,对于飞行器的安全性和舒适性都有重要影响。
除了静力学和动力学,飞行器结构力学还包括疲劳分析和断裂分析。
疲劳分析是指研究飞行器结构在重复加载下的破坏情况,通过疲劳分析可以确定飞行器结构的寿命,并进行合理的维修和保养。
断裂分析是指研究飞行器结构在破坏加载下的破坏情况,通过断裂分析可以预测飞行器结构的破坏载荷,从而进行合理的结构设计和材料选择。
飞行器结构力学的应用非常广泛。
在飞机设计中,结构力学是飞机设计的基础。
通过结构力学分析,可以确定飞机结构的强度、刚度和稳定性等重要参数。
在火箭和航天器设计中,结构力学同样是不可或缺的。
飞行器在发射和飞行过程中承受着巨大的外界载荷,需要通过结构力学分析来保证安全性和可靠性。
此外,飞行器结构力学还应用于无人机、直升机等不同类型的飞行器设计中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通动画
教学方法和手段
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法
分组制作
实训室
飞行模拟器
教学 手段
启发引导
教练遥控器
模拟飞行
信息化平台
教学方法和手段
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法
分组制作
实训室
飞行模拟器
教学 手段
理论知识
飞行器的 基本概念 飞机的分类与构造 飞机的飞行原理 机翼的增升装置 飞机的安定面与操作舵面 航模的设计与制作 航模动力系统选用
实践技能
纸模飞机的制作
由浅入深
航模飞机的制作
循序渐进
航模的调试与试飞
模拟器飞行训练
教学方法和手段
激发兴趣
兴趣是最好的老师
任务驱动
模型制作,巩固理论所学
教学 方法
分组制作
而“点碰”经验的总结则迅速解决了学生转弯坠机的 问题。)
(3)适当打击信心
(3)适当打击信心
学生自信心在训练中非常重要, 如果不注意保护则会信心尽失,失去 了训练的主动性,但如果保护过度也 会适得其反,适当打击有利于训练, 但不能打击过度。
谢谢!
1 1 1 1
教学对象分析
教学对象 三年高职 注重技能和素质培养
知识基础
基础薄弱
对教学内容的选择、组织尤为重要
学习特点
喜欢实践
增加课内实践比重,实现“教、学、做” 布置相关任务,要求学生查资料完成
喜欢网络
主要内容
1
课程总体设计 教学对象分析 教学过程设计 评价与考核 课程改革
1 1 1 1
教学内容特点
目标3
课程内容的设计
理论知识
飞行器的 基本概念 飞机的分类与构造 飞机的飞行原理 机翼的增升装置 飞机的安定面与操作舵面 航模的设计与制作 航模动力系统选用
实践技能
纸模飞机的制作
教学 内容
航模飞机的制作
航模的调试与试飞
模拟器飞行训练
主要内容
1
课程总体设计 教学对象分析 教学过程设计 评价与考核 课程改革
分组制作
实训室
飞行模拟器
教学 手段
启发引导
教练遥控器
模拟飞行
信息化平台
主要内容
1
课程总体设计 教学对象分析 教学过程设计 评价与考核 课程改革
1 1 1 1
考 查
成绩评定采用理论成绩和实践成绩相结合的方式。
纸模 20%
航模制作飞行 60% 考勤 10% 作业 10%
学习评价与成绩考核
《飞行器结构学》成绩考核表
能实现以较少课时完成更多任务
启发引导
课堂教学和课内实践,实现自学 目标 (纸模、航模制作)
增加教学内容的仿真程度 减少航模损伤次数
模拟飞行
教学方法和手段
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法
分组制作
实训室
飞行模拟器
教学 手段
启发引导
教练遥控器
模拟飞行
信息化平台
教学方法和手段
主要内容
1
课程总体设计 教学对象分析 教学过程设计 评价与考核 课程改革
1 1 1 1
课程改革
(1)延长模拟训练
(2)多做经验总结
(3)适当打击信心
(1)延长模拟训练
增加模拟器训练的时间,可以 减少现场飞行训练时对航模的损坏 程度和损坏次数,有利于保护学生 自信心。
(2)多做经验总结
给学生直接讲解知识有时候难 以凑效,此时经验之谈尤为重要。 (比如转弯动作的分解,讲了多次,学生总是坠机,
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法
分组制作
实训室
飞行模拟器
教学 理 手段
启发引导
教练遥控器
模拟飞行
论 教 学
信息化平台
动静态模型
实践教学
教学方法和手段
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法
分组制作
实训室
飞行模拟器教学 手段来自启发引导教练遥控器
模拟飞行
《飞行器机构学》说课
说课:吴道明 机电工程系
主要内容
1
课程总体设计 教学对象分析 教学过程设计 评价与考核 课程改革
1 1 1 1
课程定位
核心课程:本门课程是飞行器专业的核心课程
本门课程是培养航空兴趣,开展航 模运动和普及国防知识的重要途径。
课程目标
培养学 生兴趣
目标1
选拔相 关人才
目标2
航模的独立 制作 动力系统的 选用 航模的调试 与飞行
启发引导
教练遥控器
模拟飞行
信息化平台
教学方法和手段
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法
分组制作
实训室
飞行模拟器
教学 手段
启发引导
教练遥控器
模拟飞行
信息化平台
/ 教学方法和手段
激发兴趣
多媒体课件 动静态模型
任务驱动
交互性动画 教学 方法