2mjt-高考数学总复习:正弦定理和余弦定理
正弦定理和余弦定理详细讲解
高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A<sinB,cosA<sinC ·2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在ABC ∆中,10c =,45A =,30C =,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b .解析:sin sin a cA C=, ∴sin 10sin 45102sin sin 30c A a C ⨯===,∴ 180()105B A C =-+=, 又sin sin b cB C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯+====⨯=+. 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。
高考数学(理)总复习讲义:正弦定理和余弦定理
第七节正弦定理和余弦定理1.正弦定理和余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).[熟记常用结论]1.在△ABC 中,内角A ,B ,C 成等差数列⇔B =π3,A +C =2π3.2.在斜△ABC 中,tan A +tan B +tan C =tan A ·tan B ·tan C . 3.在△ABC 中,∠A >∠B ⇔a >b ⇔sin A >sin B.4.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( ) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( )(4)在△ABC 中,a 2+b 2<c 2是△ABC 为钝角三角形的充分不必要条件.( ) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)× 二、选填题1.在△ABC 中,若a =2,c =4,B =60°,则b 等于( ) A .23 B .12 C .27D .28解析:选A 由b 2=a 2+c 2-2ac cos B ,得b 2=4+16-8=12,所以b =2 3. 2.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析:选B 根据a sin A =b sin B ,有313=5sin B ,得sin B =59.故选B.3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.故选C.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =3,c =2,则A =________.解析:易知cos A =b 2+c 2-a 22bc =32+22-(7)22×3×2=12,又A ∈(0,π),∴A =π3.答案:π35.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 解析:∵23sin 60°=4sin B ,∴sin B =1,∴B =90°,∴AB =2,∴S △ABC =12×2×23=2 3.答案:2 36.已知△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,b =3,A =30°,则c =________.解析:∵a =1,b =3,A =30°,∴由a 2=b 2+c 2-2bc cos A 得1=3+c 2-3c , 即c 2-3c +2=0,解得c =1或c =2. 答案:1或2考点一利用正、余弦定理解三角形[师生共研过关][典例精析](1)(2019·莆田联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6 B.π3 C.2π3D.5π6(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .①求角A 的大小;②若cos B =13,a =3,求c 的值.[解析] (1)∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B.∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.(2)①由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.②由①可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C,得c =a sin C sin A =3×(3+22)32×6=1+263.[答案] (1)A[解题技法]正、余弦定理的应用技巧(1)解斜三角形时,主要应用正弦定理和余弦定理,这两个定理应用时要注意区分.如果已知条件中边较多,常用余弦定理求解;如果要用正弦定理,题目条件中必须出现已知角.(2)解斜三角形中最典型的是边边角问题,一般是先用正弦定理求出一个角的正弦值,如sin A =x .①若sin A =1,则∠A =90°;②若sin A >1,矛盾无解;③若0<sin A <1,可能有两解,也可能只有一解.需要比较两个边的大小,用“大边对大角”来确定A 是两解或者一解.(3)在解答三角形的综合题时,如果已知条件的关系式中同时出现角和边,应当利用正弦定理进行消元,实现边角统一,化为仅含边的关系式或仅含角的关系式.即“边角会聚综合题,正弦定理来统一”.[口诀记忆]斜三角形把我问,两个定理有区分; 余弦定理多见边,正弦定理角必现; 边边角,解难辨,正弦值,先计算; 等于1,九十度,大于1,矛盾出; 小于1时怎么办?利用大角对大边; 边角会聚综合题,正弦定理来统一.[过关训练]1.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2 B.30 C.29D .2 5解析:选A ∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32, ∴AB =4 2.2.(2019·河北“五个一名校联盟”模拟)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B -A )=2sin 2A ,则A =________.解析:在△ABC 中,由sin C +sin(B -A )=2sin 2A 可得sin(A +B )+sin(B -A )=2sin 2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,∴cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A ,①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a , 由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,∴a =233,b =433,∴b 2=a 2+c 2,∴B =π2,∴A =π6.综上可得,A =π2或π6.答案:π2或π63.(2019·开封模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin A +b sin B +2b sin A =c sin C .(1)求C ;(2)若a =2,b =22,线段BC 的垂直平分线交AB 于点D ,求CD 的长. 解:(1)因为a sin A +b sin B +2b sin A =c sin C ,所以由正弦定理可得a 2+b 2+2ab =c 2. 由余弦定理得cos C =a 2+b 2-c 22ab =-22,又0<C <π,所以C =3π4.(2)由(1)知C =3π4, 根据余弦定理可得c 2=a 2+b 2-2ab cos C =22+(22)2-2×2×22×⎝⎛⎭⎫-22=20,所以c =2 5.由正弦定理c sin C =b sin B ,得2522=22sin B,解得sin B =55,从而cos B =255. 设BC 的垂直平分线交BC 于点E , 因为在Rt △BDE 中,cos B =BE BD, 所以BD =BE cos B =1255=52, 因为点D 在线段BC 的垂直平分线上, 所以CD =BD =52. 考点二与三角形面积有关的问题[师生共研过关][典例精析](2019·武汉调研)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c . (1)求B ;(2)若b =2,a +c =5,求△ABC 的面积.[解] (1)由正弦定理,知2sin B cos C =2sin A +sin C ,由A +B +C =π,得2sin B cos C =2sin(B +C )+sin C =2(sin B cos C +cos B sin C )+sin C ,即2cos B sin C +sin C =0.因为sin C ≠0,所以cos B =-12.因为0<B <π,所以B =2π3. (2)由余弦定理b 2=a 2+c 2-2ac cos B , 可知b 2=(a +c )2-2ac -2ac cos B ,因为b =2,a +c =5,所以22=(5)2-2ac -2ac cos 2π3,得ac =1.所以S △ABC =12ac sin B =12×1×32=34.[解题技法](1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用正弦定理或余弦定理进行边和角的转化.[过关训练]1.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( ) A.π2 B.π3 C.π4D.π6解析:选C ∵S =12ab sin C =a 2+b 2-c 24=2ab cos C 4=12ab cos C ,∴sin C =cos C ,即tanC =1.∵C ∈(0,π),∴C =π4.2.(2019·沈阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =5,B =2π3,△ABC 的面积为1534,则cos 2A =________. 解析:由三角形的面积公式,得S △ABC =12ac sin B =12×a ×5×sin 2π3=12×32×5a =1534,解得a =3.由b 2=a 2+c 2-2ac cos B =32+52-2×3×5×⎝⎛⎭⎫-12=49,得b =7.又由a sin A =bsin B ⇒sin A =a b sin B =37sin 2π3=3314,∴cos 2A =1-2sin 2A =1-2×⎝⎛⎭⎫33142=7198.答案:71983.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b cos A =(2c -a )cos B. (1)求B ;(2)若b =13,△ABC 的面积为3,求△ABC 的周长. 解:(1)由b cos A =(2c -a )cos B , 得2c cos B =b cos A +a cosB.由正弦定理可得2sin C cos B =sin B cos A +sin A cos B =sin(A +B )=sin C , 因为sin C ≠0,所以cos B =12.因为0<B <π,所以B =π3.(2)因为S △ABC =12ac sin B =3,所以ac =4.又13=a 2+c 2-2ac cos B =a 2+c 2-ac , 所以a 2+c 2=17, 所以a +c =5,故△ABC 的周长为5+13.考点三平面图形中的计算问题[师生共研过关][典例精析](2019·佛山质检)如图所示,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC , 即5=1+BC 2+2BC ,解得BC =2(负值舍去),所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得,AC sin ∠ADC =CD sin ∠CAD,即AC sin π6=4sin θ,①在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ.又sin 2θ+cos 2θ=1,故sin θ=255,即sin ∠CAD =255.[解题技法]平面图形中计算问题的解题关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[过关训练](2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB ; (2)若DC =22,求BC .解:(1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB,即5sin 45°=2sin ∠ADB, 所以sin ∠ADB =25. 由题设知,∠ADB <90°, 所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理,得BC 2=BD 2+DC 2-2BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25, 所以BC =5.[课时跟踪检测]一、题点全面练1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A =π3,3sin 2Ccos C =2sin A sin B ,且b =6,则c =( )A .2B .3C .4D .6解析:选C 由余弦定理得a 2=b 2+c 2-2bc ×12=b 2+c 2-bc ,又3sin 2C cos C=2sin A sin B ,由正弦定理可得3c 22ab =a 2+b 2-c22ab,即a 2+b 2-4c 2=0,则b 2+c 2-bc +b 2-4c 2=0.又b =6,∴c 2+2c -24=0,解得c =4(负值舍去),故选C.3.(2019·安徽江南十校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2=ac ,a 2+bc =c 2+ac ,则cb sin B的值为( ) A.12 B.32C .2D.233解析:选D 由b 2=ac ,a 2+bc =c 2+ac ,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,则sin A =32. 由b 2=ac ,得sin 2B =sin A sin C ,∴sin C sin 2B =1sin A, ∴c b sin B =sin C sin B sin B =1sin A =233. 4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形解析:选C ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.5.(2019·四平质检)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A 在△ABC 中,∠A =60°.∵2sin B =3sin C ,∴由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,∴b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc ·cosA =7,∴a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2019·太原模拟)在△ABC 中,AB =2,AC =3,∠BAC =90°,点D 在AB 上,点E 在CD 上,且∠ACB =∠DBE =∠DEB ,则CD =________.解析:设BD =x ,过点E 作EF ⊥AB 于点F ,设∠ACB =∠DBE =∠DEB =θ,则∠EDF =2θ,DE =x ,∵tan θ=23,∴tan 2θ=125,∴在Rt △EFD 中,EF =x sin 2θ,DF =x cos2θ,∵EF AC =DF AD ,∴x sin 2θ3=x cos 2θ2-x ,∴tan 2θ=32-x =125,解得x =34,∴AD =54,∴CD=134. 答案:1347.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =3,且a cos A =bcos B,则△ABC 的面积等于________. 解析:∵a cos A =b cos B ,由正弦定理可知sin A cos A =sin Bcos B ⇒tan A =tan B ,则A =B ,∴△ABC 为等腰三角形,∴A +B +C =2B +C =π,得2B =π-C ,则cos 2B =-cos C =-14=1-2sin 2B ,解得sin B =104,cos B =64,tan B =153. ∵AB =c =3,∴C 到AB 的距离h =AB 2×tan B =32×153=152,∴△ABC 的面积为12×AB ×h =3154.答案:31548.(2019·菏泽模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则b c =________. 解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B2-cos A sin B =0,因为sin B ≠0,所以cosA =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以b c =2.答案:29.(2019·惠州调研)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos C (a cos C +c cos A )+b =0.(1)求角C 的大小;(2)若b =2,c =23,求△ABC 的面积. 解:(1)∵2cos C (a cos C +c cos A )+b =0,∴由正弦定理可得2cos C (sin A cos C +sin C cos A )+sin B =0, ∴2cos C sin(A +C )+sin B =0,即2cos C sin B +sin B =0, 又0°<B <180°,∴sin B ≠0,∴cos C =-12,又0°<C <180°,∴C =120°.(2)由余弦定理可得(23)2=a 2+22-2×2a cos 120°=a 2+2a +4, 又a >0,∴解得a =2,∴S △ABC =12ab sin C =3,∴△ABC 的面积为 3.10.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A. 由正弦定理得12sin C sin B =sin A 3sin A,故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9, 解得b +c =33.故△ABC 的周长为3+33.二、专项培优练(一)易错专练——不丢怨枉分1.在△ABC 中, 若b cos C c cos B =1+cos 2C1+cos 2B ,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形解析:选D 由已知1+cos 2C 1+cos 2B =2cos 2C 2cos 2B =cos 2C cos 2B =b cos C c cos B ,得cos C cos B =b c 或cos C cos B =0,即cos Ccos B =b c 或C =90°.当C =90°时,△ABC 为直角三角形.当cos C cos B =b c 时,由正弦定理,得b c =sin B sin C ,∴cos C cos B =sin Bsin C,即sin C cos C =sin B cos B ,即sin 2C =sin 2B .∵B ,C 均为△ABC 的内角,∴2C =2B 或2C +2B =180°,∴B =C 或B +C =90°,∴△ABC 为等腰三角形或直角三角形,故选D.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =a ⎝⎛⎭⎫cos C +33sin C ,a =2,c =263,则C =( ) A.3π4 B.π4或3π4 C.π6D.π4解析:选D ∵b =a ⎝⎛⎭⎫cos C +33sin C ,∴由正弦定理可得sin B =sin A cos C +33sinA sin C .又sinB =sin(A +C )=sin A cos C +cos A sin C ,∴cos A sin C =33sin A sin C .由sinC ≠0,可得sin A =3cos A ,∴tan A = 3.由A 为三角形内角,可得A =π3.∵a =2,c =263,∴由正弦定理可得sin C =c ·sin A a =22,∴由c <a ,可得C =π4,故选D. (二)交汇专练——融会巧迁移3.[与数列交汇]在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2B. 3C.32D .2解析:选C ∵A ,B ,C 依次成等差数列,∴B =60°, 由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2, ∴S △ABC =12ac sin B =32,故选C.4.[与三角函数交汇]已知函数f (x )=cos 2x +3sin(π-x )·cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.解:(1)f (x )=cos 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, ∴2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,∴k π-π6≤x ≤k π+π3,k ∈Z ,又x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.(三)素养专练——学会更学通5.[数学运算]已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b cos ∠BCA =a ,点M 在线段AB 上,且∠ACM =∠BCM .若b =6CM =6,则cos ∠BCM =( )A.104B.34C.74D.64解析:选B 设∠ACM =∠BCM =θ,则∠BCA =2θ.又a =b cos ∠BCA ,b =6CM =6,∴a =6cos 2θ,CM =1.则由面积关系S △ACM +S △BCM =S △ABC ,得12×6×1×sin θ+12×1×6cos2θ×sin θ=12×6×6cos 2θ×sin 2θ,∴sin θcos θ(4cos θ-3)(3cos θ+2)=0.∵0<θ<π2,∴cosθ=34,故选B.6.[数学建模]线段的黄金分割点定义:若点C 在线段AB 上,且满足AC 2=BC ·AB ,则称点C 为线段AB 的黄金分割点.在△ABC 中,AB =AC ,A =36°,若角B 的平分线交边AC 于点D ,则点D 为边AC 的黄金分割点.利用上述结论,可以求出cos 36°=( )A.5-14 B.5+14 C.5-12D.5+12解析:选B 设AB =2,AD =x ,又AB =AC ,所以CD =2-x .由黄金分割点的定义可得AD 2=AC ·CD ,即x 2=2·(2-x ),解得AD =5-1.在△ABD 中,由余弦定理得cos 36°=AD 2+AB 2-BD 22·AD ·AB =(5-1)2+22-(5-1)22×(5-1)×2=5+14.故选B.7.[直观想象、数学运算]如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .解:(1)在△APC 中,∠PAC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2·AP ·AC ·cos ∠PAC , 所以22=AP 2+(4-AP )2-2·AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0, 解得AP =2, 所以AC =2,所以△APC 是等边三角形, 所以∠ACP =60°.(2)由于∠APB 是△APC 的外角,所以∠APB =120°, 因为△APB 的面积是332,所以12·AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2·AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19, 所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.。
正弦定理、余弦定理知识点总结及最全证明
正弦定理、余弦定理知识点总结及证明方法——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A =,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a,b和A时,解的情况如表:A为锐角A为钝角或直角图形关系式a=b sin Ab sin A<a<ba≥b a>b解的个①②③④数(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式 (1)三角形面积公式S △= ==____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,A2=__________,从而sin A =____________,cos A=____________,tan A=____________;sin A 2=__________,cos A2=__________, tan A2=+tan B +tan C =__________.(3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin B 2=cos A -C 2⇔2cos A +C 2=cos A -C 2⇔tan A2tan C 2=13.【自查自纠】1.(1)a sin A =b sin B =csin C =2R(2)①2R sin B 2R sin C ②b 2R c2R ③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解②二解 ③一解 ④一解(3)余弦 (4)余弦4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b +c )r(2)π-(B +C ) π2-B +C2 sin(B +C ) -cos(B +C ) -tan(B +C ) cos B +C 2 sin B +C21tan B +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________. 解:∵sin B +cos B =2,∴2sin ⎝ ⎛⎭⎪⎫B +π4=2,即sin ⎝ ⎛⎭⎪⎫B +π4=1.又∵B ∈(0,π),∴B +π4=π2,B =π4.根据正弦定理a sin A =b sin B ,可得sin A =a sin Bb =12.∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ),即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°. 【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积. 解:(1)证明:对b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a 应用正弦定理得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,即sin B⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝ ⎛⎭⎪⎫0,3π4,∴B -C =π2.(2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin Bsin A =2sin 5π8,c =a sin C sin A =2sin π8.∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22 =2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,将上式代入cos B cos C =-b2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )B .8-4 3C .1解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C+c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cosπ4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1. 【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =79,所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223. 因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状 在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以sin A cos B cos A sin B =sin 2Asin 2B ,即sin2A =sin2B . 所以2A =2B ,或2A +2B =π,因此A =B或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc =a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S=900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300,故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则 v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23.据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中, CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为33.于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理得ABsinα=BCsin∠BAC,即12sinα=28sin120°,从而sinα=12sin120°28=3314. 1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sin A2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想."。
高考专题正弦定理和余弦定理
⾼考专题正弦定理和余弦定理⾼考专题正弦定理和余弦定理最新考纲掌握正弦定理、余弦定理,并能解决⼀些简单的三⾓形度量问题.知识梳理1.正、余弦定理在△ABC 中,若⾓A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三⾓形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:1.判断正误(在括号内打“√”或“×”)(1)三⾓形中三边之⽐等于相应的三个内⾓之⽐.( )(2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐⾓三⾓形;当b 2+c 2-a 2=0时,△ABC 为直⾓三⾓形;当b 2+c 2-a 2<0时,△ABC 为钝⾓三⾓形.( ) (5)在三⾓形中,已知两边和⼀⾓就能求三⾓形的⾯积.( ) 解析 (1)三⾓形中三边之⽐等于相应的三个内⾓的正弦值之⽐. (3)已知三⾓时,不可求三边.(4)当b 2+c 2-a 2>0时,三⾓形ABC 不⼀定为锐⾓三⾓形. 答案 (1)× (2)√ (3)× (4)× (5)√2.△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2B. 3C.2D.3解析由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3? ????b =-13舍去,故选D. 答案 D3.在△ABC 中,⾓A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A ,则cos B =( )A.-12B.12C.-32D.32 解析由正弦定理知sin B 3cos B=sin Asin A =1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B. 答案 B4.在△ABC 中,A =60°,AB =2,且△ABC 的⾯积为32,则BC 的长为( ) A.32 B.3 C.2 3D.2解析因为S =12×AB ×AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,所以BC = 3. 答案 B5.在△ABC 中,a cos A =b cos B ,则这个三⾓形的形状为________. 解析由正弦定理,得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三⾓形为等腰三⾓形或直⾓三⾓形. 答案等腰三⾓形或直⾓三⾓形6.已知钝⾓△ABC 的⾯积为12,AB =1,BC =2,则⾓B =________,AC =________.解析∵钝⾓△ABC 的⾯积为12,AB =1,BC =2,∴12=12×1×2×sin B ,解得sin B =22,∴B =π4或3π4,∵当B =π4时,由余弦定理可得 AC =AB 2+BC 2-2AB ·BC ·cos B =1+2-2×1×2×22=1,此时,AB 2+AC 2=BC 2,可得A =π2,此△ABC 为直⾓三⾓形,与已知⽭盾,舍去.∴B =3π4,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1+2+2×1×2×22= 5. 答案3π45考点⼀利⽤正、余弦定理解三⾓形【例1】(1)在△ABC中,已知a=2,b=6,A=45°,则满⾜条件的三⾓形有()A.1个B.2个C.0个D.⽆法确定(2)在△ABC中,已知sin A∶sin B=2∶1,c2=b2+2bc,则三内⾓A,B,C 的度数依次是________.(3)设△ABC的内⾓A,B,C的对边分别为a,b,c,若a=3,sin B=12,C=π6,则b=________.解析(1)∵b sin A=6×22=3,∴b sin A∴满⾜条件的三⾓形有2个.(2)由题意知a=2b,a2=b2+c2-2bc cos A,即2b2=b2+c2-2bc cos A,⼜c2=b2+2bc,∴cos A=22,∵A∈(0°,180°),∴A=45°,sin B=12,⼜B∈(0°,180°),b<a,∴B=30°,∴C=105°.(3)因为sin B=12且B∈(0,π),所以B=π6或B=5π6.⼜C=π6,B+C<π,所以B=π6,A=π-B-C=2π3.⼜a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.答案(1)B(2)45°,30°,105°(3)1规律⽅法(1)判断三⾓形解的个数的两种⽅法①代数法:根据⼤边对⼤⾓的性质、三⾓形内⾓和公式、正弦函数的值域等判断.②⼏何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三⾓形的两边和其中⼀边的对⾓解三⾓形.可⽤正弦定理,也可⽤余弦定理.⽤正弦定理时,需判断其解的个数,⽤余弦定理时,可根据⼀元⼆次⽅程根的情况判断解的个数.【训练1】 (1)在△ABC 中,⾓A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( ) A.1B.2C.4D.6(2)△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析 (1)a 2=c 2+b 2-2cb cos A ?13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).(2)在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A+C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 (1)C (2)2113考点⼆利⽤正弦、余弦定理判定三⾓形的形状(典例迁移)【例2】 (经典母题)设△ABC 的内⾓A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐⾓三⾓形 B.直⾓三⾓形 C.钝⾓三⾓形D.不确定解析由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2. 答案 B【迁移探究1】将本例条件变为“若2sin A cos B =sin C ”,那么△ABC ⼀定是( )A.直⾓三⾓形B.等腰三⾓形C.等腰直⾓三⾓形D.等边三⾓形解析法⼀由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π法⼆由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ?a 2=b 2?a。
正余弦定理知识点及高考考试题型整理学生理
正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学知识点总结正弦定理与余弦定理
高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。
本文将对这两个定理进行详细总结与讲解。
一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。
1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。
二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。
这个过程较为繁琐,这里就不做详细讲解。
2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。
三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。
3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。
3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。
3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。
而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。
高中数学正弦余弦定理总结
高中数学正弦余弦定理总结
正弦定理:在任意△ABC中,分别连接AB,AC,CB,设角BAC为∠A,∠ABC为∠B,∠BCA为∠C,则有以下公式成立:
sinA/a = sinB/b = sinC/c
余弦定理:在任意△ABC中,设边长分别为a,b,c,角A 对应边a,角B对应边b,角C对应边c,有以下公式成立:c² = a² + b² - 2abcosC
b² = a² + c² - 2accosB
a² = b² + c² - 2bccosA
正弦定理适用于已知两边和一个夹角,求解其余两角和两边的问题,而余弦定理适用于已知三边,求解其中一个角和另外两边的问题。
这两个定理在解决三角形相关问题时非常有用,可以帮助我们找到不同角度与边长之间的关系,进而求解各种各样的题目。
(经典)正弦定理、余弦定理知识点总结及最全证明
正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。
正弦定理和余弦定理 高考数学知识点总结 高考数学真题复习
§4.6 正弦定理和余弦定理2014高考会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:[1. 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.答案 2解析 由正弦定理及等比性质知a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R , 而由A =60°,a =3, 得a +b +c sin A +sin B +sin C=2R =a sin A =3sin 60°=2.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 答案 -24解析 设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a . 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a=-24.3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c =________. 答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为 ( )A .2 2B .8 2C. 2D.22答案 C解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =6+22; 当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为___________. 答案 π6解析 ∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵0<B <π,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A 2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.考点分析 本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力.解题策略 根据三角形内角和定理可直接求得B ;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解. 规范解答解 (1)由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以cos B =12.[4分](2)方法一 由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,[8分] 所以sin A sin C =1-cos 2B =34.[12分]方法二 由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,解得a =c ,[8分]所以A =C =B =60°,故sin A sin C =34.[12分]解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1. 应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2. 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1. 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2. 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( )A .4 3B .2 3C. 3D.32答案 B解析 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin Bsin A =32×2232=2 3.2. (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sinA cos A +cos 2B 等于( )A .-12B.12C .-1D .1答案 D解析 ∵a cos A =b sin B ,∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1.3. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形答案 C解析 因为a =2b cos C ,所以由余弦定理得:a =2b ·a 2+b 2-c 22ab ,整理得b 2=c 2,因此三角形一定是等腰三角形.4. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题(每小题5分,共15分)5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.答案523解析 根据正弦定理应有a sin A =b sin B, ∴a =b sin Asin B =5×1322=523.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.答案 2解析 由于S △ABC =3,BC =2,C =60°,∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形.∴AB =2.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5. 三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC→=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又AB →·AC →=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6, 根据余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =36-10-10×35=20,∴a =2 5.9. (12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求A 的度数;(2)若a =3,b +c =3,求b 、c 的值. 解 (1)∵B +C =π-A ,即B +C 2=π2-A2,由4sin 2B +C 2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2A -1)=72,整理得4cos 2A -4cos A +1=0,即(2cos A -1)2=0. ∴cos A =12,又0°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12,∴b 2+c 2-bc =3,①又b +c =3,② ∴b 2+c 2+2bc =9.③ ①-③整理得:bc =2.④解②④联立方程组得⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =2,c =1.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定答案 A解析 由正弦定理知a sin A =b sin B =csin C =2R , ∴sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A +sin 2B <sin 2C , ∴a 24R 2+b 24R 2<c 24R 2,∴a 2+b 2<c 2, ∴cos C =a 2+b 2-c 22ab<0,∴C 为钝角,∴△ABC 为钝角三角形.2. (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba 等于( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.3. (2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为 ( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4答案 D解析 ∵A >B >C ,∴a >b >c .设a =b +1,c =b -1,由3b =20a cos A 得 3b =20(b +1)×b 2+(b -1)2-(b +1)22b (b -1).化简,得7b 2-27b -40=0.解得b =5或b =-87(舍去),∴a =6,c =4.∴sin A ∶sin B ∶sin C =6∶5∶4. 二、填空题(每小题5分,共15分)4. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =________,△ABC 的形状为__________. 答案 60° 正三角形解析 ∵a ,b ,c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.由b 2=ac ,即a =b 2c,代入a 2-c 2=ac -bc ,整理得(b -c )(b 3+c 3+cb 2)=0,∴b =c .∴△ABC 为正三角形.5. 在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C 的值为________.答案2393解析 ∵S △ABC =3,即12bc sin A =3,∴c =4.由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a =13, ∴a +b +c sin A +sin B +sin C =a sin A =2133=2393.6. 在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan Ctan B的值是______. 答案 4解析 由b a +ab =6cos C ,得b 2+a 2=6ab cos C .化简整理得2(a 2+b 2)=3c 2, 将tan C tan A +tan Ctan B切化弦, 得sin C cos C ·(cos A sin A +cos B sin B )=sin C cos C ·sin (A +B )sin A sin B=sin C cos C ·sin C sin A sin B =sin 2C cos C sin A sin B . 根据正、余弦定理得 sin 2Ccos C sin A sin B=c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 三、解答题7. (13分)(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sinB =5cosC . (1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C ) =sin A cos C +cos A sin C =53cos C +23sin C , 所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16. 于是sin B =5cos C =56, 由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.。
高中数学必会之三角函数正弦定理和余弦定理
高中数学必会之三角函数正弦定理和余弦定理
正余弦定理是三角函数中有关三角知识的延伸,揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形面积,边角值及判断三角形形状时有重要作用。
余弦定理主要解决两类三角问题:其一是已知三边求其中一角的情况;其二是已知两边及其一夹角求另一边的情况.
正弦定理主要解决两类三角问题:其一是已知二边及其一边的对角求其中一角的情况;其二是已知一边及其一对角求另一边的情况.。
2023年高考数学一轮复习:正弦定理和余弦定理
【典例】 (2019·西安模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c.已 知asin A=4bsin B,ac= 5 (a2-b2-c2). (1)求cos A的值. (2)求sin (2B-A)的值.
【素养立意】
与三角恒等变换相结合,考查正弦定理、余弦定理.
【解析】(1)由asin A=4bsin B及 a = 得b a=2b.
【易错点索引】
序号 1 2
易错警示
在三角形中,一个正弦值(正数)对应两个角, 一个余弦值对应一个角
忽视三角形内角范围,即0°<A<180°
典题索引 考点一、T3 考点二、典例
【教材·基础自测】
1.(必修5P10T4改编)在△ABC中,AB=5,AC=3,BC=7,则∠BAC= ( )
A.
B.
bcos A,则△ABC为 ( )
A.钝角三角形
B.直角三角形
C.锐角三角形
D.等边三角形
【解析】选A.依题意得sin C<sin Bcos A, 所以sin (A+B)<sin Bcos A, 即sin Bcos A+cos Bsin A-sin Bcos A<0, 所以cos Bsin A<0. 又sin A>0,于是有cos B<0,B为钝角,△ABC是钝角三角形.
(2)运用方法
适用情形:三边a,b,c,任一内角A(知三求一).
b2 c2 a2
列方程:a2=b2+c2-2bccos A或cos A=_____2_b_c____.
(3)变形:cos
A=
b2 c2 a2 ,
2bc
b2+c2-a2=2bccos A等等.
(完整版)(经典)正弦定理、余弦定理知识点总结及最全证明(最新整理)
正弦定理、余弦定理知识点总结及证明方法——王彦文 青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 .其中R 是三角形外接圆的半径.(2)正弦定理的其他形式:①a =2R sin A ,b = ,c = ;②sin A =,sin B = ,a2Rsin C = ;③a ∶b ∶c =______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2= ,b 2= ,c 2= .若令C =90°,则c 2= ,即为勾股定理.(2)余弦定理的变形:cos A= ,cos B = ,cos C = .若C 为锐角,则cos C >0,即a 2+b 2______c 2;若C 为钝角,则cos C <0,即a 2+b 2______c 2.故由a 2+b 2与c 2值的大小比较,可以判断C 为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,类似地,sin 2B =____________;sin 2C =__________________.注意式中隐含条件A +B +C =π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC 中,已知a ,b和A 时,解的情况如表:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b解的个数① ② ③ ④ (3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S △= = =____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,=__________,从而sin A =A 2____________,cos A =____________,tan A =____________;sin =__________,cos =__________,A 2A2tan =________.tan A +tan B +tan C =A 2__________.(3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin =cos ⇔2cos =cos ⇔tan tan =B 2A -C 2A +C 2A -C 2A 2C 2.13【自查自纠】1.(1)===2R a sin A b sin B c sin C (2)①2R sin B 2R sin C ② b 2R c 2R ③sin A ∶sin B ∶sin C 2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2) > b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C 3.(1)正弦 (2)正弦 一解、两解或无解 ①一解②二解 ③一解 ④一解 (3)余弦 (4)余弦4.(1)ab sin C bc sin A ac sin B 121212abc 4R (a +b +c )r 12(2)π-(B +C ) - π2B +C 2sin(B +C ) -cos(B +C )-tan(B +C ) cos sin B +C 2B +C21tan B +C 2tan A tan B tan C (3)a +c sin A +sin C 在△ABC 中,A >B 是sin A >sin B 的( )A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C . 在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解 B .一解C .两解 D .一解或两解解:由正弦定理知sin C ==,又由c ·sin B b 56c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C . ()设△ABC 的内角A, B, C 所2013·陕西对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =.所以三角形为直角三π2角形.故选B . ()在△ABC 中,角A ,B ,C 2012·陕西所对的边分别为a ,b ,c .若a =2,B =,c =2π6,则b =________.3解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+2-2×2×2×cos =4,b =2.故填2.(23)3π6 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =,b =2,sin B +cos B =,22则角A 的大小为________.解:∵sin B +cos B =,2∴sin =,即sin =1.2(B +π4)2(B +π4)又∵B ∈(0,π),∴B +=,B =.π4π2π4根据正弦定理=,可得sin A =a sin A bsin B=.a sin B b 12∵a <b ,∴A <B .∴A =.故填.π6π6类型一 正弦定理的应用 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =b ,求C .2解:由a +c =b 及正弦定理可得sin A +2sin C =sin B .2又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =sin(A +C )=2sin(90°+2C )=sin2(45°+C ).22∴sin(45°+C )=2sin(45°+22C )cos(45°+C ),即cos(45°+C )=.12又∵0°<C <90°,∴45°+C =60°,C =15°.【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键. ()在△ABC 中,角A ,B ,2012·江西C 的对边分别为a ,b ,c .已知A =,b sin π4(π4+C)-c sin=a .(π4+B )(1)求证:B -C =;π2(2)若a =,求△ABC 的面积.2解:(1)证明:对b sin-c sin (π4+C )(π4+B )=a 应用正弦定理得sin B sin-sin C sin (π4+C )=sin A ,(π4+B )即sin B -sin C(22sin C +22cos C )=,整理得sin B cos C -(22sin B +22cos B)22sin C cos B =1,即sin =1.(B -C )由于B ,C ∈,∴B -C =.(0,3π4)π2(2)∵B +C =π-A =,又由(1)知B -C =3π4,π2∴B =,C =.5π8π8∵a =,A =,∴由正弦定理知b =2π4a sin Bsin A=2sin ,c ==2sin .5π8a sin C sin A π8∴S △ABC =bc sin A =×2sin ×2sin12125π8π8×22=sin sin =cos sin =sin25π8π82π8π822=.π412类型二 余弦定理的应用 在△ABC 中,a ,b ,c 分别是角A ,B ,C的对边,且=-.cos B cos C b2a +c (1)求B 的大小;(2)若b =,a +c =4,求△ABC 的面积.13解:(1)由余弦定理知,cos B =,a 2+c 2-b 22accos C =,将上式代入=-得a 2+b 2-c 22ab cos B cos C b 2a +c ·=-,a 2+c 2-b 22ac 2ab a 2+b 2-c 2b2a +c整理得a 2+c 2-b 2=-ac .∴cos B ===-.a 2+c 2-b 22ac -ac 2ac 12∵B 为三角形的内角,∴B =π.23(2)将b =,a +c =4,B =π代入b 2=a 21323+c 2-2ac cos B ,得13=42-2ac -2ac cos π,23解得ac =3.∴S △ABC =ac sin B =.12334【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab的值为( )A. B .8-4 C .1 D.43323解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =.故选A .43类型三 正、余弦定理的综合应用 ()△ABC 的内2013·全国新课标Ⅱ角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .②由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =.π4(2)△ABC 的面积S =ac sin B =ac .1224由已知及余弦定理得4=a 2+c 2-2ac cos .π4又a 2+c 2≥2ac ,故ac ≤,42-2当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为+1.2【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值. ()设△ABC 的内角A ,B ,2013·山东C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B=.79(1)求a ,c 的值;(2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =,所以ac =9,解得a =3,c =3.79(2)在△ABC 中,sin B ==,1-cos 2B 429由正弦定理得sin A ==.a sin B b 223因为a =c ,所以A 为锐角,所以cos A ==.1-sin 2A 13因此sin(A -B )=sin A cos B -cos A sin B =.10227类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得=,a 2b 2sin 2Asin 2B所以=,tan A tan B sin 2Asin 2B所以=,即sin2A =sin2B .sin A cos B cos A sin B sin 2A sin 2B所以2A =2B ,或2A +2B =π,因此A =B或A +B =,从而△ABC 是等腰三角形或直角三π2角形.解法二:由正弦定理,得=,所以a 2b 2sin 2Asin 2B=,所以=,再由正、余弦tan A tan B sin 2A sin 2B cos B cos A sin A sin B定理,得=,化简得(a 2-b 2)(c 2-a 2a 2+c 2-b 22ac b 2+c 2-a 22bca b -b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握. ()在△ABC 中,若sin 2A2012·上海+sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S =900t 2+400-2·30t ·20·cos (90°-30°)==900t 2-600t +400900(t -13)2+300,故当t =时,S min =10,此时v ==3013310313.3即小艇以30 n mile/h 的速度航行,相遇3时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-+.600t 400t 2∵0<v ≤30,∴900-+≤900,即-600t 400t 22t 2≤0,3t解得t ≥.又t =时,v =30.故v =30时,t2323取得最小值,且最小值等于.23此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos30°=10,AC =320sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t ==,v ==1030131031330.3即小艇以30 n mile/h 的速度航行,相遇3时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =.23据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =10,AC =10,3故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt△COD 中,CD =10tan θ,OD =.3103cos θ由于从出发到相遇,轮船与小艇所需要的时间分别为t =和t =,所以10+103tan θ30103v cos θ=.10+103tan θ30103v cos θ由此可得,v =.153sin (θ+30°)又v ≤30,故sin(θ+30°)≥,从而,3230°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为.33于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为.23【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便. ()如图,渔船2012·武汉5月模拟甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v ==14(海里/小282时).(2)在△ABC 中,AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理得=AB sin αBCsin ∠BAC,即=,从而sin α=12sin α28sin120°12sin120°28=.33141.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A +B +C =π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sin =cos ,sin2A =-A 2B +C2sin2(B +C ),cos2A =cos2(B +C )等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。
高中数学正弦、余弦定理知识点详解-应用解答。配套习题
正弦定理和余弦定理第一部分 知识梳理1.正弦定理:2sin sin sin a b c R A B C=== 正弦定理可以解决两类解三角形问题(1)已知两角和任一边,求另两边和另一脚(2)已知两边和其中一边的对角,求其它边和角2.利用正弦定理确定三角形解的情况已知三角形两边和其中一条边的对角,利用正弦定理求其他边和角时,要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况:222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧⎪=+-+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩余弦定理可以解决两类解三角形问题(1)已知三角形的三边求三角形三角(2)已经三角形的两边及其夹角解三角形第三边及其余两角4.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高) (2)∆S =21ab sin C =21bc sin A =21ac sin B ;第二讲 精讲点拨考点1 正弦定理(1) ① 有关正弦定理的叙述:① 正弦定理只适用与锐角三角形 ② 正弦定理不适用与直角三角形 ③在某一确定的三角形中,各边与它所对角的正弦的比是一定值 ④ 在ABC ∆中,C B A c b a sin :sin :sin ::=,其中正确的个数是( ).A 1 B . 2 C. 3 D 4b a b a b a b a a 已知边a,b 和∠A仅有一个解有两个解仅有一个解无解a ≥b CH=bsinA<a<b a=CH=bsinA a<CH=bsinA A CB AC B1A B A C B2C H H② 在ABC ∆中,已知bc c b a ++=222,则角A 为( )A ︒60B ︒120C ︒30D ︒60或︒120考点2 正、余弦定理在解三角形中的应用(2) ① 在ABC ∆中,已知︒==45.10A c ,︒=30C ,解这个三角形。
(完整版)正弦定理、余弦定理知识点
正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。
高考数学复习:正弦定理、余弦定理
(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正 弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题 的关键.
2.已知三角形面积求边、角的方法 (1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方 程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式 列方程求解.
b,c.设(sin B-sin C)2=sin2A-sin Bsin C.
(1)求A;
(2)若 2a+b=2c,求sin C. [解] (1)由已知得sin2B+sin2C-sin2A=sin Bsin C,故由正弦定理
得b2+c2-a2=bc. 由余弦定理得cos A=b2+2cb2c-a2=12. 因为0°<A<180°,所以A=60°.
正弦定理、余弦定理
[考试要求] 掌握正弦定理、余弦定理,并能解决一些简单的三 角形度量问题.
01
走进教材·夯实基础
梳理·必备知识 激活·必备技能
1.正弦、余弦定理
在△ABC 中,若角 A,B,C 所对的边分别是 a,b,c,R 为△ABC
的外接圆半径,则
定理
正弦定理
余弦定理
内容
a sin
A=sinb
A.π6
B.π3
C.23π
D.56π
C [由题意知,a=BC=7,b=AC=3,c=AB=5,
由余弦定理得cos∠BAC=b2+2cb2c-a2=9+2350-49=-12. 又因为∠BAC是△ABC的内角,
所以∠BAC=23π,故选C.]
1234
3.在△ABC中,acos A=bcos B,则这个三角形的形状为_____. 等腰三角形或直角三角形 [由正弦定理,得sin Acos A=sin Bcos B, 即sin 2A=sin 2B, 所以2A=2B或2A=π-2B, 即A=B或A+B=π2, 所以这个三角形为等腰三角形或直角三角形.]
2020年高考数学专题复习正弦定理与余弦定理
正弦定理与余弦定理1.正弦定理和余弦定理2.三角形解的判断3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin__B =12ab sin C ;(3)S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ).判断正误(正确的打“√”,错误的打“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( ) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( )(4)在△ABC 中,a 2+b 2<c 2是△ABC 为钝角三角形的充分不必要条件.( ) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)×(2019·温州市十校联合体期初)在△ABC 中,A =45°,B =60°,a =10,则b 等于( )A .5 2B .10 2C .1063D .5 6解析:选D.因为△ABC 中,A =45°,B =60°,a =10,所以由正弦定理a sin A =b sin B ,得10sin 45°=bsin 60°,解之可得b =10sin 60°sin 45°=5 6.(教材习题改编)在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B.cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,若cos B =45,a =10,△ABC的面积为42,则c =________.解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.答案:14(2018·高考浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析:因为a =7,b =2,A =60°,所以由正弦定理得sin B =b sin A a =2×327=217.由余弦定理a 2=b 2+c 2-2bc cos A 可得c 2-2c -3=0,所以c =3.答案:2173利用正弦、余弦定理解三角形(高频考点)利用正、余弦定理解三角形是高考的热点,三种题型在高考中时有出现,其试题为中档题.主要命题角度有:(1)由已知求边和角; (2)三角恒等变换与解三角形.角度一 由已知求边和角(1)(2019·金华市东阳二中高三调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若3b cos A =c cos A +a cos C ,则tan A 的值是( )A .-2 2B .- 2C .2 2D . 2(2)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.【解析】 (1)因为△ABC 中,由余弦定理得c cos A +a cos C =c ×b 2+c 2-a 22bc +a ×a 2+b 2-c 22ab=b .所以根据题意,3b cos A =c cos A +a cos C =b , 两边约去b ,得3cos A =1,所以cos A =13>0,所以A 为锐角,且sin A =1-cos 2A =223,因此,tan A =sin Acos A =2 2.(2)因为 A ,C 为△ABC 的内角, 且cos A =45,cos C =513,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又a =1,所以由正弦定理得b =a sin B sin A =sin B sin A =6365×53=2113.【答案】 (1)C (2)2113角度二 三角恒等变换与解三角形在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若cos B =23,求cos C 的值.【解】 (1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π), 故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B , 所以A =2B .(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.本例条件不变,若△ABC 的面积S =a 24,求角A 的大小.解:由S =a 24,得12ab sin C =a24,故有sin B sin C =12sin 2B =sin B cos B ,因为sin B ≠0,所以sin C =cos B , 又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.(1)正、余弦定理的选用解三角形时,如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.1.(2017·高考全国卷Ⅰ)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A .π12 B .π6C .π4D .π3解析:选B.因为sin B +sin A (sin C -cos C )=0,所以sin(A +C )+sin A ·sin C -sin A ·cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0,因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12,又0<C <π4,所以C =π6.故选B.2.(2019·绍兴市一中高三期末检测)△ABC 中,D 为线段BC 的中点,AB =2AC =2,tan ∠CAD =sin ∠BAC ,则BC =________.解析:由正弦定理可知sin ∠CAD sin ∠BAD =2,又tan ∠CAD =sin ∠BAC ,则sin ∠CADcos ∠CAD =sin(∠CAD+∠BAD ),利用三角恒等变形可化为cos ∠BAC =12,据余弦定理BC =AC 2+AB 2-2·AC ·AB ·cos ∠BAC =1+4-2= 3.答案: 3利用正弦、余弦定理判定三角形的形状(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定(2)若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形【解析】 (1)由正弦定理得sin B cos C +cos B sin C =sin 2A ,则sin(B +C )=sin 2A ,由三角形内角和,得sin(B +C )=sin A =sin 2A ,即sin A =1,所以∠A =π2.即△ABC 为直角三角形.(2)法一:利用边的关系来判断:由正弦定理得sin C sin B =c b ,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2, 所以a =b .又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2,所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二:利用角的关系来判断:因为A +B +C =180°,所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°, 所以△ABC 为等边三角形.【答案】 (1)A (2)D判定三角形形状的两种常用途径[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .等边三角形解析:选A.已知c b <cos A ,由正弦定理,得sin Csin B<cos A ,即sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B ·cos A +cos B sin A -sin B cos A <0,所以cos B sinA <0.又sin A >0,于是有cosB <0,B 为钝角,所以△ABC 是钝角三角形.2.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a sin B +bsin A =2c ,则△ABC是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形解析:选C.因为a sin B +b sin A =2c ,所以由正弦定理可得sin A sin B +sin Bsin A=2sin C ,而sin A sin B +sin Bsin A ≥2sin A sin B ·sin Bsin A=2,当且仅当sin A =sin B 时取等号,所以2sin C ≥2,即sin C ≥1.又sin C ≤1,故可得sin C =1,所以∠C =90°.又因为sin A =sin B ,可得A =B ,故三角形为等腰直角三角形,故选C.与三角形面积有关的问题(高频考点)求解与三角形面积有关的问题是高考的热点,三种题型在高考中时有出现,其试题为中档题.主要命题角度有:(1)求三角形的面积;(2)已知三角形的面积解三角形;(3)求有关三角形面积或周长的最值(范围)问题.角度一 求三角形的面积(1)(2019·台州市高考模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,2b -3c =2a cos C ,sin C =32,则△ABC 的面积为( ) A .32 B .34C .32或34D .3或32(2)(2017·高考浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.【解析】 (1)因为2b -3c =2a cos C ,所以由正弦定理可得2sin B - 3 sin C =2sin A cos C , 所以2sin(A +C )-3sin C =2sin A cos C , 所以2cos A sin C =3sin C , 所以cos A =32,所以A =30°, 因为sin C =32,所以C =60°或120°. A =30°,C =60°,B =90°,a =1,所以△ABC 的面积为12×1×2×32=32,A =30°,C =120°,B =30°,a =1,所以△ABC 的面积为12×1×1×32=34,故选C.(2)在△ABC 中,AB =AC =4,BC =2,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =42+22-422×4×2=14,则sin ∠ABC =sin ∠CBD =154,所以S △BDC =12BD ·BC sin ∠CBD =152.因为BD =BC =2,所以∠CDB =12∠ABC ,则cos ∠CDB =cos ∠ABC +12=104. 【答案】 (1)C (2)152104角度二 已知三角形的面积解三角形(1)(2019·杭州市七校高三联考)设△ABC 的三个内角A 、B 、C 所对的边长依次为a 、b 、c ,若△ABC 的面积为S ,且S =a 2-(b -c )2,则sin A1-cos A=________.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2.①求tan C 的值;②若△ABC 的面积为3,求b 的值.【解】 (1)因为△ABC 的面积为S ,且S =a 2-(b -c )2=a 2-b 2-c 2+2bc =12bc ·sin A ,所以由余弦定理可得-2bc ·cos A +2bc =12bc ·sin A ,所以4-4cos A =sin A ,所以sin A 1-cos A =4-4cos A 1-cos A =4.故填4.(2)①由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C . 又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C , 解得tan C =2.②由tan C =2,C ∈(0,π),得 sin C =255,cos C =55.因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010.由正弦定理得c =22b3,又因为A =π4,12bc sin A =3,所以bc =62, 故b =3.角度三 求有关三角形面积或周长的最值(范围)问题(1)(2019·浙江“七彩阳光”联盟联考)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 所对的边,其面积满足S △ABC =14a 2,则cb的最大值为( )A .2-1B . 2C .2+1D .2+2(2)(2019·绍兴市一中期末检测)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 且a cos C -12c =b .①求角A 的大小;②若a =3,求△ABC 的周长l 的取值范围.【解】 (1)选C.根据题意,有S △ABC =14a 2=12bc sin A ,应用余弦定理,可得b 2+c 2-2bc cosA =2bc sin A ,令t =cb,于是t 2+1-2t cos A =2t sin A .于是2t sin A +2t cos A =t 2+1,所以22sin ⎝⎛⎭⎪⎫A +π4=t +1t ,从而t +1t ≤22,解得t 的最大值为2+1.(2)①由a cos C -12c =b 得:sin A cos C -12sin C =sin B ,又sin B =sin(A +C )=sin A cos C +cos A sin C , 所以12sin C =-cos A sin C ,因为sin C ≠0, 所以cos A =-12,又0<A <π,所以A =2π3.②由正弦定理得:b =a sin Bsin A=23sin B ,c =23sin C , l =a +b +c =3+23(sin B +sin C )=3+23[sin B +sin(A +B )] =3+23⎝ ⎛⎭⎪⎫12sin B +32cos B=3+23sin ⎝⎛⎭⎪⎫B +π3, 因为A =2π3,所以B ∈⎝ ⎛⎭⎪⎫0,π3,所以B +π3∈⎝ ⎛⎭⎪⎫π3,2π3,所以sin ⎝ ⎛⎭⎪⎫B +π3∈⎝ ⎛⎦⎥⎤32,1,则△ABC 的周长l 的取值范围为(6,3+2 3 ].与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.1.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b,sinB =74,S △ABC =574,则b 的值为________. 解析:由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①②解得a =5,c =2,由sin B =74且B 为锐角知cos B =34,由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案:142.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.解析:由题意得:4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝ ⎛⎭⎪⎫A +π4=1,又0<A <π,所以π4<A +π4<5π4,所以A +π4=3π4,所以A =π2,S=12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,所以bc ≤16,所以S 的最大值为8.答案:83.(2017·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0. 解得c =-6(舍去),c =4. (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 面积与△ACD 面积的比值为 12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为3.应用正、余弦定理的解题技巧易错防范(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要注意分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.[基础达标]1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若b 2=ac ,c =2a ,则cos C =( ) A .24B .-24C .34D .-34解析:选B.由题意得,b 2=ac =2a 2,b =2a ,所以cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24,故选B. 2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2解析:选C.由正弦定理得3sin B cos C =sin C -3sin C cos B ,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,选C.3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC=22,则b 的值为( ) A .6 B .3 C .2D .2或3解析:选D.因为S △ABC =22=12bc sin A ,所以bc =6,又因为sin A =223,所以cos A =13,又a =3,由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3.4.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若b sin A -3a cos B =0,且b 2=ac ,则a +cb的值为( ) A .22B . 2C .2D .4解析:选C.在△ABC 中,由b sin A -3a cos B =0, 利用正弦定理得sin B sin A -3sin A cos B =0, 所以tan B =3,故B =π3.由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+c 2-ac , 即b 2=(a +c )2-3ac ,又b 2=ac ,所以4b 2=(a +c )2,求得a +cb=2. 5.(2019·杭州市高三期末检测)设点P 在△ABC 的BC 边所在的直线上从左到右运动,设△ABP 与△ACP 的外接圆面积之比为λ,当点P 不与B ,C 重合时( )A .λ先变小再变大B .当M 为线段BC 中点时,λ最大 C .λ先变大再变小D .λ是一个定值解析:选D.设△ABP 与△ACP 的外接圆半径分别为r 1,r 2,则2r 1=ABsin ∠APB,2r 2=ACsin ∠APC,因为∠APB +∠APC =180°, 所以sin ∠APB =sin ∠APC , 所以r 1r 2=ABAC, 所以λ=r 21r 22=AB 2AC2.故选D.6.在△ABC 中,AC →·AB →=|AC →-AB →|=3,则△ABC 面积的最大值为( )A .21B .3214C .212D .321解析:选B.设角A ,B ,C 所对的边分别为a ,b ,c , 因为AC →·AB →=|AC →-AB →|=3, 所以bc cos A =a =3.又cos A =b 2+c 2-a 22bc ≥1-92bc =1-3cos A2,所以cos A ≥25,所以0<sin A ≤215,所以△ABC 的面积S =12bc sin A =32tan A ≤32×212=3214,故△ABC 面积的最大值为3214. 7.在△ABC 中,A =π4,b 2sin C =42sin B ,则△ABC 的面积为________.解析:因为b 2sin C =42sin B , 所以b 2c =42b ,所以bc =42,S △ABC =12bc sin A =12×42×22=2. 答案:28.若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________. 解析:由面积公式,得S =12×AB ×AC ×sin A =103,所以sin A =2035×8=32.因为 A ∈(0,π2),所以A =π3.由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos A =25+64-2×5×8×cos π3=49,所以BC =7.答案:79.(2019·温州市高考模拟)在△ABC 中,内角A 、B 、C 所对的边长分别为a 、b 、c ,记S 为△ABC 的面积,若A =60°,b =1,S =334,则c =________,cos B =________. 解析:因为A =60°,b =1,S =334=12bc sin A =12×1×c ×32,所以解得c =3.由余弦定理可得a =b 2+c 2-2bc cos A =1+9-2×1×3×12=7,所以cos B =a 2+c 2-b 22ac =7+9-12×7×3=5714.答案:3571410.(2019·金丽衢十二校联考模拟)在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,a cos B =b cos A ,4S =2a 2-c 2,其中S 是△ABC 的面积,则C 的大小为________.解析:△ABC 中,a cos B =b cos A , 所以sin A cos B =sin B cos A ,所以sin A cos B -cos A sin B =sin(A -B )=0, 所以A =B ,所以a =b ; 又△ABC 的面积为S =12ab sin C ,且4S =2a 2-c 2,所以2ab sin C =2a 2-c 2=a 2+b 2-c 2,所以sin C =a 2+b 2-c 22ab=cos C ,所以C =π4.答案:π411.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求角A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 解:(1)由题意知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .①由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,A =120°.(2)由①得sin 2A =sin 2B +sin 2C +sin B sin C .又sin B +sin C =1,故sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰钝角三角形.12.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B =4,b sin A =3. (1)求tan B 及边长a 的值;(2)若△ABC 的面积S =9,求△ABC 的周长. 解:(1)在△ABC 中,a cos B =4,b sin A =3, 两式相除,有b sin A a cos B =sin B sin A sin A cos B =tan B =34,又a cos B =4,所以cos B >0,则cos B =45,故a =5.(2)由(1)知,sin B =35,由S =12ac sin B =9,得c =6.由b 2=a 2+c 2-2ac cos B =13,得b =13. 故△ABC 的周长为11+13. [能力提升]1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b =1,a =2c ,则当C 取最大值时,△ABC 的面积为( )A .33B .36C .233D . 3解析:选B.当C 取最大值时,cos C 最小, 由cos C =a 2+b 2-c 22ab =3c 2+14c =14⎝ ⎛⎭⎪⎫3c +1c ≥32, 当且仅当c =33时取等号, 且此时sin C =12,所以当C 取最大值时,△ABC 的面积为12ab sin C =12×2c ×1×12=36.2.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,a sin A +b sin B -c sin C sin B sin C =233a ,a =2 3.若b ∈[1,3],则c 的最小值为( )A .2B .3C .2 2D .2 3解析:选B.由a sin A +b sin B -c sin C sin B sin C =233a ,得a 2+b 2-c 22ab =33sin C .由余弦定理可知cos C =a 2+b 2-c 22ab ,即3cos C =3sin C ,所以tan C =3,故cos C =12,所以c 2=b 2-23b +12=(b -3)2+9,因为b ∈[1,3],所以当b =3时,c 取最小值3.3.已知在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,2a sin B =3b ,b =2,c =3,AD 是内角的平分线,则BD =________.解析:由2a sin B =3b 及正弦定理得 2sin ∠BAC ·sin B =3sin B ,所以sin ∠BAC =32. 因为∠BAC 为锐角,所以∠BAC =π3.因为AD 是内角平分线,所以BD DC =AB AC =c b =32.由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =4+9-2×2×3×12=7,所以BC =7,BD =357.答案:3574.(2019·金华十校联考)设△ABC 的面积为S 1,它的外接圆面积为S 2,若△ABC 的三个内角大小满足A ∶B ∶C =3∶4∶5,则S 1S 2的值为____________.解析:在△ABC 中,A +B +C =π,又A ∶B ∶C =3∶4∶5,所以A =π4,B =π3,C =512π.由正弦定理a sin A =b sin B =csin C=2R (a 、b 、c 为△ABC 中角A 、B 、C 的对边,R 为△ABC 的外接圆半径)可得,a =sin A sin C ·c ,b =sin B sin C ·c ,R =c2sin C. 所以S 1=12ab sin C =12·sin A sin C ·sin B sin C ·c 2·sin C=12sin A ·sin B ·sin C ·c2sin 2C,S 2=πR 2=π4·c2sin 2C,所以S 1S 2=2sin A ·sin B ·sin C π=2×22×32×6+24π=3+34π.答案:3+34π5.(2019·浙江省名校协作体高三联考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知c =2,C =π3.(1)当2sin 2A +sin(2B +C )=sin C 时,求△ABC 的面积; (2)求△ABC 周长的最大值.解:(1)由2sin 2A +sin(2B +C )=sin C 得4sin A cos A -sin(B -A )=sin(A +B ), 得2sin A cos A =sin B cos A ,当cos A =0时,A =π2,B =π6,a =433,b =233,当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4b =2a ,解得a=233,b =433.故△ABC 的面积为S △ABC =12ab sin C =233.(2)由余弦定理及已知条件可得:a 2+b 2-ab =4,由(a +b )2=4+3ab ≤4+3×(a +b )24得a +b ≤4,故△ABC 周长的最大值为6,当且仅当三角形为正三角形时取到.6.(2019·杭州市高考模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若m sin A =sin B +sin C (m ∈R ).(1)当m =3时,求cos A 的最小值; (2)当A =π3时,求m 的取值范围.解:(1)因为在△ABC 中m sin A =sin B +sin C , 当m =3时, 3sin A =sin B +sin C , 由正弦定理可得3a =b +c ,再由余弦定理可得cos A =b 2+c 2-a 22bc=b 2+c 2-19(b +c )22bc=89(b 2+c 2)-29bc 2bc ≥89·2bc -29bc 2bc =79,当且仅当b =c 时取等号, 故cos A 的最小值为79.(2)当A =π3时,可得32m =sin B +sin C ,故m =233sin B +233sin C=233sin B +233sin ⎝ ⎛⎭⎪⎫2π3-B =233sin B +233⎝ ⎛⎭⎪⎫32cos B +12sin B =233sin B +cos B +33sin B =3sin B +cos B =2sin ⎝ ⎛⎭⎪⎫B +π6,因为B ∈⎝⎛⎭⎪⎫0,2π3,所以B +π6∈⎝ ⎛⎭⎪⎫π6,56π,所以sin ⎝ ⎛⎭⎪⎫B +π6∈⎝ ⎛⎦⎥⎤12,1,所以2sin ⎝⎛⎭⎪⎫B +π6∈(1,2], 所以m 的取值范围为(1,2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节正弦定理和余弦定理
1. 某人要制作一个三角形,要求它的三条高的长度分别为
1
13
,
1
11
,
1
5
,则此人()
A. 不能作出这样的三角形
B. 能作出一个锐角三角形
C.能作出一个直角三角形
D.能作出一个钝角三角形
2. 已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为()
A. 75︒
B. 60︒
C. 45︒
D. 30︒
3. 在△ABC中,a=15,b=10,A=60︒,则cos B=()
A. -22
3
B.
22
3
C. -6
D.
6
4. (2010⋅湖南)在△ABC中,角A,B,C所对的边长分别为a,b,c.若∠C=120︒,c=2a,则()
A. a>b
B. a<b
C. a=b
D. a与b的大小关系不能确定
5. (2011⋅广东深圳调研)在△ABC中,a,b,c分别为角A,B,C所对的边,若a=2b cos C,则此三角形一定是()
A. 等腰直角三角形B.直角三角形
C. 等腰三角形
D. 等腰或直角三角形
6. (2010⋅北京)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()
A. 2sin α-2cos α+2
B. sin α3cos α+3
C. 3sin α3α+1
D. 2sin α-cos α+1
7. 在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________.
8. 在△ABC中,角A、B、C所对的边分别为a、b、c.若3-c)⋅cos A=a cos C,则cos A=________.
9. 在△ABC中,A=60︒,b=1,S△ABC3,则
a b c
sinA sinB sinC
++
++
等于________.
10. 在锐角三角形ABC中,BC=1,B=2A,则
AC
cosA
的值等于________,AC的取值范围
为________.
11. 已知△ABC的周长为+4,且sin A+sin B sin(A+B).(1)求边AB的长;
(2)若△ABC的面积S=4
3
sin C,求角C的大小.
12. 如图,在△ABC中,已知AB=3,AC=6,BC=7,AD是∠BAC的平分线.
(1)求证:DC=2BD;
(2)求AB DC的值.
答案:
6. A解析:四个等腰三角形的面积之和为4⨯1
2
⨯1⨯1⨯sin α=2sin α,再由余弦定理可得正方形
2-2cos α,所以所求八边形的面积为2sin α-2cos α+2.
7. 30︒或150︒解析:由正弦定理得
sin B=2sin A sin B,∵sin B≠0,
∴sin A=1
2
,∴A=30︒或A=150︒.
8. 解析:
cos A=a cos C+c cos A=a⋅
222
2
a b c
ab
+-
+c⋅
222
2
b c a
bc
+-
=b,
∴cos A
9.
解析:由正弦定理可知原式等于2R,而
a
sinA
=2R,故只需求出a即可,
∵S△ABC=1
2
bc sin A=
1
2
⨯1⨯c
,
∴c=4.由余弦定理知a2=b2+c2-2bc cos A=12+42-2⨯1⨯4⨯1
2
=13,
∴a
2R=
a
sinA
=
3
.
10. 2 解析:由正弦定理得
2AC sin A =BC sinA ,即2AC sinAcosA =1sinA , ∴AC cosA
=2.∵△ABC 是锐角三角形, ∴C =π-(A +B ),即0<π-(A +B )<2
π, 又∵B =2A ,∴3A >2π,∴A >6
π. 又∵0<B <2π,∴0<A <4
π, 综上,6π<A <4
π.
由AC =2cos A 得AC 的取值范围为.
11. (1)设角A 、B 、C 所对的边分别为a 、b 、c ,由sin A +sin B sin(A +B sin C ,
得a +b .
∵a +b +c +4,
∴c ,即AB 边长是.
(2)∵S =
12ab sin C =43
sin C ,∴ab =83.
又∵a +b c =4,
∴cos C =2222a b c ab +-=2222a b ab c ab (+)--=12,∴C =3π. 12. (1)在△ABD 中,由正弦定理得
AB sin ADB ∠=BD sin BAD
∠,① 在△ACD 中,由正弦定理得
AC sin ADC ∠=DC sin CAD
∠,② 又AD 平分∠BAC ,
所以∠BAD =∠CAD ,sin ∠BAD =sin ∠CAD ,
sin ∠ADB =sin(π-∠ADC )=sin ∠ADC , 由①②得
BD DC =AB AC =36
,所以DC =2BD . (2)因为DC =2BD ,所以DC =23BC . 在△ABC 中,因为cos B =2222AB BC AC AB BC +-⋅=222376237+-⨯⨯=1121
, 所以AB ⋅DC =23⨯3⨯7⨯1121⎛⎫- ⎪⎝⎭=-223.。