最优控制在励磁系统中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制在励磁系统中的应用
随着现代控制理论及其实际应用的不断发展,运用现代控制理论进行电力系统运行性能的最优化控制的研究工作有了迅速的发展,对如何按最优化的方法设计多参量的励磁调节器也取得了很大进展。
(1)基于非线性最优和PID技术的综合励磁调节器
对于非线性系统的同步发电机而言,当它偏离系统工作点或系统发生较大扰动时,如果仍然采用基于PID技术的电力系统稳定器,就会出现误差。
为此,可以将其用基于非线性最优控制技术的励磁调节器。
但是,非线性最优控制调节器存在着对电压控制能力较弱的缺点,所以用一种能够将非线性最优励磁调节器和PID技术的电力系统稳定器有机结合的新型励磁调节器的设计原理。
此综合励磁调节器是利用非线性最优控制理论的研究成果,其在非线性的励磁控制中采用了精确线性化的数学方法,不存在平衡点线性化后的舍入误差,因此该控制的数学模型在理论上对发电机的所有运行点都是精确的;同时针对非线性的励磁控制调压能力较弱的特点,又增加了PID环节,使其具有较强的电压调节特性此装置在小机组试验中取得非常好的实验效果,在平衡点附近运行和偏离平衡点较多时都具有很好的调节特性。
(2)自适应最优励磁控制器
将自适应控制理论与最优控制理论相结合,通过多变量参数辨识、最优反馈系数计算和控制算法运算三个环节,可以实现同步发电机励磁的自适应最优控制。
此发电机自适应最优励磁方案,通过采用由带可变遗忘因子的最小二乘算法构成的多变量实时辨识器,使系统状态方程的系数矩阵A和B中的元素值随系统运行工况的变化而变化,再经过最优反馈系数计算,实现了同步电机的自适应最优励磁控制。
虽然使用线性最优控制理论求取反馈系数,但由于状态方程的系数矩阵中的元素值随系统运行工况的变化而变化,因而控制作用体现了电力系统的非线性特性,本质上是一种非线性控制。
数字仿真试验结果表明,该励磁控制系统能够自动跟踪系统运行工作状况,在线辨识不断变化的系统参数,使控制作用始终处于最优状态。
从而改善了控制系统的动态品质,可以提高电力系统运行的稳定性。
(3)基于神经网络逆系统方法的非线性励磁控制
神经网络逆系统方法将神经网络对非线性函数逼近学习能力和逆系统方法的线性化能力相结合,构造出物理可实现的神经网络逆系统,从而实现了对被控系统的大范围线性化,能够在无需系统参数的情况下构造出伪线性复合系统,从而将非线性系统的控制问题转化为线性系的控制问题。
在大干扰情况下,神经网络逆系统方法的控制器暂态时间很短,超调量很小,有效地改善了系统的暂态响应品质,提高了电力系统的稳定性,此控制器还具有很好的鲁棒性能。
另外,神经网络逆系统方法无需知道原系统的数学模型以及参数,,也不需要测量被控系统的状态量,仅需要知道被控系统可逆及输入输出微分方程的阶数,且结构简单,易于工程实现。
(4)基于灰色预测控制算法的最优励磁控制
预测控制是一种计算机算法,它采用多步预测的方式增加了反映过程未来变化趋势的信息量,因而能克服不确定性因素和复杂变化的影响。
灰色预测控制是预测控制的一个分支,它需建立灰微分方程,能较好地对系统作全面的分析。
应用GM(1,N)对发电机的功率偏差、转速偏差、电压偏差序列值进行建模,经全面分析后求出各状态量的预测值,同时根据最优控制理论求出以预测值为状态变量的被控励磁控制系统的最优反馈增益,从而得出具有预测信息的最优励磁控制量。
灰色预测控制理论中灰色建模和“超前控制”的思想较好地弥补了线性最优控制理论中精确线性化和“事后控制”对单机无穷大系统的仿真结果表明,此励磁控制具有响应速度快、准确度高的特点,使电力系统在大小扰动下均能表现出较好的动态特性。