19章:一次函数(2)课后练习
2020-2021学年八年级数学人教版下册第十九章 19.2.2一次函数 同步练习题
19.2一次函数【知识点】1.一次函数的定义:一般地,形如____________(k,b是常数,k________0)的函数,叫做一次函数.当b=0时,y=kx+b即______________,所以说正比例函数是一种特殊的一次函数.2.一次函数y=kx+b(k≠0).(1)图象是____________________;(2)其性质有:①k>0,y随x增大而____________________;①k<0,y随x增大而____________________;(3)图象的平移规律:一次函数y=kx+b(k≠0)的图象可以由直线y = kx 平移____________个单位长度得到(当b > 0 时,向上平移;当b < 0 时,向下平移).3.求一次函数的解析式:(1)确定正比例函数的解析式需要______________个条件,确定一次函数的解析式需要______________个条件.(2)用待定系数法求一次函数解析式的一般步骤:①设:先设一次函数的解析式为____________________;①代:将已知条件代入解析式中,建立____________________;(3)解:解方程或方程组,确定____________________;(4)写:写出解析式.【例题讲解】1.已知y=(k-1)x∣k∣+(k2-4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.2.已知一次函数y=(2m+4)x+(2n-4).(1)m为何值时,y随x的增大而减小?(2)m,n为何值时,函数图象与y轴的交点在y轴的负半轴上?3.已知正比例函数y=kx的图象经过点P(2,3),如图19-27-1.(1)求这个正比例函数的解析式;(2)将该直线向上平移3个单位长度,求平移后所得直线的解析式.4.已知一个一次函数y=kx+b(k≠0),当自变量x=-2时,函数值y=-1;当x=3时,y=-3.求这个一次函数的解析式.5.如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.【举一反三】1.已知y=(m-1)x2-|m|+n+3.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?2.已知函数y=(2m-1)x+m-4.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.3.已知函数y=x+2.(1)画出这个函数的图象;(2)判断点A(-3,1)是否在该函数的图象上,并说明理由;(3)将该直线向下平移2个单位长度,则所得新直线的解析式为___________.4.如图,一次函数y=kx+b的图象经过A(2,4),B(-2,-2)两点,与y轴交于点C.(1)求k,b的值,并写出一次函数的解析式;(2)求点C的坐标.5.已知一次函数的图象经过点(1,1)和(-1,-5).(1)求此函数的解析式;(2)求此函数的图象与x轴、y轴的交点坐标及它的图象与两坐标轴所围成的三角形面积.【知识操练】1.下列函数中,不是一次函数的是()7A. y=x+4B. y=3xC. y=2-3xD. y=x2.表示一次函数图象的是()3.一次函数y=-2x+4的图象与y轴的交点坐标是()A. (0,4)B. (4,0)C. (2,0)D. (0,2)4.若3y-4与2x-5成正比例,则y是x的()A.正比例函数B.一次函数C.没有函数关系D.以上均不正确5.若点P(1,2)在正比例函数的图象上,则这个正比例函数的解析式是()A. y =-2xB. y =2xC. y =-4xD. y =4x6. 已知一次函数y =kx +b (k ≠0)的图象经过(2,-1),(-3,4)两点,则它的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列说法正确的是__________________(填序号).∣正比例函数一定是一次函数; ∣一次函数一定是正比例函数; ∣若y -1与x 成正比例,则y 是x 的一次函数; ∣若y =kx +b ,则y 是x 的一次函数.8. 已知函数y =-3x +b ,当x =-1时,y =-1,则b =______________.9. 已知一次函数y =-2x +b 的图象经过A(21,1),则此一次函数的表达式为________________.10. 如图,在平面直角坐标系x O y 中,四边形OABC 是平行四边形,且A(4,0),B(6,2),则直线AC 的解析式为____________.11. 已知一次函数的图象经过点(0,2)与(1,0). 求这个一次函数的解析式.12. 在一次函数y =2x +3中,y 随x 的增大而______________(填“增大”或“减小”),当0≤x ≤5时,y 的最小值为______________.13. 把直线y =2x -1向下平移4个单位长度,所得直线的解析式是__________________.14. 点A(-1,y 1),B(3,y 2)是直线y =kx +b (k <0)上的两点,则y 1-y 2__________0. (填“>”“<”或“=”)15. 已知直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B.(1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴相交于点P ,且使OP=2OA ,求∣ABP 的面积.16. 已知函数y =(2m +1)x +m -3.(1)若函数图象经过原点,求m 的值;(2)若函数图象在y 轴的截距为-2,求m 的值;(3)若函数的图象平行于直线y =3x -3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.17. 已知y -1与x 成正比例,且x =2时,y =7.(1)求y 与x 的函数关系式;(2)当x =-2时,求y 的值.18. 陈明同学乘车从学校出发回家,他离家的路程y (km )与所用时间x (h )之间的关系如图.(1)求y 与x 之间的关系式;(2)求学校和陈明同学家的距离.19. 如图,一次函数232+-=x y 的图象分别与x 轴、y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC=90°,求过B ,C 两点的直线的解析式.20. 有这样一个问题:探究函数y =x +∣x -2∣的图象与性质.小明根据学习函数的经验,对函数y =x +∣x -2∣的图象与性质进行了探究.下面是小明的探究过程,请补充完成:(1)化简函数解析式,当x ≥2时,y =___________;当x <2时,y =____________.(2)根据(1)中的结果,请在图19-27-4中的坐标系中画出函数y =x +∣x -2∣的图象;(3)结合函数的图象,写出该函数的一条性质:_______________21. 如图,在平面直角坐标系中,过点B(6,0)的直线与直线OA 相交于点A(4,2).(1)直线OA的解析式为________________;直线AB的解析式为_______________(直接写出答案,不必写过程);(2)求△OAC的面积;(3)一动点M沿路线O→A→C运动,当S△OCM=3时,求点M的坐标.。
人教版数学八年级下册第十九章:一次函数课后练习(含答案)
人教版数学八年级下册第十九章:一次函数课后练习(含答案)第十九章一次函数课后练习1.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量2.下列关系式中,y是x的函数的是()A.2x-y2B.y=3x-1C.y=23xD.y2=3x-53.已知正比例函数y=(k-1)x,且函数值y随自变量x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>04.已知正比例函数y=kx(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2,则y1与y2的大小关系是()A.y1B.y1>y2C.y1=y2D.不能确定5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2xB.y=2xC.y=-12xD.y=12x6.下列函数中,是正比例函数的是()A.y=-8xB.y=8xC.y=8x2D.y=8x-47.若函数y=(k-2)x+3是一次函数,则k的取值范围是()A.k>2B.k<2C.k=2D.k≠28.下列函数中,y随x的增大而增大的是()A.y=-2x+1B.y=-x-2C.y=x+1D.y=-2x-19.某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则降价后每件商品的销售价格为()A.12元B.12.5元C.16.25元D.20元10.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.11.已知关于x的函数y=(m-3)x|m|-2+n-2.(1)当m,n为何值时,它是一次函数?(2)当m,n为何值时,它是正比例函数?12.已知y与x成正比例,且当x=2时y=-6.(1)求y与x之间的函数解析式.(2)求x=-23时,y的值.(3)求x为何值时,y=9.13.如图,已知正比例函数y=kx(k≠0)的图象经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为H,点A的横坐标为3,且△AOH 的面积为3.(1)求正比例函数的解析式.(2)在x轴上是否存在一点P,使△AOP的面积为5Ω若存在,求出点P的坐标;若不存在,请说明理由.14.已知正比例函数y=kx(k≠0)的图象经过点(3,-6).(1)求这个函数的解析式;(2)画出这个函数的图象;(3)判断点A(4,-2),B(-1.5,3)在不在这个函数的图象上;(4)图象上有两点C(x1,y1),D(x2,y2),如果x1>x2,比较y1,y2的大小.15.已知函数y=-2x+3.(1)在如图所示的平面直角坐标系中,画出这个函数的图象.(2)写出这个函数的图象与x轴、y轴的交点的坐标.16.已知y是x的一次函数,当x=0时,y=3;当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.17.已知一次函数的图象经过点A(2,2),B(0,-1).(1)求该一次函数的解析式.(2)求图象与x轴的交点C的坐标.(3)判断点D13,12是否在该一次函数的图象上?答案和解析【答案】CBBACADCBC11.【答案】解:(1)当|m|-2=1时,m=±3,m-3≠0,故m=-3,n为任意实数,它是一次函数;(2)当|m|-2=1时,m=±3,m-3≠0,n-2=0,故m=-3,n=2时,它是正比例函数.12.【答案】解:(1)y=-3x.(2)y=2.(3)x=-3.13.【答案】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为-2,∴点A的坐标为(3,-2).将点A(3,-2)代入y=kx,-2=3k,解得:k=-23,∴正比例函数的表达式为y=-23x.(2)设点P的坐标为(a,0),则S△AOP=12|a|×|-2|=5,解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(-5,0)或(5,0).14.【答案】解:(1)将点(3,-6)代入y=kx得,-6=3k,解得,k=-2,函数解析式为y=-2x;(2)如图:函数过(0,0),(1,-2).(3)将点A(4,-2)、点B(-1.5,3)分别代入解析式得,-2≠-2×4;3=-2×(-1.5);故点A不在函数图象上,点B在函数图象上.(4)由于k=-2<0,故y随x的增大而减小,可得y115.【答案】解:(1)略.(2)函数y=-2x+3与x轴、y轴的交点的坐标分别是32,0,(0,3).16.【答案】解:(1)y=2x+3.(2)当x=4时,y=2×4+3=11.17.【答案】解:(1)y=32x-1.(2)在y=32x-1中,令y=0,得x=23,故图象与x轴的交点C的坐标为23,0.(3)当x=13时,y=32×13-1=-12≠12.故点D不在该一次函数的图象上.。
人教版初中八年级数学下册第十九章《一次函数》经典测试题(含答案解析)(2)
一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案.【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0, ∴12y y >,故选A .【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km C解析:C【分析】 根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( ) A . B . C . D .C 解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定B解析:B【分析】 根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .18A解析:A【分析】 根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<, ∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.7.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.8.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A.143xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩C解析:C 【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C.【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5B 解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交点的连线段长度等于22125+=,故本选项说法正确,不符合题意;故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.10.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题11.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.12.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____. 3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.13.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx=+⎧⎨=⎩, ∴ax b mx +=,解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n ,∴2bm a =-,由ax b mx -=,得:b x m a=--, ∴2bx m a =-=--,∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.14.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()1+、()1-、()0,2..【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.15.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.【分析】由题意可知当x=-2时一次函数与正比例函的函数值相同从而可得到方程的解【详解】解:一次函数图象与正比例函数图象交于点所以则则所以方程的解是故答案为:【点睛】本题考查一次函数与一次方程组的关系解析:2x =-【分析】由题意可知当x=-2时,一次函数5y x m =+与正比例函y kx =的函数值相同,从而可得到方程的解.【详解】解:一次函数5y x m =+图象与正比例函数y kx =图象交于点(2,4)-,所以5y x m y kx =+⎧⎨=⎩,则5x m kx +=,则5x kx m =-, 所以,方程5x kx m =-的解是2x =-,故答案为:2x =-.【点睛】本题考查一次函数与一次方程组的关系,一次函数的交点坐标就是它们的解析式组成的方程组的解.16.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.17.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点 解析:152 【分析】 先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.18.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键.19.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解20.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标. 解析:(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得. 【详解】解:(1)∵|1|30a b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-, ∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+, 把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得 30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩, 即1322y x =-,∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【点睛】 本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键.22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.24.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);3∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3.2解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3). ∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3). 【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.25.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C . (1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.解析:(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(223,0)-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解; (2)过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,则直线m (n )和BC 的交点即为所求点,进而求解;(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,进而求解.【详解】(1)令直线332y x =+中的0y =,则3302x +=, 解得:2x =-,∴由题意得:(2,0)A -,将(2,)B m 代入直线332y x =+中得3232m ⨯+=, 6m =,(2,6)B ∴,设直线BC 为:y kx b =+,∴代入(2,6),(3,0)B C 可得,2630k b k b +=⎧⎨+=⎩, 解得:618k b =-⎧⎨=⎩, ∴直线BC 的函数表达式为:618y x =-+.(2)设直线AB 交y 轴于点H ,则点H (0,3),过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,由AB 的表达式知,直线m 的表达式为32y x =直线n 的表达式为362y x =+ ∴32618y x y x ⎧=⎪⎨⎪=-+⎩,解得125,185x y ⎧=⎪⎪⎨⎪=⎪⎩故点D 的坐标为1218(,)553+62618y x y x ⎧=⎪⎨⎪=-+⎩,解得85,425x y ⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫ ⎪⎝⎭ 故点D 的坐标为为1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,理由:∵∠CAH=30°,∴12EH AE =∴12=+=+=BE EA t BE EH BH 为最小, ∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x ,则BE=2x ,BM=6,∴BE 2=EM 2+BM 2,即(2x )2=x 2+36,解得23x =∴223,=-=-OE OM EM∴点E 的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.26.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟,答:兔子中间停下睡觉用了28.5分钟.【点睛】本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.27.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm .(3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)解析:(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.28.画出函数2y x =+的图象,利用图象:(1)求方程20x +=的解;。
第19章.一次函数--全品习题答案
19.1 函数19.1.1 变量与函数第1课时 变量(全品第61页) 教师详答1.A [解析] 由于100是不变的,所以是常量,而W 和n 是变化的,因此是变量.故选A . 2.y =0.5x 0.5 x ,y3.[全品导学号:07712121]S ,a 12,h4.解:(1)s =300-50t.(2)300,50是常量,t ,s 是变量.5.V ,R 43,π6.[全品导学号:07712122]解:S =12³3x =32x.常量:32;变量:S ,x.7.[全品导学号:07712123]解:(1)60是常量,S ,x 是变量. (2)R 是常量,V ,h 是变量.19.1 函数19.1.1 变量与函数第2课时 函数(全品第62页)教师详答1.D2.[全品导学号:07712124]C [解析] 根据函数的定义来判断,如果三角形的高一定,则给定一个底边长,相应地就确定了一个三角形的面积的值,所以①不具有函数关系;如果多边形给定一个边数值,相应地就确定了一个多边形的内角和的值,所以②具有函数关系;如果给定一个半径,相应地就确定了一个圆的面积,所以③具有函数关系;④中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,所以④具有函数关系.故选C .3.B [解析] 把x =a ,y =1代入,得1=2a -1,解得a =1. 4.解:(1)x 是自变量,y 是x 的函数.y =0.55x.(2)x 是自变量,y 是x 的函数.y =60x.(3)x 是自变量,Q 是x 的函数.Q =20+5x.5.D 6.x ≤237.[全品导学号:07712125]解:(1)Q =800-50t.(2)当抽完水时有0=800-50t ,解得t =16,所以自变量t 的取值范围为0≤t ≤16. (3)当t =10时,Q =800-50t =800-50³10=300(立方米). 答:10小时后,水池中还有300立方米的水.8.[全品导学号:07712126]解:m =n +19(1≤n ≤25,且n 为正整数). (1)m =2n +18 (2)m =3n +17(3)m =(n -1)b +a(1≤n ≤p ,且n 为正整数).19.1 函数 19.1.2 函数的图象第1课时 函数的图象及其画法(全品第63-64页)教师详答1.D2.(1)15 1.1 (2)10 (3)12 0.9 (4)18 (5)22253.[全品导学号:07712127]解:(1)时间t 路程s(2)由图可知:9时、12时所走的路程分别是4千米、15千米. (3)根据图象可得,该旅行者休息的时间为:10.5-10=0.5(时). (4)根据图象可得:(15-9)÷(12-10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.4.C [解析] 根据函数图象的定义,如果点的坐标满足函数解析式,那么这个点就在这个函数的图象上,通过计算,可知选C .5.A [解析] 把x =2,y =3代入y =ax 2-x +1中,有3=4a -2+1,解得a =1.6.[全品导学号:07712128]5 [解析] 根据函数图象的定义知点P(3,m)和点Q(n ,2)都满足函数y =x +8的解析式,所以3+8=m ,n +8=2,解得m =11,n =-6,所以m +n =11+(-6)=5.7点(1,1),(2,3)在函数y =2x -1的图象上,点(-1,0),(-2,3)不在函数y =2x -1的图象上.8.[全品导学号:07712129]C [解析] 向上抛球的过程,球的速度开始最大,而后逐渐变为0,然后又增大,符合条件的图象是C .9.[全品导学号:07712130]C [解析] A 项,根据图象可得,乙前4秒行驶的路程为12³4=48(米),正确;B 项,根据图象可得,在0到8秒内甲的速度每秒增加4米,正确;C 项,根据图象可得,两车到第3秒时行驶的路程不相等,错误;D 项,在4至8秒内甲的速度都大于乙的速度,正确.故选C .10.80 [解析] 从图象可以看出,小明用20分钟行驶的路程是1600米,所以他步行回家的平均速度是80米/分.11(2)当x =-3时,y =12³(-3)2=2≠-2,∴点(-3,-2)不在函数y =12x 2的图象上.12.[全品导学号:07712131]解:(1)5 70 5 54 5(2)y 是x 的函数.理由:由图象可知,变量y 随着x 的变化而变化,同时对于每一个x ,按照图象,都有唯一的y 值与之相对应,符合函数的定义.(3)摩天轮的直径是70-5=65(m ).19.1 函数 19.1.2 函数的图象第2课时 实际问题中的函数图象(全品第65-66页)教师详答1.[全品导学号:07712132]C [解析] 两个变量之间,如果给定自变量一个值,另一个变量也有唯一的值与之对应,这样的两个变量之间的关系才是函数关系.选项中给定自变量x 一个值时,相应的另一个变量y 却得到了两个值.故C 项不能体现y 是x 的函数关系.2.B 3.B4.C [解析] 由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快. 5.D [解析] 0<x ≤20,表示小强从家步行去车站,总路程为2千米,故A 正确;20<x ≤30,表示小强在车站等小明,用的时间是10分钟,故B 正确;30<x ≤60,表示两人一起乘公共汽车去学校,用的时间是30分钟,走的路程是15千米,所以公共汽车的平均速度是30千米/时,所以C 正确,D 不正确.6.C7.解:(1)声速与气温 气温 声速 气温 (2)随着T 的增大,v 也增大.(3)气温每升高5 ℃,声速增加3 m /s即气温每升高1 ℃,声速增加35m /s .∴v =331+35T.(4)当T =30 ℃时,v =331+35³30=331+18=349(m /s ),349³6=2094(m ).答:发生打雷的地方距小明大约有2094 m . 8.[全品导学号:07712133]D9.y =0.5x10.[全品导学号:07712134]8 [解析] 进水管进水的速度为20÷4=5(升/分),出水管出水的速度为5-(30-20)÷(12-4)=3.75(升/分),∴关闭进水管后,放完水经过的时间为30÷3.75=8(分).11.解:由题意可知s =240-30t(0≤t ≤8). 列表:函数图象如图所示:12.[全品导学号:07712135]; 当x >20时,y =3.3(x -20)+2.5³20=3.3x -16. (2)∵该户4月份的水费平均每吨2.8元, ∴该户4月份用水超过20吨.设该户4月份用水a 吨,根据题意,得 2.8a =3.3a -16,解得a =32. 答:该户4月份用水32吨.19.2 一次函数 19.2.1 正比例函数第1课时 正比例函数的概念(全品第67页)教师详答1.[全品导学号:07712136]D [解析] 路程=速度³时间,速度一定时,路程是时间的正比例函数.故选D .2.C3.A [解析] ∵y =x +2a -1是正比例函数,∴2a -1=0,解得a =12.故选A .4.y =-2x 正比例5.-236.-1 127.S =3x [解析] 由三角形的面积公式可得S =12³6x ,即S =3x.8.[解析] 判断一个函数是不是正比例函数,要看解析式能否转化为y =kx(k ≠0)的形式. 解:(1)y =28-5x ,y 不是x 的正比例函数.(2)y =x 2,y 不是x 的正比例函数.9.D [解析] 根据正比例函数的定义,形如y =kx(k ≠0)的函数是正比例函数.y =3x -1可转化为y +1=3x ,把y +1看成一个整体,则y +1与x 成正比例;y =-x 2中,k =-12,所以y 与x 成正比例;在y =2(x +1)中,把x +1看作一个整体时k =2,所以y 与x +1成正比例;在y =x +3中,把x +3看作一个整体时k =1,所以y 与x +3成正比例.综上可知D 项的说法不正确.故选D .10.[全品导学号:07712137]C11.[全品导学号:07712138]2 [解析] 由题意知y =2x +k -2,由正比例函数的定义得k -2=0,即k =2.12.[全品导学号:07712139]解:正比例函数必须满足y =kx(k 是常数,k ≠0)的形式,无常数项,所以解得所以函数解析式为y =-4x.19.2 一次函数 19.2.1 正比例函数第2课时 正比例函数的图象与性质(全品第68-69页)教师详答1.D [解析] 因为正比例函数y =kx(k ≠0)的图象是一条经过原点的直线,所以只有D 项的图象符合题意.故选D .2.B 3.B4.-2 [解析] 把(2,-4)代入y =kx ,得-4=2k ,解得k =-2. 5.[全品导学号:07712140]0.26.1 [解析] 因为函数图象过原点,所以-(4m -4)=0,解得m =1. 7.略 8.C9.A [解析] 由正比例函数的性质可知:当y 随x 的增大而减小时,k -1<0,即k <1.故选A .10.>11.[全品导学号:07712141][解析] 正比例函数的比例系数决定函数的增减性.解:(1)当5-2k>0,即k<52时,y 随x 的增大而增大.(2)当5-2k<0,即k>52时,y 随x 的增大而减小.12.D [解析] x 的取值为正整数,y 也为正整数.故选D .13.C [解析] 对于正比例函数y =kx ,当k<0时,y 随x 的增大而减小,所以当x 1<x 2时,y 1>y2,即y 1-y 2>0.14.[全品导学号:07712142]C [解析] 如图,过点A 作直线y =x 的垂线,当B 是垂足时,AB 最短.过点B 作BE ⊥OA ,垂足为E.因为直线y =x 是第一、三象限的平分线,所以∠AOB =45°.由AB ⊥OB ,可得∠OAB =∠AOB =45°,可得BO =AB.由BE ⊥OA ,可得AE =OE ,从而得BE =AE=OE =12,所以点B 的坐标为(-12,-12).15.减小 [解析] 点(2,-6)在正比例函数y =kx 的图象上,即当x =2时,y =-6,∴-6=2k ,解得k =-3.∵k <0,∴y 随x 的增大而减小.16.y =73x [解析] 根据正比例函数的概念,可得9t 2=1,解得t =±13.∵函数图象经过第一、三象限,∴1-4t>0,解得t<14,∴t =-13.将t =-13代入y =(1-4t)x9t 2,得y =73x.17.y =2x(答案不唯一) [解析] ∵正比例函数y =kx 的图象经过第一、三象限, ∴k >0,当k 取2时可得函数解析式为y =2x.18.[全品导学号:07712143]1319.解:(1)将x =1,y =2代入y =kx ,得k =2, 故正比例函数的解析式为y =2x.(2)当x =-1时,y =2³(-1)=-2. (3)∵0≤y ≤5,∴0≤2x ≤5,解得0≤x ≤52.20.[全品导学号:07712144]解:(1)函数的图象如图:(2)y 轴的夹角变小. (3)由(2)中的规律可知,k 1>k 2.周滚动练习(二)(全品第70-71页)教师详答1.B 2.C 3.C4.[全品导学号:07712145]C 5.C6.πr 2S 和r π7.二、四 0 -5 减小8.[全品导学号:07712146]2 [解析] 由题意知,当x =3时,y 与x 满足的解析式为y =-x +5.把x =3代入y =-x +5,得-3+5=2,所以当输入x =3时,输出的结果y =2.9.< [解析]∵P 1(1,y 1),P 2(2,y 2)是正比例函数y =13x 的图象上的两点,∴y 1=13,y 2=13³2=23.∵13<23,∴y 1<y 2. 10.x ≥-2且x ≠111.解:(1)y =0.1x. (2)x =28-5y. (3)y =4x. 其中(1)(3)中的y 是x 的正比例函数12.解:(1)观察图象可知:自变量x 的取值范围是0≤x ≤5. (2)观察图象可知:当x =5时,y 有最小值,最小值是2.5. (3)观察图象可知y 随着x 的增大而减小.13.[解析] 根据题意知小明和小刚行驶的时间是2.5小时,所以速度为502.5=20(千米/时),所以二人前1.5小时行驶了20³1.5=30(千米),修车后行驶的1小时行驶的路程为20千米,依此可画出图象.解:图象如图所示.14.解:(1)由题意得解得k =±2.当k 等于±2时,该函数是正比例函数.(2)当k =2时,正比例函数的图象经过第一、三象限,正比例函数的解析式为y =52x.(3)当k =-2时,正比例函数y 随x 的增大而减小,正比例函数的解析式为y =-32x.15.[全品导学号:07712147][解析] 两人行驶的路程s 是时间t 的函数.从图象可以看出骑自行车的人先出发却后到达乙地,行驶的路程都是100千米.解:(1)甲地与乙地相距100千米;骑摩托车的人用了2小时,骑自行车的人用了6小时;骑摩托车的人先到达乙地,早到了1小时.(2)骑自行车的人先匀速行驶了2小时,行驶40千米后休息了1小时,然后用3小时匀速到达乙地.骑摩托车的人在骑自行车的人出发3小时后出发,行驶2小时后到达乙地.(3)摩托车行驶的平均速度是50千米/时.19.2 一次函数19.2.2 一次函数第1课时一次函数的概念(全品第72页)教师详答1.C[解析] ①y=πx,②y=2x-1是一次函数,共2个.2.C3.[全品导学号:07712148]D4.5 -3 -3 55.6.D7.B8.[全品导学号:07712149]解:(1)当m=-3,n为任意实数时,它是一次函数.(2)当m=-3,n=2时,它是正比例函数.9.[全品导学号:07712150][解析] 从表格中可以看出一张方桌能坐4人,以后每多一张方桌可以多坐2个人.表中应填的数字为10,y与x之间的函数解析式是y=4+2(x-1)=2x +2.解:表中填10.(1)y=2x+2,y是x的一次函数.(2)把y=42代入y=2x+2中,得42=2x+2,解得x=20.答:需要20张这样的方桌.19.2 一次函数19.2.2 一次函数第2课时一次函数的图象与性质(全品第73-74页)教师详答1.A2.y=3x+2 [解析] 根据图象沿y轴向上平移的规律,得最终图象对应的函数解析式为y =3x-1+3=3x+2.3.C 4.D 5.C 6.D7.解:图象略.共同点:函数图象都是一条直线,且均交y轴于点(0,2).8.C9.A[解析] ∵k=-2<0,∴y随x的增大而减小.∵1<2,∴a>b.10.m>-211.四[解析] ∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.12.[全品导学号:07712151]解:(1)由1-3m=0且m-1≠0,得m=13.(2)把(0,2)代入,得1-3m=2,解得m=-13.(3)由m-1<0,得m<1.13.[全品导学号:07712152]C14.A[解析] 分四种情况:①当a>0,b>0时,直线y=ax+b和y=bx+a均经过第一、二、三象限,选项中不存在此情况;②当a>0,b<0时,直线y=ax+b经过第一、三、四象限,直线y=bx+a经过第一、二、四象限,选项A符合此条件;③当a<0,b>0时,直线y =ax+b经过第一、二、四象限,直线y=bx+a经过第一、三、四象限,选项中不存在此情况;④当a<0,b<0时,直线y=ax+b经过第二、三、四象限,直线y=bx+a经过第二、三、四象限,t选项不存在此情况.故选A.15.答案不唯一,如y=-x+3 [解析] 设一次函数的解析式为y=kx+b.因为一次函数的图象过点(0,3),所以b=3.又因为函数y随x的增大而减小,所以k<0.16.-6 [解析] 函数y=2x+3的图象与x轴的交点坐标是(-32,0),函数y=4x-b的图象与x轴的交点坐标是(b4,0),所以-32=b4,解得b=-6.17.解:当x=0时,y=-6.当y=0时,即-12x-6=0,解得x=-12.所以点A,B的坐标分别为(-12,0),(0,-6),所以OA=||-12=12,OB=||-6=6,所以S =12OA ²OB =12³12³6=36.19.[全品导学号:07712154][解析] (1)在图中描出表中已知四对对应值的点,分析四个点的排列位置,猜想它们在同一直线上,y 与x 之间是一次函数关系,从表中对应值发现:19=17³1+2,36=17³2+2,53=17³3+2,70=17³4+2,…,所以y 与x 之间的函数解析式不难求得.(2)中的问题可利用(1)中求得的函数解析式解决.解:(1)如图所示.猜想y 与x 之间是一次函数关系.y 关于x 的函数解析式为y =17x +2(x 为正整数). (2)由(1)得y 与x 之间的函数解析式为y =17x +2,当y =1000时,17x +2=1000,解得x =581217,而x 为正整数,所以x ≈59.答:每根彩纸链至少要用59个纸环.19.2 一次函数 19.2.2 一次函数第3课时 一次函数解析式的求法(全品第75-76页)教师详答1.2.A 3.D 4.C5.[全品导学号:07712155]D [解析] ∵点B 在正比例函数y =2x 的图象上,横坐标为1,∴y =2³1=2,∴B(1,2),设这个一次函数的解析式为y =kx +b.∵一次函数的图象过点A(0,3),与正比例函数y =2x 的图象相交于点B(1,2),∴可得出方程组解得∴这个一次函数的解析式为y =-x +3. 6.310.D [解析] 设直线y =-3x 向上平移后得到直线AB ,则直线AB 的函数解析式可设为y =-3x +k ,把(m ,n)代入得n =-3m +k ,解得k =3m +n , ∵3m +n =10,∴k =10,∴直线AB 的函数解析式为y =-3x +10. 故选D .11.[全品导学号:07712156]y =2x +2 [解析] 由图象知OA =2,在Rt △AOB 中,OB =(5)2-22=1,所以点B 的坐标为(-1,0).将A(0,2),B(-1,0)的坐标代入y =kx +b 中,解得k =2,b =2,所以函数解析式为y =2x +2.12.(-1,0) [解析] 如图,作出点A(2,3)关于x 轴对称的点C(2,-3),连接CB 交x 轴于点P ,且可求得直线CB 的函数解析式为y =-x -1,当y =0时,-x -1=0,解得x =-1,∴点P 的坐标是(-1,0).13.[全品导学号:07712157]-23或516.[全品导学号:07712158]73≤k ≤3 [解析] 若直线y =kx -k(k ≠0)过点(2,3),则3=2k -k ,解得k =3;若直线y =kx -k(k ≠0)过点(4,7),则7=4k -k ,解得:k =73.因为直线y =kx -k(k ≠0)与线段AB 有交点,所以k 的取值范围为73≤k ≤3.19.2 一次函数 19.2.2 一次函数第4课时 一次函数的应用(全品第77-78页)教师详答1.C2.y =0.3x +6(0≤x ≤5)运送到B港口的物资为(80-x)吨,Array从乙仓库运送到A港口的物资为(100-x)吨,运送到B港口的物资为50-(80-x)=(x-30)(吨),∴总运费y与x之间的函数解析式为y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=-8x+2560,∵-8<0,∴y随x的增大而减小,∴当x=80时,总运费最低,当x=80时,y=-8³80+2560=1920,即最低费用为1920元.此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运往A港口20吨物资,乙仓库余下的全部物资运往B港口.7.[全品导学号:07712161]解:(1)∵从甲仓库运送到A港口的物资为x吨,∴从甲仓库周滚动练习(三)(全品第79-80页)教师详答1.D[解析] ∵k=2>0,b=1>0,根据一次函数的图象即可判断函数图象经过第一、二、三象限,不经过第四象限.故选D.2.B3.C[解析] A项,令y=-2x+1中的x=-1,则y=3,∴一次函数的图象不过点(-1,2),即A项不正确;B项,∵k=-2<0,b=1>0,∴一次函数的图象经过第一、二、四象限,即B项不正确;C项,∵k=-2<0,∴一次函数中的y随x的增大而减小.∵令y=-2x+1中的x=1,则y=-1,∴当x>1时,y<0成立,即C项正确;D.∵k=-2<0,∴一次函数中y随x的增大而减小,即D项不正确.故选C.4.C[解析] ∵正比例函数y=kx的图象经过点(2,-3),∴-3=2k,解得k=-32,∴正比例函数的解析式是y=-32x,四个选项中只有C选项的点在正比例函数y=-32x的图象上.故选C.5.B[解析] 因为正比例函数y=kx的图象过第二、四象限,所以k<0,因此一次函数y =x+k中y随x的增大而增大,且其图象与y轴负半轴相交,即函数图象位于第一、三、四象限.故选B.6.[全品导学号:07712163]C[解析] ①乙晚出发1小时.②乙出发3-1=2(时)后追上甲.③甲的速度是123=4(千米/时).④乙在距A地12千米处追上甲,且乙的速度快,所以乙先到达B地.综上可知,有3个说法正确.故选C.7.y=30x30 x和y8.≠1 -19.< [解析] 一次函数y=2x+1中y随x的增大而增大,所以若x1<x2,则y1<y2.10.(0,-3) [解析] 将直线y=3x+2沿y轴向下平移5个单位长度可得y=3x+2-5,即y=3x-3,∴平移后直线与y轴的交点坐标为(0,-3).11.三12.[全品导学号:07712164]5 [解析] 由题意可知:从甲地匀速驶往乙地,所用时间为3.2-0.5=2.7(时),返回的速度是它从甲地驶往乙地的速度的1.5倍,返回用的时间为2.7÷1.5=1.8(时),所以a=3.2+1.8=5.13.解:(1)∵k>0时,函数y随x的增大而增大,即2a+4>0,解得a>-2,b为任意实数.(2)∵k<0,b<0时,函数图象经过第二、三、四象限,∴2a+4<0,-(3-b)<0,解得a<-2,b<3,∴当a<-2,b<3时,函数图象经过第二、三、四象限.14.解:(1)把(1,4)代入y=kx+3,得k+3=4,解得k=1,即这个一次函数的解析式为y=x+3.(2)∵k=1,∴原不等式可化为x+3≤6,解得x≤3.15.解:由题意,得y=27x+3. 当x=20时,y=27³20+3=543.16.解:(1)(3900-3650)÷5=250÷5=50(米/分),即小丽步行的速度为50米/分.(18-15)³50=150(米).即学校与公交站台乙之间的距离为150米.(2)设过C,D两点的直线的函数解析式为y=kx+b.∵C(8,3650),D(15,150),∴当8≤x ≤15时,y =-500x +7650.17.[全品导学号:07712165]解:(1)∵直线y =2x +1与直线y =kx -1垂直, ∴2k =-1,解得k =-12.(2)∵过点A 的直线与直线y =-13x +3垂直,∴可设过点A 的直线所对应的函数解析式为y =3x +b. 把点A 的坐标(2,3)代入,得3=3³2+b ,解得b =-3, ∴该直线所对应的函数解析式为y =3x -3.19.2 一次函数19.2.3 一次函数与方程、不等式第1课时 一次函数与一元一次方程、不等式(全品第81-82页)教师详答1.C2.(-3,0) [解析] 因为关于x 的方程mx +n =0的解为x =-3,所以-3m +n =0,即对于函数y =mx +n ,当x =-3时,y =0,∴点(-3,0)是直线y =mx +n 与x 轴的交点.3.x =2 [解析] 因为点(2,3)在一次函数y =kx +b 的图象上,所以3=2k +b ,即关于x 的方程kx +b =3的解为x =2.4.x =-15.解:(1)x =2.(2)x =0.(3)x =-1.6.[解析] 方程2x -6=0的解可以利用函数y =2x -6的图象与x 轴的交点坐标求得. 解:函数y =2x -6的图象如图所示.从函数图象上可以看出直线y =2x -6与x 轴的交点坐标是(3,0),所以方程2x -6=0的解是x =3.7.C 8.B 9.C10.≥211.[全品导学号:07712166]解:函数y =2x +6的图象如图:(1)当x =-3时,y =0,所以方程2x +6=0的解为x =-3. (2)当x >-1时,y >4,所以不等式2x +6>4的解集为x >-1. (3)当-4≤x ≤-2时,-2≤y ≤2.12.B [解析] 将一次函数y =12x 的图象向上平移2个单位长度,平移后的图象所对应的函数解析式为y =12x +2.令y =0,解得x =-4;令x =0,解得y =2,画出其图象如图所示.∴若y >0,则x的取值范围是13.-4 -11 [解析] 由题意,得3x +1=2x -3,解得x =-4.当x =-4时,y =3x +1=-11.14.-1<x<2 [解析] 两函数图象都在x 轴上方的自变量的取值在-1和2之间,所以-1<x<2.15.[全品导学号:07712167]y<-2 [解析] 因为一次函数y =kx +b 的图象过点(0,-4),所以y =kx -4.将(2,0)代入y =kx -4,得0=2k -4,解得k =2,所以y =2x -4.当x =1时,y =2³1-4=-2.根据图象可得当x<1时,y<-2.17.[全品导学号:07712169]解:(1)根据表中的数据可知y 与x 满足正比例函数关系.设y =kx ,将x =100,y =40代入y =kx ,得k =0.4,所以y =0.4x ,其他几组值也符合该函数解析式,所以函数的解析式为y=0.4x.(2)y =0.15x +200. (3)如图所示:19.2 一次函数19.2.3 一次函数与方程、不等式第2课时 一次函数与二元一次方程组(全品第83页)教师详答1.A [解析] 方法一:图中的两条直线分别为直线y =5x -1和直线y =2x +5,分别代入y =0和x =0,可求出两条直线与x 轴、y 轴的交点坐标,根据交点坐标知A 项是正确的.方法二:首先根据k 的值排除C 项和D 项,然后由直线的倾斜程度考虑B 项是否正确,于是把B 项中的交点坐标(3,7)代入直线解析式中,发现不成立.故选A .2.D6.[全品导学号:07712171]D [解析] 直线y =-23x -3与y 轴的交点为(0,-3).当a=-3时,直线y =a 与y =-23x -3交于y 轴上的点(0,-3);当a<-3时,直线y =a 与y =-23x -3的交点在第四象限,所以选D .7.[全品导学号:07712172]解:直线AB 和直线CD 所对应的函数解析式分别为y =2x +6和y =-12x +1,∴直线AB 与直线CD 的交点坐标为(-2,2).8.[全品导学号:07712173]解:∵直线y =-43x +4与y 轴交于点A ,∴点A 的坐标为(0,4).∵直线y =45x +45与x 轴交于点C ,∴点C 的坐标为(-1,0).∵直线y =-43x +4与直线y=45x +45相交于点B ,∴点B 的坐标为(32,2).∵直线y =-43x +4与x 轴交于点D ,∴点D 的坐标为(3,0),∴△ACD 的面积为12³4³4=8,△BCD 的面积为12³4³2=4,∴△ABC 的面积为8-4=4.专题训练(三) 一次函数易错题(全品第84页)教师详答1.-2 [解析] 根据一次函数的定义,得错误!解得m =-2.2.解:已知正比例函数y =(m -1)x5-m 2的图象经过第二、四象限,∴m -1<0,5-m 2=1, 解得m =-2.3.x =1或x =-1 [解析] 在x 轴上到y 轴的距离为1的点的坐标为(1,0)或(-1,0),不要忽略任何一种情况.4.-3≤m <2 [解析] 由一次函数y =(m -2)x +m +3的图象不经过第三象限, 可知它经过第二、四象限或第一、二、四象限, ∴错误!或错误! 解得-3≤m <2.5.[全品导学号:07712174]解:一次函数y =kx +4的图象与y 轴、x 轴的交点坐标分别是(0,4),⎝ ⎛⎭⎪⎫-4k ,0,图象与两坐标轴围成的三角形的面积是12³4³⎪⎪⎪⎪⎪⎪-4k =16,解得k =±12.所以这个一次函数的解析式是y =12x +4或y =-12x +4.6.D 7.C 8.C9.[全品导学号:07712175]解:若y 随x 的增大而增大,则当x =-3时,y =-1;当x =2时,y =9.所以错误! 解得错误!所以k +b =7.若y 随x 的增大而减小,则当x =-3时,y =9;当x =2时,y =-1. 所以错误!解得错误! 所以k +b =1.综上所述,k +b 的值是7或1.19.3 课题学习 选择方案(全品第85-86页)教师详答1.B [解析] 两函数图象的交点坐标为(2,4),即售出2件产品时,售价相同;在交点左侧,乙家较便宜;在交点右侧,甲家较便宜;买1件产品时,乙家的售价为2元.故选B .2.169网费3.解:(1)方案一:y =0.95x ;方案二:y =0.9x +300.(2)∵0.95³5880=5586(元),0.9³5880+300=5592(元),∴选择方案一更省钱. 4.[全品导学号:07712176]解:(1)∵购买大型客车x 辆,∴购买中型客车(20-x)辆. 根据题意,得y =62x +40(20-x)=22x +800. (2)依题意得20-x <x.解得x >10.∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22³11+800=1042(万元). 此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,该方案所需费用为1042万元. 5.解:(1)设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元,根据题意,得答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m 件,则购进乙种商品(100-m)件,根据题意,得 m ≥4(100-m), 解得m ≥80.设卖完A ,B 两种商品商场的利润为w ,则w =(40-30)m +(90-70)(100-m)=-10m +2000,∵-10<0,w 随m 的增大而减小,∴当m =80时,w 取得最大值,最大利润为1200元. 故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元. 6.解:(1)由题意知: 当0<x ≤1时,y 甲=22x ;当x >1时,y 甲=22+15(x -1)=15x +7. y 乙=16x +3.(2)①当0<x ≤1时,令y 甲<y 乙,即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =12;令y 甲>y 乙,即22x >16x +3,解得12<x ≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3, 解得x >4;令y 甲=y 乙,即15x +7=16x +3, 解得x =4;令y 甲>y 乙,即15x +7>16x +3, 解得1<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x =4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱.7.[全品导学号:07712177]解:(1)根据题意可知,参加演出的男生有x 人,参加演出的女生有(2x -100)人.总费用y 1(单位:元)和y 2(单位:元)与参演男生人数x 之间的函数解析式分别是:y 1=0.7[120x +100(2x -100)]+2200=224x -4800,y 2=0.8[100(3x -100)]=240x -8000.(2)当y 1>y 2时,即224x -4800>240x -8000,解得x <200; 当y 1=y 2时,即224x -4800=240x -8000,解得x =200; 当y 1<y 2时,即224x -4800<240x -8000,解得x >200.即当参演男生人数少于200人时,购买B 公司的服装比较合算;当参演男生人数等于200人时,购买两家公司的服装总费用相同,可在任一家公司购买;当参演男生人数多于200人时,购买A 公司的服装比较合算.8.[全品导学号:07712178]解:(1)y A =20x +25(200-x)=-5x +5000; y B =15(240-x)+18(60+x)=3x +4680.(2)∵y A -y B =(-5x +5000)-(3x +4680)=-8x +320. ∴当-8x +320>0,即x<40时,B 地的运费较少; 当-8x +320=0,即x =40时,两地的运费一样多; 当-8x +320<0,即x>40时,A 地的运费较少.(3)设两地运费之和为y 元,则y =y A +y B =(-5x +5000)+(3x +4680)=-2x +9680. 由题意知3x +4680≤4830, 解得x ≤50.∵-2<0,∴y 随x 的增大而减小, ∴x 为50时,y 有最小值,∴y 最小值=-2³50+9680=9580,∴在此情况下,当A 地运往甲、乙两仓库的猕猴桃分别为50吨、150吨;B 地运往甲、乙两仓库的猕猴桃分别为190吨、110吨时,才能使两地运费之和最少,最少费用是9580元.小结与思考(全品第87-88页)教师详答1.D 2.D 3.D4.D [解析] x =-3时,分母x +3为0,无意义.故选D . 5.y =2x -37.B [解析] 因为b <0,所以直线与y 轴交于负半轴.故选B .8.[全品导学号:07712179]B [解析] ∵直线y =-x +m 与y =nx +4n(n ≠0)的交点的横坐标为-2,直线y =nx +4n 与x 轴的交点坐标为(-4,0),∴关于x 的不等式组-x +m >nx +4n >0的解集为-4<x <-2,∴其整数解为-3.故选B . 9.一、三 [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k<0,b<0,所以kb>0,所以正比例函数y =kbx 的图象经过第一、三象限.10.>11.[全品导学号:07712180] 25 [解析] 由题意,得b =a +5,d =c +5,所以a(c -d)-b(c -d)=(a -b)(c -d)=(-5)³(-5)=25.12.4 [解析] 如图,在△ABC 中,BC 为底,AO 为高,且高为2,面积为4,故△ABC 的底边BC =8÷2=4.因为点B 的坐标为(0,b 1),点C 的坐标为(0,b 2),所以b 1-b 2即是BC 的长.13.A14.解:(1)设工厂生产x 件A 产品,则生产(50-x)件B 产品.根据题意,得解得30≤x ≤32. ∵x 为整数,∴x =30,31,32,∴有三种生产方案:①A:30件,B:20件;②A:31件,B:19件;③A:32件,B:18件.(2)方法一:当生产A种产品30件,B种产品20件时,利润为30³80+20³120=4800(元).当生产A种产品31件,B种产品19件时,31³80+19³120=4760(元).当生产A种产品32件,B种产品18件时,32³80+18³120=4720(元).故当生产A种产品30件,B种产品20件时,获得的利润最大.方法二:B产品生产得越多获得的利润越大,即生产A种产品30件,B种产品20件时,最大利润为30³80+20³120=4800(元).15.[全品导学号:07712181]解:(1)y=4x大+210.(2)①当x大=6时,y=4³6+210=234,∴y=3x小+234.②根据题意,得3x小+234≤260,解得x小≤823,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.本章中考演练(全品第89-90页)教师详答1.B[解析] 根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.2.A[分析] 由题意,得x≥0且x-2≠0,解得x≥0且x≠2.故选A.3.[全品导学号:07712182]C[解析] ∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12³4³(6-x)=12-2x(0<x<6),∴选项C符合.故选C.4.A5.(-4,1)6.y=2x-2 [解析] 根据平移的规则可知:直线y=2x+1向下平移3个单位长度后所得直线的函数解析式为y=2x+1-3=2x-2.7.一[解析] ∵关于x的方程mx+3=4的解为x=1,∴m+3=4,解得m=1,∴直线y=(m-2)x-3为直线y=-x-3,∴直线y=(m-2)x-3一定不经过第一象限.8.二、四[解析] 由题意得|m|=1,且m-1≠0,解得m=-1,∴函数解析式为y=-2x.∵k=-2<0,∴该函数的图象经过第二、四象限.故答案为:二、四.9.-110.解:将x=-1,y=1代入y=kx+2,得1=-k+2,解得k=1.∴一次函数的解析式为y=x+2.当x=0时,y=2;当y=0时,x=-2,∴函数图象经过(0,2),(-2,0)两点,此函数图象如图所示.11.解:(1)∵点B 在直线l 2上, ∴4=2m ,∴m =2, ∴B(2,4).设直线l 1的函数解析式为y =kx +b ,∴直线l 1的函数解析式为y =12x +3.(2)可知C ⎝ ⎛⎭⎪⎫n ,12n +3,D(n ,2n), 当点C 在点D 上方时,有n2+3>2n ,解得n <2.12.解:(1)∵点A(2,0),AB =13,∴OB =AB 2-OA 2=3, ∴点B 的坐标为(0,3). (2)∵△ABC 的面积为4, ∴12³BC ³OA =4, ∴12³BC ³2=4,即BC =4. ∵OB =3,∴OC =4-3=1, ∴C(0,-1).设直线l 2的函数解析式为y =kx +b ,则∴该运动员从起点到第二次经过C 点所用的时间是7+68=75(分), ∴直线AB 经过(35,10.5),(75,2.1)两点. 设AB 所在直线的函数解析式为s =kt +b ,∴AB 所在直线的函数解析式为s =-0.21t +17.85.②该运动员跑完赛程用的时间即为直线AB 与x 轴交点的横坐标, ∴当s =0时,-0.21t +17.85=0,解得t =85. ∴该运动员跑完赛程用时85分钟.14.解:(1)设y B 关于x 的函数解析式为y B =k 1x +b(k 1≠0), 由线段EF 过点E(1,0)和点P(3,180),得∴y B 关于x 的函数解析式为y B =90x -90(1≤x ≤6). (2)设y A 关于x 的函数解析式为y A =k 2x(k 2≠0), 由题意,得180=3k 2,即k 2=60,∴y A =60x. 当x =5时,y A =5³60=300, 当x =6时,y B =90³6-90=450, 450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.自我综合评价(四)(全品第91-92页)教师详答1.D2.B [解析] 因为-2<0,所以y 随x 的增大而减小.因为3>-2,所以y 1<y 2. 3.B4.C [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 5.C 6.D7.x ≠1 [解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.8.y =32x -29.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.4.5 [解析] 令x =0,可求直线l 1与y 轴的交点坐标是(0,4),直线l 2与y 轴的交点坐标是(0,-5),所以BC =4-(-5)=9.因为E ,F 分别是AB ,AC 的中点,所以EF =12BC =92.11.[全品导学号:07712184]0<m <3212.解:(1)设这个一次函数的解析式为y =kx +b , ∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3. (2)当x =3时,y =3+3=6.13.解:(1)由y 1=-12x +1,可知当y =0时,x =2,∴点A 的坐标是(2,0), ∴AO =2.∵直线y 1=-12x +1与直线y 2=-32x 交于点B ,∴点B 的坐标是(-1,1.5), ∴△AOB 的面积=12³2³1.5=1.5.(2)由(1)可知交点B 的坐标是(-1,1.5), 由函数图象可知y 1>y 2时,x >-1. 14.[全品导学号:07712185]解:(1)令y =0,得x =-32,∴点A 的坐标为⎝ ⎛⎭⎪⎫-32,0. 令x =0,得y =3,∴点B 的坐标为(0,3). (2)设点P 的坐标为(x ,0), 依题意,得x =±3.∴点P 的坐标为(3,0)或(-3,0),∴S △ABP =12³⎝ ⎛⎭⎪⎫32+3³3=274,或S △ABP =12³⎝ ⎛⎭⎪⎫3-32³3=94,∴△ABP 的面积为274或94.15.解:(1)从小刚家到该景区乘车一共用了4 h . (2)设线段AB 所在直线的函数解析式为y =kx +b. ∵点A(1,80),B(3,320)在直线AB 上,∴y =120x -40(1≤x ≤3).(3)当x =2.5时,y =120³2.5-40=260, 380-260=120(km ).故小刚一家出发2.5小时时离目的地还有120 km . 16.解:(1)根据题意,得2000³2x +1600x +1000³(100-3x)≤170000. 解得x ≤261213. ∵x 为正整数, ∴x 最大为26. 答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)³2x +(1800-1600)x +(1100-1000)³(100-3x)=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500³26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.第十九章一次函数测试题。
八年级下册数学第十九章练习册答案
八年级下册数学第十九章练习册答案八年级下册数学练习册第十九章你做好了吗?对照一下正确答案吧。
接下来是店铺为大家带来的八年级下册数学第十九章练习册的答案,供大家参考。
八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;C2、1,8,0.3;n,L3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)S=x(10-x),敞亮是10,变量是x,S(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)W=(n-2)×180°,常量是2,180°,变量是W,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)W=n²+1(3)常量是1,变量是n,W19.1.1变量与函数第2课时答案【基础知识】1、D2、B3、C4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、Q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)Q=1000-60;(2)0≤t≤50/3(3)当t=10时,Q=400(m²)(4)当Q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、C2、D3、A4、D5、Q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、S=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】2、A3、B4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、B2、D3、C4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)C(2)A【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、A2、C3、C4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、B2、C3、C4、D5、D6、(1,2)7、>18、一条直线;09、0.2;增大10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点A在y=5/2x上,点B在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、C2、A3、A4、B5、>-2;一、三;<-2;二、四6、y=50x7、y=4/3x8、m>6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45)19.2.2一次函数第1课时答案【基础知识】1、D2、D3、C4、A5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)S=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、D2、A3、B4、D5、A6、B7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、D2、C3、A4、C5、66、(-3/2,0);x=-3/27、<、>8、x<-19、(1)2(2)2(3)<2(4)y=-x+210、y=-1/2x+3或y=1/2x-3【能力提升】11、A12、313、(1)当通话时间为500分钟时。
2021年八年级数学下册第十九章《一次函数》经典练习题(答案解析)(2)
一、选择题1.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .2.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( ) A . B .C .D .3.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和3 4.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .35.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .6.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 7.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 8.下列一次函数中,y 的值随着x 值的增大而增大的是( ) A .–1y x =- B .0.3y x = C . 1y x =-+ D .y x =- 9.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④11.下列说法正确的是()①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+③第40天,该植物的高度为14厘米;④该植物最高为15厘米A.①②③B.②④C.②③D.①②③④12.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩13.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <- 14.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个15.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则下列说法错误的是( )A .每分钟的进水量为5升B .每分钟的出水量为3.75升C .OB 的解析式为y =5x (0≤x≤4)D .当x =16时水全部排出二、填空题16.已知关于x ,y 的二元一次方程组1,mx y y nx -=⎧⎨=⎩的解是1,2x y =⎧⎨=⎩则直线1y mx =-与直线y nx =的交点坐标是______;17.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.18.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.19.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.20.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.21.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.22.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.23.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 24.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.25.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.26.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.三、解答题27.已知:正比例函数y =kx 的图象经过点A ,点A 在第四象限,过A 作AH ⊥x 垂足为H ,点A 的横坐标为3,S △AOH =3.(1)求点A 坐标及此正比例函数解析式;(2)在x 轴上能否找到一点P 使S △AOP =5,若存在,求点P 坐标;若不存在,说明理由.28.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.29.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.30.已知在平面直角坐标系中,直线()11140y k x k =+≠与直线()2220y k x k =≠交于点()6,12C ,直线1y 分别与x 轴,y 轴交于点A 和点B .(1)求直线1y 与2y 的表达式及点A ,点B 的坐标;(2)x 轴上是否存在点P ,使ACP ∆的面积为30,若存在,求出点P 的坐标;若不存在,说明理由;为等腰三角形,若存在,请直接写出点Q的坐标;(3)x轴上是否存在点Q,使OCQ若不存在,请说明理由.。
初二数学下册(人教版)第十九章一次函数19.2知识点总结含同步练习及答案
描述:初二数学下册(人教版)知识点总结含同步练习题及答案第十九章 一次函数 19.2 一次函数一、学习任务1. 理解正比例函数一次函数的概念,掌握一次函数的图象和性质,会用待定系数法确定一次函数的解析式.2. 理解一次函数与一元一次方程、一元一次不等式、二元一次方程(组)的联系,并能解决相应的问题.二、知识清单一次函数的图象与性质一次函数的解析式 一次函数图象的变换一次函数与方程、不等式 一次函数的应用三、知识讲解1.一次函数的图象与性质正比例函数 ( 是常数,)的图象与性质一次函数(,是常数,)的图象与性质y =kx k k ≠0y =kx +b k b k ≠0y =kx +b k≠0如果一次函数 y =kx⎩对称例题:描述:着 轴下方的部分对应的横坐标的值;③ ()的解集可以通过函数 与函数 的图象得到解集.5.一次函数的应用一般步骤:① 找出问题中的变量和常量及它们之间的函数关系;② 列一次函数表达式表示它们之间的关系;③ 应用一次函数的图象及性质解题;④ 检验结果的合理性,检验是否符合实际意义.x ax +b >mx +n ma ≠0y =ax +b y =mx +n 一次函数 的图象如图所示,则方程 的解是_______,方程的解是_______.解:;.当 或 时,所对应的 值,分别是这两个方程的解.y =kx +b kx +b =0kx +b =1x =−2x =0y =01x 用作图象的方法解方程组 解:由 ,得 ;由 ,得 .在同一直角坐标系内作出函数 的图象 和 的图象 ,如图由图象可知两条直线的交点坐标为 .故方程组 的解为{2x−y=7,3x +y =8.2x −y =7y =2x −73x +y =8y =−3x +8y =2x −7l 1y =−3x +8l 2(3,−1){2x −y =7,3x +y =8{x =3,y =−1.如图,一次函数 的图象经过 、 两点,则不等式 的解集是( )A. B. C. D.解:D.观察图象,在 轴以下的图象所对应 的值就是不等式 的解集.y =kx +b A B kx +b <0x <00<x <1x <1x >1x x kx +b <030(5) 第 天结束时,甲、乙两车间的总产量分别是_____ 400t。
人教版初中数学第十九章第2节《一次函数》提高训练 (36)(含答案解析)
(3)直接写出x取何值时, .
19.一次函数图象经过(3,1),(2,0)两点.
(1)求这个一次函数的解析式;
(2)点P(-3,-5)是否在该函数的图象上?
20.已知:一次函数y=kx+b与y=3x在同平面直角坐标系内平行,当x=1时,y=0.
(1)求y与x之间的函数解析式:
(2)若点P(a,9)、Q(1,b)均在该函数图象上,则a=,b=,ab=;
B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;
C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;
D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.
故选:B.
】此题考查了一次函数图象与k和b符号的关系,关键是掌握当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
(1)求出这两个函数的表达式;
(2)在同一坐标系中,分别画出这两个函数的图象;
(3)直接写出一次函数图象在正比例函数图象下方时x的取值范围.
23.如图,在平面直角坐标系中, 、 , 、 满足 .点 是 轴正半轴上一动点.
(1) 的长度为__________;
(2)若点 是线段 上一动点,且 , 于 .
.
答:乌龟用了14分钟追上了正在睡觉的兔子.
千米/时 米/分钟,
分钟,
分钟,
分钟,
答:兔子中间停下睡觉用了 分钟.
本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.
9.(1) 种;(2) 元;(3)当 时,安排生产 校服 套时,可获最大利润;当 时,生产利润定值是 元;当 时,安排生产 校服 套,可获最大利润
人教版 八年级数学下册 第19章 专题练习:《一次函数图像综合:实际应用(行程、收费等)》(二)
人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。
人教版八年级下《第19章一次函数》专项训练(2)含答案
第19章一次函数专项训练专训1.用一次函数巧解实际中方案设计的应用名师点金:做一件事情,有时有不同的方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.解决这些问题时,先要弄清题意,根据题意构建恰当的函数模型,求出自变量的取值范围,然后再结合实际问题确定最佳方案.合理决策问题1.某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8 000元.设商场投入资金x元,请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.选择方案问题2.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选择哪家宾馆更实惠些?最佳效益问题3.甲、乙两个商场出售相同的某种商品,每件售价均为3 000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y元,乙商场收费为y2元.1(1)分别求出y1,y2与x之间的关系式.(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.专训2.全章热门考点整合应用名师点金:本章内容是中考的必考内容,主要考查一次函数的图象与性质,求函数解析式及建立一次函数模型解决利润大小、方案选择等实际问题,题型涉及选择题、填空题与解答题.其热门考点可概括为:三个概念,两个图象,一个性质,四个关系,一个方法,两个应用.三个概念概念1变量与常量1.(1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的高h的关系式是V =πR2h,在这个变化过程中常量和变量分别是什么?(2)设圆柱的高h不变,在圆柱的体积V与圆柱的底面半径R的关系式V=πR2h中,常量和变量分别又是什么?概念2函数2.两个变量之间存在的关系式是y2=x+1(其中x是非负整数),y是不是x 的函数?如果变为用含y的代数式表示x的形式,x是不是y的函数?请说明原因.3.求下列函数中自变量的取值范围:(1)y=-12x2-x+6;(2)y=-112x-3;(3)y=16x-9 3x-2.概念3一次函数4.当m,n为何值时,y=(5m-3)x2-n+(m+n)是关于x的一次函数?当m,n为何值时,y是关于x的正比例函数?两个图象图象1函数的图象5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是( )图象2一次函数的图象6.(中考·阜新)对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(-1,-2)7.若有理数a,b,c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是( )一个性质8.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1的图象上的两点,则a与b的大小关系是( )A.a>b B.a=bC.a<b D.以上都不对9.已知一次函数的解析式是y=(k-2)x+12-3k.(1)当图象与y轴的交点位于原点下方时,判断函数值随着自变量的增大而变化的趋势;(2)如果函数值随着自变量的增大而增大,且函数图象与y轴的交点位于原点上方,确定满足条件的正整数k的值.四个关系关系1一次函数与正比例函数的关系10.下列函数中,哪些是一次函数?哪些是正比例函数?①y=-2x-1;②y=12x;③y=2x;④y=-x2-1;⑤2x-y=0;⑥y=-2(x-1).11.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.(第11题)关系2 一次函数与一元一次方程的关系12.如图,在平面直角坐标系xOy 中,直线y =x +1与y =-34x +3交于点A ⎝ ⎛⎭⎪⎫87,157,两直线分别交x 轴于点B 和点C. (1)求点B ,C 的坐标; (2)求△ABC 的面积.(第12题)关系3 一次函数与二元一次方程(组)的关系13.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x -1=2x +5,其中正确的是( )关系4 一次函数与不等式(组)的关系14.已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.15.在同一平面直角坐标系中,画出一次函数y 1=2x -4,y 2=x +1的图象,根据图象求解下列问题:(1)二元一次方程组⎩⎨⎧y =2x -4,y =x +1的解;(2)一元一次不等式组⎩⎨⎧2x -4>0,x +1>0的解集.一个方法——待定系数法16.如图,一个正比例函数图象与一个一次函数图象交于点A(3,4),且一次函数的图象与y 轴相交于点B(0,-5).(1)求这两个函数的解析式; (2)求三角形AOB 的面积.(第17题)两个应用应用1给出解析式(或图象)解实际问题17.某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(第18题)应用2只给语言叙述或图表情境解实际问题18.为改善生态环境,防止水土流失,某村计划在河堤坡面种植白杨树,现有甲、乙两家林场可提供相同质量的白杨树苗,其具体销售方案如下:(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为________元,若都在乙林场购买所需费用为________元;(2)分别求出y 甲、y 乙与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?答案1专训 元,1y .解:设如果商场本月初出售,下月初可获利1 ,x 0.21=x 0.11+x 0.1=10%·x 0%)1+(1+x 10%=1y 则 8 000.-x 0.25=8 000-x 25%=2y 元,则2y 设如果商场下月初出售,可获利 ;200 000=x ,解得8 000-x 0.25=x 0.21时,2y =1y 当 ;<200 000x ,解得8 000-x >0.25x 0.21时,2y >1y 当 >200 000.x ,解得8 000-x <0.25x 0.21时,2y <1y 当 利相同;若商场投入资金少种出售方式获万元,两20所以若商场投入资金为售获利较万元,下月初出20万元,本月初出售获利较多;若投入资金多于20于多.<35时,选择两家宾馆是一样的;当35≤x 当人,x 人数是.分析:设总2x时,两家宾馆的收费可以表示成人数x>45时,选择甲宾馆比较实惠;当45≤x 的函数,比较两个函数值的大小即可.元,乙y 元,乙宾馆的收费为甲y 人,甲宾馆的收费为x 解:设总人数是 时,两家宾馆的费用是一样的;35≤x 当时,选择甲宾馆比较实惠;45≤35<x 当 108x=甲y ,即35)-(x ×120×0.9+120×35=甲y 时,甲宾馆的收费x>45当,420+ 1 080.+x 96=45)-120(x ×0.8+120×45=乙y 乙宾馆的收费 ;55=x ,解得1 080+96x =420+108x 时,乙y =甲y 当 ;x>55,解得1 080+420>96x +108x 时,乙>y 甲y 当 x<55.,解得1 080+420<96x +108x 时,乙<y 甲y 当 时,两家宾馆的费用是一样的;55=x 或35≤x 综上可得,当 时,选择甲宾馆比较实惠;35<x<55当 时,选择乙宾馆比较实惠.x>55当 ×1)-3 000(x +3 000=1y 时,1>x ;当3 000=1y 时,1=x 当(1).解:3900.+x 2 100=30%)-(1 ⎩⎨⎧3 000(x =1),2 100x +900(x >1,x 为整数).=1y 所以 .)为正整数x (x 2 250=25%)-(1x 3 000=2y 故6.=x ,解得x 2 250=900+x 2 100当甲、乙两个商场的收费相同时,(2)件.6甲、乙两个商场的收费相同时,所买商品为 2 100=900+x 2 100=1y 时,5=x ,理由如下:当乙商场更优惠应选择(3),所25011 >11 400,因为11 250=5×2 250=x 2 250=2y ,11 400=900+5×件时,应选择乙商场更优惠.5以当所买商品为 2专训 h.和V ,变量是R 和π常量是(1).解:1 R.和V ,变量是h 和π常量是(2) 的值有两个,y ,此时1的值为±y 时,0的值是x 中,当1+x =2y .解:在2的函数.x 不是y 并不是唯一确定的,因此 都有唯一确x 的每一个值,另一个变量y 后,对于1-2y =x 变形为1+x =2y 的函数.y 是x 定的值与其对应,因此A7. C 6. B .5 的图象上,1+2x =-y 在一次函数b),2N(和点a),M(1点拨:∵点 A .8的增大而减小,∴x 随y 中函数值1+2x =-y 由一次函数图象性质可知一次函数a>b.位于原点3k)-12,(0原点下方,即点轴的交点位于y 因为图象与(1).解:9,所以函数值随着自变量的增2>0-2>4-k 所以k>4.,解得3k<0-12下方,所以大而增大.k>2.,解得2>0-k 因为函数值随着自变量的增大而增大,所以(2) k<4.,解得3k>0-12轴的交点位于原点上方,所以y 因为函数图象与 2<k<4.的取值范围为k 所以 3.的值为k 所以满足条件的正整数 .解:一次函数:①②⑤⑥10 正比例函数:②⑤,2),(1的坐标是B ,则点2=y ,得1=x 中,令2x =y 在(1).解:11,0)≠b(k +kx =y 设一次函数的解析式是 ⎩⎨⎧b =3,k =-1.解得⎩⎨⎧b =3,k +b =2,则 3.+x =-y 故一次函数的解析式是 =x ,当3+x =-y 不在该一次函数的图象上.理由:对于2),-C(4点(2)不在该函数的图象上.2),-C(4,所以点2≠-1=-y 时,4 ,0),(3的坐标是D ,则点3=x ,得0=y 中,令3+x =-y 在(3)-=1的交点的横坐标,因此画出与y5x的图象即可.y5+=2x4),入(114y.解:(1)把点的坐标代4=+=中,得k33.kx+∴k=1.y∴一次函数的解析式为=+x3.(1)(2)由知k1,=+∴原不等式为x3≤6.∴x3.≤4)的坐标代入,点拨:y(1)把点(1kx=(2)k的值.中,用待定系数法求出+3kx值代入不等式把求出的k+中,求出不等式的解集.36≤15.解:图象略.3,所以横坐标为点因为A(2)点到A点纵坐标为-又因为B3.OB的距离为5,所以5.=OB20x.=y 普通票: ,150=y ,得150+10x =y 代入0=x 把(2) .150),A(0∴ ⎩⎨⎧y =20x ,y =10x +150,∵ ⎩⎨⎧x =15,y =300.∴ .300),B(15∴ 45.=x ,得150+10x =y 代入600=y 把 .600),C(45∴ ),也正确15<x ≤0注:若写成(时,选择购买普通票更合算;0<x<15当(3) 时,选择购买银卡、普通票的总费用相同,均比金卡合算;15=x 当 时,选择购买银卡更合算;15<x<45当 时,选择购买金卡、银卡的总费用相同,均比普通票合算;45=x 当 时,选择购买金卡更合算.x>45当 6 000;(1)5 900.解:18 ,4x =甲y 时,1 000≤x ≤0当(2) 时,x>1 000当 ,002+3.8x =1 000)-3.8(x +4 000=甲y =甲y ∴ ⎩⎨⎧4x (0≤x ≤1 000且x 为整数), 3.8x +200(x>1 000且x 为整数). 时,2 000≤x ≤0当 ,4x =乙y 时,x>2 000当 ,800+3.6x =2 000)-3.6(x +8 000=乙y =乙y ∴ ⎩⎨⎧4x (0≤x ≤2 000且x 为整数), 3.6x +800(x>2 000且x 为整数). 由题意,得(3) 一样,时,两家林场白杨树苗单价1 000≤x ≤0当 ∴到两家林场购买所需费用一样.时,甲林场有优惠而乙林场无优惠,2 000≤1 000<x 当 时,到甲林场购买合算;2 000≤1 000<x ∴当 ,200+3.8x =甲y 时,x>2 000当 ,800+3.6x =乙y 时乙y =甲y 当 ,800+3.6x =200+8x .3 ,3 000=x 解得 时,到两家林场购买所需费用一样;3 000=x ∴当 时,乙<y 甲y 当 ,800+3.6x <200+8x .3 x<3 000.解得 时,到甲林场购买合算;2 000<x<3 000∴当 时,乙>y 甲y 当 ,800+200>3.6x +x 8.3 x>3 000.解得 时,到乙林场购买合算.x>3 000∴当 时,到两家林场购买所需费用一样,3 000=x 或1 000≤x ≤0综上所述,当 时,到甲林场购买合算;1 000<x<3 000当 时,到乙林场购买合算.x>3 000当。
人教版八年级下册第19章一次函数同步练习题及答案
人教版八年级下册第19章一次函数同步练习题及答案一、选择题1.下列函数(1)y=3πx;(2)y=8x-6;(3)y=1x;(4)y=12-8x;(5)y=5x2-4x+1中,是一次函数的有()A.4个 B.3个 C.2个 D.1个2.(3分)直线y=x+3与x轴的交点是()A.(﹣3,0) B.(0,﹣3) C.(0,3) D.(3,0)3.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()A.1个 B.2个 C.3个 D.4个4.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<35.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()A.m<0B.m<3C.0<m<3D.m>06.已知一次函数y=kx+1,y随x的增大而增大,则该函数的图象一定经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限7.使函数y=2x-有意义的x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥28.已知y与x+1成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()A.4B.﹣4C.6D.﹣69.已知等腰三角形的周长为20cm,将底边长y(cm)表示成腰长x(cm)的函数解析式为202y x=-,则其自变量x的取值范围是()A.0<x<10 B.5<x<10 C.一切实数 D.x>010.已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.-5≤s≤-32B.-6<s≤-32C.-6≤s≤-32D.-7<s≤-32二、填空题11.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x 的函数关系式.12.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空)13.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。
(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练
第2课时 一次函数的图象与性质知识点 1 一次函数的图象1.[2018·抚顺]一次函数y =-x -2的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限2.[2018·湘西州]一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)3.若点(3,1)在一次函数y =kx -2的图象上,则k 的值是( )A .5B .4C .3D .14.分别在同一平面直角坐标系中画出下列各函数的图象,并指出各函数图象的共同之处.(1)y =12x +2;(2)y =-x +2;(3)y =2x +2.知识点 2 一次函数图象的平移5.[2018·南充]直线y =2x 向下平移2个单位长度得到的直线的解析式是( )A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +26.[2018·娄底]将直线y =2x -3向右平移2个单位长度,再向上平移3个单位长度后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -27.若直线y =kx +2是由直线y =-2x -1平移得到的,则k =________,即直线y =-2x -1沿y 轴向________平移了________个单位长度.知识点 3 一次函数的性质8.对于函数y =2x -1,下列说法正确的是( )A .它的图象过点(1,0)B .y 随x 的增大而减小C .它的图象经过第二象限D .当x >1时,y >09.已知一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是________.10.[2018·济宁]在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2(填“>”“<”或“=”).11.[2018·眉山]已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且该直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________(用“>”连接).12.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第________象限.13.[2018·上海]如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x值的增大而________(填“增大”或“减小”).14.已知关于x的函数y=(m-1)x+1-3m为一次函数,试根据下列各条件确定m的值或取值范围.(1)该函数图象经过原点;(2)该函数图象与y轴相交于点(0,2);(3)y随x的增大而减小.15.[2018·湘潭]若b>0,则一次函数y=-x+b的图象大致是( )图19-2-816.[2018·贵阳]一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可能为( )A.(-5,3) B.(1,-3)C.(2,2) D.(5,-1)17.两条直线y=ax+b与y=bx+a在同一平面直角坐标系中的位置可能是( )图19-2-918.写出一个图象过点(0,3),且函数值y随自变量x的增大而减小的一次函数解析式:________(填一个答案即可).19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y 随x的增大而减小,则k所有可能取得的整数值为________.20.若函数y=2x+3与y=4x-b的图象交x轴于同一点,则b的值为________.21.如图19-2-10,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则k =________,b =________.图19-2-1022.已知直线y =-12x -6与x 轴交于点A ,与y 轴交于点B ,求这条直线与坐标轴围成的三角形的面积.23.已知直线y =(1-3k )x +2k -1.(1)当k 为何值时,该直线经过第二、三、四象限?(2)当k 为何值时,该直线与直线y =-3x -5平行?拓广探究创新练 冲刺满分24.如图19-2-11,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点P 在坐标轴上,且PO =2AO .求△ABP 的面积.图19-2-11教师详解详析1.D [解析] 由一次函数图象的特点可知,当k >0时,图象必过第一、三象限;当k <0时,图象必过第二、四象限;当b >0时,图象必过第一、二象限;当b <0时,图象必过第三、四象限.∵-1<0,-2<0,∴一次函数y =-x -2的图象经过第二、三、四象限.故选D.2.A 3.D4.解:图象略.共同点:函数图象都是一条直线,且均与y 轴交于点(0,2).5.C [解析] 直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C.6.A [解析] 根据图象平移时“左加右减,上加下减”的规律,向右平移2个单位长度后为y =2(x -2)-3=2x -7,再向上平移3个单位长度后为y =2x -7+3=2x -4.故选A.7.-2 上 38.D [解析] A .把x =1代入解析式得到y =1,即函数图象经过点(1,1),不经过点(1,0),故本选项错误;B.函数y =2x -1中,k =2>0,则y 随x 的增大而增大,故本选项错误;C.函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故本选项错误;D.当x >1时,2x -1>1,则y >1,故y >0正确,故本选项正确.故选D.9.m >-210.> [解析] 因为y =-2x +1中的k =-2<0,所以y 随x 的增大而减小,所以当x 1<x 2时,y 1>y 2.11.y 1>y 2 [解析] 由于一次函数的图象经过第一、二、四象限,∴k <0,∴y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2.12.四 [解析] ∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.13.减小 [解析] 因为一次函数图象经过点(1,0),故将其代入y =kx +3,得0=k +3,解得k =-3<0,所以y 的值随x 值的增大而减小.14.解:(1)由1-3m =0且m -1≠0,得m =13. (2)把点(0,2)代入,得1-3m =2,解得m =-13. (3)由m -1<0,得m <1.15.C [解析] ∵k =-1<0,∴图象从左到右是下降的.∵b >0,∴图象与y 轴的正半轴相交.故选C.16.C [解析] ∵一次函数y =kx -1中,y 的值随x 值的增大而增大,∴k >0.A .把(-5,3)代入y =kx -1,得k =-45<0,不符合题意; B .把(1,-3)代入y =kx -1,得k =-2<0,不符合题意;C .把(2,2)代入y =kx -1,得k =32>0,符合题意; D .把(5,-1)代入y =kx -1,得k =0,不符合题意.故选C.17.A [解析] 分四种情况:①当a >0,b >0时,直线y =ax +b 和y =bx +a 均经过第一、二、三象限,选项中不存在此情况;②当a >0,b <0时,直线y =ax +b 经过第一、三、四象限,直线y =bx +a 经过第一、二、四象限,选项A 符合此条件;③当a <0,b >0时,直线y =ax +b 经过第一、二、四象限,直线y =bx +a 经过第一、三、四象限,选项A 符合此条件;④当a <0,b <0时,直线y =ax +b 经过第二、三、四象限,直线y =bx +a 经过第二、三、四象限,选项中不存在此情况.故选A.18.答案不唯一,如y =-x +319.-1 [解析] 由题意得⎩⎪⎨⎪⎧2k +3>0,k <0,解得-32<k <0.∵k 为整数,∴k =-1. 20.-6 [解析] 函数y =2x +3的图象与x 轴的交点坐标是(-32,0),函数y =4x -b 的图象与x 轴的交点坐标是(b 4,0),所以-32=b 4,解得b =-6. 21.2 -4 [解析] ∵一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行, ∴k =2,∴y =2x +b ,把A (1,-2)代入y =2x +b ,得2+b =-2,解得b =-4.22.解:当x =0时,y =-6.当y =0时,即-12x -6=0,解得x =-12, 所以点A ,B 的坐标分别为(-12,0),(0,-6),所以OA =||-12=12,OB =||-6=6,所以这条直线与坐标轴围成的三角形的面积为12OA ·OB =12×12×6=36. 23.解:(1)当⎩⎪⎨⎪⎧1-3k <0,2k -1<0,即13<k <12时,该直线经过第二、三、四象限. (2)当⎩⎪⎨⎪⎧1-3k =-3,2k -1≠-5,即k =43时,该直线与直线y =-3x -5平行. 24.解:令y =0,则由0=2x +4得x =-2,∴A (-2,0),∴AO =2.令x =0,则y =2×0+4=4,∴B (0,4),∴BO =4.∵PO =2AO =4,点P 在坐标轴上,∴点P 有以下四种情况:(1)当点P 在x 轴的负半轴上时,AP =2,∴S △ABP =12AP ·BO =12×2×4=4; (2)当点P 在x 轴的正半轴上时,AP =6,∴S △ABP =12AP ·BO =12×6×4=12; (3)当点P 在y 轴的负半轴上时,PB =PO +BO =4+4=8,∴S △ABP =12PB ·AO =12×8×2=8; (4)当点P 在y 轴的正半轴上时,PO =4,点P ,B 重合,△ABP 不存在.。
人教版八年级数学下《第十九章一次函数》课时作业(含答案)
第十九章一次函数19.1函数19.1.1变量与函数01基础题知识点1变量与常量1.小王计划用100元钱买乒乓球,所购买球的个数为W个,每个球的单价为n元,其中(A) A.100是常量,W,n是变量B.100,W是常量,n是变量C.100,n是常量,W是变量D.无法确定2.由实验测得某一弹簧的长度y(cm)与悬挂物体的质量x(kg)之间有如下关系:y=—12+0.5x.下列说法正确的是(D) A.变量是x,常量是12,0.5B.变量是x,常量是-12,0.5C.变量是x,y,常量是12,0.5D.变量是x,y,常量是-12,0.53.写出下列各问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.知识点2函数概念与函数值4.军军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x(本)之间的关系是(C) A.Q=8x B.Q=8x-50C.Q=50-8x D.Q=8x+505.下列关系式中,一定能称y是x的函数的是(B)A.2x=y2B.y=3x-1C.||y=23x D.y2=3x-56.若93号汽油的售价为6.2元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,加油数量x(升)是自变量,付款金额y(元)是加油数量x(升)的函数,其解析式为y=6.2x.7.从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y(千米)与行驶时间t(小时)的函数解析式为y=60-35t.8.已知函数y=x2-x+2,当x=2时,函数值y=4;已知函数y=3x2,当x=±2时,函数值y=12.9.如图是济南市8月2日的气温随时间变化的图象,根据图象可知:在这一天中,气温T(℃)是(填“是”或“不是”)时间t(时)的函数.知识点3自变量的取值范围10.(2017·无锡)函数y=x2-x中自变量x的取值范围是(A)A .x ≠2B .x ≥2C .x ≤2D .x >211.(2017·郴州)函数y =x +1的自变量x 的取值范围为x ≥-1. 12.求下列函数中自变量的取值范围:(1)y =2x 2-3x +5;解:x 为一切实数.(2)y =x -1+36-2x ;解:解不等式⎩⎪⎨⎪⎧x -1≥0,6-2x ≥0得1≤x ≤3,∴1≤x ≤3.(3)y =(x -1)0.解:∵x -1≠0,∴x ≠1.02 中档题13.在△ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此函数关系式中(A )A .S ,h 是变量,12,a 是常量B .S ,h ,a 是变量,12是常量C .a ,h 是变量,12,S 是常量D .S 是变量,12,a ,h 是常量14.(2017·恩施)函数y =1x -3+x -1的自变量x 的取值范围是(B) A .x ≥1 B .x ≥1且x ≠3 C .x ≠3 D .1≤x ≤315.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是(D )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)16.若函数y =⎩⎨⎧x 2+2(x ≤2),2x (x>2),则当函数值y =8时,自变量x 的值是(D )A.± 6 B.4 C.±6或4 D.4或- 617.(2017·安顺)在函数y=x-1x-2中,自变量x的取值范围是x≥1且x≠2.18.据测定,海底扩张的速度是很缓慢的,在太平洋海底,某海沟的某处宽度为100米,两侧的地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x年,海沟的宽度为y米.(1)写出海沟扩张时间x年与海沟的宽度y米之间的表达式;(2)你能计算出当海沟宽度y扩张到400米时需要多少年吗?解:(1)根据题意得:y=0.06x+100.(2)当y=400时,0.06x+100=400,解得x=5 000.答:当海沟宽度y扩张到400米时需要5 000年.19.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0<t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.03综合题20.如图是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8 cm,每个铁环长5 cm,设铁环间处于最大限度的拉伸状态.(1)2个、3个、4个铁环组成的链条长分别是多少?(2)设n个铁环长为y cm,请写出y关于n的函数解析式;(3)若要组成2.09 m长的链条,需要多少个铁环?解:(1)由题意,得2×5-2×0.8=8.4(cm),3×5-4×0.8=11.8(cm),4×5-6×0.8=15.2(cm).故2个铁环组成的链条长8.4 cm,3个铁环组成的链条长11.8 cm,4个铁环组成的链条长15.2 cm.(2)由题意,得y=5n-2(n-1)×0.8,即y=3.4n+1.6.(3)2.09 m=209 cm,当y=209时,则3.4n+1.6=209,解得n=61.答:需要61个铁环.19.1.2函数的图象第1课时识别函数的图象01基础题知识点1对函数图象定性的认识1.(2017·泸州)下列曲线中不能表示的y是x的函数的是(C)A B C D2.(2017·东营)小明从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(C)A B C D3.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为(D)A B C D4.(2017·黑龙江)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是(D)A B C D知识点2对函数图象定量的研究5.如图是护士统计一位甲型H1N1流感疑似病人的体温变化图,这位病人在16时的体温约是(C) A.37.8 ℃B.38 ℃C.38.7 ℃D.39.1 ℃第5题图第6题图6.娟娟同学上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.娟娟同学离家的路程y(m)和所经过的时间x(min)之间的函数图象如图所示,则下列说法不正确的是(D)A.娟娟同学家与超市相距3 000 mB.娟娟同学去超市途中的速度是300 m/minC.娟娟同学在超市逗留了30 minD.娟娟同学从超市返回家比从家里去超市的速度快7.如图是江津区某一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)是不是时间t(时)的函数;(2)12时的气温是多少?(3)什么时候气温最高,最高是多少?什么时候气温最低,最低是多少?(4)什么时候气温是4 ℃?解:(1)在气温T随时间t的变化过程中有两个变量T和t,并且对于t的每一个值,变量T都有唯一的值与它对应,符合函数的定义,所以气温T(℃)是时间t(时)的函数.(2)12时的气温是8 ℃.(3)14时的气温最高,是10 ℃;4时的气温最低,是-2 ℃.(4)8时、22时的气温是4 ℃.02中档题8.在动画片《喜羊羊与灰太狼》中,有一次灰太狼追赶懒羊羊,在距离羊村60米处的地方追上了懒羊羊,如图反映了这一过程,其中s表示与羊村的距离,t表示时间.根据相关信息,以下说法错误的是(D) A.一开始懒羊羊与灰太狼之间的距离是30米B.15秒后灰太狼追上了懒羊羊C.灰太狼跑了60米追上懒羊羊D.灰太狼追上懒羊羊时,懒羊羊跑了60米第8题图第9题图9.已知甲骑电动自行车和乙驾驶汽车均行驶90 km,甲、乙行驶的路程y(km)与经过的时间x(h)之间的函数关系如图所示,请根据图象填空:(1)甲(或电动自行车)出发的早,早了2h,乙(或汽车)先到达,先到2h;(2)电动自行车的速度为18km/h,汽车的速度为90km/h.10.某气象站观察一场沙尘暴从发生到结束的全过程,开始时风速按一定的速度匀速增大,经过荒漠地时,风速增大的比较快.一段时间后,风速保持不变,当沙尘暴经过防风林时,其风速开始逐渐减小,最终停止.如图所示是风速与时间之间的关系的图象.结合图象回答下列问题:(1)沙尘暴从开始发生到结束共经历了多长时间?(2)从图象上看,风速在哪一个时间段增大的比较快,增加的速度是多少? (3)风速在哪一时间段保持不变,经历了多长时间? (4)风速从开始减小到最终停止,风速每小时减小多少? 解:(1)沙尘暴从开始发生到结束共经历了41.2小时.(2)风速从5~12小时这个时间段增大的比较快,每小时增加38-1012-5=4(千米).(3)风速在12~26小时这个时间段保持不变,经历了14小时. (4)风速每小时减小3841.2-26=2.5(千米).11.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:① ② ③情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校; 情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境a ,b 所对应的函数图象分别是③①(填写序号); (2)请你为剩下的函数图象写出一个适合的情境.解:情境是小芳离开家不久,休息了一会儿,又走回了家.03 综合题12.李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2 000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分钟)之间的关系如图所示.(1)求a ,b ,c 的值;(2)求李老师从学校到家的总时间.解:(1)李老师停留地点离他家路程为 2 000-900=1 100(米). 900÷45=20(分钟), ∴20+30=50(分钟).故a =20,b =1 100,c =50. (2)20+30+1 100110=60(分钟).答:李老师从学校到家的总时间为60分钟.第2课时画函数图象01基础题知识点1点在函数图象上(函数图象经过点)1.下列各点在函数y=3x+2的图象上的是(B)A.(1,1) B.(-1,-1)C.(-1,1) D.(0,1)2.已知点A(2,3)在函数y=ax2-x+1的图象上,则a=(A)A.1 B.-1C.2 D.-2知识点2画函数图象3.画出函数y=2x-1的图象.(1)列表:x …-1 0 1 …y …-3 -1 1 …(2)描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上?(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.解:(2)如图.(3)点A,B不在其图象上,点C在其图象上.(4)m=5.4.在如图所示的平面直角坐标系内,画出函数y=-x的图象.解:列表:x …-2 -1 0 1 2 …y … 2 1 0 -1 -2 …描点、连线,如图.5.画出函数y = -x -3的图象.解:列表:x… -2 -1 0 1 2 3 4 … y…-1-2-3-4-5-6-7…描点、连线,6.在如图所示的平面直角坐标系中画出函数y =12x 2的图象.解:列表:x … -2 -1 0 1 2 … y…212122…描点、连线,如图.02 中档题7.在点P(3,-1),Q(-3,-1),R(-52,0),S(12,4)中,在函数y =-2x +5的图象上的点有(B )A .1个B .2个C .3个D .4个8.已知点P(3,m),Q(n ,2)都在函数y =x +b 的图象上,则m +n =5. 9.在如图所示的平面直角坐标系中画出函数y =2x -1的图象.解:列表:x …-2 -1 0 1 2 …y …-5 -3 -1 1 3 …描点、连线,如图.10.(1)画出函数y=8x的图象;(2)从函数图象观察,当x<0时,y随x的增大而增大,还是y随x的增大而减小?当x>0呢?解:(1)列表:x …-8 -4 -2 -1 1 2 4 8 …y …-1 -2 -4 -8 8 4 2 1 …描点、连线,(2)当x>0时,y随x的增大而减小;当x<0时,y随x的增大而减小.11.(1)在同一平面直角坐标系中画出函数y1=x和y2=x2的图象.(2)观察图象,何时y1>y2?何时y1=y2?何时y1<y2?解:(1)列表:x …-2 -1 0 1 2 …y1…-2 -1 0 1 2 …y2… 4 1 0 1 4 …描点、连线,如图.(2)当0<x<1时,y1>y2;当x=0或x=1时,y1=y2;当x<0或x>1时,y1<y2.03综合题12.(2016·北京).x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为2.00;②该函数的一条性质:该函数有最大值(答案不唯一).第3课时函数的三种表示方法01基础题知识点1解析式1.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,则y与x之间的函数解析式是(B) A.y=0.05x B.y=5xC.y=100x D.y=0.05x+1002.直角三角形中一个锐角的度数y与另一个锐角的度数x的函数解析式为(B)A.y=180°-x(0°<x<90°)B.y=90°-x(0°<x<90°)C.y=180°-x(0°≤x≤90°)D.y=90°-x(0°≤x≤90°)3.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为(A)A.y=24 xB.y=-2x+24 C.y=2x-24D.y=12x-124.已知汽车油箱内有油30 L,每行驶100 km耗油10 L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数解析式是(C)A.Q=30-s100B.Q=30+s100C.Q=30-s10D.Q=30+s10知识点2列表法5.弹簧挂上物体后会伸长,测得一根弹簧的长度y(cm)与所挂物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法中,不正确的是A.x是自变量,y是x的函数B.弹簧不挂重物时长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm6.下面的表格列出了一个实验的统计数据,表示将皮球从高h处落下,弹跳高度m与下降高度h的关系.h 50 80 100 150m 25 40 50 75则m 关于h 的函数解析式为(C ) A .m =h 2 B .m =2h C .m =h2D .m =h +257.一种豆子在市场上出售,豆子的总价y(元)与所售豆子的重量x(千克)之间的关系如下:x 0 0.5 1 1.5 2 2.5 y12345(1)写出y 与x 之间的函数关系式为y =2x ; (2)出售2.5千克豆子售价为5元;(3)根据你的推测,出售10.5千克豆子,可售得21元.知识点3 图象法 8.(2017·齐齐哈尔)已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是(D)A B C D9.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2千米/分钟.10.如图是弹簧在弹性限度内挂上重物后的线性图,其中y 表示弹簧的长度(厘米),x 表示所挂物体的质量.根据图象,回答问题:(1)当所挂物体的质量分别为0千克,5千克,10千克,15千克,20千克时,弹簧的长度分别是多少厘米? (2)弹簧长度y 可以看成是物体质量x 的函数吗?如果是,写出这个函数关系式.(写出自变量的取值范围) 解:(1)15,17.5,20,22.5,25. (2)可以,y =15+0.5x(0≤x ≤20).02 中档题 11.(2017·广元)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:①若每户居民每月用电量不超过100度,则按0.60元/度计算;②若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y 与x 的函数关系用图象表示正确的是(C)A B C D12.某校办工厂年产值是15万元,计划以后每年增加2万元.(1)写出年产值y(万元)与年数x 之间的函数解析式,并画出函数图象;(2)估计5年后该工厂的产值.解:(1)y=15+2x(x≥0),图象如下:(2)当x=5时,y=15+2×5=25.∴估计5年后该工厂的产值为25万元.13.一根蜡烛长20 cm,蜡烛的燃烧速度是5 cm/s.(1)写出蜡烛的剩余长度h与燃烧时间t之间的函数关系式;(2)画出这个函数的图象.解:(1)h=20-5t(0≤t≤4).(2)列表:t 012 3 4h 20151050描点、连线,如图.14.一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:温度(℃)…-50 5 1015…长度(cm)…9.9951010.00510.0110.015…(1)(2)假设温度为x℃时,合金棒的长度为y cm,根据表中数据写出y与x之间的关系式;(3)当温度为-20 ℃或100 ℃,分别推测合金棒的长度.解:(1) 从表格上可知温度每升高1 ℃合金棒的长度就增加0.001 cm,∴如果合金棒的长度大于10.05 cm小于10.15 cm,根据表中的数据推测,此时的温度应在50 ~150 ℃.(2)y=0.001x+10.(3)当x=-20时,y=0.001×(-20)+10=9.98;当x=100时,y=0.001×100+10=10.1.03 综合题15.已知点P(x ,y)是第一象限内的点,且x +y =8,点A 的坐标为(10,0).设△OAP 的面积为S.(1)求S 与x 之间的函数解析式,并写出自变量的取值范围;(2)画出函数图象.解:(1)∵P(x ,y)在第一象限内, ∴x>0,y>0.∵x +y =8,∴y =8-x. ∴S =12OA·y =12×10×(8-x),即S =-5x +40.x 的取值范围是0<x<8. (2)图象如图.19.2 一次函数 19.2.1 正比例函数01 基础题知识点1 认识正比例函数1.下列y 关于x 的函数中,是正比例函数的为(C )A .y =x 2B .y =2xC .y =x2D .y =x +122.函数y =(a +1)x a -1是正比例函数,则a 的值是(A )A .2B .-1C .2或-1D .-23.函数y =(2-a)x +b -1是正比例函数的条件是(C )A .a ≠2B .b =1C .a ≠2且b =1D .a ,b 可取任意实数4.若一个正比例函数y =kx 的比例系数是4,则它的解析式是__y =4x . 5. 下列函数中哪些是正比例函数?那些不是?若是,请指出比例系数.(1)y =2x ; (2)y =3x ; (3)y =-35x ;(4)y =-17x+1; (5)y =-x 2+1 .解: (1)是正比例函数,比例系数是2.(2)不是正比例函数.(3)是正比例函数,比例系数是-35.(4)、(5)不是正比例函数.知识点2 正比例函数的图象和性质 6.(2016·南宁)已知正比例函数y =3x 的图象经过点(1,m),则m 的值为(B )A .13B .3C .-13D .-37.正比例函数y =2x 的大致图象是(B )8.已知在正比例函数y =(k -1)x 的图象中,y 随x 的增大而减小,则k 的取值范围是(A )A .k<1B .k>1C .k =8D .k =69.关于正比例函数y =-2x ,下列结论正确的是(C )A .图象必经过点(-1,-2)B .图象经过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <010.如图,正比例函数图象经过点A ,则该函数解析式是y =3x . 11.用你认为最简单的方法画出下列正比例函数的图象:(1)y =x ;(2)y =-12x .解:列表:x 0 2 y =x 0 2 y =-12x-1描点、连线,如图.02 中档题 12.(2017·陕西)若一个正比例函数的图象经过A(3,-6),B(m ,-4)两点,则m 的值为(A)A .2B .8C .-2D .-813.正比例函数y =(k 2+1)x(k 为常数,且k ≠0)一定经过的两个象限是(A )A .第一、三象限B .第二、四象限C .第一、四象限D .第二、三象限14.(2016·陕西)设点A(a ,b)是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是(D )A .2a +3b =0B .2a -3b =0C .3a -2b =0D .3a +2b =015.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是(D )A .m <0B .m >0C .m <12D .m >1216.已知y =(k -1)x +k 2-1是正比例函数,则k = -1.17.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为a<c<b.18.已知正比例函数y=kx的图象经过点(3,-6).(1)求这个函数的解析式;(2)在如图所示的平面直角坐标系中画出这个函数的图象;(3)判断点A(4,-2)、点B(-1.5,3)是否在这个函数的图象上.解:(1)把点(3,-6)代入正比例函数y=kx,得-6=3k,解得k=-2.∴这个函数的解析式为y=-2x.(2)如图.(3)∵正比例函数的解析式为y=-2x,∴当x=4时,y=-8;当x=-1.5时,y=3.∴点A(4,-2)不在这个函数的图象上,点B(-1.5,3)在这个函数的图象上.19.已知正比例函数y=kx的图象过点P(-2,2).(1)写出该函数的解析式;(2)已知点A(a,-4),B(-22,b)都在它的图象上,求a,b的值.解:(1)∵正比例函数y=kx的图象过点P(-2,2),∴2=-2k,解得k=-1.∴该函数的解析式为y=-x.(2)∵点A(a,-4),B(-22,b)都在y=-x的图象上,∴-4=-a,b=-(-22),即a=4,b=2 2.20.已知正比例函数y=(2m+4)x.求:(1)m为何值时,函数图象经过第一、三象限;(2)m为何值时,y随x的增大而减小;(3)m为何值时,点(1,3)在该函数图象上.解:(1)∵函数图象经过第一、三象限,∴2m+4>0.解得m>-2.(2)∵y随x的增大而减小,∴2m+4<0,解得m<-2.(3)∵点(1,3)在该函数图象上, ∴2m +4=3,解得m =-12.03 综合题21.已知正比例函数y =kx 经过点A ,点A 在第四象限,过点A 作AH ⊥x 轴,垂足为点H ,点A 的横坐标为3,且△AOH 的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使△AOP 的面积为5?若存在,求点P 的坐标;若不存在,请说明理由.解:(1)∵点A 的横坐标为3,且△AOH 的面积为3, ∴点A 的纵坐标为-2, ∴点A 的坐标为(3,-2).∵正比例函数y =kx 经过点A , ∴3k =-2,解得k =-23.∴正比例函数的解析式为y =-23x.(2)存在.∵△AOP 的面积为5,点A 的坐标为(3,-2), ∴OP =5.∴点P 的坐标为(5,0)或(-5,0).周周练(19.1~19.2.1)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.某市居民用电价格是0.58元/度,居民应付电费为y元,用电量为x度,其中(B) A.0.58,x是常量,y是变量B.0.58是常量,x,y是变量C.0.58,y是常量,x是变量D.x,y是常量,0.58是变量2.下列式子中的y不是x的函数的是(C)A.y=-2x-3 B.y=-1 x-1C.y=±x+2 D.y=x+13.经过以下一组点可以画出函数y=2x图象的是(B)A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)4.(2016·南宁)下列各曲线中表示y是x的函数的是(D)A BC D5.(2017·淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是(D)A B C D6.(2017·哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是(D) A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min第6题图 第7题图7.如图,在平面直角坐标系中,将△OAB 沿直线y =-34x 平移后,点O′的纵坐标为6,则点B 平移的距离为(D )A .4.5B .6C .8D .108.已知函数y =⎩⎨⎧2x +1(x ≥0),4x (x<0),当x =2时,函数值y 为(A)A .5B .6C .7D .8 二、填空题(每小题4分,共24分) 9.函数y =1x -1的自变量x 的取值范围是x ≠1. 10.向平静的水面投入一枚石子,在水面会激起一圈圈圆形涟漪,当半径从2 cm 变成5 cm 时,圆形的面积从4π__cm 2变成25π__cm 2.这一变化过程中半径是自变量,面积是自变量的函数.11.(2017·扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为-40℃. 12.(2017·齐齐哈尔)在函数y =x +4+x-2中,自变量x 的取值范围是x ≥-4且x ≠0.13.已知(x 1,y 1)和(x 2,y 2)是直线y =-3x 上的两点,且x 1>x 2,则y 1与y 2的大小关系是y 1<y 2__. 14.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(-12,-12) .三、解答题(共44分)15.(6分)写出下列各题中y 关于x 的函数解析式,并判断y 是否为x 的正比例函数.(1)刚上市时西瓜每千克3.6元,买西瓜的总价y 元与所买西瓜x 千克之间的关系;(2)仓库内有粉笔400盒,如果每个星期领出36盒,仓库内余下的粉笔盒数y 与星期数x 之间的关系;(3)小林的爸爸为小林存了一份教育储蓄,首次存入10 000元,以后每个月存入500元,存入总数y 元与月数x 之间的关系.解:(1)依题意,得y =3.6x ,y 是x 的正比例函数. (2)依题意,得y =400-36x ,y 不是x 的正比例函数. (3)依题意,得y =10 000+500x ,y 不是x 的正比例函数.16.(9分)在同一平面直角坐标系中画出下列函数的图象:(1)y =-23x ;(2)y =3x ;(3)y =23x.解:如图所示.17.(9分)已知y 与x +2 成正比例,当x =4时,y =12.(1)写出y 与x 之间的函数解析式; (2)求当y =36时x 的值;(3)判断点(-7,-10)是否是函数图象上的点. 解:(1)设y =k(x +2).∵x =4,y =12,∴6k =12.解得k =2. ∴y =2(x +2)=2x +4.(2)当y =36时,2x +4=36,解得x =16. (3)当x =-7时,y =2×(-7)+4=-10, ∴点(-7,-10)是函数图象上的点.18.(10分)已知函数y =(k +12)xk 2-3(k 为常数).(1)k 为何值时,该函数是正比例函数;(2)k 为何值时,正比例函数过第一、三象限,写出正比例函数解析式;(3)k 为何值时,正比例函数y 随x 的增大而减小,写出正比例函数的解析式. 解:(1)由题意得:k +12≠0,k 2-3=1.解得k =±2.∴当k =±2时,这个函数是正比例函数.(2)当k =2时,正比例函数过第一、三象限,解析式为y =52x.(3)当k =-2时,正比例函数y 随x 的增大而减小,解析式为y =-32x.19.(10分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?(2)求加油前油箱剩余油量Q 与行驶时间t 的函数关系,并求自变量t 的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.解:(1)观察函数图象可知:机动车行驶5小时后加油.(2)机动车每小时的耗油量为(42-12)÷5=6(升),∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42-6t(0≤t≤5).(3)36-12=24(升).∴中途加油24升.(4)油箱中的油够用.理由:∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米).∵240>230,∴油箱中的油够用.19.2.2 一次函数 第1课时 一次函数的定义01 基础题知识点 认识一次函数1.下列函数关系式:①y =-2x ;②y =-2x ;③y =-2x 2;④y =x3;⑤y =2x -1.其中是一次函数的有(B )A .①⑤B .①④⑤C .②⑤D .②④⑤2.下列函数中,是一次函数但不是正比例函数的是(C )A .y =2xB .y =1x +2C .y =12x -23D .y =2x 2-13.下列问题中,变量y 与x 成一次函数关系的是(B )A .路程一定时,时间y 和速度x 的关系B .10米长的铁丝折成长为y ,宽为x 的长方形C .圆的面积y 与它的半径xD .斜边长为5的直角三角形的直角边y 和x4.据调查,某地铁自行车存放处在某星期天的存车量为4 000辆次,其中变速车存车费是每辆一次0.30元,普通自行车存车费是每辆一次0.20元,若普通自行车存车数为x 辆,存车费总收入为y 元,则y 关于x 的函数解析式为(D )A .y =0.10x +800(0≤x ≤4 000)B .y =0.10x +1 200(0≤x ≤4 000)C .y =-0.10x +800(0≤x ≤4 000)D .y =-0.10x +1 200(0≤x ≤4 000)5.函数、一次函数和正比例函数之间的包含关系是(A )6.若函数y =2kx +k +3是正比例函数,则k 的值是-3.7.函数s =15t -5和s =15-5t 都是形如y =kx +b 的一次函数,其中第一个式子中k = 15,b =-5;第二个式子中k =-5,b =15.8.已知一次函数y =kx +b ,当x =-2时,y =7;当x =1时,y =-11,求k ,b 的值.解:将x =-2,y =7和x =1,y =-11分别代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =7,k +b =-11.解得⎩⎪⎨⎪⎧k =-6,b =-5.9.已知y =(m +1)x 2-|m|+n +4.(1)当m ,n 取何值时,y 是x 的一次函数? (2)当m ,n 取何值时,y 是x 的正比例函数? 解:(1)根据一次函数的定义,有 m +1≠0且2-|m|=1,解得m =1.∴m =1,n 为任意实数时,这个函数是一次函数. (2)根据正比例函数的定义,有 m +1≠0且2-|m|=1,n +4=0, 解得m =1,n =-4.∴当m =1,n =-4时,这个函数是正比例函数.10.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?y 是否是x 的一次函数?(1)某小区的物业费是按房屋面积每平方米0.5元/月来收取的,该小区业主每个月应缴的物业费y(元)与房屋面积x(平方米)之间的函数关系;(2)地面气温是28 ℃,如果高度每升高1 km ,则气温会下降5 ℃,则气温y (℃)与高度x (km)的关系;(3)圆面积S (cm 2)与半径r (cm)的关系.解:(1)y =0.5x ,y 是x 的正比例函数,y 是x 的一次函数. (2)y =28-5x ,y 是x 的一次函数,但y 不是x 的正比例函数. (3)S =πr 2,S 不是r 的一次函数,S 也不是r 的正比例函数.02 中档题11.函数y =(m -2)x n -1+n 是一次函数,则m ,n 应满足的条件是(C )A .m ≠2且n =0B .m =2且n =2C .m ≠2且n =2D .m =2且n =012.关于函数y =kx +b(k ,b 是常数,k ≠0),下列说法正确的有 (B)①y 是x 的一次函数; ②y 是x 的正比例函数;③当b =0时,y =kx 是正比例函数;④只有当b ≠0时,y 才是x 的一次函数.A .1个B .2个C .3个D .4个13.已知关于x 的一次函数y =kx +4k -2(k ≠0),若x =1,y =8,则k =2. 14.在一次函数y =-2(x +1)+x 中,比例系数k 为-1,常数项b 为-2.15.把一个长10 cm ,宽5 cm 的长方形的宽增加x cm ,长不变,长方形的面积y(cm 2)随x 的变化而变化.(1)求y 与x 的函数解析式;(2)要使长方形的面积增加30 cm 2,则x 应取什么值? 解:(1)y =10(x +5),即y =10x +50.(2)根据题意,得10x +50=10×5+30,解得x =3.16.已知y -m 与3x +n 成正比例函数(m ,n 为常数),当x =2时,y =4;当x =3时,y =7,求y 与x 之间的函数关系式.解:∵y -m 与3x +n 成正比例,∴设y -m =k(3x +n)(k ,m ,n 均为常数,k ≠0). ∵当 x =2时,y =4;当x =3时,y =7,∴⎩⎪⎨⎪⎧4-m =k (6+n ),7-m =k (9+n ).∴k =1,,m +n =-2.∴y 与x 之间的函数关系式为y =3x -2.17.学校图书室有360本图书借给八(2)班的同学阅读,每人借6本.(1)求余下的图书数量y(本)和学生数x(人)之间的函数关系式,并求自变量的取值范围; (2)当班里有50个学生时,剩余多少本?(3)当图书室剩余72本书时,这个班有多少名学生?解:(1)y =360-6x(0≤x ≤60).(2)当x =50时,y =360-6×50=60.(3)当y =72时,360-6x =72,解得x =48.03 综合题18.已知y =y 1+y 2,y 1与x 成正比例,y 2与x -2成正比例,当x =1时,y =0;当x =-3时,y =4.(1)求y 与x 的函数解析式,并说明此函数是什么函数; (2)当x =3时,求y 的值.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得⎩⎨⎧k 1-k 2=0,-3k 1-5k 2=4,解得⎩⎨⎧k 1=-12,k 2=-12.∴y =-12x -12(x -2),即y =-x +1.∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.。
八年级数学下册《第十九章 一次函数》练习题及答案解析
八年级数学下册《第十九章 一次函数》练习题及答案解析学校:___________姓名:___________班级:____________一、单选题1.学习完“一次函数”,王老师出了一道题:已知0kb <,且0b >,则一次函数y kx b =+的图象大致是( )A .B .C .D .2.下列结论正确的个数是( )(1)直线y kx k =-一定经过点(1,0);(2)若直线y kx b =+不经过第四象限,则0,0k b >>;(3)若()()111222,,,P x y P x y 在直线(0)y kx b k =+<上,且12x x >,则12y y >;(4)若一次函数2(1)2y m x m =-++的图像交y 轴于点(0,3)A ,则1m =±.A .1B .2C .3D .43.下列问题中,两个变量之间成正比例关系的是( )A .圆的面积S (cm 2)与它的半径r (cm )之间的关系B .某水池有水15m 3,现打开进水管进水,进水速度为5m 3/h ,x h 后这个水池有水y m 3C .三角形面积一定时,它的底边a (cm )和底边上的高h (cm )之间的关系D .汽车以60km/h 的速度匀速行驶,行驶路程y 与行驶时间x 之间的关系4.如图,一次函数y =-3x +4的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 分别作OA 和OB 的垂线,垂足为C ,D .若矩形OCPD 的面积为1时,则点P 的坐标为( )A .(13,3)B .(12,2)C .(12,2)和(1,1)D .(13,3)和(1,1) 5.下表中列出的是一个一次函数的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( )A .y 随x 的增大而增大B .该函数的图象不经过第四象限C .该函数图象与坐标轴围成的三角形的面积为16D .该函数图象关于x 轴对称的函数的表达式为24y x =+6.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D . 二、填空题 7.若函数y =(k ﹣1)2k x +1是关于x 的一次函数,则k =______.8.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)b =2,k =_____;(2)当x =30时,y =_____;(3)当y =30时,x =_____.9.一次函数y =k x +b 满足k b >0,且函数值y 随自变量x 的增大而增大,则此函数的图象不经过第______象限.10.直线y=2x-3与x轴的交点坐标是______,与y轴的交点坐标是______.11.将直线y=3x先向右平移3个单位,再向下平移2个单位得到的直线解析式是__.12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.三、解答题13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:(1)当0≤x≤4时,求y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?14.已知函数y=(2m-2)x+m+1的图象过一、二、四象限,求m的取值范围.15.已知三角形的周长为y(cm),三边长分别为9cm,5cm,x(cm).(1)求y关于x的函数表达式及其自变量x的取值范围.(2)当x=6时,求y的值.(3)当y=19.5时,求x的值.参考答案与解析:1.D【分析】先根据0kb <,且0b >判断出k 的正负,然后根据一次函数的性质判断即可.【详解】解:∵0kb <,且0b >,∵k <0,∵一次函数图象经过一二四象限.故先D .【点睛】本题考查了一次函数的图象与性质,对于一次函数y =kx +b (k 为常数,k ≠0),当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.当b >0,图象与y 轴的正半轴相交,当b <0,图象与y 轴的负半轴相交,当b =0,图象经过原点.2.A【分析】由直线与坐标轴的交点列方程求解来判断(1)(4)即可,根据一次函数的图像和性质判断(2),(3)即可.【详解】解:(1)把y =0代入y kx k =-,得x =1,所以直线y kx k =-一定经过点(1,0),故(1)正确; (2)根据一次函数的性质,若直线y kx b =+不经过第四象限,则k 0>,b 0≥,故(2)错误; (3) 若直线(0)y kx b k =+<,∴ y 随x 的增大而增减小,(x 1,y 1),(x 2,y 2)是直线y = k x + b 上的两点,x1>x 2,∴ y 1< y 2,故(3)错误;(4) 若一次函数2(1)2y m x m =-++的图像交y 轴于点(0,3)A ,223m ∴+=,∴ 1m =±(正值不合题意,舍去),1m ∴=-,故(4)错误,故选:A .【点睛】本题考查了一次函数的图像和性质,点和直线的位置关系,正确理解一次函数的图像和性质是解本题的关键.3.D【分析】分别列出每个选项的解析式,根据正比例函数的定义判断即可.【详解】解:A 选项,S =πr 2,故该选项不符合题意;B 选项,y =15+5x ,故该选项不符合题意;C 选项,∵12ah =S ,∵a =2S h,故该选项不符合题意; D 选项,y =60x ,故该选项符合题意;故选:D .【点睛】本题考查了正比例函数的定义,掌握形如y =k x (k ≠0)的函数是正比例函数是解题的关键.4.D【分析】由点P 在线段AB 上可设点P 的坐标为(m ,-3m +4)(0<m <43),进而可得出OC =m ,OD =-3m +4,结合矩形OCPD 的面积为1,即可得出关于m 的一元二次方程,解之即可得出m 的值,再将其代入点P 的坐标中即可求出结论.【详解】解:∵点P 在线段AB 上(不与点A ,B 重合),且直线AB 的解析式为y =-3x +4,∵设点P 的坐标为(m ,-3m +4)(0<m <43), ∵OC =m ,OD =-3m +4.∵矩形OCPD 的面积为1,∵m (-3m +4)=1,∵m 1=13,m 2=1, ∵点P 的坐标为(13,3)或(1,1). 故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m 的一元二次方程是解题的关键.5.C【分析】利用待定系数法求出该一次函数的解析式为y =-2x -8,根据函数的增减性及经过的象限、与坐标轴的交点坐标求面积分别计算并判断.【详解】解:设该一次函数的解析式为y =k x +b ,将(-4,0),(-3,-2)代入,得4032k b k b -+=⎧⎨-+=-⎩,解得28k b =-⎧⎨=-⎩, ∵该一次函数的解析式为y =-2x -8;故D 错误;∵k =-2<0,∵y 随着x 的增大而减小,故A 错误;∵k =-2<0,b =-8<0,∵函数图象经过第二,三,四象限,故B 错误;当x =0时y =-8,当y =0时x =-4,∵图象与坐标轴的交点坐标分别为(-8,0),(0,-4),∵该函数图象与坐标轴围成的三角形的面积为184162⨯⨯=,故C 正确;故选:C .【点睛】此题考查了待定系数法求一次函数的解析式,一次函数的增减性,一次函数与图形面积,一次函数的性质,熟练掌握一次函数的知识并应用是解题的关键.6.B【分析】根据一次函数的图象与系数的关系,由一次函数y kx b =+图象分析可得k 、b 的符号,进而可得k b ⋅的符号,从而判断y kbx =的图象是否正确,进而比较可得答案.【详解】解:根据一次函数的图象分析可得:A 、由一次函数y kx b =+图象可知0k >,0b >,0kb >;正比例函数y kbx =的图象可知0kb <,矛盾,故此选项错误;B 、由一次函数y kx b =+图象可知0k >,0b <;即0kb <,与正比例函数y kbx =的图象可知0kb <,一致,故此选项正确;C 、正比例函数y kbx =的图象没有经过原点,故此选项错误;D 、由一次函数y kx b =+图象可知0k <,0b >;即0kb <,与正比例函数y kbx =的图象可知0kb >矛盾,故此选项错误;故选:B .【点睛】本题主要考查了一次函数图象,解题的关键是掌握一次函数y kx b =+的图象有四种情况:∵当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;∵当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;∵当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;∵当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象.7.-1【分析】根据形如y=k x+b (k≠0)是一次函数,可得答案.【详解】解:∵函数y=(k -1) 2k x +1是关于x 的一次函数,∵k-1≠0且k2=1,解得k=-1;故答案为:-1.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8.23--18-42【解析】略9.四【分析】根据y随x的增大而增大得:k>0,又k b>0,则b>0.再根据k,b的符号判断直线所经过的象限.【详解】解:根据y随x的增大而减小得:k>0,又k b>0,则b>0,故此函数的图象经过第一、二、三象限,即不经过第四象限.故答案为:四.【点睛】本题考查了一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限是解题的关键.10.(32,0)##(1.5,0)(0,﹣3)【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32=,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.11.y=3x−11【分析】根据图象平移规律:左加右减,上加下减,即可解决问题.【详解】解:∵直线y=3x先向右平移3个单位,∵y=3(x−3),再向下平移2个单位得到y=3(x−3)−2,即y=3x−11.故答案为y=3x−11.【点睛】本题主要考查了一次函数图象的平移,熟记平移规律是解决问题的关键.12. 1, 15, 减小 【分析】先分别计算自变量为0时的函数值和函数值为0所对应的自变量的值,然后根据一次函数的性质回答增减性.【详解】当0x =时,151y x =-=;当0y =时,150x -=,解得15x =, 所以一次函数15y x =-经过点()0,1和点1,05⎛⎫ ⎪⎝⎭, 因为50k =-<,所以y 随x 的增大而减小.故答案为:1,15,减小. 【点睛】本题考查了一次函数的性质:0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴上,直线与y 轴交于负半轴.13.(1)y =5x (0≤x ≤4);(2)y =54x +15 (4≤x ≤12); (3)每分钟进水、出水各是5升、154升 【分析】(1)当0≤x ≤4时,设y 随x 变化的函数解析式为y =ax .将(4,20)代入,利用待定系数法即可求出对应的函数关系式;(2)当4<x ≤12时,设y 随x 变化的函数解析式为y =k x +b .将(4,20)、(12,30)代入,利用待定系数法即可求出对应的函数关系式;(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.(1)解:设y =ax .∵图象过(4,20),∵4a =20,∵a =5.∵y 随x 变化的函数关系式为y =5x (0≤x ≤4);(2)解:设y =k x +b .∵图象过(4,20)、(12,30),∵2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∵y 与x 的函数解析式为y =54x +15 (4≤x ≤12); (3)解:根据图象,每分钟进水20÷4=5升,设每分钟出水m 升,则 5×8﹣8m =30﹣20,解得:m =154, ∵每分钟进水、出水各是5升、154升. 【点睛】此题考查了一次函数的应用,正确理解题意,利用待定系数法求出函数的解析式是解题的关键.14.-1<m <1.【详解】试题分析:若函数y kx b =+的图象过一、二、四象限,则此函数的00k b ,,据此求解. 试题解析:∵函数()221y m x m =-++ 的图象过一、二、四象限,22010m m ∴-+<,>解得-1<m <1.15.(1)y =14+x (4<x <14)(2)y =20(3)x =5.5【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;(2)根据自变量的值,代入函数关系式,可得函数值;(3)根据函数值,代入函数关系式,可得自变量的值.(1)解:由三角形的周长公式,得:y =9+5+x ,即y =14+x由三角形得三边的关系,得:9-5<x<9+5,即4<x<14.(2)解:当x=6时,y=14+6解得:y=20.(3)解:当y=19.5时,19.5=14+x解得:x=5.5.【点睛】本题考查了函数关系式,利用了三角形的周长公式,三角形三边的关系.。
八年级数学下册第十九章一次函数19.2一次函数19.2.1.2正比例函数的图象与性质课后作业新人教
八年级数学下册第十九章一次函数19.2 一次函数19.2.1.2 正比例函数的图象与性质课后作业(新版)新人教版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第十九章一次函数19.2 一次函数19.2.1.2 正比例函数的图象与性质课后作业(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第十九章一次函数19.2 一次函数19.2.1.2 正比例函数的图象与性质课后作业(新版)新人教版的全部内容。
19。
2。
1。
2 正比例函
数的图象与性质
课后作业
如图分别是函数x k y 1=,x k y 2=,x k y 3=,x k y 4=的图象.
(1)k 1 k 2, k 3 k 4(填“>"或“〈”或“=”);
(2)用不等号将k 1, k 2, k 3, k 4及0依次连接起来.
参考答案(1)<<
(2)解: k1<k2<0<k3<k4。
人教版八年级数学下册第十九章《一次函数》课时作业带答案:一次函数的图象与性质
人教版八年级数学下册第十九章《一次函数》课时作业带答案:一次函数的图象与性质第2课时 一次函数的图象与性质01 基础题知识点1 画一次函数图象1.已知函数y =-2x +3.(1)画出这个函数的图象;(2)写出这个函数的图象与x 轴,y 轴的交点的坐标.解:(1)如图.(2)函数y =-2x +3与x 轴,y 轴的交点的坐标分别是(32,0),(0,3).知识点2 一次函数图象的平移2.(2017·赤峰)将一次函数y =2x -3的图象沿y 轴向上平移8个单位长度,所得直线的解析式为(B)A .y =2x -5B .y =2x +5C .y =2x +8D .y =2x -83.(2016·娄底)将直线y =2x +1向下平移3个单位长度后所得直线的解析式是y =2x -2.4.(2016·益阳)将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第四象限.知识点3 一次函数的图象与性质5.(2017·沈阳)在平面直角坐标系中,一次函数y =x -1的图象是(B)A B C D6.(2016·邵阳)一次函数y=-x+2的图象不经过的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限7.(2017·抚顺)若一次函数y=kx+b的图象如图所示,则(B)A.k<0,b<0B.k>0,b>0C.k<0,b>0D.k>0,b<08.若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是(D)A.m<0 B.m>0C.m<2 D.m>29.请你写出y随着x的增大而减小的一次函数解析式(写出一个即可)y=-2x+1(答案不唯一,只要k是负数即可).10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行于直线y=3x-3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.解:(1)把(0,0)代入y=(2m+1)x+m-3,得m=3.(2)由题意,得2m+1=3,解得m=1.(3)由题意,得2m+1<0,解得m<-1 2.02中档题11.(2016·玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是(D) A.点(0,k)在l上B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限12.(2017·滨州)若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k 为常数)的图象上,则m和n的大小关系是(B)A.m>n B.m<nC.m=n D.不能确定13.(2016·永州)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1.14.(2016·荆州)若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x+k的图象不经过第一象限.15.在同一直角坐标系中画出下列函数的图象,说出四条直线围成图形的形状.y=12x+3,y=12x-2,y=-12x+3,y=-12x-2.解:列表:描点、连线,如图.由于y=12x+3,y=12x-2中比例系数相同,故两直线平行;由于y=-12x+3,y=-12x-2中比例系数相同,故两直线平行.∴所得图形为平行四边形.16.已知关于x的一次函数y=(2m-4)x+3n.(1)当m,n取何值时,y随x的增大而增大?(2)当m,n取何值时,函数图象不经过第一象限?(3)当m,n取何值时,函数图象与y轴交点在x轴上方?(4)若图象经过第一、三、四象限,求m,n的取值范围.解:(1)∵y随x的增大而增大,∴2m-4>0.∴m>2,n为全体实数.(2)∵函数图象不经过第一象限,∴2m-4<0,3n<0.∴m<2,n≤0.(3)∵函数图象与y轴交点在x轴上方,∴2m-4≠0,3n>0,∴n>0,m≠2.(4)∵图象经过第一、三、四象限,∴2m-4>0,3n≤0.∴m>2,n<0.17.(1)在同一平面直角坐标系内画出一次函数y=12x+2,y=x+2和y=-23x+2的图象.(2)指出这三个函数图象的共同之处;(3)若函数y=12x+a,y=x+b2和y=-23x-c3的图象相交于y轴上同一点,请写出a,b,c之间的关系.解:(1)列表:描点、连线,如图.(2)这三个函数图象相交于(0,2).(3)a=b2=-c3.03综合题18.(2016·怀化)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.解:(1)图象如图所示.(2)当x=0时,y=4,当y=0时,x=-2,∴A(-2,0),B(0,4).(3)S△AOB=12×2×4=4. (4)x<-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金榜题名学校2016年春季绵竹校区
精品小班 培优精讲
学 科
年 级 学生姓名 授课教师 上课时间 课 次 数学
八年级下 弋魏巍 2016.6.4 第 2 讲
一:填空题
1.已知直线63-+=x y ,解下列各题:
(1)若x>0,则y 的取值范围为 ;
(2)若y>0,则x 的取值范围为 ;
(3)若24≤<-x ,则y 的取值范围为 ;
(4)若24≤<-y ,则x 的取值范围为 ;
2.y=-2x+3先向右平移2个单位,再向下平移5个单位后的解析式为 ;
(1)平移后的直线与x 轴、y 轴的交点A,B 坐标分别为 、 ;
(2)平移后的直线与坐标轴围成的三角形的面积为 .
(3)若点P 在直线AB 上为一动点,当△OBP 的面积是△OAB 面积的2倍,则此时点P 的坐标为 .
3.已知y=2x+b 向左平移1个单位,再向上平移3个单位后经过点A(-2,4),则b= ;
(1)原直线关于y 轴对称的直线解析式为 ;
(2)原直线关于x 轴对称的直线解析式为 ;
一次函数(二)课后练习
(3)若直线y=mx-1与y=2x+b 垂直,则m= .
4.等腰三角形的周长是40cm,腰长y(cm),底边长x(cm),y 与x 的函数解析式 ,底边长x 的取值范围为 .
5.一次函数y=(m 2-4)x+(1-m )和y=(m-1)x+m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m= .
6.函数y=-3x +2的图象上存在点P ,使得点P•到x 轴的距离等于3,则点P•的坐标为 .
7.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则b
a 的值是 8.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是
9.在如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则PA+PB 的最小值为 .此时点P 的坐标为 .
10.已知直线22
1+=
x y ,点P 在直线上一点,且点P 到x 轴、y 轴的距离相等,则点P 作为 . 二:综合题
11.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;
(1)档用地阿亮是180千瓦时时,电费是元;
(2)第二档的用电量范围是;
(3)“基本电价”是元/千瓦时;
(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?
12.某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共
50件.
已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.
(1)写出y与x之间的函数关系式;
(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.
13.已知C坐标为(2,0),P坐标为(x,y),直线y=-x+4与x轴、y轴分别交于A、B两点.若点P(a,b)
在直线y=-x+4上.
(1)求出A、B坐标,并求出△AOB的面积;
(2)若点P在第一象限内,连接PC,OP,△OPC的面积为S,请找出S与a
之间的函数关系式,并求出a的取值范围;
(3)当△OPC的面积等于6时,求P点坐标.
(4)点P在移动的过程中,若△BCP为等腰三角形,求找出满足条件的
点P坐标.(直接写出答案)
14.已知矩形OABC,O为坐标原点,A(8,0),C(0,4),D(1,0),点P为一动点,从A-B-C-O运动,点P速度为2个单位/秒,时间为t.
(1)若△PAD的面积为S,请找出S与t的函数关系式,并写出对应的t的取值范围;
(2)当直线PD平分矩形OABC的周长时,求点P的坐标;
(3)当直线PD平分矩形OABC的面积时,求点P的坐标.。