椭圆及其标准方程(

合集下载

2.1.1 椭圆及其标准方程

2.1.1 椭圆及其标准方程

(3)已知两圆 C1:(x-4) +y =169,C2:(x+
2 2
2
2
4) +y =9,动圆和圆 C1 内切,和圆 C2 外切,求 动圆圆心的轨迹方程.
解:如图所示,设动圆圆心为 M(x,y),半径为 r. 由题意得动圆 M
和内切于圆 C1, ∴|MC1|=13-r. 圆 M 外切于圆 C2, ∴|MC2|=3+r. ∴
一、椭圆的定义
平面内到两个定点F1,F2的 定义
距离之和等于常数
(大于| F1F2|)的点的集合叫作椭圆 两个 定点 F1,F2叫作椭圆的焦点 两焦点F1,F2间的 距离 叫作椭圆的焦距 P={M| |MF1|+|MF2|=2a, >| F1F2|}
焦点 焦距 集合语

椭圆的标准方程
焦点在x轴上
解: 设圆 P 的半径为 r ,又圆 P 过点 B , ∴ |PB| =r,又∵圆P与圆A内切,圆A的半径为10. ∴两圆的圆心距|PA|=10-r, 即|PA|+|PB|=10(大于|AB|). ∴点P的轨迹是以A、B为焦点的椭圆. ∴2a=10,2c=|AB|=6, ∴a=5,c=3.∴b2=a2-c2=25-9=16.
以过 B、C 两点的直线为 x 轴,线段 BC 的垂直平分线为 y 轴,建立直 角坐标系 xOy,如图所示.由|BC|=8,可知点 B(-4,0),C(4,0),c =4. 由|AB|+|AC|+|BC|=18,|BC|=8,得|AB|+|AC|=10.因此,点 A
的轨迹是以 B,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之
a2= 15, 解得 2 b = 5.
x2 y2 所以所求椭圆的方程为 + = 1. 15 5 y2 x2 ②当焦点在 y 轴上时,设椭圆的标准方程为 2+ 2=1(a> b> 0).依题 a b

椭圆及其标准方程

椭圆及其标准方程

例: ( 1 ) 已知 F , F 是两定点, F F 6 ,动点 M 满足 1 2 1 2
线段 MF MF 6 ,则动点的轨迹为 ___ 1 2
(2 ) 已知 A ( -1 ,0 ), B ( 1 ,0 ), M 是一个动点 M 到 AB 两点的距离之和为 6 ,
椭圆 则 M 的轨迹为 ______
3 2 2
+
2 5 +2 2
+
3 2 2
+
2 5 -2 =2 2
10.即
������2 ������2 ∴ 所求椭圆的方程为 + =1. 10 6
反思根据已知条件,判定焦点的位置,设出椭圆的方程是解决此
题的关键.
“神五”飞船的运行轨道是以地心为一个焦点的椭圆,地 球半径为R公里,飞船的近地点距地球地面200公里,远 地点距地球地面350公里,则飞船的椭圆轨道的标准方程 为——
♦自然界处处存在着椭圆,我们如
何用自己的双手画出椭圆呢?
先 回 忆 如 何 画 圆
·
· F
1
·
F2
一、椭圆的定义
椭圆定义的文字表述:
• 平面内到两个定点F1,F2的距离的和等于定长 (2a)(大于|F1F2 |)的点的轨迹叫椭圆。
• 定点F1、F2叫做椭圆的焦点。 • 两焦点之间的距离叫做焦距(2c)。
������2 ������2 A 的轨迹方程是 + =1(y≠0). 25 16
【典型例题 2】 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点 P 到两焦点的 距离的和等于 10; (2)两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过点 - ,

椭圆及标准方程

椭圆及标准方程

椭圆及标准方程椭圆是平面上到定点F1、F2的距离之和等于常数2a的点P的轨迹。

设F1(-c,0),F2(c,0),点P(x,y),则PF1+PF2=2a。

椭圆的标准方程为,x^2/a^2+y^2/b^2=1(a>b>0)。

椭圆的性质:1.椭圆的离心率0<e<1,焦点到中心的距离为ae。

2.椭圆的长轴2a,短轴2b,焦距2ae。

3.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。

4.椭圆的面积为πab。

5.椭圆的焦点到直径的距离等于直径的一半。

6.椭圆的焦点到切线的距离等于焦点到法线的距离。

7.椭圆的切线与法线的交点坐标分别为(x1,y1)和(x1,-y1)。

8.椭圆的渐近线方程为y=±b/ax。

9.椭圆的参数方程为x=acosθ,y=bsinθ。

10.椭圆的极坐标方程为r=a(1-e^2)/(1+ecosθ)。

椭圆的标准方程推导:设椭圆的长轴为2a,短轴为2b,焦点为F1(-c,0),F2(c,0),中心为O(0,0),点P(x,y)。

则有PF1+PF2=2a,根据两点之间的距离公式可得。

√((x+c)^2+y^2)+√((x-c)^2+y^2)=2a。

整理得到。

(√((x+c)^2+y^2))^2+(√((x-c)^2+y^2))^2=4a^2。

化简得到。

x^2/a^2+y^2/b^2=1。

从而得到椭圆的标准方程。

椭圆的标准方程性质:1.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。

2.椭圆的中心在原点O(0,0)。

3.椭圆的长轴在x轴上,短轴在y轴上。

4.椭圆的焦点为F1(-c,0),F2(c,0),离心率e=c/a。

5.椭圆的长轴长为2a,短轴长为2b,焦距2ae。

6.椭圆的面积为πab。

7.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。

8.椭圆的参数方程为x=acosθ,y=bsinθ。

椭圆及标准方程

椭圆及标准方程

椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

F1和F2称为椭圆的焦点,2a称为椭圆的长轴。

椭圆的标准方程为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。

其中a为长轴的一半,b为短轴的一半。

在椭圆的标准方程中,a和b的大小决定了椭圆的形状,当a>b时,椭圆的长轴水平;当a<b时,椭圆的长轴垂直。

椭圆的离心率e定义为焦距与长轴的比值,即e=\(\frac{c}{a}\),其中c为焦距之一。

离心率决定了椭圆的形状,当e=0时,椭圆退化为圆;当0<e<1时,椭圆是一个扁平的椭圆;当e=1时,椭圆是一个狭长的椭圆;当e>1时,椭圆不存在,退化为双曲线。

根据椭圆的标准方程,我们可以得到椭圆的一些重要性质。

首先,椭圆的中心在原点O(0,0),长轴与x轴平行,短轴与y轴平行。

其次,椭圆的焦点坐标为F1(-c,0)和F2(c,0),其中c=\(\sqrt{a^2-b^2}\)。

最后,椭圆的顶点坐标为A(a,0)和B(-a,0),其中a为长轴的一半。

除了标准方程外,椭圆还可以有其他形式的方程。

例如,椭圆的参数方程为:\(\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}\)。

其中t为参数,a和b同样为长轴和短轴的一半。

利用参数方程,我们可以更加灵活地描述椭圆上的点的运动规律。

另外,椭圆还可以通过矩形方程来表示,即:\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)。

其中(h,k)为椭圆的中心坐标。

通过矩形方程,我们可以方便地得到椭圆的中心和长短轴的信息。

总之,椭圆是一种重要的几何图形,具有许多独特的性质和形式。

通过标准方程、参数方程和矩形方程,我们可以更加深入地理解和描述椭圆的形状和特点。

对于数学和物理学的学习和应用都有着重要的意义。

椭圆标准方程及几何性质

椭圆标准方程及几何性质

椭圆的离心率
离心率是描述椭圆扁平程度的量,用 $e$表示。
VS
离心率定义为$e = frac{c}{a}$,其中 $c$是焦距,$a$是长轴半径。
03
椭圆的参数方程
参数方程的定义
参数方程
通过引入参数,将椭圆上的点与一组有序数对(参数)关联起来,表示椭圆上 的点的一种方法。
参数方程的一般形式
x=a*cos⁡(t)x = a cos(t)x=a∗cos(t) 和 y=b*sin⁡(t)y = b sin(t)y=b∗sin(t),其中 (a,b) 是椭圆的长短轴长度,t是参数。
通过极坐标方程,可以方便地解决与椭圆相关的几何问题,例如求 交点、判断点是否在椭圆上等。
05
椭圆的焦点三角形
焦点三角形的性质
焦点三角形是等腰三角形
01
由于椭圆上任意一点到两焦点的距离之和为常数,因此焦点三
角形是等腰三角形。
顶角为直角
02
由于椭圆上任意一点到两焦点的距离之差与到另一焦点的距离
之比为常数,因此顶角为直角。
当长短轴长度一定时,顶角越大,焦 点三角形面积越大。
焦点三角形的周长
01
02
03
周长公式
焦点三角形的周长公式为 (P = 2a + 2c),其中 (a) 为长轴长度,(c) 为焦距。
周长与长短轴关系
当长短轴长度一定时,离 心率越大,焦点三角形周 长越大。
周长与离心率关系
当长短轴长度一定时,长 短轴长度越接近,焦点三 角形周长越小。
THANKS
感谢观看
参数方程的应用
简化计算
在解决与椭圆相关的数学问题时,使用参数方程可以简化计算过程,特别是涉及到三角函数的问题。

椭圆及其标准方程

椭圆及其标准方程

第一节 椭圆1.椭圆的定义(1) 第一定义:|)|2(2||||2121F F a a PF PF >=+ (21,F F 为焦点,c F F 2||21=为焦距) 注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2)第二定义:)10(,||<<=e e dPF注:第二定义中焦点与准线应对应2.椭圆的标准方程(中心在原点,对称轴为坐标原点)(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx a y ,其中a ,b 满足: .说明:(1)焦点在22,y x 分母大的对应的坐标轴上; (2)222c b a +=及c b a ,,的几何意义 (3)标准方程的统一形式:),0,0(122n m n m nymx≠>>=+适用于焦点位置未知的情形(4)参数方程:⎩⎨⎧==θθsin cos b y a x 3.椭圆的几何性质(对12222=+by ax ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;(4)离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 椭圆的准线方程为 .【课前预习】1.若方程11322=-+-k ykx为焦点在y 轴上的椭圆,则k 的取值范围是_______________2.已知椭圆的长轴长是8,离心率是43,则此椭圆的标准方程是_____________3.若椭圆1222=+myx的离心率为21,则实数=m ______4.已知21,F F 为椭圆1422=+yx的左、右焦点,弦AB 过1F ,则AB F 2∆的周长为______85.已知椭圆121622yx+=1的左、右焦点分别为F 1、F 2,M 是椭圆上一点,N 是MF 1的中点,若6||2=MF ,则|ON|的长等于 .1 【例题讲解】例1:根据下列条件求椭圆方程(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),求椭圆的方程; (2)中心在原点的椭圆,一条准线方程为5=y ,且它的离心率55=e ;(3)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点;(4)中心在原点,以坐标轴为对称轴的椭圆,经过两点)2,3(),1,6(21--P P 小结:求椭圆的方法 例2:(1)椭圆1162522=+yx上一点P 到它的左焦点1F 的距离为6,则点P 到椭圆右准线的距离为_________(2)已知21,F F 是椭圆148:22=+yxC 的焦点,在C 上满足21PF PF ⊥的点P 的个数为________2小结:(3)椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,这个椭圆的方程是_________________1129,19122222=+=+yxyx(4)已知椭圆192522=+yx的焦点21,F F ,P 是椭圆上一点,9021=∠PF F ,则=∆21PF F S _______变式1: 6021=∠PF F ,则=∆21PF F S _______变式2:θ=∠21PF F ,则=∆21PF F S _______变式3:已知椭圆12222=+bya x的焦点21,F F ,椭圆上存在一点P ,使6021=∠PF F ,则离心率e 的取值范围是____________ 例3:关于离心率的运算(1)设椭圆的两个焦点分别为21,F F ,过2F 作椭圆长轴的垂线交椭圆于点B A ,,若1ABF ∆为正三角形,则椭圆的离心率为_________ (2)在平面直角坐标系中,椭圆12222=+by ax (a >b >0)的焦距为2,以O 为圆心,a 为半径作圆,过点⎪⎪⎭⎫⎝⎛0,2c a 作圆的两切线互相垂直,则离心率e= .(3)在ABC ∆中,187cos ,-==B BC AB ,若以B A ,为焦点的椭圆经过点C ,则该椭圆的离心率e=(4) 以椭圆12222=+by ax 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则e 的取值范围是_______________1215<<-e小结: 例4:(最值问题) (1)设P 是椭圆1162522=+yx上任意一点,F A ,分别为椭圆的左顶点和右焦点,则AFPA PF PA ⋅+⋅41的最小值为________-9变式:P 为椭圆13422=+yx上任一点,A 为右顶点,B 为下顶点则AB PA ⋅最大值为________(2)椭圆1162522=+yx内有两点)0,3(),2,2(B A P 为椭圆上一动点则||35||PB PA +的最小值为____319变式:若)0,3(-C 则||||PC PA +最大值为__________510+例5:设椭圆()22221,0x y a b ab+=>>的左右焦点分别为12,F F,离心率2e =,点2F 到右准线为l 的距离为1)求,a b 的值;(2)设,M N 是l 上的两个动点,120F M F N ⋅=,证明:当M N 取最小值时,12220F F F M F N ++=。

椭圆的公式标准方程

椭圆的公式标准方程

椭圆的公式标准方程椭圆是一种常见的二次曲线,其形状类似于一个被拉伸的圆。

椭圆是数学中的一个重要概念,广泛应用于几何学、物理学、工程学等领域。

椭圆的公式标准方程是描述椭圆特征的数学表达式,本文将详细介绍椭圆的公式标准方程及其相关知识。

首先,我们来了解一下椭圆的基本概念。

椭圆是一个平面上的封闭曲线,其上的每个点到两个焦点的距离之和是一个常数。

椭圆的形状可以用离心率来描述,离心率是焦点到中心距离与长轴长度之比的绝对值。

椭圆的公式标准方程是一般二次曲线方程的特殊形式,具有以下表达式:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)代表椭圆中心的坐标,a表示椭圆长轴的长度的一半,b表示椭圆短轴的长度的一半。

椭圆的公式标准方程中的变量解释如下:1. (x, y)为平面上任意一点的坐标;2. (h, k)表示椭圆中心的坐标;3. a表示椭圆长轴的长度的一半;4. b表示椭圆短轴的长度的一半。

通过椭圆的公式标准方程,我们可以得到椭圆的一些重要信息。

首先,椭圆中心的坐标为(h, k),这个点是椭圆的对称中心。

其次,椭圆的长轴长度为2a,短轴长度为2b,离心率为c/a,其中c表示焦点到中心的距离。

椭圆的公式标准方程也可以表示成另一种形式:(x-h)²/a² + (y-k)²/b² = r²其中,r表示椭圆上任意一点到椭圆中心的距离。

我们可以通过一些具体的例子来理解椭圆的公式标准方程的应用。

以一个常见的例子为椭圆方程(x-2)²/9 + (y-3)²/4 = 1。

我们可以通过这个方程来确定椭圆的特征。

首先,椭圆的中心坐标为(2, 3),即椭圆的中心在坐标系中的位置为(2, 3)。

其次,椭圆的长轴长度为2×3 = 6,所以椭圆的长轴长度为12。

短轴长度为2×2 = 4,所以椭圆的短轴长度为8。

椭圆的定义及其标准方程

椭圆的定义及其标准方程

标准方程 及图形
条件 范围
2a>2c,a2=b2+c2,a>0,b>0,c>0
|x|≤a;|y|≤b
|x|≤b;|y|≤a
曲线关于 对称性
x轴

y 轴、原点 对称
曲线关于

x轴、y轴、原点

顶点 焦点
长轴顶点( ±a,0 ) 短 轴顶点(0,±b )
( ±c,0 )
长轴顶点( 0,±a)短轴顶点 ( ±b,0 )
13.1 椭圆的定义及其标准方程
一、椭圆的定义
平面内到两个定点F1,F2的距离之 等和于常数 ( 大于|F1F2)|的点的集合叫作椭圆,这两个定点F1,F2 叫作椭圆的 焦点,两焦点F1,F2间的距离叫做椭圆的 焦距 .
二、椭圆的标准方程及其几何
意义
条件
2a>2c,a2=b2+c2,a>0,b>0,c>0
()
A.椭圆
B.线段
C.椭圆或线段或不存在 D.不存在
解析:当a<6时,轨迹不存在;
当a=6时,轨迹为线段;
当a>6时,轨迹为椭圆. 答案:C
3.已知椭圆
上一点P到椭圆一个焦点的距离
为3,则P到另一个焦点的距离为 ( )
A.2
B.3
C.5
D.7
解析:

答案:D
4.椭圆
的焦点坐标为________.
【解】 设所求的椭圆方程为 =1(a>b>0),
由已知条件得解得 故所求方程为
a=4,c=2,b2=12,
练习1.已知椭圆的中心在原点,以坐标轴为对称轴,且经
过两点 P1( 6,1), P2( 3, ,2求) 椭圆的方程.
解:设椭圆的方程为mx2+ny2=1(m>0,n>0且m≠n).

3.1.1椭圆及其标准方程

3.1.1椭圆及其标准方程

△ F1PF2 称为焦点三角形,解关于椭圆中的焦点三角形问题时 要充分利用椭圆的定义、三角形中的正弦定理、余弦定理、勾 股定理等知识.对于求焦点三角形的面积,若已知∠F1PF2, 1 可利用 S=2|PF1|· |PF2|sin∠F1PF2 求面积,这时可把|PF1|· |PF2| 看成一个整体,运用公式 |PF1|2+|PF2|2=4a2-2|PF1||PF2|及余 弦定理求出|PF1|· |PF2|,而无需单独求出|PF1|和|PF2|,这样可以 减少运算量.
x2 y2 y2 x2 ∴椭圆的标准方程为 当焦点在 x 轴上时,设椭圆的标准方程为 x2 y2 + =1(a>b>0). a2 b2
2 2 - 2 3 2 + 2 =1, b a 依题意有 2 - 2 3 1 + 2=1, 2 b a 2 a =15, 解得 2 b =5.
即|PF2|=4-|PF1|. 6 将②代入①解得|PF1|=5,

1 1 6 3 3 3 ∴S△ PF1F2=2|PF1|· |F1F2|· sin 120° =2× 2× 2 = 5 . 5× 3 因此所求△ PF1F2 的面积是5 3.
[一点通]
椭圆上一点 P 与椭圆的两焦点 F1、F2 构成的
[一点通] 求椭圆标准方程的一般步骤为:
[例 2]
如图所示, 已知椭圆的方程
x2 y2 为 4 + 3 =1,若点 P 在椭圆上,F1,F2 为椭圆的两个焦点,且∠PF1F2=120° , 求△ PF1F2 的面积. [思路点拨] 因为∠PF1F2=120°,|F1F2|=2c,所以要
求S△PF1F2,只要求|PF1|即可.可由椭圆的定义|PF1|+|PF2| =2a,并结合余弦定理求解.

椭圆的定义、标准方程与应用(例题详解)

椭圆的定义、标准方程与应用(例题详解)

椭圆的定义、标准方程与应用(例题详解)一、定义类:1、椭圆定义:椭圆是一种中心对称的图形,即椭圆的中心点与形状对称,可以通过对称轴对椭圆进行对称变换。

具体而言,当你沿着对称轴将椭圆的一段变换至另一段时,整个椭圆的线段形式都不变。

椭圆也有自己的焦点,它是椭圆的特征,椭圆上每个点到它的焦点之间的距离总是一定的。

如果一个图形有以上特征,那么它就可以称为椭圆。

2、已知点A( -2,0),B(2,0),动点P满足|PA| + |PB| = 4,求点P的轨迹。

3、已知点A( -2,0),B(2,0),动点P满足|PA| - |PB| = 2,求点P的轨迹。

二、椭圆的标准方程:1、椭圆的标准方程是一种二次曲线函数,是用来表达椭圆的函数。

2、椭圆的标准方程有两种形式,一种是椭圆的极坐标方程,一种是椭圆的笛卡尔坐标方程。

3、椭圆的极坐标方程为:①、$$r=frac{acdot b}{sqrt{a^2cdot sin^2theta + b^2cdot cos^2theta}}$$。

②、a和b分别是椭圆的长轴和短轴,$theta$是弧度。

4、椭圆的笛卡尔坐标方程为:$$frac{x^2}{a^2}+frac{y^2}{b^2}=1$$;其中,a和b分别是椭圆的长轴和短轴,$(x,y)$是椭圆上一点的坐标。

三、椭圆的面积和周长:1、椭圆的面积可以使用一下公式来计算:$$S = picdot a cdot b$$;其中,a和b分别是椭圆的长轴和短轴,S是椭圆的面积。

2、椭圆的周长也可以使用一下公式来计算:$$L = picdot sqrt{2a^2+2b^2}$$;其中,a和b分别是椭圆的长轴和短轴,L是椭圆的周长。

四、标准形式类:1、已知椭圆的方程为 + = 1(a > b > 0),过点P(2,1)且与该椭圆有一个交点的直线方程为:y-1=k(x-2),求k的取值范围。

2、已知椭圆的方程为 + = 1(a > b > 0),过点P(0,2)且与该椭圆有一个交点的直线方程为:y=x+2,求k的取值范围。

椭圆及其标准方程ppt课件

椭圆及其标准方程ppt课件

令b=POI=√a²-c², 那么方程⑤就
由于方程②③的两边都是非负实数,因此方程①到方程⑥的变形都是同解变 形.这样,椭圆上任意一点的坐标(x,y) 都满足方程⑥;反之,以方程⑥的解为 坐标的点(x,y)与椭圆的两个焦点(c,0),(-c,0)的距离之和为2a, 即以方程⑥的 解为坐标的点都在椭圆上.则方程⑥是椭圆的方程,这个方程叫做圆的标准方 程.它表示焦点在x 轴上,两个焦点分别是F(-c,0),F₂ (c,0) 的椭圆,这里
所以点M 的轨迹是椭圆.
例3如图,设A,B 两点的坐标分别为(-5,0),(5,0).直线AM,BM 相交于点M, 且它们的斜率之积是 ,求点M 的轨迹方程.

解 :设点M 的坐标为(x,y),因为点A 的坐标是(-5,0), 所以直线AM的斜率 同理,直线 BM 的斜率 由已知有
化简得点M 的轨迹方程为
设M(x,y )是椭圆上任意一点,椭圆的焦距为2c(c>0), 那么焦点F,F₂ 的 坐 标分别为(-c,0),(c,0) ,根据椭圆的定义,设点M 与焦点F,F₂ 的距离的和等于 2a.
由椭圆的定义可知,椭圆可看作点集P={M||MF₁I+|MF₂I=2a}. 因为IMFI= √ (x+c)²+y²,IMF₂F= √ (x-c)²+y², 所以J(x+c)²+y²+ √ (x-c)²+y²=2a.① 化简得√(x+c)²+y²=2a-√(x-c)²+y².② 对方程②两边平方得(x+c)²+y²=4a²-4aJ(x-c)²+y²+(x-c)²+y². 整理得a²-cx=aJ(x-c)²+y².③

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.注意:定义中的常数用2a表示,|F1F2|用2c表示,当2a>2c>0时,轨迹为椭圆,当2a=2c 时,轨迹为线段F1F2;当2a<2c时,无轨迹.这样,椭圆轨迹一定要有2a>2c这一条件.另外,应用定义来求椭圆方程或解题时,往往比较简便.2.椭圆的标准方程当焦点在x轴上时:+ =1(a>b>0)当焦点在y轴上时:+ =1(a>b>0)注意:(1)三个量之间的关系:a2=b2+c2(2)由x2,y2的分母大小确定焦点在哪条坐标轴上,x2的分母大,焦点就在x轴上,y2的分母大,焦点就在y轴上.(3)在方程Ax2+By2=C中,只有A、B、C同号时,才可能表示椭圆方程.(4)当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.典型例题例1 求与椭圆+ =1共焦点,且过点M(3,-2)的椭圆方程.解法一:(待定系数法)由已知椭圆方程+ =1得C2=9-4=5,且焦点在x轴上,设所求椭圆方程为+ =1又∵点M(3,-2)在椭圆上∴+ =1,得a4-18a2+45=0∴a2=15或a2=3<5=C2(舍)∴所求椭圆方程为+ =1解法二:(定义法)椭圆两焦点为F1(- ,0),F2( ,0),点M(3,-2)到这两个焦点距离之和是2a,即2a=|M1F1|+|M1F2|= + =2∴a2=15 b2=a2-c2=15-5=10∴所求椭圆方程为+ =1例2 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),求椭圆的方程.解:设椭圆方程为mx2+ny2=1,(m>0,n>0)由题意有解得m= ,n=∴所求椭圆方程为+ =1说明:设椭圆方程为mx2+ny2=1(m>0,n>0)可免讨论焦点的位置,而且计算简便.例3 已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆方程.解:设两个焦点为F1F2,且|PF1|= ,|PF2|=由椭圆定义知2a=|PF1|+|PF2|=2 ∴a=而|PF1|>|PF2|知PF2与焦点所在的对称轴垂直.∴Rt△PF2F1中,sin∠PF1F2= =∴∠PF1F2=2C=|PF1|cos =∴b2=a2-c2=故所求方程为+ y2=1或x2+ =13.(代入法)与椭圆有关的轨迹问题:常用的方法有定义法,坐标转移法,交轨法,点差法. 例4 已知圆C1:x2+y2+4x-12=0与圆C2:x2+y2-4x=0,动圆C与C1相内切,且与C2相外切,求动圆圆心的轨迹方程.解:圆C1与C2的标准方程是(x+2)2+y2=16,(x-2)2+y2=4圆心分别为C1(-2,0),C2(2,0)设动圆P的圆心为P,半径为r,有|PC1|=4-r,|PC2|=2+r∴|PC1|+|PC2|=6>|C1C2|=4∴P点在椭圆上运动,又2a=6,2c=4,∴b2=a2-c2=5∴P的轨迹为+ =1(在已知圆C1内)例5 已知MN是椭圆+ =1(a>b>0)中垂直于长轴的动弦,AB是椭圆长轴的两端点,求直线MA与NB的交点P的轨迹方程.解:设M、N的坐标为M(x0,y0),N(x0,-y0),又A(-a,0),B(a,0)所以直线AM的方程为y= (x+a) ①直线BN的方程为:y= ②①×②得:y2= (x2-a2) ③∵点M(x0,y0)在椭圆上,∴b2x20+a2y20=a2b2∴x20-a2=- y02,代入得③得:y2= (x2-a2)∴交点P的轨迹方程为- =1例6已知椭圆+y2=1(1)求斜率为2的平行弦的中点轨迹方程(2)过A(2,1)引椭圆的割线,求截得的弦中点轨迹方程(3)求过点P( ,),且被P平分的弦所在的直线方程.解:(点差法)设弦的两端点分别为M(x1,y1)N(x2,y2)、MN的中点为P(x,y),则x21+2y21=2,x22+2y22=2,两式相减弄除以(x2-x1)得:x1+x2+2(y1+y2) =0而x1+x2=2x,y1+y2=2y∴x+2y· =0 (*)(1)将=2代入(*)式得所求的轨迹方程为x+4y=0(椭圆内部分)(2)将= 代入(*)式,得所求的轨迹方程为x2+2y2-2x-2y=0(椭圆内部分)(3)将x1+x2=1,y1+y2=1代入(*)式,得=-∴所求的直线方程为2x+4y-3=0例7已知中心在原点,一焦点为F(0,)的椭圆被直线l:y=3x-2截得弦的中点横坐标为,求椭圆方程.解:∵C= ,∴a2=b2+50∴可设椭圆方程为+ =1把直线y=3x-2代入椭圆方程整理得10(b2+5)x2-12b2x-b4-46b2=0∴x1+x2=又∵=∴12b2=10b2+50解得b2=25 a2=75∴所求的椭圆方程为+ =1例8已知P为椭圆+ =1上的一点,F1F2是椭圆上的两焦点,∠F1PF2=60°,求△F1PF2的面积.解:∵= |PF1|·|PF2|sin∠F1PF2∴只需求|PF1|·|PF2|即可又|PF1|+|PF2|=10|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°=4C2=64解得|PF1|·|PF2|=12∴= ×12× =3例9已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:结合椭圆的变形方程式a2y2+b2x2-a2b2=0从而有:2(k2-2)>0 k<- 或k>k2≠0解得k≠0k2-k-6<0 -2<k<32(k2-2)≠k2k≠±2∴k∈(-2,- )∪( ,2)∪(2,3)例10△ABC的三边a>b>c,且a+c=2b,|AC|=2,求顶点B的轨迹.解:以AC的中点为坐标原点建立坐标系,则A(-1,0),C(1,0),又a+c=2b=4由椭圆的定义知B点在椭圆上运动.∵a>b>c,且A、B、C三点不共线∴B点的轨迹方程是椭圆+ =1,在y轴左侧的部分,但要去掉点(-2,0),(0,),(0,- )核心知识1.椭圆+ =1(a>b>0),范围:椭圆位于直线x=±a和y=±b所围成的矩形里,即|x|≤a,|y|≤b.2.对称性:椭圆关于x轴,y轴和原点都是对称的.坐标轴为椭圆的对称轴,原点是椭圆的对称中心,即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A1(-a,0),A2(a,0),B1(0,b),B2(0,-b)4.离心率:e= ,(o<e<1),e越接近于1,则椭圆越扁;e越接近于0,椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e<1=的点的轨迹.定点即为椭圆的焦点,定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x0,y0)是椭圆+ =1(a>b>0)上的任意一点,F1、F2分别是椭圆的左、右焦点,则|PF1|=a+ex0,|PF2|=a-ex0.7.椭圆的参数方程典型例题例1 设直线l过点P(-1,0),倾角为,求l被椭圆x2+2y2=4所截得的弦长.解:直线l的方程为y= x+ ,代入椭圆方程,得7x2+12x+2=0,∵△=144-4×7×2=88∴弦长= =例2 求椭圆+ =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cosθ,9sinθ),则d= ==∴d max=例3 已知椭圆+ =1内有一点P(1,-1),F是右焦点,M是椭圆上的动点,求|MP|+2|MF|的最小值,并求此时M的坐标.解:过M作右准线x=4的垂线,垂足为M1,由椭圆第二定义,有= ∴2|MF|=|MM1|∴|MP|+2|MF|=|MP|+|MM1|过P作右准线的垂线交椭圆于N,垂足为N1,垂线方程为y=-1.显然|MP|+|MM1|≥|NP|+|NN1|(当M与N重合时等号成立)而|NP|+|NN1|=|PN1|=3由方程组得N( ,-1)∴|MP|+2|MF|的最小值是3,此时M的坐标是( ,-1)例4 P是椭圆方程为+ =1上的任意一点,F1,F2是椭圆的两个焦点,试求|PF1|·|PF2|的取值范围.解:设|PF1|=t,则t∈[a-c,a+c],即t∈[4- ,4+ ]且|PF2|=2a-t=8-t.∴|PF1|·|PF2|=t(8-t)=-(t-4)2+16 t∈[4- ,4+ ]当t=4时,取最大值为16当t=4± 时,取最小值为9.∴所求范围为[9,16]例5 F1、F2是椭圆的两个焦点,过F2作一条直线交椭圆于P、Q两点,使PF1⊥PQ,且|PF1|=|PQ|,求椭圆的离心率e.解:如下图,设|PF1|=t,则|PQ|=t,|F1Q|= t,由椭圆定义有:|PF1|+|PF2|=|QF1|+|QF2|=2a∴|PF1|+|PQ|+|F1Q|=4a 即( +2)t=2a,t=(4-2 )a∴|PF2|=2a-t=(2 -2)a在Rt△PF1F2中,|F1F1|2=(2c)2∴[(4-2 )a]2+[(2 -2)a]2=(2c)2∴=9-6 ∴e= = -双曲线1.双曲线的定义平面内与两定点F1、F2的距离差的绝对值是常数(大于零小于|F1F2|)的点的轨迹叫双曲线.两定点F1、F2是焦点,两焦点间的距离|F1F2|是焦距,用2c表示.常数用2a表示.(1)若|MF1|-|MF2|=2a时,曲线只表示焦点F2所对应的一支双曲线.(2)若|MF1|-|MF2|=-2a时,曲线只表示焦点F1所对应的一支双曲线.(3)若2a=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若2a>2c时,动点的轨迹不存在.2.双曲线的标准方程- =1(a>0,b>0)焦点在x轴上的双曲线;- =1(a>0,b>0)焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.典型例题例1 若方程+ =1表示双曲线,则实数m的取值范围是( )A.-3<m<2或m>3B.m<-3或m>3C.-2<m<3D.-3<m<3或m>3分析该方程表示双曲线,则x2与y2项的系数的符号相反,即(2-m)(|m|-3)<0,将问题转化为不等式的求解.答:A例2 求与椭圆+ =1共焦点,且过点(3 ,)的双曲线的方程.分析一由题意知所求双曲线的焦点在x轴上,且焦距为8,∴c=4,设所求双曲线方程为- =1代入点(3 ,),得λ2=7,故所求双曲线方程为- =1.分析二运用与椭圆共焦点的曲线系方程.设所求双曲线方程为+ =1,代入点(3 ,),得λ=16或λ=-7(舍),故所求双曲线方程为- =1.例3 课本第108页习题8.3第一题:△ABC一边的两个端点是B(0,6)和C(0,-6),另两边所在直线的斜率之积是,求顶点A的轨迹.分析其顶点A的轨迹方程求得:- =1(x≠0).若将问题一般化:B(0,a)、C(0,-a)·k AB·k AC= ,则顶点A的轨迹方程为:- =1(x≠0).若B(bcotφ,acosφ)、C(-cotφ,-acscφ).k AB·k AC= ,则顶点A的轨迹会是怎样?反之,双曲线- =1(x≠0)上任一点到B(0,a),C(0,-a)两点的连线的斜率之和,等于;若改变B、C的位置保持B、C两点关于原点对称于双曲线上,k AB·k AC是否成立.总之,同学们在学习过程中要多动手、多思考,举一反三,做到“以点代面,以少胜多”.例4一动圆与圆(x+3)2+y2=1外切又与圆(x-3)2+y2=9内切,求动圆圆心轨迹方程.分析如图,设动圆M与⊙O外切于A,与⊙O2内切于B,由位置关系可得数量关系:|MO1|=|MA|+1 |MO2|=|MB|-3由|MA|=|MB|可得|MO1|-|MO2|=4由定义可知M点轨迹为双曲线的一支.解:如图,设动圆圆心M坐标为M(x,y),圆M与圆O1外切于A,与圆O2内切于B,则,MO1=|MA|+1,①|MO2|=|MB|=3②,①-②:|MO1|-|MO2|=4由双曲线定义知,M点轨迹是以O1(-3,0)O2(3,0)为焦点2a=4的双曲线的右支∴b2=32-23=5∴所求轨迹方程为:- =1(x≥2)说明:在求轨迹方程时,要注意使用曲线的定义,此时的思路:位置关系(内切,外切)数量关系(|MO1|=r1+r0,|MO2|=r-r2其中r为动圆半径曲线形状写出标准方程,可以简化运算.同时应注意定义中是到两定点距离的绝对值,此时不含绝对值,要求|MO1|>|MO2|,所以是双曲线的右支,而不是整个双曲线.例5过双曲线- =1的右焦点作倾角为45°的弦,求弦AB的中点C到右焦点F 的距离,并求弦AB的长.分析将直线方程与双曲线方程联立,求出A、B两点的坐标,再求其中点,由两点的距离公式求出|CF|.解:∵双曲线的右焦点为F(5,0),直线AB的方程为y=x-5,故16x2-9y2-144=0 ①y=x-5 ②消去y,并整理得7x2+90x-369=0 ③此方程的两个根x1、x2是A、B两点的横坐标,设AB的中心点C的坐标为(x,y),则x===- .C点的坐标满足方程②,故y=- -5=-∴|CF|==(5+ )=又设A点坐标为(x1,y1),B点坐标为(x2,y2),则y1=x1-5,y2=x2-5.∴y1-y2=x1-x2,|AB|====由方程③知x1+x2=- ,x1·x2=-∴|AB|====27点评:利用韦达定理及两点间距离公式求弦长核心知识1.双曲线- =1的简单几何性质(1)范围:|x|≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。

椭圆及其标准方程

椭圆及其标准方程
2.1.1 椭圆及其标准方程(一)
要点 1
椭圆的定义 (大于
平面内与两定点 F1、F2 的距离之和 等于常数 |F1F2|)的点的轨迹叫做椭圆。 这两个定点 点. 两焦点间的距离 叫做椭圆的焦距.
叫做椭圆的焦
要点 2
椭圆的标准方程
(1)这里的“标准”指的是中心在 原点 ,对称轴为 坐标轴. x2 y2 (2)焦点在 x 轴时,标准方程为a2+b2=1(a>b>0);焦点在 y y2 x2 轴时,标准方程为a2+b2=1(a>b>0).为了计算上的方便,有时将 方程写为 mx2+ny2=1(m>0,n>0,m≠n). (3)标准方程中的两个参数 a 和 b, 确定了椭圆的形状和大小, 是椭圆的定形条件.
(4)椭圆的两种标准方程中,如果 x2 的分母大,焦点就在x 轴 上;如果 y2 的分母大,则焦点就在 y 轴 上. (5)椭圆的方程中,a、b、c 三者之间 a 最大,且满足
a2=b2+c2 .
1.椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小 于|F1F2|”的常数,其他条件不变点的轨迹是什么?
解析
设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n),
椭圆经过 P1,P2 点,所以 P1,P2 点坐标适合椭圆方程,
6m+n=1 有 3m+2n=1
① ②
1 1 x2 y2 解得 m= ,n= ,∴所求椭圆方程为 + =1 9 3 9 3
探究 3
方程 mx2+ny2=1(m>0,n>0 且 m≠n)表示椭圆:若
m<n,则焦点在 x 轴上;若 n<m,则焦点在 y 轴上。 思考题 3 求经过两点 A(3, 3),B(2,3)的椭圆标准方程.

椭圆标准公式

椭圆标准公式

椭圆标准公式椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a的点P的轨迹。

这两个固定点分别称为椭圆的焦点,常数2a称为椭圆的长轴,椭圆的短轴长为2b。

椭圆的标准方程为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中a和b分别为椭圆的长轴和短轴的长度。

椭圆标准公式的推导。

我们可以通过椭圆的定义来推导出椭圆的标准方程。

假设椭圆的焦点为F1(-c,0)和F2(c,0),椭圆的长轴为2a,短轴为2b,那么根据椭圆的定义,点P(x,y)到F1和F2的距离之和等于常数2a,即有:\[PF1 + PF2 = 2a\]利用两点间距离公式,我们可以得到PF1和PF2的距离分别为:\[PF1 = \sqrt{(x + c)^2 + y^2}\]\[PF2 = \sqrt{(x c)^2 + y^2}\]将PF1和PF2的距离代入到PF1 + PF2 = 2a中,得到:\[\sqrt{(x + c)^2 + y^2} + \sqrt{(x c)^2 + y^2} = 2a\]整理得到:\[\sqrt{(x + c)^2 + y^2} = 2a \sqrt{(x c)^2 + y^2}\]两边平方得到:\[(x + c)^2 + y^2 = (2a \sqrt{(x c)^2 + y^2})^2\]展开得到:\[x^2 + 2cx + c^2 + y^2 = 4a^2 4a\sqrt{(x c)^2 + y^2} + (x c)^2 + y^2\]化简得到:\[4a\sqrt{(x c)^2 + y^2} = 4a^2 x^2 2cx c^2\]再次整理得到:\[a^2(x^2 + 2cx + c^2) = a^2(4a^2 x^2 2cx c^2) a^2(x^2 c^2)\]\[a^2x^2 + 2a^2cx + a^2c^2 = 4a^4 a^2x^2 2a^2cx a^2c^2 a^2x^2 + a^2c^2\]合并同类项得到:\[2a^2x^2 + 2a^2c^2 = 4a^4 a^2x^2 a^2x^2\]继续化简得到:\[2a^2x^2 + a^2x^2 = 4a^4 2a^2c^2\]\[3a^2x^2 = 4a^4 2a^2c^2\]最终得到椭圆的标准方程:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中\[b^2 = a^2 c^2\]。

3.1.1 椭圆及其标准方程(课件)

3.1.1 椭圆及其标准方程(课件)
M.且直线 AM 的斜率与直线 BM 的斜率的乘积是-12,求点 M 的轨迹方程.
解:设点 M 的坐标为(x,y),因为点 A 的坐标是(0,1), 所以直线 AM 的斜率 kAM=y-x 1(x≠0), 同理,直线 BM 的斜率 kBM=y+x 1(x≠0). 由已知有y-x 1·y+x 1=-12, 化简,得点 M 的轨迹方程为x22+y2=1(x≠0).
AB
经典例题
题型二 已知椭圆的标准方程求参数
跟踪训练2
若方程ax22-a-y212=1 表示焦点在 y 轴上的椭圆,则实数 a 的取值
范围是

-4<a<0 或 0<a<3 解析:方程化为ax22+12y-2 a=1,依题意应有 12-a>a2>0, 解得-4<a<0 或 0<a<3.
经典例题
题型三 求椭圆轨迹方程
经典例题
题型三 求椭圆轨迹方程
方法 3:代入法(相关点法) 若所求轨迹上的动点 P(x,y)与另一个已知曲线 C:F(x,y)=0 上的动点
Q(x1,y1)存在着某种联系,可以把点 Q 的坐标用点 P 的坐标表示出来,然后 代入已知曲线 C 的方程 F(x,y)=0,化简即得所求轨迹方程,这种求轨迹方 程的方法叫做代入法(又称相关点法).
k
∴2k>2,故 0<k<1.故选 CD.
当堂达标
4.若方程xm2+2my-2 1=1 表示椭圆,则实数 m 满足的条件是________.
mm>12且m≠1
解析:由方程xm2+2my-2 1=1
m>0, 表示椭圆,得2m-1>0,
m≠2m-1,
解得 m>12且 m≠1.
当堂达标
5.设 F1,F2 是椭圆x92+y42=1 的两个焦点,P 是椭圆上的点,且|PF1|∶|PF2| =2∶1,求△F1PF2 的面积. 解:由椭圆方程,得 a=3,b=2,c= 5. ∵|PF1|+|PF2|=2a=6 且|PF1|∶|PF2|=2∶1, ∴|PF1|=4,|PF2|=2, ∴|PF1|2+|PF2|2=|F1F2|2, ∴△PF1F2 是直角三角形,且∠F1PF2=90°, 故△F1PF2 的面积为12|PF1|·|PF2|=12×2×4=4。

椭圆的定义与标准方程

椭圆的定义与标准方程

椭圆的定义与标准方程椭圆是平面上的一种几何图形,它具有许多独特的性质和特点。

在数学中,我们常常通过定义和标准方程来描述和研究椭圆。

本文将介绍椭圆的定义、标准方程以及一些相关的基本知识。

首先,让我们来了解一下椭圆的定义。

椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

这两个定点称为焦点,常数2a称为椭圆的长轴长度。

椭圆还有一个重要的参数e,它表示焦点到中心的距离与长轴长度的比值。

当e小于1时,椭圆是一个封闭的曲线,当e等于1时,椭圆退化成一条线段,当e大于1时,椭圆不存在。

接下来,我们来看一下椭圆的标准方程。

一般来说,椭圆的标准方程可以表示为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)表示椭圆的中心坐标,a和b分别表示长轴和短轴的长度。

如果椭圆的长轴与x轴平行,那么标准方程可以简化为(x-h)²/a² + (y-k)²/b² = 1;如果椭圆的长轴与y轴平行,那么标准方程可以简化为(y-k)²/a² + (x-h)²/b² = 1。

通过标准方程,我们可以方便地求解椭圆的各种性质,如焦点坐标、离心率、直径、面积等。

椭圆作为一种重要的几何图形,在数学和物理学中有着广泛的应用。

在天文学中,行星的轨道常常被建模为椭圆,太阳系中的行星运动也可以通过椭圆来描述。

在工程学中,椭圆的性质被广泛应用于轨道设计、信号传输等领域。

在艺术和设计中,椭圆的美学特点也被人们所喜爱。

总之,椭圆是一种具有重要意义的几何图形,它的定义和标准方程为我们研究和应用椭圆提供了重要的工具。

通过深入理解椭圆的性质和特点,我们可以更好地应用它们于实际问题中,推动科学技术的发展。

希望本文对您理解椭圆有所帮助,谢谢阅读!。

椭圆及其标准方程(内有画椭圆动图)

椭圆及其标准方程(内有画椭圆动图)

整理得: ( a 2 c 2 ) x 2 a 2 y 2 a 2 (a 2 c 2 )
由椭圆定义可知
2a 2c,即a c, a 2 c 2 0,
设a 2 c2 b2 (b 0), 则上式变为 b2 x 2 a 2 y 2 a 2b2
两边同除以 a 2 b2得:
数 学 实 验
思考:
在画椭圆的过程中,
F1 F2
M
1.细绳两端的位置是固定的还是运动的?
2.细绳的长度变了没有?说明了什么? 3.当绳长等于或者小于两图钉之间距离时会怎样? 当|MF1|+|MF2|>|F1F2|时,M点轨迹为椭圆. 当若|MF1|+|MF2|=|F1F2|时,M点轨迹为线段. 当若|MF1|+|MF2|<|F1F2|时,M点轨迹不存在.
椭圆及其标准方程
学习目标:
1.掌握椭圆的定义; 2.掌握椭圆的标准方程及其推导过程.
一.图片感知 认识椭圆
二.类比探究 形成概念
日常生活中,处处存在着椭圆,我们如 何画出椭圆?椭圆的定义是什么?
数学实验:椭圆是满足什么条件的点的轨迹?
(1)取一条细绳, (2)把它的两端固定在板上的两点F1、F2, (3)用铅笔尖(M)把细绳拉紧,在板上慢慢移动, 看看画出的图形.
移项,再平方 ( x c ) 2 y 2 4a 2 4a ( x c ) 2 y 2 ( x c ) 2 y 2
即: a 2 cx a ( x c ) 2 y 2 两边再平方,得
a 4 2a 2cx c 2 x 2 a 2 x2 2a 2cx a 2c 2 a 2 y 2
椭圆的标准方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2 y2 a2 b2 1 (a b 0).
又焦点的坐标分别是(2,0),(2,0) c 2
a2 b2 4 ①
求椭圆标准方程的解题步骤:
又由

知(
5 2
)2
a2

(b232)2((21))1 设确出定椭焦圆点②的的标位准置方;程;
联立①②,
解得(a32)用1待0,定b系2数法6确定a、b的值,
的和等于定长2a,(大于
|F1F2 |)的点的轨迹叫椭圆。 MF1 MF2 2a 2c
M
• 定点F1、F2叫做椭圆的焦
点。
F1
2c F2
• 两焦点之间的距离叫做焦
距(2c)。
y
F1(-c,0) O
M (x,y) 如图所示:F1、F2为两定点,且 |F1F2|=2c,求平面内到两定点
F2(c,0) x F1、F2距离之和为定值2a(2a>2c) 的动点M的轨迹方程。
因此, 所求椭圆的标准方程写为出椭x2圆的y标2 准 方1 .程. 10 6
变式引申:求焦点在y轴上,且经过点A(1 , 1)、B(0,- 1)的
33
2
椭圆的标准方程.
解:设所求椭圆的方程为 y 2 + x 2 = 1,
a2
b2
将A( 1 , 1 ), B(0, - 1 )代入得:
33
2

解:以F1F2所在直线为x轴,线段F1F2的垂直平分线为y轴
建立直角坐标系,则焦点F1、F2的坐标分别为(-c,0)、(c,0)。
问题: 求曲线方程的基本步骤?
设(M1()建x,y系)为设点所;求轨迹上的任意一点,
则((椭23)圆)写列就出出是条方集件程合;;P={M||MF1|+ |MF2|=2a} 如何化简?
这里c2 a2 b2
三、例题分析
例1.已知椭圆方程为 x2 y2 1 , 25 16
则(1)a= 5 , b= 4 , c= 3 ;
(2)焦点在 x 轴上,其焦点坐标为 (-3,0)、(3,0) ,
焦距为 6 。
(3)若椭圆方程为 x2 y2 1 ,
16 25
其焦点坐标为 (0,3)、(0,-3)
如果把细绳的两端的距离拉大,那是否还能画出椭圆?
结论:绳长记为2a,两定点间的距离记为2c(c≠0). (1)当2a>2c时,轨迹是 椭圆 ; (2)当2a=2c时,轨迹是以F1、 F2为端点的线段 ; (3)当2a<2c时, 无轨迹 ;
二、基础知识讲解
1.椭圆定义:
• 平面上到两个定点的距离 如图:
2
2
2
2
所以 a 10.
又因为 c 2,所以 b2 a2 c2 10 4 6.
因此, 所求椭圆的标准方程为 x2 y2 1 . 10 6
例2.已知椭圆的两个焦点坐标分别是(-2,0), (2,0),
并且经过点 ( 5 , 3) , 求它的标准方程. 22
解法二:因为椭圆的焦点在x轴上,所以设它的标准方程为
.
例2.已知椭圆的两个焦点坐标分别是(-2,0),(2,0),
并且经过点 ( 5 , 3), 求它的标准方程. 22
解法一:因为椭圆的焦点在x轴上,所以设它的标准方程为 x2 y2 a2 b2 1 (a b 0).
由椭圆的定义知
2a ( 5 2)2 ( 3)2 ( 5 2)2 ( 3)2 2 10


1 2 3 a2
+

1 2 3 b2


-
1 2
2
a2
=1
=1 ,
解得:ab22
= =
1, 4 1.

ห้องสมุดไป่ตู้
5
故所求椭圆的标准方程为
y2 1
+
x2 1
= 1.
? : 45
思考一个问题 把“焦点在y轴上”这句话去掉,怎么办?
~ 求曲线方程的方法:
定义法:如果所给几何条件正好符合某 一特定的曲线(圆,椭圆等)的定义,则可 直接利用定义写出动点的轨迹方程.
待定系数法:所求曲线方程的类型已知, 则可以设出所求曲线的方程,然后根据条件求 出系数.用待定系数法求椭圆方程时,要“先定 型,再定量”.
例3.若 x2 + y2 = 1,表示焦点在x轴上的椭圆,则 mn
那么①式
x2 y2 a2 b2 1
(a>b>0)
2.椭圆的标准方程 y
M
F1
O
F2
x
y
F2
O F1
M
x
焦点F1(c,0), F2(c,0)
x2 a2

y2 b2
1(a
b
0)
这里c2 a2 b2
焦点F1(0,c), F2(0,c) y2 x2 1(a b 0) a2 b2
引例:
若取一条长度一定且没有弹性的细绳,把它的两端 都固定在图板的同一点处,套上铅笔,拉紧绳子,移动 笔尖,这时笔尖画出的轨迹是什么图形?
平面内到定点的 距离等于定长的 点的轨迹是圆.
思考: 平面内到两定点的距离之和等于定长的点的轨迹 又是什么呢?
探究:若将细绳的两端拉开一段距离,分别固定在图板上 不同的两点F1、F2处,并用笔尖拉紧绳子,再移动笔尖一 周,这时笔尖画出的轨迹是什么图形呢?
P M(x,y)
两边同除以a2(a2-c2)得:
x2 a2

y2 a2 c2
1

F1(-c,0) O
F2(c,0) x
如图点P是椭圆与y轴正半轴的交点
可得| PF1 || PF2 | a,| OF1 || OF2 | c, | PO | a2 c2
令b | PO | a2 c2
整理得a2 c你x 能a在(图x 中c)找2 出y2
怎样判断a, b, c大小关系?
两边平方表得示:aa4, 2ca,2cxa2c2x2c2,a2 x2 2a2cx a2c2 a2 y2
的线段吗?
整理,得 (a2-c2)x2+a2y2=a2(a2-c2)
y
∵2a>2c>0,即a>c>0,∴a2-c2>0,
即(4()x 化c简)2方程y;2 ( x c)2 y2 2a
(5)下结论。
( x c)2 y2 2a ( x c)2 y2
( x c)2 y2 2a ( x c)2 y2
则( x c)2 y2 4a2 4a ( x c)2 y2 ( x c)2 y2
相关文档
最新文档