椭圆及其标准方程知识点
椭圆相关知识点复习
第一部分 椭圆相关知识点讲解一.椭圆的定义及椭圆的标准方程:1.椭圆的定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2.椭圆的标准方程(1)当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=(2)当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -3.圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数).4.方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
二.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆⇔2200221x y a b+<三.椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
椭圆及标准方程
椭圆及标准方程椭圆是平面上到定点F1、F2的距离之和等于常数2a的点P的轨迹。
设F1(-c,0),F2(c,0),点P(x,y),则PF1+PF2=2a。
椭圆的标准方程为,x^2/a^2+y^2/b^2=1(a>b>0)。
椭圆的性质:1.椭圆的离心率0<e<1,焦点到中心的距离为ae。
2.椭圆的长轴2a,短轴2b,焦距2ae。
3.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
4.椭圆的面积为πab。
5.椭圆的焦点到直径的距离等于直径的一半。
6.椭圆的焦点到切线的距离等于焦点到法线的距离。
7.椭圆的切线与法线的交点坐标分别为(x1,y1)和(x1,-y1)。
8.椭圆的渐近线方程为y=±b/ax。
9.椭圆的参数方程为x=acosθ,y=bsinθ。
10.椭圆的极坐标方程为r=a(1-e^2)/(1+ecosθ)。
椭圆的标准方程推导:设椭圆的长轴为2a,短轴为2b,焦点为F1(-c,0),F2(c,0),中心为O(0,0),点P(x,y)。
则有PF1+PF2=2a,根据两点之间的距离公式可得。
√((x+c)^2+y^2)+√((x-c)^2+y^2)=2a。
整理得到。
(√((x+c)^2+y^2))^2+(√((x-c)^2+y^2))^2=4a^2。
化简得到。
x^2/a^2+y^2/b^2=1。
从而得到椭圆的标准方程。
椭圆的标准方程性质:1.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
2.椭圆的中心在原点O(0,0)。
3.椭圆的长轴在x轴上,短轴在y轴上。
4.椭圆的焦点为F1(-c,0),F2(c,0),离心率e=c/a。
5.椭圆的长轴长为2a,短轴长为2b,焦距2ae。
6.椭圆的面积为πab。
7.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
8.椭圆的参数方程为x=acosθ,y=bsinθ。
椭圆知识点总结表
椭圆知识点总结表一、基本概念1. 椭圆的定义椭圆的定义是指平面上到两个固定点(焦点)的距离之和是常数,这个常数称为椭圆的长轴,而两个焦点到椭圆中心的距离之和称为短轴。
椭圆中心到端点的距离称为半长轴和半短轴。
2. 椭圆的标准方程椭圆的标准方程为:$\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$其中,$(h,k)$为椭圆中心的坐标,$2a$为椭圆的长轴长度,$2b$为椭圆的短轴长度。
3. 椭圆的离心率椭圆的离心率定义为:$e=\dfrac{\sqrt{a^2-b^2}}{a}$离心率是一个描述椭圆形状的重要参数,它越接近于0,椭圆的形状越趋近于圆形,离心率越接近于1,椭圆的形状越接近于长条形。
二、性质1. 椭圆的焦点椭圆有两个焦点,它们到椭圆上任意一点的距离之和是常数。
焦点的坐标可以用椭圆的长轴长度和离心率来确定。
2. 椭圆的直径椭圆的长轴和短轴是椭圆的直径,长轴的两个端点称为椭圆的顶点,短轴的两个端点称为椭圆的边缘点。
3. 椭圆的参数方程椭圆的参数方程为:$x=h+a\cos t$,$y=k+b\sin t$参数$t$在$[0,2\pi]$范围内变化,当$t=0$时,$(x,y)$恰好为椭圆的右顶点,当$t=\pi$时,$(x,y)$恰好为椭圆的左顶点。
4. 椭圆的焦准线椭圆的焦准线是椭圆上任一点到两个焦点的连线,这个连线的长度是椭圆长轴的长度。
5. 椭圆的切线椭圆的切线与椭圆的长轴和短轴有一定的关系,具体的切线方程可以用椭圆的参数方程来推导得到。
6. 椭圆的曲率椭圆上的每一点都有一个曲率,曲率描述了椭圆在该点处的弯曲程度。
曲率与椭圆的离心率有关,离心率越大,椭圆的曲率越小。
7. 椭圆的对称性椭圆具有许多对称性,包括关于坐标轴的对称、关于原点的对称、关于椭圆轴的对称等。
三、应用1. 天体运动椭圆在天体运动中有广泛的应用,例如行星的轨道就是椭圆。
根据开普勒定律,行星绕太阳运动的轨道是一个椭圆,太阳在椭圆的一个焦点上。
椭圆标准方程及其性质知识点大全
(一)椭圆的定义及椭圆的标准方程:●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F ,F 的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a=b+c .2. 方程表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
(四)通径:如图:通径长 ●椭圆标准方程:12222=+by a x )0(>>b a ,(五)点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<(六)直线与椭圆的位置关系:●设直线l 的方程为:Ax+By+C=0,椭圆12222=+by a x (a ﹥b ﹥0),联立组成方程组,消去y(或x)利用判别式△的符号来确定:(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离; (七)弦长公式:●若直线AB:y kx b =+与椭圆标准方程:12222=+bya x )0(>>b a 相交于两点11(,)A x y 、x22(,)B x y ,把AB 所在直线方程y=kx+b ,代入椭圆方程12222=+by a x 整理得:Ax 2+Bx+C=0。
椭圆及标准方程
椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴。
椭圆的标准方程为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
其中a为长轴的一半,b为短轴的一半。
在椭圆的标准方程中,a和b的大小决定了椭圆的形状,当a>b时,椭圆的长轴水平;当a<b时,椭圆的长轴垂直。
椭圆的离心率e定义为焦距与长轴的比值,即e=\(\frac{c}{a}\),其中c为焦距之一。
离心率决定了椭圆的形状,当e=0时,椭圆退化为圆;当0<e<1时,椭圆是一个扁平的椭圆;当e=1时,椭圆是一个狭长的椭圆;当e>1时,椭圆不存在,退化为双曲线。
根据椭圆的标准方程,我们可以得到椭圆的一些重要性质。
首先,椭圆的中心在原点O(0,0),长轴与x轴平行,短轴与y轴平行。
其次,椭圆的焦点坐标为F1(-c,0)和F2(c,0),其中c=\(\sqrt{a^2-b^2}\)。
最后,椭圆的顶点坐标为A(a,0)和B(-a,0),其中a为长轴的一半。
除了标准方程外,椭圆还可以有其他形式的方程。
例如,椭圆的参数方程为:\(\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}\)。
其中t为参数,a和b同样为长轴和短轴的一半。
利用参数方程,我们可以更加灵活地描述椭圆上的点的运动规律。
另外,椭圆还可以通过矩形方程来表示,即:\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)。
其中(h,k)为椭圆的中心坐标。
通过矩形方程,我们可以方便地得到椭圆的中心和长短轴的信息。
总之,椭圆是一种重要的几何图形,具有许多独特的性质和形式。
通过标准方程、参数方程和矩形方程,我们可以更加深入地理解和描述椭圆的形状和特点。
对于数学和物理学的学习和应用都有着重要的意义。
高二椭圆知识点总结
高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。
1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。
(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。
(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。
1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。
这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。
二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。
2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。
2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。
椭圆的性质对于解析几何的学习非常重要。
在实际应用中,我们可以利用这些性质进行问题的求解和分析。
2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。
三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。
3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。
3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。
有关椭圆的所有知识点
有关椭圆的所有知识点
1. 椭圆的定义:椭圆是一种特殊的抛物线,它是二维平面上的曲线,其中两条轴的长度不相等,椭圆的方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
2. 椭圆的性质:
(1)椭圆的对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的中心点是两个对称轴的交点;
(3)椭圆的长轴和短轴的长度分别为a和b,椭圆的面积为S=πab;
(4)椭圆的边界是一个抛物线,称为椭圆弧,可以用参数方程表示:$$x=a\cos t,
y=b\sin t$$
3. 椭圆的标准方程:
(1)椭圆的标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(2)椭圆的中心在原点时,标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(3)椭圆的中心在(h,k)处时,标准方程为:$$\frac{(x-h)^2}{a^2}+\frac{(y-
k)^2}{b^2}=1$$
4. 椭圆的对称性:
(1)椭圆是一种具有对称性的曲线,其对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的对称性可以用参数方程表示:$$x=a\cos t,y=b\sin t$$
(3)椭圆的对称性可以用参数方程表示:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
5. 椭圆的离心率:椭圆的离心率是椭圆的一个重要参数,它可以表示椭圆的形状,它的定义是:椭圆的离心率等于椭圆的长轴与短轴之比,即:$$e=\frac{a-b}{a}$$。
椭圆及标准方程
椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点称为椭圆的焦点,且椭圆的长轴是以焦点为端点的线段的长度的两倍。
椭圆也可以用数学方程来描述,下面我们来介绍椭圆的标准方程以及相关性质。
1. 椭圆的标准方程。
椭圆的标准方程是指在平面直角坐标系中,椭圆的中心在原点,长轴与x轴平行,短轴与y轴平行的情况下,椭圆的方程。
假设椭圆的长轴长度为2a,短轴长度为2b,则椭圆的标准方程可以表示为:x^2/a^2 + y^2/b^2 = 1。
当椭圆的中心不在原点时,可以通过平移坐标轴的方法将椭圆的中心移动到原点,然后再求解标准方程。
2. 椭圆的性质。
椭圆有许多独特的性质,下面我们来介绍其中的一些重要性质:(1)焦点和离心率,椭圆的焦点到中心的距离称为椭圆的焦距,用2c表示。
椭圆的离心率定义为e=c/a,表示焦点到中心的距离与长轴长度的比值。
离心率是一个重要的参数,可以描述椭圆的形状。
(2)焦点和直角坐标系,椭圆的焦点与坐标系有着重要的几何关系。
设椭圆的焦点为F1(c,0)和F2(-c,0),则椭圆上任意一点P(x,y)到焦点的距离之和等于常数2a,即PF1+PF2=2a。
(3)椭圆的参数方程,椭圆还可以用参数方程来描述,参数方程为x=acosθ,y=bsinθ,其中θ为参数,取值范围为0到2π。
参数方程可以直观地描述椭圆上的点的位置,方便进行曲线的分析和计算。
3. 椭圆的图形和应用。
椭圆作为一种重要的几何图形,在数学、物理、工程等领域都有着广泛的应用。
在数学领域,椭圆是圆锥曲线中的一种,具有独特的几何性质和数学特征,是研究曲线和几何形状的重要对象。
在物理学中,椭圆的运动规律被广泛应用于天体运动、机械振动等领域。
在工程领域,椭圆的形状被广泛应用于建筑设计、轨道设计等领域。
总之,椭圆是一种重要的几何图形,具有独特的几何性质和广泛的应用价值。
通过了解椭圆的标准方程和相关性质,我们可以更好地理解和应用椭圆,为实际问题的分析和解决提供更多的可能性。
椭圆知识点总结
椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。
椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。
二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。
2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。
3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。
4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。
5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。
6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。
7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。
三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。
2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。
因此,椭圆和圆可以看作是同一种几何图形的不同特例。
四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。
2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。
3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。
4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。
五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。
2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。
3. 椭圆的面积可以通过积分求解,面积公式为S = πab。
4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。
六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。
椭圆标准方程及其性质知识点大全精编版
【专题七】椭圆标准方程及其性质知识点大全(一)椭圆的定义及椭圆的标准方程:●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2离心率①(01)c e e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
椭圆公式知识点总结
椭圆公式知识点总结一、椭圆的定义:椭圆可以通过焦点和准线来定义。
给定两个点F1和F2(焦点),定义椭圆E为平面上到这两个焦点的距离之和等于常数2a的点的集合。
即对于椭圆E上的任意一点P,有PF1 + PF2 = 2a。
该常数2a称为椭圆的长轴长度。
二、椭圆的标准方程:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心,a为长轴的长度的一半,b为短轴的长度的一半。
该方程中的参数可以通过椭圆的焦点和准线的位置确定。
三、半通径和离心率:对于椭圆E,定义半通径r为椭圆上任意一点P到椭圆中心O的距离,即OP=r。
另外,椭圆的离心率e定义为焦点到中心的距离除以长轴的长度,即e=√(a²-b²)/a。
离心率可以描述椭圆的瘦胖程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆变得更加扁平。
四、焦点和准线属性:椭圆的焦点F1和F2具有一些特殊的性质。
首先,椭圆上的任意一点到两个焦点的距离之和等于椭圆的长轴长度。
其次,椭圆上任意一点到准线的距离之和等于椭圆的长轴长度。
这些性质可以通过椭圆的几何构造得到。
五、参数方程和极坐标方程:椭圆也可以通过参数方程和极坐标方程进行描述。
参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。
极坐标方程为r = a*(1-e*cos(θ)),其中θ为极角。
这些方程可以将椭圆与圆和其他曲线进行对比,从而更好地理解椭圆的性质。
六、旋转椭圆:椭圆可以通过旋转来获得不同的形态。
当椭圆沿着坐标轴旋转θ角度时,可以得到旋转椭圆。
旋转椭圆的标准方程可以通过坐标变换得到。
旋转椭圆的性质与普通椭圆类似,但是在计算和解析过程中需要考虑坐标轴的旋转。
七、椭圆的应用:椭圆具有广泛的应用。
在几何学中,椭圆可以描述行星的轨道和天体的运动。
在工程学和物理学中,椭圆可以用来描述光学系统的成像和传输特性。
高二椭圆知识点总结
椭圆一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF1|+|PF2|=2a ,2a >|F1F2|=2c};这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程:222c a b =-①焦点在x 轴上:12222=+b y a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+b x a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n += 或者 mx2+ny2=1二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+b y a x (a >b >0) 横坐标-a≤x≤a ,纵坐标-b≤x≤b(2)椭圆12222=+b x a y (a >b >0) 横坐标-b≤x≤b,纵坐标-a≤x≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A1(-a ,0),A2(a ,0),B1(0,-b ),B2(0,b )(2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即a c称为椭圆的离心率,记作e (10<<e ),22221()b e a a ==-ce 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
高中数学椭圆知识点总结及公式大全
高中数学椭圆知识点总结及公式大全椭圆是几何学中的重要概念,它的知识点包括定义、标准方程、性质等。
以下是椭圆知识点总结及公式大全:一、椭圆的基本概念1. 椭圆的概念:平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点之间的距离叫做椭圆的焦距。
2. 椭圆的标准方程:焦点在x轴上时,标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (其中 $a > b > 0$ )焦点在y轴上时,标准方程为:$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (其中 $a > b > 0$ )二、椭圆的性质1. 范围:椭圆上的任意一点P,它到椭圆两个焦点的距离之和为定值,等于椭圆的长轴的长度。
2. 对称性:椭圆是关于其长轴和短轴对称的。
3. 顶点:椭圆与长轴和短轴的交点称为顶点。
长轴的顶点是$(-a,0),(a,0)$,短轴的顶点是$(0,-b),(0,b)$。
4. 焦点:椭圆的两个焦点位于长轴上,焦距为$2c$,其中$c^2 = a^2 - b^2$。
5. 离心率:椭圆的离心率定义为$e = \frac{c}{a}$,离心率是描述椭圆扁平程度的一个重要指标。
三、椭圆的参数方程椭圆的参数方程可以用角度θ表示,其中x=a×cosθ,y=b×sinθ。
参数方程可以帮助我们更方便地表达椭圆的轨迹。
以上就是关于高中数学中椭圆的全部知识点总结和相关公式,供你参考,建议咨询数学老师或者查看高中数学教辅以获取更准确全面的信息。
高中数学椭圆及其标准方程知识点
椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
高中数学椭圆知识点必看
高中数学椭圆知识点必看
椭圆是一个非常重要的数学概念,在高中数学中经常出现。
下面是一些高中数学中关于椭圆的知识点:
1. 椭圆的定义:椭圆是平面上到两个给定点(焦点)的距离之和等于常数的点集。
2. 椭圆的基本属性:椭圆有两个焦点和一个主轴,焦点的距离之和等于主轴的长度。
椭圆的形状由离心率决定,离心率小于1时椭圆被拉长,离心率等于1时椭圆退化为圆。
3. 椭圆的方程:椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心,a和b分别为椭圆的半长轴和半短轴长度。
4. 椭圆的焦点方程:椭圆的焦点位于椭圆的长轴上,焦点与中心的距离为c,有c^2 = a^2 - b^2。
5. 椭圆的参数方程:椭圆也可以用参数方程表示,x = h + a*cosθ,y = k + b*sinθ,其中θ为参数。
6. 椭圆的方程性质:椭圆的弦长、离心率和斜率等性质都可以通过椭圆方程来求解。
7. 椭圆的几何意义:椭圆可以作为一种几何图形,它在现实中的应用非常广泛,例如天文学中的行星轨道、电子轨道等等。
这些是高中数学中关于椭圆的一些必看的知识点,掌握了这些知识,就能够更好地理解和运用椭圆的性质。
椭圆知识点详细总结
椭圆知识点详细总结在数学的世界中,椭圆是一个非常重要的几何图形,它具有独特的性质和广泛的应用。
接下来,让我们一起深入了解椭圆的相关知识。
一、椭圆的定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用数学语言表示就是:|PF₁| +|PF₂| = 2a(2a > 2c,其中 2c 为焦距)。
二、椭圆的标准方程1、焦点在 x 轴上的椭圆标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(a > b > 0),其中 a 为椭圆的长半轴长,b 为椭圆的短半轴长。
2、焦点在 y 轴上的椭圆标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(a > b > 0)。
要注意区分焦点所在的坐标轴,根据焦点位置来确定方程的形式。
三、椭圆的性质1、对称性椭圆关于 x 轴、y 轴和原点对称。
2、范围对于焦点在 x 轴上的椭圆,x 的取值范围是a, a,y 的取值范围是b, b;对于焦点在 y 轴上的椭圆,x 的取值范围是b, b,y 的取值范围是a, a。
3、顶点椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为(±a, 0),(0, ±b);焦点在 y 轴上时,顶点坐标为(0, ±a),(±b, 0)。
4、离心率椭圆的离心率 e =\(\frac{c}{a}\)(0 < e < 1),其中 c 为焦距的一半。
离心率反映了椭圆的扁平程度,e 越接近 0,椭圆越接近于圆;e 越接近 1,椭圆越扁。
5、焦半径椭圆上一点 P(x₀, y₀)到焦点 F₁、F₂的距离分别为|PF₁| = a +ex₀,|PF₂| = a ex₀(焦点在 x 轴上);|PF₁| = a + ey₀,|PF₂| = a ey₀(焦点在 y 轴上)。
椭圆知识点笔记
椭圆知识点笔记椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
一、椭圆的标准方程当焦点在 x 轴上时,椭圆的标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为椭圆的长半轴长,\(b\)为椭圆的短半轴长。
当焦点在 y 轴上时,椭圆的标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
这里要注意,判断焦点在哪个轴上,要看分母的大小,分母大的对应的轴就是焦点所在的轴。
二、椭圆的几何性质1、范围对于焦点在 x 轴上的椭圆\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\),\(a\leq x\leq a\),\(b\leq y\leq b\);对于焦点在 y 轴上的椭圆\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\),\(b\leqx\leq b\),\(a\leq y\leq a\)。
2、对称性椭圆关于 x 轴、y 轴和原点都是对称的。
3、顶点焦点在 x 轴上的椭圆的顶点坐标为\((\pm a, 0)\),\((0,\pm b)\);焦点在y 轴上的椭圆的顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
4、离心率椭圆的离心率\(e =\frac{c}{a}\),其中\(c\)为椭圆的半焦距,满足\(c^2 = a^2 b^2\)。
离心率反映了椭圆的扁平程度,\(0< e < 1\),\(e\)越接近 0,椭圆越圆;\(e\)越接近 1,椭圆越扁。
5、焦半径设点\(P(x_0, y_0)\)是椭圆上的任意一点,焦点在 x 轴上时,左焦半径\(|PF_1| = a + ex_0\),右焦半径\(|PF_2| = a ex_0\);焦点在 y 轴上时,上焦半径\(|PF_1| = a + ey_0\),下焦半径\(|PF_2| = a ey_0\)。
解析几何专题1椭圆方程知识点及椭圆标准方程
高考数学 - 椭圆知识点一、椭圆的定义:(1)第一定义:平面内与两定点 F 1、 F 2距离和等于常数 2a (大于F 1F 2 )的点的轨迹叫做椭圆 ( 2 )第二定义:平面上到定点的距离与到定直线的距离之比为常数 e ,当 0 e 1时,点的轨 迹是椭圆 . 椭圆上一点到焦点的距离可以转化为到准线的距离 . 椭圆定义的表达式: PF 1 PF 2 2a 2a F 1F 2 0 ;M P PF 1 PF 2 2a, 2a F 1F 2 0 .二、椭圆方程1. 椭圆的标准方程 :x 2y 2y 2x 2焦点在 x 轴: x 2 y 2 1a b 0 ;焦点在 y 轴: y 2 x 2 1a b 0 .a 2b 2a 2b 2a 是长半轴长,b 是短半轴长,即焦点在长轴所在的数轴上,且满足 a 2 b 2c 2. 2. Ax 2By 2C A 、B 、C 均不为零,且 A B 表示椭圆的条件为:Ax 2By 21, x 2y 21.C C 1,C C1.AB所以只有 A 、B 、C 同号,且 A B 时,方程表示椭圆; 当 C C时,椭圆的焦点在 x 轴上;AB当 C C 时,椭圆的焦点在 y 轴上.AB22三、椭圆的几何性质(以 x 2 y 2 1 a b 0 为例)a2 b 21. 有限性: x a, y b 说明椭圆位于直线 x a 和y b 所围成的矩形里(封闭曲线) .该性 质主要用于求最值、轨迹检验等问题 .2. 对称性:关于原点、 x 轴、 y 轴对称。
3. 顶点(椭圆和它的对称轴的交点)有四个:A1 a,0、A2 a,0、B1 0, b、B2 0,b.4. 长轴、短轴、焦距:A 1A 2叫椭圆的长轴, A 1A 2 2a,a 是长半轴长;B 1B 2叫椭圆的短轴, B 1B 2 2b,b 是短半轴长 . F 1F 2 叫椭圆的焦距;为 2c .5. 离心率( 1 )椭圆焦距与长轴的比 e ca2 2 2(2)Rt OB 2F 2, B 2F 22 OB 22 OF 2 2,即a 2 b 2 c 2 .这是椭圆的特征三角形,并且 cos OF 2B 2 的值是椭圆的离心率 .(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关 .当e 接近于 1 时, c 越接近于a ,从而b a 2c 2越小,椭圆越扁;当e 接近于 0时,c 越接近于 0,从而b a 2c 2越大,椭圆越接近圆。
高中数学椭圆——标准方程
椭圆标准方程【知识点】知识点一 椭圆的定义(1)我们把平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. (2)椭圆的定义用集合语言叙述为: P ={M||MF 1|+|MF 2|=2a ,2a>|F 1F 2|}.(3)2a 与|F 1F 2|的大小关系所确定的点的轨迹如下表:条件结论2a >|F 1F 2| 动点的轨迹是椭圆 2a =|F 1F 2| 动点的轨迹是线段F 1F 2 2a <|F 1F 2| 动点不存在,因此轨迹不存在【问题一】在椭圆的标准方程中a>b>c 一定成立吗? 不一定,只需a>b ,a>c 即可,b ,c 的大小关系不确定【问题二】若两定点A 、B 间的距离为6,动点P 到两定点的距离之和为10,如何求出点P 的轨迹方程? 以两定点的中点为坐标原点,以AB 所在直线为x 轴建立直角坐标系,则A(3,0),B(-3,0).设P(x ,y),依题意得|PA|+|PB|=10,所以x -32+y2+x +32+y2=10,即点P 的轨迹方程为x225+y216=1.椭圆标准方程的两种形式 焦点位置标准方程焦点焦距焦点在x 轴上 _________ (a >b >0) F 1(-c ,0),F 2______ 2c焦点在y 轴上 __________ (a >b >0) F 1 ,F 2(0,c ) 2c椭圆的标准方程与其在坐标系中的位置的对应关系根据方程判断椭圆的焦点位置及求焦点坐标判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x 2项和y 2项的分母哪个更大一些,即“谁大在谁上”.如方程为y 25+x 24=1的椭圆,焦点在y 轴上,而且可求出焦点坐标F 1(0,-1),F 2(0,1),焦距|F 1F 2|=2.类型一:椭圆的定义【例1】点P(-3,0)是圆C :x 2+y 2-6x -55=0内一定点,动圆M 与已知圆相内切且过P 点,判断圆心M 的轨迹.【变式】若将本例中圆C 的方程改为:x 2+y 2-6x =0且点P(-3,0)为其外一定点,动圆M 与已知圆C 相外切且过P 点,求动圆圆心M 的轨迹方程.即(x -3)2+(y -0)2-(x +3)2+(y -0)2=3,方程x 2+y 2-6x -55=0化标准形式为:(x -3)2+y 2=64,圆心为(3,0),半径r =8.因为动圆M 与已知圆相内切且过P 点,所以|MC |+|MP |=r =8,根据椭圆的定义,动点M 到两定点C ,P 的距离之和为定值8>6=|CP |,所以动点M 的轨迹是椭圆. 设M (x ,y ),据题,圆C :(x -3)2+y 2=9,圆心C (3,0),半径r =3.由|MC |=|MP |+r ,故|MC |-|MP |=r =3,整理得x 294-y 2274=1(x <0).类型二:求椭圆的标准方程命题角度1 用待定系数法求椭圆的标准方程【例2】求中心在原点,焦点在坐标轴上,且经过两点P (13,13),Q (0,-12)的椭圆的标准方程.方法一 ①当椭圆焦点在x 轴上时,可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧ 132a 2+132b2=1,0+-122b 2=1,解得⎩⎨⎧ a 2=15,b 2=14.由a>b>0知不合题意,故舍去②当椭圆焦点在y 轴上时,可设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧132a 2+132b2=1,-122a 2+0=1,解得⎩⎨⎧a 2=14,b 2=15.【变式2】 下列命题是真命题的是__②__.(将所有真命题的序号都填上) ②已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆; ②已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段; ②到定点F 1(-3,0),F 2(3,0)的距离相等的点的轨迹为椭圆. ②2<2,故点P 的轨迹不存在;②因为2a =|F 1F 2|=4,所以点P 的轨迹是线段F 1F 2;②到定点F 1(-3,0),F 2(3,0)的距离相等的点的轨迹是线段F 1F 2的垂直平分线(y 轴).所以所求椭圆的标准方程为y 214+x 215=1.方法二 设椭圆的方程为mx 2+ny 2=1(m>0,n>0,m ≠n).则⎩⎨⎧19m +19n =1,14n =1,解得⎩⎨⎧m =5,n =4.所以所求椭圆的方程为5x 2+4y 2=1, 故椭圆的标准方程为y 214+x 215=1.【变式】求与椭圆x 225+y 29=1有相同焦点,且过点(3,15)的椭圆方程.据题可设其方程为x 225+λ+y 29+λ=1(λ>-9),又椭圆过点(3,15),将此点代入椭圆方程,得λ=11(λ=-21舍去), 故所求的椭圆方程为x 236+y 220=1.总结:(1)若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆方程为mx 2+ny 2=1(m ≠n ,m>0,n>0).(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)有公共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1 (a >b >0,b 2>-λ),与椭圆y 2a 2+x 2b 2=1(a >b >0)有公共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,b 2>-λ).【变式2】求适合下列条件的椭圆的标准方程.(1)椭圆的两个焦点坐标分别为F 1(-4,0),F 2(4,0),椭圆上一点P 到两焦点的距离之和等于10; 解:设其标准方程为x 2a 2+y 2b 2=1(a >b >0).据题2a =10,c =4,故b 2=a 2-c 2=9, ②所求椭圆的标准方程为x 225+y 29=1.(2)椭圆过点(3,2),(5,1);设椭圆的一般方程为Ax 2+By 2=1(A>0,B>0,A ≠B),则⎩⎪⎨⎪⎧9A +4B =1,25A +B =1,解得⎩⎨⎧A =391,B =1691.故所求椭圆的标准方程为x 2913+y 29116=1.(3)椭圆的焦点在x 轴上,且经过点(2,0)和点(0,1). 解:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由⎩⎨⎧4a 2=1,1b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,②所求椭圆的标准方程为x 24+y 2=1.命题角度2 用定义法求椭圆的标准方程【例3】已知一动圆M 与圆C1:(x +3)2+y 2=1外切,与圆C2:(x -3)2+y 2=81内切,试求动圆圆心M 的轨迹方程.故所求动圆圆心M 的轨迹方程为x 225+y 216=1.总结:用定义法求椭圆标准方程的思路:先分析已知条件,看所求动点轨迹是否符合椭圆的定义,若符合椭圆的定义,可以先定位,再确定a ,b 的值.【变式3】已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过点P 作长轴的垂线,垂足恰好为椭圆的一个焦点,求此椭圆的方程. 设椭圆的两个焦点分别为F 1,F 2, 不妨取|PF 1|=453,|PF 2|=253, 由椭圆的定义,知2a =|PF 1|+|PF 2|=2 5.即a = 5.据题C 1(-3,0),r 1=1,C 2(3,0),r 2=9, 设M (x ,y ),半径为R , 则|MC 1|=1+R ,|MC 2|=9-R , 故|MC 1|+|MC 2|=10,据椭圆定义知,点M 的轨迹是一个以C 1,C 2为焦点的椭圆,且a =5,c =3,故b 2=a 2-c 2=16.由|PF 1|>|PF 2|知,PF 2垂直于长轴. 在Rt②PF 2F 1中,4c 2=|PF 1|2-|PF 2|2=609, ②c 2=53,②b 2=a 2-c 2=103.又所求的椭圆的焦点可以在x 轴上,也可以在y 轴上, 故所求的椭圆方程为x 25+3y 210=1或3x 210+y 25=1.类型三: 椭圆中焦点三角形问题【例4】已知P 是椭圆y 25+x 24=1上的一点,F 1,F 2是椭圆的两个焦点,且②F 1PF 2=30°,求②F 1PF 2的面积.解:由椭圆的标准方程,知a =5,b =2, ②c =a 2-b 2=1,②|F 1F 2|=2.又由椭圆的定义,知|PF 1|+|PF 2|=2a =2 5.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos ∠F 1PF 2, 即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+3)|PF 1|·|PF 2|, ②|PF 1|·|PF 2|=16(2-3).② =12|PF 1|·|PF 2|sin②F 1PF 2=12×16(2-3)×12=8-4 3.【例5】已知椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,求②F 1PF 2的大小.解:由x 29+y 22=1,知a =3,b =2,②c =7,∴|PF 2|=2a -|PF 1|=2,②cos②F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=-12,∴∠F 1PF 2=120°.12F PFS △【变式】(1)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点三角形PF 1F 2中,②F 1PF 2=α,点P 的坐标为(x 0,y 0),求证:②PF 1F 2的面积S ②PF 1F 2=c |y 0|=b 2tan α2.(2)已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足②PF 1F 2=90°(如图).求②PF 1F 2的面积.(1)S ②PF 1F 2=12|F 1F 2||y 0|=c |y 0|.所以|PF 1||PF 2|=2b 21+cos α.根据三角形的面积公式,得 =12|PF 1||PF 2|sin α=12·2b 21+cos α·sin α=b 2·sin α1+cos α.又因为sin α1+cos α=2sin α2cos α22cos 2α2=sinα2cosα2=tan α2,所以S ②PF 1F 2=b 2tan α2.(2)由已知得a =2,b =3, 所以c =a 2-b 2=4-3=1.在②PF 1F 2中,根据椭圆定义,得|PF 1|+|PF 2|=2a .两边平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.②根据余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos α=4c 2. ② ②-②,得(1+cos α)|PF 1||PF 2|=2b 2,从而|F 1F 2|=2c =2. 在②PF 1F 2中,由勾股定理可得|PF 2|2=|PF 1|2+|F 1F 2|2,即|PF 2|2=|PF 1|2+4.又由椭圆定义知|PF 1|+|PF 2|=2×2=4,从而有(4-|PF 1|)2=|PF 1|2+4.解得|PF 1|=32.所以②PF 1F 2的面积S =12|PF 1|·|F 1F 2|=12×32×2=32,即②PF 1F 2的面积是32.总结:(1)如图所示,以经过椭圆两焦点F 1,F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴,建立直角坐标系xOy. (2)设点:设点M(x ,y)是椭圆上任意一点,且椭圆的焦点坐标为F 1(-c ,0),F 2(c ,0). (3)列式:依据椭圆的定义式|MF 1|+|MF 2|=2a 列方程, 并将其坐标化为x +c2+y 2+x -c 2+y 2=2a . ②(4)化简:通过移项、两次平方后得到:(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2),为使方程简单、对称、便于记忆,引入字母b ,令b 2=a 2-c 2,可得椭圆标准方程为x 2a 2+y 2b 2=1(a >b >0). ②知识点椭圆标准方程的认识与推导【问题1】椭圆标准方程的几何特征与代数特征分别是什么?标准方程的几何特征:椭圆的中心在坐标原点,焦点在x轴或y轴上.标准方程的代数特征:方程右边为1,左边是关于xa与yb的平方和,并且分母为不相等的正值.【问题2】依据椭圆方程,如何确定其焦点位置?把方程化为标准形式,与x2,y2相对应的分母哪个大,焦点就在相应的轴上.【问题3】观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.(1)如图所示,以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy.(2)设点:设点M(x,y)是椭圆上任意一点,且椭圆的焦点坐标为F1(-c,0),F2(c,0).(3)列式:依据椭圆的定义式|MF1|+|MF2|=2a列方程,并将其坐标化为(x+c)2+y2+(x-c)2+y2=2a.①(4)化简:通过移项、两次平方后得到:(a2-c2)x2+a2y2=a2(a2-c2),为使方程简单、对称、便于记忆,引入字母b,令b2=a2-c2,可得椭圆标准方程为x2a2+y2b2=1(a>b>0).②(5)从上述过程可以看到,椭圆上任意一点的坐标都满足方程②,以方程②的解(x,y)为坐标的点到椭圆的两个焦点F1(-c,0),F2(c,0)的距离之和为2a,即以方程②的解为坐标的点都在椭圆上.由曲线与方程的关系可知,方程②是椭圆的方程,我们把它叫做椭圆的标准方程.(1)椭圆的标准方程的形式(2)方程(3)椭圆方程中参数a,b,c之间的关系为____a2=b2+c2____.类型一 椭圆标准方程的确定例1 求焦点在坐标轴上,且经过A (3,-2)和B (-23,1)两点的椭圆的标准方程. 解 方法一 (1)当焦点在x 轴上时, 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意有⎩⎪⎨⎪⎧ (3)2a 2+(-2)2b2=1,(-23)2a2+12b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1.(2)当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b2=1,12a 2+(-23)2b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=15.此时不符合a >b >0,所以方程组无解. 故所求椭圆的标准方程为x 215+y 25=1.方法二 设所求椭圆的方程为Ax 2+By 2=1(A >0,B >0且A ≠B ),依题意有⎩⎪⎨⎪⎧3A +4B =1,12A +B =1,解得⎩⎨⎧A =115,B =15.故所求椭圆的标准方程为x 215+y 25=1.反思与感悟 求解椭圆的标准方程,可以利用定义,也可以利用待定系数法,选择求解方法时,一定要结合题目条件,其次需注意椭圆的焦点位置.【变式1】求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-32,52); (2)焦点在y 轴上,且经过两点(0,2)和(1,0).解 (1)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). 由椭圆的定义知:2a = (-32)2+(52+2)2+ (-32)2+(52-2)2 =210,即a =10.又c =2,∴b 2=a 2-c 2=6.∴所求的椭圆的标准方程为y 210+x 26=1. (2)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0). 又椭圆经过点(0,2)和(1,0),∴⎩⎨⎧ 4a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1. ∴所求的椭圆的标准方程为y 24+x 2=1.类型二 相关点法在求解椭圆方程中的应用例2 如图,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点M 的轨迹.解 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 0,y =y 02.因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4.①把x 0=x ,y 0=2y 代入方程①,得x 2+4y 2=4,即x 24+y 2=1. 所以点M 的轨迹是一个焦点在x 轴上的椭圆.反思与感悟 如果一个动点P 随着另一个在已知曲线上运动的动点Q 而运动,则求P 点的轨迹方程时一般用转代法来求解.基本步骤为(1)设点:设所求轨迹上动点坐标为P (x ,y ),已知曲线上动点坐标为Q (x 1,y 1).(2)求关系式:用点P 的坐标表示出点Q 的坐标,即得关系式⎩⎪⎨⎪⎧x 1=g (x ,y ),y 1=h (x ,y ). (3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.跟踪训练2 如图所示,B 点坐标为(2,0),P 是以O 为圆心的单位圆上的动点,∠POB 的平分线交直线PB 于点Q ,求点Q 的轨迹方程.解 由三角形角平分线性质得|BQ ||QP |=|OB ||OP |=2. ∴BQ →=2QP →. 设Q (x ,y ),P (x 0,y 0),则(x -2,y )=2(x 0-x ,y 0-y ),∴⎩⎪⎨⎪⎧x -2=2x 0-2x ,y =2y 0-2y ,∴⎩⎨⎧ x 0=3x -22,y 0=3y 2.又∵点P 在单位圆x 2+y 2=1上.∴(3x -22)2+(32y )2=1. ∴点Q 的轨迹方程为(3x -2)24+94y 2=1.。
椭圆知识点总结
椭 圆一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程: 222c a b =-①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c ) 谁的分母大,焦点在那个轴上注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围 (1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性: 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.顶点 (1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即ac 称为椭圆的离心率,记作e (10<<e ),22221()b e a a ==-c e 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。
注意: 椭圆12222=+by a x 的图像中线段的几何特征(如下图):(1))2(21a PF PF =+;e PM PF PM PF ==2211;)2(221ca PM PM =+;(2))(21a BF BF ==;)(21c OF OF ==;2221b a B A B A +==;(3)c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;知识点四:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a注意:椭圆12222=+b y a x ,12222=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ace ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。
规律方法: 1.如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴。
当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。
此时,椭圆焦点在坐标轴上。
确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。
2.椭圆标准方程中的三个量c b a ,,的几何意义椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。
分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:)0(>>b a ,)0(>>c a ,且)(222c b a +=。
可借助右图理解记忆:显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边。
3.如何由椭圆标准方程判断焦点位置 椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。
4.方程均不为零)C B A C By Ax ,,(22=+是表示椭圆的条件方程C By Ax =+22可化为122=+CBy C Ax ,即122=+BC By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆。
当B C A C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上。
5.求椭圆标准方程的常用方法: ①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值。
其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。
6.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。
与椭圆12222=+b y a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。
7.判断曲线关于x 轴、y 轴、原点对称的依据:① 若把曲线方程中的x 换成x -,方程不变,则曲线关于y 轴对称; ② 若把曲线方程中的y 换成y -,方程不变,则曲线关于x 轴对称;③ 若把曲线方程中的x 、y 同时换成x -、y -,方程不变,则曲线关于原点对称。
8.如何求解与焦点三角形△PF 1F 2(P 为椭圆上的点)有关的计算问题? 思路分析:与焦点三角形△PF 1F 2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式2121sin 2121PF F PF PF S F PF ∠⨯⨯=∆相结合的方法进行计算解题。
将有关线段2121F F PF PF 、、,有关角21PF F ∠ (21PF F ∠≤21BF F ∠)结合起来,建立21PF PF +、21PF PF ⨯之间的关系.9.如何计算椭圆的扁圆程度与离心率的关系? 长轴与短轴的长短关系决定椭圆形状的变化。
离心率)10(<<=e ace ,因为222b a c -=,b a 、表示为)10()(12<<-=e ab e 。
0>>c a ,用显然:当a b 越小时,)10(<<e e 越大,椭圆形状越扁;当ab越大,)10(<<e e 越小,椭圆形状越趋近于圆。
(一)椭圆及其性质1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1 F 2|)的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
(2)一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率 2、椭圆的标准方程3、椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x4、离心率: 椭圆焦距与长轴长之比a c=⇒2)(1ab e -= 0<<e 椭圆的准线方程左准线ca x l 21:-= 右准线c a x l 22:=(二)、椭圆的焦半径椭圆的焦半径公式:(左焦半径)01ex a r += (右焦半径)02ex a r -= 其中e 是离心率 焦点在y 轴上的椭圆的焦半径公式:⎩⎨⎧-=+=0201ey a MF ey a MF( 其中21,F F 分别是椭圆的下上焦点) (三)、直线与椭圆问题(韦达定理的运用)1、弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-=2121x x k -+=2122124)(1x x x x k -++=例1. 已知椭圆及直线y =x +m 。
(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线的方程。
2、已知弦AB 的中点,研究AB 的斜率和方程AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦,中点M坐标为(x 0,y 0),则AB 的斜率为-b 2x 0a 2y 0.运用点差法求AB 的斜率,设A (x 1,y 1),B (x 2,y 2).A 、B 都在椭圆上,∴⎩⎪⎨⎪⎧x 1 2a 2+y 12b 2=1,x 2 2a 2+y 22b 2=1,两式相减得x 1 2-x 2 2a 2+y 1 2-y 22b 2=0,∴x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b2=0, 即y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2=-b 2x 0a 2y 0.故k AB =-b 2x 0a 2y 0.。