模具的加热、保温与冷却

合集下载

模具热处理方法有哪些【详情】

模具热处理方法有哪些【详情】

模具热处理方法有哪些?根据行业的要求,热处理工艺主要分为整体热处理、表面热处理、化学热处理三大工艺类型。

而在模具制造中经常采用的是:退火、淬火、回火、调质等整体热处理工艺,以及渗碳、渗氮、碳氮共渗等化学热处理工艺。

热处理工艺按工件在加工过程中要求或所处工序位置不同又可分为预备热处理和最终热处理两类。

预备热处理的目的在于消除先前加工所造成的某些缺陷,如晶粒粗大、带状组织等;或降低硬度适应以后机加工的需要;或为调整组织状态、消除内应力为最终热处理做好组织准备。

预备热处理一般指退火、正火和调质,主要对象是锻件、铸件和粗加工工件。

最终热处理能使钢件满足在使用条件下的性能要求,如淬火、回火、化学或表面热处理。

有时,钢材退火或正火能满足使用性能要求,这时正火和退火也是最终热处理。

一、退火及其目的、应用和分类将钢件加热到临界温度以上20——30。

C,保温一定时间后随炉温或在石灰、石英砂中缓慢冷却下来,以得到接近平衡状态组织的一种热处理方法,称为退火。

1、退火的目的1、降低硬度,改善削性能2、削除偏析,均匀成分,改善铸造、轧制、锻造和焊接过程中的组织缺陷,消除残留应力。

3、细化晶粒,改善性能,并为最终热处理准备良好的金相组织。

4、恢复塑性、韧性,便于冷变形加工。

5、消除内应力,稳定尺寸,减少淬火变形和裂纹。

2、退火的应用,退火工艺主要腹膜于铸锻件和冷压件加工后,利用堆焊和焊接方法来强化或修补凹模后,都必须进行退火来消除应力。

3、退火的分类退火可以细分为完全退火、等温退火、球化退火、均匀化退火等多种。

1、完全退火。

完全退火是将亚共析钢(碳的质量分数<0.77%)加热到A3以上,保温足够的时间,使组织完全转变成奥氏体冷却。

完全退火的目的是使钢件软化,以便于以后的机械切削加工或塑性变形加工;使钢的晶粒细化、消除内应力以及为淬火准备适宜的组织。

为了达到上述目的,完全退火的加热温度通常规定为高于A3以上20——30。

C。

热处理的方式详解

热处理的方式详解

碳钢 合金钢
①单液淬火→加热A化后的钢件放入水或油中连续冷却 至室温的方法。
(水淬应力大,工件易变形、开裂;油淬冷却速度慢,碳钢 油淬无法全部获得M)
②双液淬火→加热A化后的钢件先放入水中冷却至接近 Ms后再放入油中冷却至室温。
(在油中缓慢实现M转变,淬火应力小,可防止工件变形和开 裂。但水中停留的时间较难把握。用于形状复杂件防开裂)
光镜下形貌
电镜下形貌
索氏体形貌像
光镜形貌
电镜形貌
屈氏体形貌像
光镜形貌 电镜形貌
贝氏体转变 ➢550~350℃: B上; 40~45HRC;
1)贝氏体B ----含碳略微过饱和的铁素体与弥
散分布的微细渗碳体的混合物。 2)过冷奥氏体在550℃ ~ Ms之间发生的转变 3)根据转变温度的不同,B分为上B和下B。
➢650~600℃ : 细片状P---索氏体(S); 片间距为0.2~0.4μm (1000×); 25~36HRC。
➢600~550℃:极细片状P---屈氏体(T); 片间距为<0.2μm ( 电镜 ); 35~40HRC。
层片间距越小(即从P→S →T),材 料的强度、硬度、塑性、韧性越高。
珠光体形貌像
*本质晶粒度反映了钢在一定条件下奥氏体晶粒
长大的倾向性。其与起始晶粒度和实际晶粒度 是完全不同的概念。
Review
标准晶粒度1~4级 的为本质粗晶粒钢
标准晶粒度5~8级 的为本质细晶粒钢
本质粗晶粒钢:奥氏 体随温度的升高迅速 长大的钢。如经锰硅 脱氧的钢、沸腾钢等
本质细晶粒钢: 奥氏体晶粒长大 倾向小,加热到 较高温度才显著 长大的钢。如经 铝脱氧的钢、镇 静钢等
③分级淬火→加热A化后的钢件先放在略高于Ms点的 恒温盐浴或碱浴中保温一段时间(使内 外均温),取出后在空气中冷至室温。

模具回火工艺

模具回火工艺

模具回火工艺
模具回火工艺是一种常见的热处理技术。

该工艺通常用于改善模具的机械性能,提高其耐磨性和抗腐蚀性,从而延长模具使用寿命。

模具回火工艺一般包括四个基本步骤:加热、保温、冷却和清洗。

加热是模具回火工艺的第一步。

通常使用电阻炉、气体炉或盐浴炉等设备将模具加热到所需温度。

在加热过程中,要控制温度的升降速度和加热时间,以确保模具的均匀加热。

保温是模具回火工艺的第二步。

在保温阶段,模具需要在高温环境下停留一段时间,以达到所需的回火效果。

保温时间的长短取决于模具的材料和尺寸以及所需的机械性能。

冷却是模具回火工艺的第三步。

在冷却阶段,模具需要被缓慢地降温,以避免过快的冷却导致模具变形或发生裂纹。

冷却可以通过空气冷却或水淬火等方式实现。

清洗是模具回火工艺的最后一步。

在清洗过程中,必须将模具从回火工艺中的残留物中清洗干净,以确保模具表面光洁无瑕。

通过模具回火工艺,可以大大提高模具的使用寿命和工作效率。

因此,模具回火工艺在模具制造和维护方面有着广泛的应用。

- 1 -。

模具的加热、保温与冷却

模具的加热、保温与冷却
理, 尽量 避免使 传导 电线暴 露在 空气 中 , 长 导线 的 延 使用 寿命 。 烙铁 芯 通 常也 被作 为模具 加 热 管 的 一种 , 点 特
了教科书 、 几位前 辈所著的专 著、 模具设计 图例 以
外, 少有人 总 结模 具设 计 中的关键技 巧 。
模具 的加热 、 温与冷却及装夹结构是复合材 保 料模具设计不可或缺的一部分 。结构设计直接影响
烙铁芯可 以达 到 10瓦 的输 出功 率 ) 耐用 , 全 性 5 , 安
好, 不易形成击穿短路 , 以通过钻盲孔来埋设 , 可 缺
点 是难 以定 制设计 , 拆换 时 易碎 、 。 断
用的加热手段 , 可设计为单 向接线 、 双向接线等多种
形式 , 质上 可 采用 有缝 管 、 材 无缝 管 、 锈钢 管 等 , 不 特

t ' .T  ̄ r G Ra ' KE
' sp p r ecie 。I sisi h e ia fhaag. l a e sr ss『e k1 nted s  ̄o et hi d b I 】 g n ∞ mod l
peevt na dcoigo o rsinm l rsrai n ol f cmpes od o n o
维普资讯
第l 期
20 O2年 3月


维 复 合 材 料
No l
47
F Ⅱ蚰即R co Ⅱ , TES sI
Ma . 2 0 r ,0 2
模 具 的 加 热 、 温 与 冷 却 保
陈蔚 岗 张 国腾
( 哈尔滨 玻璃钢研究所 ,506 10 3 ) 摘 要 本文从模具 的加热 、 保温与冷却及装夹结构方面论述 了模具设计中的一些技 巧和方法。 加热 , 却 , 冷 模具

热流道工艺

热流道工艺

热流道工艺热流道工艺是注塑成型加工中的一种高级技术,主要是指在注塑模具中设置一定数量的电加热元件,通过控制这些元件的加热、保温、降温等操作来实现注塑成型。

热流道工艺在制造高品质注塑产品中具有显著的优势。

一、热流道工艺的基本原理热流道工艺是在注塑模具中安装热流道系统,对热流道、塑料流道进行控制,以提高塑料制品的成型质量和效率。

热流道的安装和设置,直接影响到注塑制品的质量和成本。

热流道技术以模具为核心,通过模具上设置的凹模和凸模将塑料熔体注入模具中,在模具凝固之前,通过热流道系统控制热流的流向和热量大小,使得注塑制品在成型过程中能够得到尽可能稳定的温度和热量传导,从而实现塑料熔体的均匀流动、充填和冷却,获得更好的注塑成型品质。

1、增强塑料流动性:通过热流道技术对注塑模具进行加热和保温,可以使熔体得到良好的流动性,使得产品的成型过程更加均衡和稳定,从而可以得到更高质量的制品。

2、降低熔体温度:在注塑过程中,热流道系统可以通过控制热量大小和流向,降低熔体的温度,从而可以减少熔体的收缩率,防止模具的变形和制品的变型,提高制品的成型准确性和精度。

3、节省原材料:通过热流道技术可以减少产品的毛边和壳体斑点,并且能够降低熔体加热的能耗,从而可以减少废品率,提高产品的产出率,节省原材料和能源。

4、提高注塑速度和效率:热流道技术可以加快形成时间,缩短注塑周期,并提高注塑速度,使得制品的生产效率更高。

5、提高产品外观和品质:热流道技术可以精确控制塑料的熔体温度和流动路径,防止制品的变形和缩水,并且可以减少外观缺陷和内部缺陷,从而提高制品的外观和品质。

三、热流道系统的组成和工作原理热流道系统主要由热流道模具、加热元件、温度控制器、热流道控制器、冷却系统、自动开关等组成。

1、热流道模具: 热流道模具一般都是由薄壁塑料和耐高温合金等材料制成的,模具表面需要加工出精密的流道、喷头和冷却通道,以保证熔体的流动和制品的质量。

2、加热元件: 热流道模具中需要安装一定数量的加热元件,以便对模具内部进行加热和保温。

热处理基础知识

热处理基础知识

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。

这些过程互相衔接,不可间断。

加热是热处理的重要工序之一。

金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。

电的应用使加热易于控制,且无环境污染。

利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。

因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。

加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。

另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。

采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。

一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。

但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。

根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。

同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。

钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。

钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。

模具热处理的主要缺陷与防止措施

模具热处理的主要缺陷与防止措施

模具热处理的基本原理
将模具加热到一定的温度,并保 持一定的时间,以实现模具材料 的相变和晶粒细化等物理变化。
通过不同的加热、保温和冷却方 式,控制模具材料的组织结构和
性能特征。
ห้องสมุดไป่ตู้
在热处理过程中,需要注意控制 加热速度、保温时间和冷却速度 等参数,以避免模具出现裂纹、
变形和氧化等问题。
02
模具热处理的主要缺 陷
模具热处理的主要 缺陷与防止措施
汇报人: 日期:
目录
• 模具热处理概述 • 模具热处理的主要缺陷 • 防止措施 • 模具热处理的应用实例 • 总结与展望
01
模具热处理概述
模具热处理的目的和意义
提高模具的硬度和强 度,以满足模具的使 用性能要求。
改善模具的加工性能 ,以降低模具的加工 成本。
优化模具的韧性和耐 磨性,以提高模具的 使用寿命。
防止措施
采用合理的材料和热处理工艺,如淬火、回火和表面强化 处理等,提高模具的硬度和耐磨性;同时加强生产过程中 的质量检测,及时发现并处理问题。
实例二:注塑模具的热处理
01
模具类型
注塑模具是一种用于塑料制品成型的模具。
02
热处理要求
注塑模具的热处理需控制模具的硬度和耐腐蚀性,以确保制品的尺寸精
度和表面质量。
4. 通过采取适当的防止措施,可以减少模具在后 续使用中的磨损和损坏,提高模具的耐用性,降 低维修和更换成本。
未来研究与发展的展望
1. 进一步研究和开发新的热 处理技术和工艺,以提高模 具的性能和寿命。
2. 针对不同的模具材料和类 型,研究更合适的热处理工 艺和参数,以获得更好的处 理效果。
3. 进一步探索热处理过程中 的缺陷形成机制和防止措施 ,以减少或消除缺陷的产生 。

压铸模具热处理

压铸模具热处理
料顶住之外,必须使用分级。 5、重量大于250KG,模具厚度大于200MM(非有效厚度),必须选用分级淬火。 6、重量大于250KG,型腔内整体呈连续波浪状时,选用分级淬火,因此类型模具的点冷
孔较多,直接淬火易开裂。 其余状况可以选用直接淬火冷却工艺。
压铸模具热处理
压铸模的淬火出炉
1、心部冷到150度即可出炉空冷,以减少组织应力,从而降低开裂的风险。 2、空冷到表面温度为50度左右立即进行第一次回火。 3、回火之前将保护的石棉拆除,用放大20倍的放大镜检查是不是有开裂处,有情况及时
压铸模具热处理
保养方式一:ABP模具表面强化
3、ABP表面处理的作用: A 、热疲劳强度提高 B 、抗热侵蚀性提高 C 、改善模具表面热龟裂 D 、表面强度和硬度增加 E 、改善材料表面的焊补 F 、去除残余加工应力 ABP表面处理可以应用于模具的长期保养。
压铸模具热处理
保养方式二:模具氮化处理
1、软氮化处理原理 软氮化是在有活性碳,氮原子的气氛中进行低温氮碳共渗的方法。从而获得 以渗氮为主的氮碳共渗层。
2、氮化层硬度高,可提高压铸模具表面耐磨性,白亮层在一定程度上提高抗冲 蚀性。但是由于氮化层的热疲劳性能较差,另外,较厚的氮化层,白亮层较 硬,渗层韧性较差。易引起压铸模具表面早期开裂。
3、一胜百采用工艺控制产生无白亮层的浅薄软氮化层(约5-8丝),从而降低了 由于使用一般软氮化工艺所造成模具抵抗热疲劳龟裂下降的风险。
压铸模具热处理
压铸模装炉
1、尽量竖放,模具各部分冷却较为均匀,但冷速没有平放快。平放冷却不均匀,炉室内 气流不够顺畅,会出现模具边缘温度低,而模具中间部温度高的现象,对边缘开口处 易开裂,另外对将来模具寿命有影响。平放冷却时亦对炉室的元件容易疲劳。

极冷极热模具温度-概述说明以及解释

极冷极热模具温度-概述说明以及解释

极冷极热模具温度-概述说明以及解释1.引言1.1 概述概述:极冷极热模具温度是在模具制造和使用过程中起关键作用的因素之一。

随着现代科技的不断进步,模具制造和应用领域也在不断发展。

极冷模具温度是指模具温度远低于常温的情况,而极热模具温度则是指模具温度远高于常温的情况。

这两种极端的模具温度对于模具的性能、加工质量以及产品的生产效率都有着重要的影响。

在本文中,我们将分别探讨极冷模具温度和极热模具温度的背景介绍、作用以及调控方法。

首先,我们将介绍极冷模具温度的背景和作用。

随后,我们将探讨极热模具温度的背景和作用。

最后,我们将总结极冷极热模具温度的重要性,并对其未来发展做出展望。

通过深入了解模具温度的调控方法和作用,我们可以更好地应对模具制造和使用过程中的各种挑战,并改进生产效率和产品质量。

极冷极热模具温度的研究和应用对于模具行业的发展具有重要意义。

希望本文能够为读者提供有益的信息和启示,促进模具温度领域的进一步研究和探索。

1.2文章结构文章结构部分的内容可以包括以下几个方面的内容:1.2 文章结构本文将按以下结构来展开对极冷极热模具温度的讨论:第二节将介绍极冷模具温度,包括其背景介绍、作用和调控方法。

背景介绍部分将对极冷模具温度的概念进行阐述,为读者建立基本的认知框架。

作用部分将展示极冷模具温度在模具制造中的重要性和应用范围。

调控方法部分将介绍不同的方法和技术用于调节极冷模具温度,以保证模具制造的高质量和高效率。

第三节将介绍极热模具温度,包括其背景介绍、作用和调控方法。

背景介绍部分将对极热模具温度的概念进行阐述,为读者建立基本的认知框架。

作用部分将展示极热模具温度在模具制造中的重要性和应用范围。

调控方法部分将介绍不同的方法和技术用于调节极热模具温度,以保证模具制造的高质量和高效率。

最后一节将对极冷极热模具温度的重要性进行总结,强调其在模具制造中的不可替代性和未来的发展前景。

同时,还会提出对未来极冷极热模具温度研究的展望,包括技术创新和应用拓展等方面的建议。

热处理质量控制

热处理质量控制

热处理质量控制热处理是金属材料的一种重要加工工艺,它能够改变材料的内部结构,进而改变材料的力学性能、物理性能和化学性能。

在热处理过程中,质量控制是非常重要的一环,它能够确保热处理后的材料符合预期的性能要求。

本文将探讨热处理质量控制的问题。

热处理的主要对象是金属材料,因此,材料的质量控制是热处理质量控制的基础。

对于金属材料,其化学成分、微观结构、表面质量等都会影响其热处理效果。

因此,在热处理前,需要对材料进行质量检验,确保其符合热处理的要求。

热处理的工艺过程包括加热、保温和冷却三个阶段,每个阶段都会影响热处理的效果。

因此,需要对工艺过程进行严格的控制。

加热温度是热处理过程中最重要的参数之一。

如果加热温度过低,材料的内部结构变化不足,无法达到预期的热处理效果;如果加热温度过高,材料的内部结构可能会发生变化,导致材料性能下降。

因此,需要严格控制加热温度。

保温时间是指材料在达到加热温度后保持该温度的时间。

如果保温时间不足,材料的内部结构变化不足,无法达到预期的热处理效果;如果保温时间过长,材料的内部结构可能会发生变化,导致材料性能下降。

因此,需要严格控制保温时间。

冷却速度是指材料从加热温度冷却到室温的速度。

如果冷却速度过快,可能会导致材料内部产生应力,影响其力学性能;如果冷却速度过慢,可能会导致材料内部结构发生变化,影响其性能。

因此,需要严格控制冷却速度。

热处理设备是实现热处理工艺的重要工具,设备的性能和状态直接影响到热处理的效果。

因此,需要对设备进行定期的维护和保养,确保设备的正常运行。

环境因素也会影响热处理的效果,例如温度、湿度和空气流动速度等。

因此,需要对环境进行控制,以避免其对热处理效果的影响。

为了保证热处理质量,需要对热处理后的材料进行检测和记录。

检测内容包括材料的化学成分、微观结构、力学性能等。

记录内容包括热处理的工艺参数、设备运行状态和环境因素等。

通过对检测结果和记录的分析,可以找出热处理过程中存在的问题和不足之处,为改进热处理工艺提供依据。

热处理工艺之四种火

热处理工艺之四种火

热处理是机械零件和工模具制造过程中的重要工序之一。

大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。

还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。

一、热处理工艺的分类热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的晶相组织结构,来改变其性能的一种金属热加工工艺。

热处理工艺大体分为整体热处理、表面热处理和化学热处理三大类。

根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。

整体热处理分为正火,退火,淬火,回火,调质,稳定化处理,固溶处理,水韧处理,失效处理。

其中正火、退火、淬火、回火称为热处理中的“四把火”。

表面热处理的主要方法有火焰淬火和感应加热热处理。

化学热处理主要分为渗碳,渗氮,碳氮共渗等。

以下主要介绍整体热处理“四把火”及常见的调质热处理工艺的目的及应用范围。

二、整体热处理中“四把火“及调质热处理工艺的目的及应用范围(1)正火1)正火定义:正火又称为常化,是将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm 是实际加热中过共析钢完全奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。

2)正火的目的:①去除材料的内应力;②增加材料的硬度。

3)正火的主要应用范围有:①用于低碳钢;②用于中碳钢;③用于工具钢、轴承钢、渗碳钢等;④用于铸钢件;⑤用于大型锻件;⑥用于球墨铸铁。

(2)退火1)退火定义:指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)。

2)退火的目的:①降低硬度,改善切削加工性;②消除残余应力,稳定尺寸,减少变形与裂纹倾向;③细化晶粒,调整组织,消除组织缺陷;④均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。

3)退火的主要应用范围:①完全退火主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷,使组织变细和变均匀,以提高钢件的塑性和韧性;②不完全退火主要用于中碳和高碳钢及低合金结构钢的锻轧件,使晶粒变细,同时也降低硬度,消除内应力,改善被切削性;③球化退火只应用于钢的中退火方法,其中中碳钢和高碳钢硬度低、被切削性好、冷形变能力大;④去应力退火主要适用于毛坯件及经过切削加工的零件,目的是为了消除毛坯和零件中的残余应力,稳定工件尺寸及形状,减少零件在切削加工和使用过程中的形变和裂纹倾向。

塑胶模具基础知识

塑胶模具基础知识
2,5 模具的冷却方法
水冷却是大多数模具采用的冷却方式,但也有其缺点;要求管道密封性要好,上下水管路必须通畅,对水资源的浪费较大。当冷却温度超过100℃时,易产生蒸汽爆炸。优点是热容较大,可实现快速降温。
风冷却是一种比较理想的冷却方法,和水冷正相反,它不需要严密的管道密封,不存在资源浪费,可以冷却温度高于100℃的模具,可以通过气体的流量来确定冷却的速度,并且来源简洁方便,有一定规模的生产车间都能取得比较方便的气源。
2.4 模具保温方法
加强模具的保温措施可以减少模具的热损失,可使模具在较短的时间内达到预定的生产温度,减少能源浪费。每个工程技术人员对这个问题都有一套独特的解决办法,我只谈谈我的经验。
2.4.l 加热板的保温措施
加热板保温通常采用石棉板或石棉布保温,但石棉布不易摆放平整,对压板的平行度保证也有定的影响。石棉板的种类很多,最常见的是橡胶石棉板,但这种石棉板却不对以用于密封隔热用的材料,具有一定的可压级胜,同时在高温时会释放出一种十分难闻的气味,影响操作环境及操作人的身体健康。
轮胎机械包括轮胎成型机、轮胎钢丝圈机械、轮胎定型硫化机、胶囊硫化机、垫带硫化机、内胎接头机和内胎硫化机,以及力车胎机械、轮胎翻修机械和再生胶生产机械等。世界60%以上的橡胶用于制造轮胎,因此轮胎机械在橡胶机械中占有重要地位。
轮胎成型机主要用于将挂胶帘布、钢丝圈、胎面等各种部件贴合加工成轮胎的胎坯。按用途不同可分为普通轮胎成型机和子午线轮胎成型机两大类。由一台成型机完成子午线轮胎成型全过程的,称为一次成型法;胎体用经过改造的普通轮胎成型机制作,然后再在子午线轮胎成型机上成型的,称为两段成型法。
橡胶机械定义
橡胶机械是用以制造轮胎等各种橡胶制品的机械,包括通用橡胶机械、轮胎机械和其他橡胶制品机械三大类。

金属热处理基本知识

金属热处理基本知识

金属热处理基本知识金属热处理的工艺热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。

这些过程互相衔接,不可间断。

加热是热处理的重要工序之一。

金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。

电的应用使加热易于控制,且无环境污染。

利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。

因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。

加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。

加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。

另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。

采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。

一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。

但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。

金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。

根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。

同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。

钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。

钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

hm3模具钢热处理

hm3模具钢热处理

hm3模具钢热处理
HM3 模具钢是一种热作模具钢,其热处理过程包括以下几个步骤:
1. 预热:将模具钢加热至 600-700°C,保持一段时间,以消除模具钢中的应力和残余奥氏体。

2. 淬火:将模具钢加热至 1050-1100°C,保持一段时间,然后迅速冷却至室温,以获得高硬度和耐磨性。

3. 回火:将模具钢加热至 500-600°C,保持一段时间,然后缓慢冷却至室温,以提高模具钢的韧性和耐磨性。

4. 表面处理:根据需要,可以对模具钢进行表面处理,如氮化、镀铬等,以提高模具钢的表面硬度和耐磨性。

需要注意的是,不同的模具钢材料和使用环境可能需要不同的热处理工艺,因此在进行热处理之前,需要根据具体情况进行选择和调整。

同时,在进行热处理过程中,需要严格控制加热温度、保温时间和冷却速度等参数,以确保模具钢的性能和质量。

1.2343esr热处理硬度

1.2343esr热处理硬度

1.2343esr热处理硬度
1.2343ESR是一种热作模具钢,通常用于制造塑料注射模具和压铸模具。

热处理是对钢材进行加热和冷却的过程,以改变其结构和性能。

在对1.2343ESR钢进行热处理时,通常会经历加热、保温和冷却三个阶段。

首先,1.2343ESR钢会被加热到适当的温度范围,通常是在固溶处理温度以上。

然后,在这个温度下保温一段时间,以确保钢材内部的组织达到均匀化。

最后,通过控制冷却速度,使钢材达到所需的硬度和组织结构。

对于1.2343ESR钢,常见的热处理方式包括淬火和回火。

淬火可以使钢材获得高硬度和较好的耐磨性,但可能会导致脆性增加。

而回火则是通过重新加热和冷却,以降低硬度、增加韧性并减少内部应力。

1.2343ESR钢的热处理硬度取决于具体的热处理工艺参数,包括加热温度、保温时间、冷却速度以及回火温度等。

通常情况下,该钢材经过适当的热处理后,可以获得40-52 HRC的硬度范围。

总的来说,1.2343ESR钢经过合适的热处理工艺可以获得理想的硬度,但具体的硬度数值需要根据实际情况和使用要求来确定,并且在进行热处理时需要严格控制各项参数以确保最终的产品性能符合要求。

锻模燕尾自回火经验-概念解析以及定义

锻模燕尾自回火经验-概念解析以及定义

锻模燕尾自回火经验-概述说明以及解释1.引言1.1 概述锻模燕尾自回火是一种常用的热处理工艺,用于提高模具的硬度和耐磨性,降低模具的应力和变形,以及增加模具的使用寿命。

在锻造行业中,模具是不可或缺的工具,它承担着承压、承热和承磨等重要任务。

然而,由于在使用过程中会受到极端的温度和压力等因素的影响,模具往往容易出现损坏和磨损的情况,从而影响生产效率和产品质量。

为了解决这一问题,锻模燕尾自回火工艺应运而生。

该工艺利用热处理的方法,通过控制模具的加热、保温和冷却过程,使模具内部的组织发生变化,从而增加其硬度和耐磨性。

同时,通过合理调节工艺参数,如温度、时间和冷却速率等,可以降低模具的应力和变形,延长其使用寿命。

锻模燕尾自回火工艺的优点在于其简单易行、效果明显。

相比传统的热处理方法,锻模燕尾自回火可以大幅提高模具的性能,使其具备更好的耐磨性和抗冲击能力。

此外,该工艺还能减少能源的消耗和生产成本,提高生产效率和产品质量。

在实际应用中,锻模燕尾自回火广泛应用于锻造、冲压、模具制造等领域。

它不仅可以提高模具的使用寿命,减少更换模具的频率,还能有效降低工艺过程中的变形和裂纹等问题,提高产品的一致性和稳定性。

综上所述,锻模燕尾自回火是一种重要的热处理工艺,它在提高模具的性能、延长使用寿命以及提高生产效率方面具有显著的优势。

随着科学技术的不断发展和进步,相信锻模燕尾自回火工艺将会在未来得到更广泛的应用并取得更好的效果。

1.2文章结构1.2 文章结构本文将按照以下结构来介绍锻模燕尾自回火的经验:1. 引言:首先对锻模燕尾自回火进行概述,介绍其定义和原理。

同时,指出本文将重点讨论锻模燕尾自回火的工艺参数、优点和应用以及结论等内容。

2. 正文:本节将详细讨论锻模燕尾自回火的相关内容。

2.1 锻模燕尾自回火的定义和原理:首先介绍锻模燕尾自回火的概念和基本原理,包括如何实现锻模燕尾自回火以及其在模具制造中的作用。

2.2 锻模燕尾自回火的工艺参数:本节将侧重讨论控制锻模燕尾自回火的关键工艺参数,包括温度控制、时间控制和冷却速率控制等方面。

SMC模具结构设计(SMC-Mold)要点

SMC模具结构设计(SMC-Mold)要点

SMC模具结构设计SMC制品模压模具制作流程一、接受任务书成型SMC制件的任务书通常由制件设计者提出,其内容如下: 1. 经过审签的正规制件图纸,并注明采用产品的牌号、技术参数等。

2. SMC制件说明书或技术要求。

3. 生产产量。

4. SMC制件样品。

通常模具设计任务书由SMC 制件工艺员根据成型SMC制件的任务书提出,模具设计人员以成型SMC制件任务书、模具设计任务书为依据来设计模具。

二、收集、分析、消化原始资料收集整理有关制件设计、成型工艺、成型设备、机械加工及特殊加工资料,以备设计模具时使用。

1. 消化SMC制件图,了解制件的用途,分析SMC制件的工艺性,尺寸精度等技术要求。

例如SMC制件在外表形状、颜色透明度、使用性能方面的要求是什么,SMC件的几何结构、斜度、嵌件等情况是否合理,熔接痕、缩孔等成型缺陷的允许程度,有无涂装、电镀、胶接、钻孔等后加工。

选择塑料制件尺寸精度最高的尺寸进行分析,看看估计成型公差是否低于SMC制件的公差,能否成型出合乎要求的SMC制件来。

此外,还要了解SMC产品的固化及成型工艺参数。

2. 消化工艺资料,分析工艺任务书所提出的成型方法、设备型号、材料规格、模具结构类型等要求是否恰当,能否落实。

成型材料应当满足SMC制件的强度要求,具有好的流动性、均匀性和各向同性、热稳定性。

根据SMC制件的用途,成型材料应满足染色、镀金属的条件、装饰性能、必要的弹性和塑性、透明性或者相反的反射性能、胶接性或者焊接性等要求。

3. 确定成型方法采用直压法、铸压法还是注射法。

4、选择成型设备根据成型设备的种类来进行模具,因此必须熟知各种成型设备的性能、规格、特点。

例如对于模压机来说,在规格方面应当了解以下内容:模压容量、模压力、速度、模具安装尺寸、顶出装置及尺寸、开模方式、喷嘴孔直径及喷嘴球面半径、浇口套定位圈尺寸、模具最大厚度和最小厚度、模板行程等,具体见相关参数。

要初步估计模具外形尺寸,判断模具能否在所选的模压机上安装和使用。

SMC模具结构设计(SMC_Mold)

SMC模具结构设计(SMC_Mold)

SMC模具结构设计SMC制品模压模具制作流程一、接受任务书成型SMC制件的任务书通常由制件设计者提出,其内容如下: 1. 经过审签的正规制件图纸,并注明采用产品的牌号、技术参数等。

2。

SMC制件说明书或技术要求。

3。

生产产量。

4. SMC制件样品. 通常模具设计任务书由SMC制件工艺员根据成型SMC制件的任务书提出,模具设计人员以成型SMC制件任务书、模具设计任务书为依据来设计模具。

二、收集、分析、消化原始资料收集整理有关制件设计、成型工艺、成型设备、机械加工及特殊加工资料,以备设计模具时使用。

1. 消化SMC制件图,了解制件的用途,分析SMC制件的工艺性,尺寸精度等技术要求。

例如SMC制件在外表形状、颜色透明度、使用性能方面的要求是什么,SMC件的几何结构、斜度、嵌件等情况是否合理,熔接痕、缩孔等成型缺陷的允许程度,有无涂装、电镀、胶接、钻孔等后加工。

选择塑料制件尺寸精度最高的尺寸进行分析,看看估计成型公差是否低于SMC制件的公差,能否成型出合乎要求的SMC制件来.此外,还要了解SMC产品的固化及成型工艺参数。

2. 消化工艺资料,分析工艺任务书所提出的成型方法、设备型号、材料规格、模具结构类型等要求是否恰当,能否落实。

成型材料应当满足SMC制件的强度要求,具有好的流动性、均匀性和各向同性、热稳定性。

根据SMC制件的用途,成型材料应满足染色、镀金属的条件、装饰性能、必要的弹性和塑性、透明性或者相反的反射性能、胶接性或者焊接性等要求。

3. 确定成型方法采用直压法、铸压法还是注射法. 4、选择成型设备根据成型设备的种类来进行模具,因此必须熟知各种成型设备的性能、规格、特点。

例如对于模压机来说,在规格方面应当了解以下内容:模压容量、模压力、速度、模具安装尺寸、顶出装置及尺寸、开模方式、喷嘴孔直径及喷嘴球面半径、浇口套定位圈尺寸、模具最大厚度和最小厚度、模板行程等,具体见相关参数。

要初步估计模具外形尺寸,判断模具能否在所选的模压机上安装和使用。

热处理保温369法则

热处理保温369法则

热处理保温369法则1 引言热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。

这些过程互相衔接,不可间断。

加热是热处理的重要工序之一。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。

因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。

加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。

加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。

另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。

采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

369法则,实际生产表明,该369法则的实行有助于提高产品质量、提高生产率、降低生产成本、简化工艺。

该法则包括各种金属材料加热保温时的369法则,真空热处理的预热、加热、保温时的369法则,以及用于密封箱式多用炉热处理加热保温的369法则。

2 各种金属材料在空气炉中加热淬火保温的369法则2.1 碳素钢和低合金钢(45#、T7、T8等)传统的碳素钢淬火加热时间的计算公式:T=K•αD式中,T为加热时间minK为反映装炉状况的修正系数,通常在1.0~1.3范围内选取α为加热系数,一般在0.7~0.8min/mmD为工件有效厚度在实际生产中,一般也根据经验和工件有效厚度(mm)来计算保温时间。

例如某45#钢工件的有效厚度为60mm,在空气炉中加热淬火保温时间大约是炉温到温后再保温60min,即工件的每1mm有效厚度加热1min,这是对于单件加热。

对于大批量生产,一炉装入很多工件,就只有根据实际经验延长保温时间或通过窥视孔,观察工件透烧后再保温一定的时间。

模具加热保温和冷却

模具加热保温和冷却

模具的加热、保温与冷却标签:装修加热管模具石棉布压板模具的加热、保温与冷却模具的加热、保温与冷却及装夹结构是复合材料模具设计不可或缺的一部分。

结构设计直接影响到产品的外观及内在质量均匀性, 时还影响产品的成型效率。

1、加热、保温与冷却设计1.1加热管的设计要求钢制加热是几乎所有塑料成型模具设计必须采用的加热手段, 设计为单向接线、双向接线等多种形式,材质上可采用有缝管、无缝管、不锈钢管等,特点是热损失小、热效率高、排线简单,可根据需要设计为220V或380V,接线为式灵活多样。

但由于其材料和加工工艺的限制,模具设计中要注意它向身特点(I)加热管在两端通常有较长的冷端, 并不能起到加热的作用。

(2)加热段的功率设计尽量不超过10瓦特/厘米的限制。

如30厘米长的加热管,功率尽可能不要超过300瓦。

如果设计功率超过这个限制,加热管表面负荷较高,钢管易氧化腐蚀,造成短路。

(3)对于温度高于250C的模具设计,采用加热管有一定难度。

我曾经利用加热管升温达到420C,但是这种成型温度对加热管质量要求较高,需要经常检查电路的通畅与短路与否。

因为这种条件下加热管、接线端子、连接用的铜线、钢片等介质非常易于氧化,从而导致断路。

因此对电传输介质需要进行特殊处理,尽量避免使传导电线暴露在空气中,延长导线的使用寿命。

烙铁芯通常也被作为模具加热管的一种,特点是单位长度功率高(通常直径10mm,长8cm 规格的烙铁芯可以达到150瓦的输出功率),耐用,安全性好,不易形成击穿短路,可以通过钻盲孔来埋设,缺点是难以定制设计,拆换时易碎、断。

电路设计中不可缺少保险、空气开关等保险措施,操作地由要保持干净整洁,绝缘良好,操作中勤于检查电气故障,防止不必要的危险。

1. 2加热管的安装钻孔从传热角度上理解,加热管的安装要与模具表面尽可能贴合, 利于加热管的热量尽快传递到模具上。

而实际上加热管与模具并没有多大接触面积,传热的本质是辐射,传导是次要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模具的加热、保温与冷却.txt我很想知道,多少人分开了,还是深爱着。

ゝ自己哭自己笑自己看着自己闹。

你用隐身来躲避我丶我用隐身来成全你!待到一日权在手,杀尽天下负我狗。

l、概述
模压成型工艺是塑性材料最常见、历史最悠久的成型方法之一,并且是研究材料性能最常采用的一种工艺方法。

它具有成型装置简单、设备投资小、模具结构简单等特点,在机械化、自动化生产高度发达的今天,仍是一种最为普及的生产手段之一。

然而,进行压缩模塑成型的模具设计能参考的文献除了教科书、几位前辈所著的专著、模具设计图例以外,少有人总结模具设计中的关键技巧。

模具的加热、保温与冷却及装夹结构是复合材料模具设计不可或缺的一部分。

结构设计直接影响到产品的外观及内在质量均匀性,同时还影响产品的成型效率。

2、加热、保温与冷却设计
2.1 加热管的设计要求
钢制加热是几乎所有塑料成型模具设计必须采用的加热手段,可设计为单向接线、双向接线等多种形式,材质上可采用有缝管、无缝管、不锈钢管等,特点是热损失小、热效率高、排线简单,可根据需要设计为220V或380V,接线为式灵活多样。

但由于其材料和加工工艺的限制,模具设计中要注意它向身特点。

(l)加热管在两端通常有较长的冷端,并不能起到加热的作用。

(2)加热段的功率设计尽量不超过10瓦特/厘米的限制。

如30厘米长的加热管,功率尽可能不要超过300瓦。

如果设计功率超过这个限制,加热管表面负荷较高,钢管易氧化腐蚀,造成短路。

(3)对于温度高于250℃的模具设计,采用加热管有一定难度。

我曾经利用加热管升温达到420℃,但是这种成型温度对加热管质量要求较高,需要经常检查电路的通畅与短路与否。

因为这种条件下加热管、接线端子、连接用的铜线、钢片等介质非常易于氧化,从而导致断路。

因此对电传输介质需要进行特殊处理,尽量避免使传导电线暴露在空气中,延长导线的使用寿命。

烙铁芯通常也被作为模具加热管的一种,特点是单位长度功率高(通常直径10mm,长8cm规格的烙铁芯可以达到150瓦的输出功率),耐用,安全性好,不易形成击穿短路,可以通过钻盲孔来埋设,缺点是难以定制设计,拆换时易碎、断。

电路设计中不可缺少保险、空气开关等保险措施,操作地由要保持干净整洁,绝缘良好,操作中勤于检查电气故障,防止不必要的危险。

2.2 加热管的安装钻孔
从传热角度上理解,加热管的安装要与模具表面尽可能贴合,以利于加热管的热量尽快传递到模具上。

而实际上加热管与模具并没有多大接触面积,传热的本质是辐射,传导是次要的。

因此大部分用于模具安装的加热管表面都涂有增强红外辐射的涂层,同时也采用限制设计功率(10瓦特/厘米)的办法以增长加热管的使用寿命。

因此在加工加热管孔时,尤其是长加热管孔的加工没必要设计太小的配合间隙,有效的设计方法是在孔的两端尽可能能与加热管严密配合,可以采用填塞、封堵或设计挡片等办法。

这种做法可以有效减小加热管的散热面积以及辐射热量的损失。

2.3 加热管的埋放
埋放的加热管,最好采用与管内介质相同的氧化镁粉进行充填,以降低加热管表面的热负荷,这种方法可以减少管的表面氧化,有效延长管的使用寿命。

有条件的话,加热管的安装孔也最好灌入的氧化镁粉。

2.4 模具保温方法
加强模具的保温措施可以减少模具的热损失,可使模具在较短的时间内达到预定的生产温度,减少能源浪费。

每个工程技术人员对这个问题都有一套独特的解决办法,我只谈谈我
的经验。

2.4.l 加热板的保温措施
加热板保温通常采用石棉板或石棉布保温,但石棉布不易摆放平整,对压板的平行度保证也有定的影响。

石棉板的种类很多,最常见的是橡胶石棉板,但这种石棉板却不对以用于密封隔热用的材料,具有一定的可压级胜,同时在高温时会释放出一种十分难闻的气味,影响操作环境及操作人的身体健康。

加热板的保温宜采用石棉纸板,常见的规格是1000x1000,3-5mm厚,板体较为规整,平行度较好,可压缩性比较平均,高温下无异味产生。

2.4.2 模具的保温措施
模具的保温措施很多,可用石棉布或玻璃布包裹氢氧化铝保温棉进行保温。

现在市场上还有一种保温涂料是目前用作模具保温的理想材料,它由中长纤维、浆料及一种保温泡沫材料混合而成,粘性适中,易于涂抹。

这种材料常用作化工、采暖管道的保温层材料,略含碱性(易腐蚀模具)。

经在150℃条件下使用没发现有烧焦、熔化、气味等负面影响。

同时材料很轻,可塑性较强,容易形成较为美观的模具表面。

2.5 模具的冷却方法
水冷却是大多数模具采用的冷却方式,但也有其缺点;要求管道密封性要好,上下水管路必须通畅,对水资源的浪费较大。

当冷却温度超过100℃时,易产生蒸汽爆炸。

优点是热容较大,可实现快速降温。

风冷却是一种比较理想的冷却方法,和水冷正相反,它不需要严密的管道密封,不存在资源浪费,可以冷却温度高于100℃的模具,可以通过气体的流量来确定冷却的速度,并且来源简洁方便,有一定规模的生产车间都能取得比较方便的气源。

3、模具的装夹
模具的装夹结构与模具的加热、保温与冷却系统密切相关,同时为模具的更换、装卸提供一定的方便特性。

多数设计者为图方便,只简单地将模具上打几个安装孔用以固定。

例是多数的压模都不单独设计加热装置,而是在压机上下压板上安装加热板以简化中小型模具的加工。

模具结构中就只剩下构成型腔主体结构的模块。

这时模具可以采用注塑模具的固定办法——用压板将模具固定在上下模板上。

在加热板模具上设计好固定压板的空间即可。

这种设计不仅可以用于移动式压模,也可用于带有简单项出机构的压模。

仅需要在加热板的设计中才考虑到顶杆的位置与加热管不相冲突即可。

也可以利用一种模具的模架对多个模具进行通用性改造,以简化模具制造成本。

如果供具较高,单纯的加热板加热已经不能满足均匀加热的需要,这时需要在模具上安装辅助加热系统,可以山加热片、加热管及烙铁芯构成。

对于结构简单、尺寸较小的模具,采用加热板加热会造成大过的热量损失,在模具尸设计简单的加热系统就能够满足要求。

需要注意的是在模具和压机固定板之间要添加隔热物(通常来采用石棉纸板)来保温,同时需要注意电源线的排布整齐和电偶孔的位置。

这种设);由于热容较小,特别适用于需要反复加热冷却或快速加热冷却的小型模具。

4、结语
本文是实际工程应用中的总结,经实践文中涉及的多种技巧和办法可行。

相关文档
最新文档