北师大版七年级数学上七拔高性计算题
北师大版七年级数学上册章节同步练习题(全册-共57页)
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
北师大版七年级数学上册 代数式求值专题(含竞赛题)
简单带入求值计算题一、与课本衔接基础题选择题1、 已知a-b=-3,c+d=2, 则(b+c) - (a-d) 为( )。
A. -1B. -5C. 5D. 12、 已知a 2-2b-1=0. 则多项式2a 2-4b+2的值等于( )。
A.1B. 4C.-1D. -43、 当x=-3时,多项式ax 5+bx 3+cx-5的值是7, 那么当x=3时,它的值是( )。
A. -3B. -7C. 7D. -17 4、 已知代数式24)35(2dx x cx bx ax x +++, 当x=1时,值为1.那么该代数式当x=一1时的值是( )。
A. 1B. -1C. 0D. 2填空题1、若多项式2x 2+3x+7的值为10, 则多项式6x 2+9x-7的值为 。
2、已知a 2+2ab=-8,b 2+2ab=14, 则a 2+4ab+b 2= :a 2-b 2= 。
3、若x+y=7,y+z=8,z+x=9, 则x+y+z = 。
4、已知x 2+x+1=0, 则x 2000+x 1999+x 1998的值为 。
5、当x=1时,代数式px+qx 的值为2003, 则x=-1时,px+qx 。
6、已知当x=-2时,代数式ax 3+bx+1的值为6, 那么当x=2时,代数式ax 3+bx+1的值是多少 。
7、已知2x+y=10xy, 求代数式yxy x y xy x +-++4224= 。
8、a 2+6a+36=0,则a 3= 。
答案:选择题1、C ;2、B ;3、D ;4、B填空题1、2;2、0,0;3、12;4、0;5、-2001;6、-4;7、27 8、216 a 2+6a=-36 a 2=-6a-36a 3=a •a 2=a(-6a-36)=-6(a2+6a) =-6×36=216二、拔高题(竞赛题)1、已知x-2y=2,求8463---+y x y x 的值2、已知x 1-y 1=3,则y xy x y xy x ---+2232的值3、已知a 4+a 3+a 2+a+1=0,求a 5的值。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
北师大版七年级上册数学:第一章、第二章练习题
北师大版七年级上册数学第一章、第二章练习题时间:80分钟总分:100分温馨提示;请将答案清楚地填涂(2B铅笔)、书写(黑色签字笔)在答题卡指定位置,题号对应准确。
一、选择题(每小题2分,共20分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最不接近标准的是()A.B.C.D.2.在数轴上表示﹣2的点与表示-3的点之间的距离是()A. 5 B.﹣5 C.1 D.﹣13.若a与-1互为倒数,则|a+1|等于()A.﹣1 B.0 C.1 D.24.李志家冰箱冷冻室的温度为﹣6℃,调高4℃后的温度为()A.4℃B.10℃ C.﹣2℃D.﹣10℃5.计算:﹣3﹣|﹣6|的结果为()A.﹣9 B.﹣3 C.3 D.96.如图所示的立方体,如果把它展开,可以得到( )7.如图所示的几何体可以由( )旋转得到.8.若(a−1)2与|b+2|互为相反数,求(a+b)2021+a2020的值为()A.1 B.﹣1 C.2 D.09.如图所示,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A,B,C的三个数依次为( )A.1,-2,0 B.-2,1,0C.-2,0,1 D.0,-2,110.定义运算,比如2⊗3=+=,下面给出了关于这种运算的几个结论:①2⊗(﹣3)=;②此运算中的数字均不能取零;③a⊗b=b⊗a;④a⊗(b+c)=a⊗c+b⊗c,其中正确是()A.①②④B.①②③C.②③④D.①③④二.选择题(每小题2分,共20分)11.地球上煤的储量约为150000000吨以上,用科学计数法表示150000000为___________吨12.已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为3,那么点B对应的数是.13.若“方框”表示运算x﹣y+z+w,则“方框”的运算结果是= .从正面看从上面看14.“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明____________. 15.有10个面的棱柱有________条棱.16.如图是由若干个大小相同的小正方体堆砌而成的几何体,每个小正方体的棱长是1cm ,那么其三种视图中面积最小是_______cm 2.17.用一个平面去截一个正方体,能得到________种不同边数的多边形。
北师大版七年级数学上册各章测试卷(共7套,含答案)
(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。
北师大版七年级上学期数学《期末测试题》及答案解析
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.有理数 , , 在数轴上的对应点的位置如图所示,则正确的结论是()
A. B. C. D.
[答案]A
[解析]
[分析]
根据数轴上点的位置作出判断即可.
(2)若 ,直接写出 的度数(用含 的代数式表示).
28.对数轴上的点 进行如下操作:先把点 表示的数乘以 ,再把所得数对应的点沿数轴向右平移 个单位长度,得到点 .称这样的操作为点 的“倍移”,对数轴上的点 , , , 进行“倍移”操作得到的点分别为 , , , .
(1)当 , 时,
①若点 表示的数为 ,则它的对应点 表示的数为.若点 表示的数是 ,则点 表示的数为;②数轴上的点 表示的数为1,若 ,则点 表示的数为;
[详解]由相反数的意义得,2的相反数是-2,
故选:D.
[点睛]本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.2019年12月16日,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”方式成功发射第52、53颗北斗导航卫星,卫星距离地球表面约21500000m,将数字21500000用科学记数法表示应为
二、填空题(本题共8个小题,每小题2分,共16分)
9.计算: =________; ________.
[答案](1).-1(2).18
[解析]
[分析]
根据有理数的乘方以及乘除法运算法则进行计算即可得到答案.
[详解] =-1;
,
故答案为:-1,18.
北师大版七年级数学上册全套试卷
北师大版七年级数学上册全套试卷本试卷为最新北师大版中学生七年级达标测试卷。
全套试卷共7份。
试卷内容如下:1. 第一单元使用2. 第二单元使用3. 第三单元使用4. 第四单元使用5. 第五单元使用6. 第六单元使用7. 期末检测卷第一章达标测试卷一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于()A.棱柱B.圆柱C.圆锥D.长方体2.下面的几何图形:①棱柱;②正方形;③圆锥;④圆;⑤长方体;⑥三角形.其中属于立体图形的是()A.①②③B.②④⑥C.①③⑤D.③④⑤3.将半圆绕它的直径所在的直线旋转一周形成的几何体是() A.圆柱B.圆锥C.球D.正方体4.一个无盖的正方体盒子的表面展开图可以是下列图形中的()(第4题) A.①B.①②C.②③D.①③5.下列说法不正确的是()A.圆锥和圆柱的底面都是圆B.棱柱的所有侧棱长都相等C.棱柱的上、下底面形状完全相同D.长方体是四棱柱,四棱柱是长方体6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来是“祝福祖国万岁”,把它折成正方体后,与“万”相对的字是()A.祖B.岁C.国D.福(第6题)7.在一个正方体容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()8.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()(第8题)9.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是() A.从正面看到的图形面积最小B.从左面看到的图形面积最小C.从上面看到的图形面积最小D.从三个方向看到的图形面积相等(第9题)10.如图表示一个由相同小立方块搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上小立方块的个数,那么从正面看到的图形为()(第10题)二、填空题(每题3分,共24分)11.一个正方体有________个面,________个顶点.12.快速旋转一枚竖立的硬币一周(假定旋转轴在原地不动),旋转形成的立体图形是__________.13.用数学知识解释下列现象:一只蚂蚁行走的路线可以解释为____________;直升机的螺旋桨转起来形成一个圆形的面,这说明了____________.14.下列几何体(如图),属于柱体的有____________;属于锥体的有__________;属于球体的有__________.(填序号)(第14题) 15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.(第15题)16.用一个平面去截一个圆柱(如图),图①中截面的形状是________,图②中截面的形状是__________.(第16题)17.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).(第17题)18.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为__________(结果保留π).14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.(第18题)三、解答题(19,22题每题8分,24题14分,其余每题12分,共66分) 19.图②中的几何体分别是由图①中哪个平面图形旋转一周得到的?用线连起来.(第19题)20.如图是从不同方向看一个几何体得到的图形及部分数据.(1)写出这个几何体的名称;(2)求这个几何体的侧面积.(第20题)21.观察如图所示的直六棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为25 cm,侧棱长为8 cm,则它的侧面积为多少?(第21题)22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x +y+z的值.(第22题)23.把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后将露出的部分都涂上颜色(不涂底面).(1)该几何体中有多少个小正方体?(2)画出从正面观察所得到的平面图形.(3)求涂色部分的总面积.(第23题)24.把如图①所示的正方体切去一块,得到如图②~⑤所示的几何体.(第24题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,v,e应满足什么关系式?答案1.B2.C3.C4.D5.D6.B7.A8.A9.B10.C二、11.6;812.球13.点动成线;线动成面14.①③⑤⑥;④;②15.圆锥;正方体;三棱锥;圆柱16.圆;长方形17.6π18.63π三、19.1—c;2—b;3—d;4—a20.解:(1)这个几何体是三棱柱.(2)这个几何体的侧面积为3×16×9=432 (cm2).21.解:(1)它有8个面,2个底面,底面是六边形,侧面是长方形.(2)侧面的个数与底面多边形的边数相等.(3)它的侧面积为25×8=200(cm2).22.解:由题意知x+5=10,2+y=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)该几何体中小正方体的个数为9+4+1=14(个).(2)如图所示.(第23(2)题)(3)由题意知该几何体的上面需涂色的面积为9个小正方形的面积和,前面、后面、左面、右面需涂色的面积和为6个小正方形面积和的4倍,故涂色部分的总面积为(9+6×4)×12=33(cm2).24.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(第24(2)题)(3)所求关系式为f +v -e =2.第二章达标测试卷一、选择题(每题3分,共30分)1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .-16%B .-6%C .+6%D .+4%2.-15的相反数是( )A.15B .-15C .5D .-53. 太阳的温度很高,其表面温度大约有6 000 ℃,而太阳中心的温度达到了19200 000 ℃,用科学记数法可将19 200 000表示为( ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1074.在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .05.下列算式正确的是( )A .-32=9B.⎝ ⎛⎭⎪⎫-14÷(-4)=1 C .(-8)2=-16D .-5-(-2)=-36.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有( )A .4个B .3个C .2个D .1个7.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对8.数a ,b ,c 在数轴上对应的点的位置如图所示,表示0的点为原点,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <09.学完有理数后,a ,b ,c ,d 四名同学分别聊起来了,a 说:“没有最大的正数,但有最大的负数.”b 说:“有绝对值最小的数,没有绝对值最大的数.”c 说:“有理数包括正有理数和负有理数.”d 说:“相反数是它本身的数是正数.”你认为谁说得对呢?( ) A .aB .bC .cD .d10.探索规律,71=7,72=49,73=343,74=2 401,75=16 807,…,那么72 018+1的个位数字是( ) A .8 B .4 C .2 D .0 二、填空题(每题3分,共24分)11.在有理数-3.7,2,213,-34,0,0.02中,正数有______________,负分数有______________.12.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.13.比较大小(填“>”“<”或“=”):(1)-45________-34; (2)|-5|________0;(3)-(-0.01)________⎝ ⎛⎭⎪⎫-1102.14.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.15.若|a -11|+(b +12)2=0,则(a +b )2 018=________.16.按下面程序计算(如图),输入x =-5,则输出的答案是________ .输入x ―→平方―→-x ―→÷2―→输出答案17.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).18.有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表:将卡片正面的数由大到小排列,然后将卡片翻转使背面朝上,卡片上的字母组成的单词是________.三、解答题(19题16分,20,22题每题8分,24题10分,其余每题12分,共66分) 19.计算:(1)-|3-5|+2×(1-3);(2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12;(4)-12-(1-0.5)÷52×15.20.已知|x -3|与|y -1|互为相反数,求式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值.21.如图,数轴上有三个点A ,B ,C ,请回答下列问题:(1)将点C 向左移动6个单位长度后,这时点B 所表示的数比点C 所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?22.若“”表示运算a-b+c,“”表示运算x-y+z-w,求-的值.23.“十一”期间,某风景区在7天假期中,每天旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天减少的人数)所示(单位:万人):日期1日2日3日4日5日6日7日人数变化+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2万人.天内哪天游客的人数最多?哪天游客的人数最少?(2)这7天内该风景区平均每天有游客多少万人?24.如图,数轴上的点A,B,C分别表示数-3,-1,2.(1)A,B两点间的距离AB=________,A,C两点间的距离AC=________.(2)若点E表示的数为x,则AE的长等于多少?答案二、1.B 2.A 3.B 4.B 5.D 6.B7.B 8.B 9.B 10.D 二、11.2,213,0.02;-3.7,-3412.505 g ;495 g13.(1)< (2)> (3)= 14.7 15.1 16.15 17.× 18.thanks三、19.解:(1)原式=-2+2×(-2)=-2+(-4)=-6;(2)原式=20-9+2=13; (3)原式=-8-26=-34;(4)原式=-1-12×25×15=-1-125=-1125.20.解:因为|x -3|与|y -1|互为相反数,所以|x -3|+|y -1|=0.所以x =3,y =1.所以原式=⎝ ⎛⎭⎪⎫31-13÷(3+1)=⎝ ⎛⎭⎪⎫3-13÷4=23.21.解:(1)这时点B 所表示的数比点C 所表示的数大1.(2)有3种移法.①点A 右移2个单位长度,点C 左移5个单位长度; ②点A 右移7个单位长度,点B 右移5个单位长度; ③点B 左移2个单位长度,点C 左移7个单位长度.22.解:由题意知,原式=14-12+16-[-2-3+(-6)-3]=-112-(-14)=-112+14=131112.23.解:(1)由题意知,该风景区在7天假期中,每天旅游的人数如下表所示(单位:万人):由此可知,10月3日的游客人数最多,10月7日的游客人数最少.(2)这7天内该风景区平均每天的游客人数为17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人). 24.解:(1)2;5(2)|x -(-3)|=|x +3|, 即AE 的长为|x +3|.第三章达标测试卷一、选择题(每题3分,共30分)1.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2y,-3中,不是整式的有( )A .4个B .3个C .2个D .1个2.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b3.下列代数式中符合书写要求的是( )A.a 2b4B .213cbaC .a ×b ÷cD .ayz 34.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘5.多项式y -x 2y +25的项数、次数分别是( )A .3,2B .3,5C .3,3D .2,3 6.下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2 C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x 7.将有理数m 减小5后,再乘3,最后的结果是( )A .3(m -5)B .m -5×3mC .m -5+3mD .m -5+3(m -5)8.若m +n =-1,则(m +n )2-2m -2n 的值是( )A .3B .0C .1D .29.多项式12x |n |-(n +2)x +7是关于x 的二次三项式,则n 的值是( )A .2B .-2C .2或-2D .310.有一种石棉瓦,每块宽60 cm ,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm ,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A .60n cmB .50n cmC .(50n +10)cmD .(60n +10)cm二、填空题(每题3分,共24分)11.单项式-x 2y3的系数是________,次数是________.12.-xy 22+3xy -23是________次________项式,最高次项的系数为________.13.计算:a 2b -2a 2b =________.14.若-x 3y 与x a y b -1是同类项,则(b -a )2 017=________.15.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩______________元钱(用含a ,b 的代数式表示). 16.定义新运算“”,规定ab =13a -4b ,则12(-1)=________.17.一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请观察它们的构成规律,用你发现的规律写出第9个等式:____________________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.按照如图所示的规律,摆第n 个图形,需用火柴棒的根数为__________.(第18题)三、解答题(20~22题每题10分,其余每题12分,共66分) 19.计算:(1)(-5a 3)-a 3-(-7a 3); (2)()5a 2+2a -1-2()3-8a +2a 2;(3)(2xy-y)-(-y+yx); (4)3a2b-2[ab2-2(a2b-2ab2)].20.(1)先化简,再求值:12x+⎝⎛⎭⎪⎫13y2-x-⎝⎛⎭⎪⎫-32x+43y2,其中x=-12,y=-3.(2)已知A=-a2+2a-1,B=3a2-2a+4,求当a=-2时,2A-3B的值.21.如图是一个长方形广场,四角都有一块边长为x m的正方形草地,若长方形的长为a m,宽为b m.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为350 m,宽为200 m,正方形草地的边长为10 m,求阴影部分的面积.(第21题)22.对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题:当k为何值时,代数式中不含xy项?第二个问题:在第一个问题的前提下,如果x=2,y=-1,那么代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,他得到的最后结果却是正确的,你知道这是为什么吗?23.某校组织学生到距离学校6 km的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车收费标准有两种类型,如下表:里程甲类收费/元乙类收费/元3 km以下(包含3 km) 7.00 6.003 km以上,每增加1 km 1.60 1.40(1)设出租车行驶的里程为x km(x≥3且x取正整数),分别写出两种类型的总收费(用含x的代数式表示);(2)小华身上仅有11元,他乘出租车到科技馆车费够不够?24.一张正方形桌子可坐4人,按如图所示的方式将桌子拼在一起,回答下列问题.(第24题)(1)两张桌子拼在一起可以坐________人,三张桌子拼在一起可以坐________人,n张桌子拼在一起可以坐________人.(2)一家酒楼有60张这样的正方形桌子,按如图所示的方式每4张桌子拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)(3)中哪种拼桌子的方式能使坐的人更多?答案一、1.C2.A3.A4.D5.C6.D 7.A8.A点拨:(m+n)2-2m-2n=(m+n)2-2(m+n).当m+n=-1时,(m+n)2-2(m+n)=(-1)2-2×(-1)=1+2=3.9.A点拨:因为多项式12x|n|-(n+2)x+7是关于x的二次三项式,所以|n|=2且n+2≠0,所以n=2. 10.C二、11.-13;312.三;三;-1213.-a2b14.-1 15.(100-3a-2b)16.8点拨:12(-1)=13×12-4×(-1)=8.17.92+102+902=912点拨:规律:n2+(n+1)2+[n(n+1)]2=[n(n+1)+1]2,故第9个等式为92+102+902=912.18.6n+2点拨:第1个图形有8根火柴棒,第2个图形有14根火柴棒,第3个图形有20根火柴棒,…,第n个图形有(6n+2)根火柴棒.三、19.解:(1)原式=-5a3-a3+7a3=a3;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=2xy-y+y-xy=xy;(4)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:(1)原式=12x+13y2-x+32x-43y2=x-y2.当x=-12,y=-3时,x-y2=-12-(-3)2=-192.(2)2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-2时,2A-3B=-11a2+10a-14=-11×(-2)2+10×(-2)-14=-78.21.解:(1)阴影部分的面积为(ab-4x2)m2.(2)将a=350,b=200,x=10代入(1)中得到的式子,得350×200-4×102=70 000-400=69 600(m2).答:阴影部分的面积为69 600 m2.22.解:(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy,所以只要7-k=0,这个代数式中就不含xy项.所以当k=7时,代数式中不含xy项.(2)因为在第一个问题的前提下原代数式可化为3x2+8y2,当马小虎同学把y=-1错看成y=1时,y2的值不变,即8y2的值不变,所以马小虎得到的最后结果却是正确的.23.解:(1)甲类总收费为7+(x-3)×1.6=1.6x+2.2(元);乙类总收费为6+(x-3)×1.4=1.4x+1.8(元).(2)当x=6时,甲类总收费为1.6×6+2.2=11.8(元),11.8元>11元,不够;乙类总收费为1.4×6+1.8=10.2(元),10.2元<11元,够.所以他乘出租车到科技馆车费够.24.解:(1)6;8;(2n+2)(2)按题图所示的方式每4张桌子拼成一张大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子共可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子共可坐8×15=120(人).(4)由(2)(3)可知,按照(2)中拼桌子的方式能使坐的人更多.第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,你认为是四边形的是()2.对于直线AB,线段CD,射线EF,下面能相交的是()(第3题)3.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠CC.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出2 018条对角线,这个多边形的边数是()A.2 018 B.2 019 C.2 020 D.2 0215.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MXC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对7.如图,观察图形,下列说法或结论中不正确的是()(第7题)A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法正确的有()①角的大小与所画角的两边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线;④如果∠AOC=12∠AOB,那么OC是∠AOB的平分线.A.1个B.2个C.3个D.4个9.已知∠AOB=50°,∠BOC=30°,那么∠AOC的度数是() A.20°B.40°C.80°D.20°或80°10.如图,一条流水生产线上L1,L2,L3,L4,L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()(第10题)A.L2处B.L3处C.L4处D.生产线上任何地方都一样二、填空题(每题3分,共24分)11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为______________________.12.如图,小于平角的角有________个.(第12题)(第14题)(第17题)(第18题)13.把一个直角4等分,每一个角的度数是________度________分.14.如图,阴影部分扇形的圆心角的度数是________.15.一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖正好对着直尺刻度约为5.6 cm处,另一端正好对着直尺刻度约为20.6 cm处,则水笔的中点位置对着的直尺刻度约为________cm.16.在学习了“线段、射线、直线”后,小李发现:许多汉字就是由这些基本的图形组成的,例如:“一”“二”可以分别看成是一条线段和两条线段组成的,那么汉字“王”中有________条线段.17.如图,某轮船在O处测得灯塔A在北偏东40°的方向上,灯塔B在南偏东60°的方向上,则∠AOB=________.18.如图,艺术节期间某班数学兴趣小组设计了一个长方形时钟作品,其中心为O,数字3,6,9,12标在各边中点处,数字2在长方形顶点处,则数字1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).三、解答题(19~22题每题10分,其余每题13分,共66分)19.计算:(1)48°39′+67°41′-37°12′11″;(2)32°45′20″×4-40°35′50″.20.尺规作图,如图,已知线段a,b,作出线段c,使c=a-b.(要求:不写作法,保留作图痕迹)(第20题)21.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第21题)22.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.(第22题)23.如图,A,B,C是一条笔直的公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现在要在A,B之间建一个车站P,设P,C之间的路程为x km.(1)用含x的代数式表示车站P到三个村庄的路程之和.(2)若路程之和为102 km,则车站P应建在何处?(3)若要使车站P到三个村庄的路程之和最小,则车站P应建在何处?此时路程之和是多少?(第23题)24.如图,正方形ABCD的内部有若干个点,利用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些小三角形(互相不重叠):(第24题)(1)填写下表:正方形ABCD内点的个数1234…n分割成的小三角形的个数46…(2)原正方形能否被分割成2 018个小三角形?若能,求此时正方形ABCD的内部有多少个点.若不能,请说明理由.答案一、1.B2.B3.B4.D5.C6.B7.D8.B点拨:从角的顶点出发的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线,故③错误;如果∠AOC=12∠AOB,当OC在∠AOB的内部时,OC是∠AOB的平分线,但当OC在∠AOB的外部时,OC不是∠AOB的平分线,故④错误.①②正确,所以选B.9.D点拨:①当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=50°+30°=80°;②当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=50°-30°=20°.故选D.10.B二、11.两点确定一条直线12.713.22;3014.36°15.13.116.1217.80°18.②三、19.解:(1)原式=(48°+67°-37°)+(39′+41′-13′)+(60″-11″)=78°67′49″=79°7′49″;(2)原式=131°1′20″-40°35′50″=90°25′30″.20.解:如图所示.(第20题)则线段BC=c=AB-AC=a-b.21.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.22.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE 平分∠AOD , 所以∠2=12∠AOD =65°.23.解:(1)路程之和为P A +PB +PC =(100+x )km .(2)令100+x =102,解得x =2, 即车站P 建在C 村两侧2 km 处均可.(3)当x =0时,x +100最小,此时x +100=100,即车站P 建在C 村处时,车站P 到三个村庄的路程之和最小,此时路程之和为100 km . 24.解:(1)填表如下:(2)能.当2n +2=2 018,即n =1 008时,原正方形能被分割成2 018个小三角形,此时正方形ABCD 的内部有1 008个点.第五章达标测试卷一、选择题(每题3分,共30分) 1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3 C.12x -9=3 D.2x +1=22.下列方程中,解是x =2的方程是( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +1 3.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6 4.下列变形中,正确的是( )A .若ac =bc ,则a =bB .若a c =bc ,则a =b C .若|a |=|b |,则a =b D .若-2x -2=3,则x =12 5.将方程3x -23+1=x2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x6.某公园要修建一个周长为48 m 的长方形花坛,已知该花坛的长比宽多2 m ,设花坛的宽为x m ,那么列出的方程为( )A .2x =48B .x +2=48C .(x +x +2)×2=48D .x (x +2)=48 7.若12m +1与m -2互为相反数,则m 的值为( )A .-23 B.23 C .-32 D.328.如果x +12 017=-3,那么3x +32 017等于( )A .6B .-9C .3D .-19.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.对于有理数a ,b ,c ,d 规定一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 等于( ) A .-34 B.274 C .-234 D .-134 二、填空题(每题3分,共24分)11.如果(a -1)x -13=2是关于x 的一元一次方程,则a __________. 12.写出一个解为x =2的一元一次方程:______________.13.已知关于x 的方程2x +a -5=0的解是x =2,则a =________. 14.若规定“*”的意义为a *b =a -2b ,则方程3*x =5的解是____________. 15.若方程3x -4=0与关于x 的方程3x +4k =12的解相同,则k =________. 16.如图是一个计算程序,当输入某数后,得到的结果为5,则输入的数值x =________.(第16题)17.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋.18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)3x -3=x +2; (2)x +14-1=2x -16.(3)4x -3(20-x )=4;(4)3(x +2)4=x +23+5.20.m为何值时,代数式2m-5m-13的值与代数式7-m2的值的和等于5?21.某月,小江去某地出差,回来时发现日历有好几天没翻了,就一次翻了6张,这6天的日期数之和是123.小江回来的日期应该是多少号?22.某地为了打造风光带,将一段长为360 m的河道整治任务交给甲、乙两个工程队接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m,求甲、乙两个工程队分别整治了多长的河道.23.有一种用来画圆的工具板(如图),工具板长21 cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm,其余圆的直径从左到右依次递减x cm,最大圆的左侧距工具板左侧边缘1.5 cm,最小圆的右侧距工具板右侧边缘1.5 cm,且相邻两圆的间距均为d cm.(1)用含x的代数式表示出其余四个圆的直径;(2)若最小圆与最大圆的直径之比为11∶15,求相邻两圆的间距.(第23题)24.某市居民生活用电基本价格为每千瓦时0.60元,若每月用电量超过a kW·h,超出部分按基本电价的120%收费.(1)某用户6月用电150 kW·h,共交电费93.6元,求a的值;(2)若该用户7月的电费平均每千瓦时为0.66元,则7月用电多少千瓦时?应交电费多少元?答案一、1.C 2.D 3.B4.B 点拨:当c =0,a ≠b 时,ac =bc 也成立,故A 选项不正确;若a c =bc ,则c 不能为0,由等式的基本性质得a =b ,故B 选项正确;若|a |=|b |,则a =b 或a =-b ,故C 选项不正确;若-2x -2=3,则x =-52,故D 选项不正确. 5.C 6.C 7.B 8.B9.A 点拨:设被移动的玻璃球的质量为x g ,根据题意,得2x =20,解得x =10. 10.A二、11.≠1 12.x -2=0(答案不唯一) 13.114.x =-1 点拨:由已知得3*x =3-2x =5,即2x =-2,解得x =-1. 15.216.10 点拨:输入某数后,得到的结果为5,而输入的数值可能是奇数,也可能是偶数.当输入的数值是奇数时,可得x +3=5,解得x =2(不合题意,舍去);当输入的数值是偶数时,可得12x =5,解得x =10.17.33 点拨:设王经理带回孔明菜x 袋,根据题意列方程,得x -35=x +36.解这个方程,得x =33.18.511 点拨:设0.4·5·=y ,则y =0.45+1100y ,解得y =511.所以0.4·5·化成分数是511.三、19.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5. 系数化为1,得x =52.(2)去分母,得3(x +1)-12=2(2x -1). 去括号,得3x +3-12=4x -2. 移项,得3x -4x =-2-3+12. 合并同类项,得-x =7. 系数化为1,得x =-7.(3)去括号,得4x-60+3x=4. 移项、合并同类项,得7x=64.系数化为1,得x=64 7.(4)去分母,得9(x+2)=4(x+2)+60. 移项,得9(x+2)-4(x+2)=60.合并同类项,得5(x+2)=60.所以x+2=12.解得x=10.20.解:由题意知,2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30.去括号,得12m-10m+2+21-3m=30.移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.21.解:设这6天的日期数分别为x-2,x-1,x,x+1,x+2,x+3.根据题意,可得(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=123.解得x=20.20+3+1=24.答:小江回来的日期应该是24号.22.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,解得x=5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m);乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.23.解:(1)其余四个圆的直径分别为(3-x)cm,(3-2x)cm,(3-3x)cm,(3-4x)cm.(2)由题易得(3-4x)∶3=11∶15,解得x=0.2.将x=0.2代入2×1.5+[3+(3-x)+(3-2x)+(3-3x)+(3-4x)]+4d=21,解得d=1.25.答:相邻两圆的间距为1.25 cm.24.解:(1)因为0.60×150=90(元)<93.6元,所以a<150.由题意,得0.60a+(150-a)×0.60×120%=93.6,解得a=120.(2)设7月用电x kW·h.由题意,得0.66x=0.60×120+0.60×(x-120)×120%,解得x=240.所以0.66x=0.66×240=158.4.答:7月用电240 kW·h,应交电费158.4元.第六章达标测试卷一、选择题(每题3分,共30分)1.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率2.为了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,在这个问题中,下列说法正确的是()A.1 500名学生的体重是总体B.1 500名学生是总体C.每名学生是个体D.100名学生是所抽取的一个样本3.下列选项中,显示部分在总体中所占百分比的统计图是() A.扇形统计图B.条形统计图C.折线统计图D.频数直方图4.为了了解某初中学校学生的健康状况,对该校学生进行抽样调查,下列抽样的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中随机抽取10%的学生5.四种统计图:①条形统计图;②扇形统计图;③折线统计图;④频数直方图.四个特点:(a)易于比较数据之间的差异;(b)易于显示各组之间的频数的差别;(c)易于显示数据的变化趋势;(d)易于显示每组数据相对于总数的大小.统计图与特点选配方案分别是①与(a);②与(c);③与(d);④与(b).其中选配方案正确的有()A.1个B.2个C.3个D.4个6.某公司某产品的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌(第6题)(第7题)(第8题)7.某次考试中,某班级的数学成绩统计图如图所示(每组的分数包含最小值,不包含最大值).下列说法错误的是()A.得分在70~80分的人数最多B.该班共有40人C.得分在90~100分的人数最少D.及格(≥60分)的有26人8.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”这个问题,对部分学生进行了调查,调查结果如图所示,其中“不知道”的学生有8人.下列说法不正确的是()。
北师大版七年级上册数学书答案
北师大版七年级上册数学书答案篇一:北师大版七年级上册数学配套练习(带答案)北师大七年级上第一章丰富的图形世界第课时家庭作业生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题114.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B CD 15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A) 10个(B) 9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:ACB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.2() () ( ) ()( )⑵. 将这些几何体分类,并写出分类的理由.第课时家庭作业参考答案一、1.平;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面;7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5;10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体;二、14.D;15.C;16.B; 17.A;三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱;(2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱;按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第课时家庭作业(平面内的立体图形2)姓名学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形;二.填空题:1.围成球的面有个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,____个曲面,圆锥的侧面与底面3相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是(()10.以下立体图形中是棱柱的有((A)①⑤(B)①②③(C)①②④⑤(D)①②⑤[ 11.下列说法中,正确的是((A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是((A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是(4)))))(A)正方体(B)长方体(C)球(D)棱柱14.()(A)(B)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A) 7个(B) 8个(C) 9个(D) 7个或8个或9个或10个三、解答题16.请写出下列几何体的名称() ( ) ( ) ( )( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面; 6.立体;[二、5篇二:2014年练习册上册数学七年级C北师大版答案篇三:七年级上册-北师大版-数学练习册解析与答案七年级上册-北师大版-数学练习册解析与答案北师大版七年级数学上册教学建议及期末调研要求⒈本学期(春节1月29日)的教学时间虽然不太长,但除去节假日外,实际上课也在20周左右(课时数120节),相对的下学期的时间短些;而七上教材教学课时为69—108节,七下教材教学课时为66—100节。
专题07(计算、化简求值题)(20道)-七年级数学上学期期中考点黄金200题(北师大版)(解析版)
专题07(计算、化简求值题)(20道)1.(2020洪湖月考)若|m﹣1|=3,求m的值.【答案】﹣2或4.【分析】根据绝对值的性质列式即可求出m的值,【解析】由题意得,m﹣1=±3,解得m=﹣2或4,故答案为:﹣2或4.【点睛】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2020荆州月考)计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016).【答案】﹣1008【分析】根据运算律即可化简求值【解析】原式=(1﹣2)+(3﹣4)+…+(2015﹣2016)=﹣1+(﹣1)+…(﹣1)=﹣1008【点睛】本题考查有理数运算,注意利用有理数运算律.3.(2020荆州模拟)已知|x|=3,y2=25,且x>y,求出x,y的值.【答案】x=3,y=﹣5或x=﹣3,y=﹣5.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解析】∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点睛】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.4.(2020潜江月考)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.【答案】﹣1.【分析】根据非负数的性质求出m、n的值,计算即可.【解析】由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.5.(2020天门月考)(﹣3x2﹣4y+6)﹣(﹣2x2+5y+6)【答案】﹣x2﹣9y.【分析】按照先去括号,再合并同类项的顺序进行计算即可.【解析】(﹣3x2﹣4y+6)﹣(﹣2x2+5y+6)=﹣3x2﹣4y+6+2x2﹣5y﹣6=﹣x2﹣9y.【点睛】此题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.6.(2020洛阳)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.【答案】﹣4x2y,2 3 .【分析】先去括号,再合并同类项得到原式═﹣4x2y,然后把x、y的值代入计算即可.【解析】原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=时,原式=﹣4×(﹣1)2×=﹣.【点睛】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.7.(2020开封模拟)一个多项式加上2x2﹣x+5等于4x2﹣6x﹣3,求这个多项式.【答案】2x2﹣5x﹣8.【分析】根据和减去一个加数等于另一个加数列出关系式,去括号合并即可得到结果.【解析】根据题意得:(4x2﹣6x﹣3)﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.(2020定西月考)有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式.【答案】3×7+(4﹣1)=24.【分析】24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.【解析】答案不唯一,如:3×7+(4﹣1)=24.【点睛】此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.9.(2020深圳模拟)阅读下面的解题过程:计算2(﹣4a+3b)﹣3(a﹣2b).解:原式=(﹣8a+6b)﹣(3a﹣6b)(第一步)=﹣8a+6b﹣3a﹣6b (第二步)=﹣11a+12b (第三步)回答:(1)上面解题过程中有两步错误,第一处是第步;第二处是第步.(2)请给出正确的计算过程.【答案】(1)第一处错误在第二步;第二处错误在第三步;(2)正确的计算过程见解析.【分析】(1)根据去括号的法则及合并同类项的法则,即可作出判断.(2)先去括号,然后合并同类项,计算得出结果.【解析】(1)第一处错误在第二步;第二处错误在第三步;(2)2(﹣4a+3b)﹣3(a﹣2b)原式=(﹣8a+6b)﹣(3a﹣6b)(第一步)=﹣8a+6b﹣3a+6b (第二步)=﹣11a+12b.(第三步)【点睛】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.10.(2020贵港月考)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).【答案】(1)空地的面积=ab﹣πr2;(2)40000﹣100π(平方米).【分析】(1)观察可得空地的面积=长方形的面积﹣圆的面积,把相关数值代入即可;(2)把所给数值代入(1)得到的代数式求值即可.【解析】(1)空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=40000﹣100π(平方米).【点睛】考查列代数式及代数式的相关计算;得到空地部分的面积的关系式是解决本题的关键.11.(2020玉林模拟)已知A=2xy﹣2y2+8x2,B=9x2+3xy﹣5y2.求:(1)A﹣B;(2)﹣3A+2B.【答案】(1)A﹣B=﹣x2﹣xy+3y2;(2)﹣3A+2B=﹣4y2﹣6x2.【分析】根据题意可得:A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2),﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2),先去括号,然后合并即可.【解析】由题意得:(1)A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2)=2xy﹣2y2+8x2﹣9x2﹣3xy+5y2=﹣x2﹣xy+3y2.(2)﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2)=﹣6xy+6y2﹣24x2+18x2+6xy﹣10y2=﹣4y2﹣6x2.【点睛】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.(2020毕节月考)计算:(1)﹣62×(﹣1)2﹣32÷(﹣1)3×3(2)﹣14+(﹣﹣+)×(﹣24)(3)0.5+(﹣)﹣2.75+(﹣)﹣(﹣3)(4)3(m2n+mn)﹣4(mn﹣2m2n)+mn.【答案】(1)﹣73;(2)26;(3)0;(4)11m2n.【分析】(1)先计算乘方、将除法转化为乘法,再计算乘法,最后计算加法即可得;(2)先计算乘法和利用乘法分配律去掉括号,再计算加减即可得;(3)将分数转化为小数,写成省略加号和括号的形式,再计算加减即可;(4)去括号后合并同类项可得.【解析】(1)原式=﹣36×﹣9×(﹣)×3=﹣81+8=﹣73;(2)原式=﹣1+32+9﹣14=26;(3)原式=0.5﹣0.25﹣2.75﹣0.5+3=0;(4)原式=3m2n+3mn﹣4mn+8m2n+mn=11m2n.【点睛】本题主要考查有理数的混合运算和整式的混合运算,熟练掌握运算法则和运算顺序是解题的关键.13.(2020铜仁模拟)先化简,再求值.(1)(4a+3a2)﹣3﹣3a3﹣(﹣a+4a3),其中a=﹣2;(2)3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=.【答案】(1)﹣7a3+3a2+5a﹣3,55;(2)xy2+xy,1.【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解析】(1)原式=4a+3a2﹣3﹣3a3+a﹣4a3=﹣7a3+3a2+5a﹣3,当a=﹣2时,原式=56+12﹣10﹣3=55;(2)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=时,原式=1.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.14.(2020大庆月考)先化简,再求值:3(x﹣y)﹣2(x+y)+2,其中x=﹣1,.【答案】x﹣5y+2,﹣.【分析】先把原式去括号,再合并同类项,然后把x、y的值代入即可.【解析】3(x﹣y)﹣2(x+y)+2=3x﹣3y﹣2x﹣2y+3=x﹣5y+2,∵x=﹣1,.,∴x﹣5y+2=﹣1﹣5×+2=﹣.【点睛】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点15.(2020绥化期中)先化简,再求值:2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【答案】﹣6x2+10xy,﹣84.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解析】原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点睛】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.16.(2020恩施州期中)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【答案】(1)A+B=x2;(2)A+B= 9.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解析】(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点睛】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.17.(2020黄冈模拟)有理数a,b,c满足a+b+c>0,且abc<0,求的值.【答案】0.【分析】根据已知得出其中一个为负数,其余两个为正数,分为三种情况:①当a<0时,b>0,c>0,②当b<0时,a>0,c>0,③当c<0时,a>0,b>0,分别计算即可.【解析】∵abc<0,∴负因数用1个或3个;∵a+b+c>0,∴至少有1个正数,∴符合条件的只有一种情况:其中一个为负数,其余两个为正数,分为以下三种情况:①当a<0时,b>0,c>0,=﹣1+1+1﹣1=0;②当b<0时,a>0,c>0,=1﹣1+1﹣1=0;③当c<0时,a>0,b>0,=1+1﹣1﹣1=0.故答案为0.【点睛】本题考查了有理数的乘除法,绝对值的意义,求代数式的值,解此题的关键是根据有理数的乘法与加法法则得出符合条件的只有一种情况:其中一个为负数,其余两个为正数.题目比较好,有一定的难度,注意:当a<0时,|a|=﹣a.18.(2020浙江期中)化简并在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.(﹣1)2020,+(﹣3.5),﹣(﹣1.5),﹣|﹣2.5|,﹣22解:化简:(﹣1)2020=;+(﹣3.5)=;﹣(﹣1.5)=;﹣|﹣2.5|=;﹣22=.在数轴上表示,并用“<”号连接为:.【答案】1;﹣3.5;1.5;﹣2.5;﹣4;﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2020<﹣(﹣1.5).【分析】根据有理数的乘方、相反数、绝对值化简,即可解答.【解析】(﹣1)2020=1;+(﹣3.5)=﹣3.5;﹣(﹣1.5)=1.5;﹣|﹣2.5|=﹣2.5;﹣22=﹣4.﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2020<﹣(﹣1.5).故答案为:1;﹣3.5;1.5;﹣2.5;﹣4;﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2020<﹣(﹣1.5).【点睛】本题考查了有理数的乘方、相反数、绝对值,解决本题的关键是熟记有理数的乘方、相反数、绝对值.19.(2020威海月考)(1)(8a2b﹣6ab2)﹣2(3a2b﹣4ab2)(2)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)【答案】(1)2a2b+2ab2;(2)3a2﹣ab+b2.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解析】(1)原式=8a2b﹣6ab2﹣6a2b+8ab2=2a2b+2ab2;(2)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.(2020十堰期中模拟)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)﹣2,1,7;(2)4;(3)3t+3,5t+9,2t+6;(4)不变,3BC﹣2AB=12.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解析】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
七年级北师大上册数学练习题
学校:_______班级:_______姓名:_______一、填空题1、5²(-2)2=_______,48÷(-2)5=_______.2、N为正整数,则(-1)2N=_______,(-1)2N+1=_______.3、一个数的平方等于这个数本身,则这个数为_______.4、一个数的立方与这个数的差为0,则这个数是_______.5、(-2)3的底数是_______,结果是_______.6、-32的底数是_______,结果是_______.二、选择题1、如果A2=A,那么A的值为()A.1B.0C.1或0D.-12、一个数的平方等于16,则这个数是()A.+4B.-4C.±4D.±83、A为有理数,则下列说法正确的是()A.A2>0B.A2-1>0C.A2+1>0D.A3+1>04、下列式子中,正确的是()A.-102=(-10)³(-10)B.32=3³2C.(-)3=-³³D.23=325、在-|-4|,-(-4),(-4),-4,最大的数是()A.-|-4|B.-(-4)C.(-4)D.-46、设a<0,则下列说法中正确的是()A.a的偶次方的偶次方是负数B.a的奇次方的偶次方是负数C.a的奇次方的奇次方是负数D.a的偶次方的奇次方是负数7、如果a≠0,那么下列各式中一定成立的是()A.-a>0B.a-a>0C.a-a>0D.(-a)>0三、判断题1.若一个数的平方为正数,则这个数一定不为0. ()2.(-1)N=-N. ()3.一个数的平方一定大于这个数. ()4.平方是8的数有2个,它们是±2. ()学校:_______班级:_______姓名:_______1、计算-3-3(-)的结果是()A. B.-2C.-4D.-12、计算³5÷³5的结果是()A.1B.5C.25D.3、计算1-2³(-3)得()A.-27B.-23C.21D.254、下列各式运算结果为正数的是( )A.-2³5B.(1-2)³5C.(1-2)³5D.1-(3³5)5、如果四个有理数之和的是4,其中三个数是-12,-6,9,则第四个数是()A.-9B.15C.-18D.216、计算-2+(-2)+(-2)-2的结果是()A.-8B.-6C.-14D.07、计算 -0.3÷0.5³2÷(-2)的结果是()A. B. - C. D. -8、计算-+(的结果是()A.-2.9B.2.9C.-2.8D.2.89、若a,b互为负倒数,a,c互为相反数且|d|=2,则代数式d-d²(的值为()A.3B.4C. 3或4D.3或410、若a+b<0,且ab<0则需( )(A)a>0,b>0(B)a,b异号,且负数的绝对值较大(C)a,b异号(D) a<0,b<0第十七次作业学校:_______班级:_______姓名:_______一、选择题:1、下列各组数中,相等的一组是()A、23和22B、(-2)3和(-3)2C、(-2)3和-23D、(-2³3)2和-(2³3)22、计算-16÷(-2)3-22³(-),结果应是()A、0B、-4C、-3D、43、下列各式中正确的是()A、-22=-4B、-(-2)2=4C、(-3)2=6D、(-1)3=14、计算:(-2)201+(-2)200的结果是()A、1B、-2C、-2200D、2200二、计算题:(1)(2)(3) (4)三、解答题:当x=-1,y=-2,z=1时,求(x+y)2-(y+z)2-(z+x)2的值.第十八次作业学校:_______班级:_______姓名:_______一、填空题1.商店运来一批梨,共9箱,每箱n个,则共有_______个梨.2.小明x岁,小华比小明的岁数大5岁,则小华_______岁.3.一个正方体边长为a,则它的体积是_______.4.一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是_______cm2.5.一辆客车行驶在长240千米的公路,设它行驶完共用a个小时,则它的速度是每小时_______千米.二、选择题1.原产量n千克增产20%之后的产量应为()A.(1-20%)n千克B.(1+20%)n千克C.n+20%千克D.n³20%千克2.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x岁,乙y岁,则他们的年龄和如何用年龄差表示()A.(x+y)B.(x-y)C.3(x-y)D.3(x+y)3.三角形一边为a+3,另一边为a+7,它的周长是2a+b+23,求第三边()A.b-13B.2a+13C.b+13D.a+b-134.在一次数学竞赛中某班25名男生平均得分为a分,21名女生平均得分为b 分这个班同学的平均分是()A ;B ;C ;D ;5、数轴上点A位于原点的右侧,所对应的实数为a(a<3),则位于原点左侧,与A点距离为3的点B所对应的实数为()A.3-aB.a-3C.a+3D.-34.公路全长P米,骑车n小时可到,如想提前一小时到,则需每小时走_______米.()A.+!B.C.D.三、根据题意列代数式1.平行四边形高a,底b,求面积.2.一个二位数十位为x,个位为y,求这个数.3.某工程甲独做需x天,乙独做需y天,求两人合作需几天完成?4.甲乙两数和的2倍为n,甲乙两数之和为多少?第十九次作业学校:_______班级:_______姓名:_______1、用代数式表示:“x的2倍与y的和的平方”是()A. B. C. D.2、“比x的平方的小5的数是()A. B. C. D.3、如果甲数为x,甲数是乙数的3倍,则乙数为()A.3xB.C.x+3D.x+4、三个连续的奇数,若中间一个为2n+1,则最小的,最大的分别是A.2n-1 ,2n+1B.2n+1,2n+3C.2n-1,2n+3D.2n-1,3n+15、如数b增加它的x%后得到c,则c为()A.bx%B.b(1+x%)C.b+x%D.b(1+x)%6、用代数式表示:(1)圆的半径为r cm,它的周长为______cm,它的面积为______.(2)某种瓜子的单价为16元/千克,则n千克需_______元。
北师大版七年级上册数学计算题题库 豆丁
北师大版七年级上册数学计算题题库一、概述近年来,我国教育改革不断深化,教学质量和教学资源得到了大幅提升。
作为我国著名的师范大学之一,北京师范大学出版社出版的教材一直备受关注。
其中,北师大版七年级上册数学教材备受教师和学生的喜爱,尤其是其中的数学计算题题库,为学生的数学学习提供了极大的帮助。
二、数学计算题题库的特点1. 包含全面的题目类型北师大版七年级上册数学计算题题库涵盖了各种数学题目类型,包括但不限于加减乘除、分数、小数、百分数、面积和体积等。
这些题目类型涵盖了数学学习的方方面面,能够满足学生的不同能力水平和学习需求。
2. 难易适中,贴近教材要求数学计算题题库的题目设置难易适中,贴近教材要求。
题目不仅考察学生的计算能力,还能够培养学生的逻辑思维能力和解决问题的方法。
3. 配套详细的答案解析每道题目都配有详细的答案解析,不仅能指导学生正确解答题目,还能让学生了解解题的方法和思路。
也能帮助教师更好地指导学生学习。
三、数学计算题题库的应用1. 作为课堂练习数学计算题题库可以作为课堂练习的参考,让学生在课后进行巩固和强化,加深对知识点的理解。
而且教师也能够根据学生的练习情况进行有针对性的教学。
2. 作为课外辅导学生可以利用数学计算题题库进行课外的自主学习和巩固。
学生可以根据自己的学习进度和能力自行选择题目进行练习,提高数学学习的效率。
3. 作为考试辅助数学计算题题库中的题目类型涵盖全面,能够帮助学生对学习的知识点进行全面的复习和训练。
在考试前,学生可以通过做题来查漏补缺,更加从容地迎接考试。
四、数学计算题题库的优势和意义1. 帮助学生建立数学基础数学计算题题库的题目涵盖了数学学习的各个方面,能够帮助学生建立扎实的数学基础,为学习更高阶的数学知识打下良好的基础。
2. 提高学生的数学能力通过做题,学生可以不断地巩固和提高自己的数学能力,锻炼自己的计算能力和解决问题的能力,培养学生的逻辑思维和数学思维。
3. 增强教学质量数学计算题题库的使用能够让教师更好地了解学生的学习情况,及时进行指导和辅导,提高教学质量。
北师大版七年级数学上册 提高训练1
北师大版七年级数学上数学试卷及答案
2003-2004学年七年级(上)数学试题信你在小学原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。
现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人。
]一、 精心选一选!(只有一个正确答案,每小题4分,计32分)1、下面几组数中,不相等的是 ( )A 、 -3和+(-3)B 、 -5和-(+5)C 、-7和-(-7)D 、+2和│-2│2、平面上有任意三点,过其中两点画直线,共可以画( )A 、1条B 、3条C 、1条或3条D 、无数条3、在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A 、a+b >0B 、a +b <0C 、ab >0D 、│a │>│b │4、下列图形中,哪一个是正方体的展开图( )5、2002年11月23—29日在泉州销售8000万元即开型福利彩票(每张面额2元),特等奖100万元,结果中一百万元者有15名,假如你花10元买5张,下列说法正确的是写 ( )A 、中一百万元是必然事件B 、中一百万元是不可能事件C 、中一百万元是可能事件,但可能性很小D 、因为5÷15=1/3,所以中一百万元的可能性是33.3%6、计算(-1)1001÷(-1)2002所得的结果是( )A 、1/2B 、-1/2C 、1D 、-17、任何一个有理数的平方( )A 、一定是正数B 、一定不是负数C 、一定大于它本身D 、一定不大于它的绝对值8、如图,AOC ∠和BOD ∠都是直角,如果 AC B O D︒=∠150AOB ,那么=∠COD ( )A 、︒30B 、︒40C 、︒50D 、︒60二、认真填一填(每题3分,计36分)9、计算:0-1=___________。
10、据2003年12月29日,中央气象台预报,下列四个地区的最低气温分别是:哈尔滨-10℃,杭州5℃,兰州-6℃,南沙26℃,请你把这四个气温按从高到低的顺序排列:_____________________。
北师大版七年级数学计算题
北师大版七年级数学计算题一、有理数运算(1 - 5题)1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,括号前是“-”号,把括号和它前面的“ - ”号去掉后,原括号里各项的符号都要改变。
所以-(-5)=5。
- 则原式=-2 + 3+5。
- 按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:-3×(-4)÷(-2)- 解析:- 按照从左到右的顺序进行乘除运算。
- 先计算-3×(-4)=12。
- 再计算12÷(-2)= - 6。
3. 计算:(-2)^3+(-3)×[(-4)^2 - 2]- 解析:- 先计算指数运算。
(-2)^3=-8,(-4)^2 = 16。
- 然后计算括号内的式子,(-4)^2-2 = 16 - 2=14。
- 接着计算乘法-3×14=-42。
- 最后计算加法-8+(-42)=-8 - 42=-50。
4. 计算:(1)/(2)-<=ft(-(1)/(3))+<=ft(-(1)/(4))- 解析:- 首先去括号,-<=ft(-(1)/(3))=(1)/(3)。
- 然后通分,分母2、3、4的最小公倍数是12。
- (1)/(2)=(6)/(12),(1)/(3)=(4)/(12),(1)/(4)=(3)/(12)。
- 原式=(6)/(12)+(4)/(12)-(3)/(12)=(6 + 4-3)/(12)=(7)/(12)。
5. 计算:0.25×(-2)^3-<=ft[4÷<=ft(-(2)/(3))^2+1]- 解析:- 先计算指数运算,(-2)^3=-8,<=ft(-(2)/(3))^2=(4)/(9)。
- 然后计算乘法0.25×(-8)=-2。
- 接着计算括号内的式子,4÷(4)/(9)=4×(9)/(4)=9,9 + 1=10。
北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案
北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列立体图形中,是圆锥的是()A.B.C.D.2.下列图形中是多面体的有()A.(1)(2)(4)B.(2)(4)(6)C.(2)(5)(6)D.(1)(3)(5)3.子弹从枪膛中射出去的轨迹像是一条线,这个现象可以用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上都不对4.一个印有“你要探索数学”字样的立方体纸盒表面展开图如图1所示,若立方体纸盒是按图2展开,则印有“索”字在几号正方形内()A.①B.①C.①D.①5.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是()A.笔尖在纸上移动划过的痕迹B.长方形绕一边旋转一周形成的几何体C.流星划过夜空留下的尾巴D.汽车雨刷的转动扫过的区域6.如图,下列图形中属于棱柱的有()A.2B.3C.4D.57.夜晚时,我们看到的流星划过属于()A.点动成线B.线动成面C.面动成体D.以上答案都不对8.一个直角三角形绕它的一边所在直线旋转一周所得到的几何体一定是()A.圆锥B.圆柱C.圆锥或圆柱D.以上都不对9.观察下面四个图形是圆锥的是()A.B.C.D.10.在①球体;①柱体;①锥体;①棱柱;①棱锥中,必是多面体的是() A.①~①B.①①C.①D.①①11.一个棱柱有18条棱,那么它的底面一定是()A.五边形B.六边形C.十边形D.十五边形12.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是().A.B.C.D.二、填空题13.一个正方体有个面,条棱,个顶点.14.今年十一国庆节当晚,香港以“富兴百业贺国庆,盈聚慧城耀香江”为主题,在维多利亚港举行国庆烟花汇演,庆祝中华人民共和国成立74周年.绚烂的焰火可以看成由点运动形成的,这个现象说明.15.如果长方形的长和宽分别为6和4,那么以长方形的一边为轴旋转一周所得的几何体的体积为(结果保留 ).16.如图的几何体有个面,条棱,个顶点,它是由简单的几何体和组成的.17.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.三、解答题18.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=13底面积×高)19.请把下图中的平面图形与其绕所画直线旋转一周之后形成的立体图形用线连接起来.20.将一个长方形分别沿它的长和宽所在的直线旋转一周,回答下列问题:(1)旋转后将得到什么几何体?(2)若长方形的长和宽分别为6cm和4cm,求旋转后两个几何体的体积.(结果保留π)21.请你观察下列几种简单多面体模型,解答下列问题:多面体面数(F)棱数(E)四面体46长方体612正八面体8(1)计算长方体棱数,可依据长方体有6个面,每个面均为四边形即有4条棱,得出总棱数为12;请你猜想多面体面数、形状、棱长之间的数量关系,完成以下计算:①如图所示,正八面体的每一个面都是三角形,则正八面体有__________条棱;①正十二面体的每一个面都是正五边形,则它共有__________条棱;(2)如下图,一种足球(可视作简单32面多面体)是由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,已知图中足球有90条棱;某体育公司采购630张牛皮用于生产这种足球,已知一张牛皮可用于制作30个正五边形或者制作20个正六边形,要使裁剪后的五边形和六边形恰好配套,应怎样计划用料才能制作尽可能多的足球?22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44①长方体8612正八面体①812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.23.18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,直接写出表格中的m,n的值,则m=______,n=______.多面体顶点数(V)面数(F)棱数(E)四面体446长方体m612正八面体n812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______.(3)一个多面体的面数等于顶点数,且这个多面体有30条棱,求这个多面体的面数.参考答案1.A【分析】本题考查常见的几何体.熟记常见的几何体,是解题的关键.根据圆锥的特征,进行判断即可.【详解】解:A、是圆锥,符合题意;B、是球体,不符合题意;C、是圆柱体,不符合题意;D、是长方体,不符合题意;故选:A.2.B【分析】多面体指四个或四个以上多边形所围成的立体.【详解】解:(1)圆锥有2个面,一个曲面,一个平面,不是多面体;(2)正方体有6个面,故是多面体;(3)圆柱有3个面,一个曲面两个平面,不是多面体;(4)三棱锥有4个面,故是多面体;(5)球有1个曲面,不是多面体;(6)三棱柱有5个面,故是多面体.故是多面体的有(2)(4)(6)故选:B.【点睛】本题考查多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体.3.A【分析】根据“点动成线”的概念直接回答即可.【详解】解:子弹从枪膛中射出去的轨迹可以看作点动成线的实际应用;故选A【点睛】此题考查了点、线、面、体,正确理解点线面体的概念是解题的关键.4.A【详解】试题分析:正方体的表面展开图的特征:相对面展开后间隔一个正方形.由图可得印有“索”字在①号正方形内,故选A.考点:正方体的表面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的表面展开图的特征,即可完成.5.D【分析】根据点动成线,线动成面,面动成体即可一一判定.【详解】解:A.笔尖在纸上移动划过的痕迹,反映的是“点动成线”,故不符合题意;B.长方形绕一边旋转一周形成的几何体,反映的是“面动成体”,故不符合题意;C.流星划过夜空留下的尾巴,反映的是“点动成线”,故不符合题意;D.汽车雨刷的转动扫过的区域,反映的是“线动成面”,故符合题意.故选:D【点睛】本题考查了点动成线,线动成面,面动成体,理解和掌握点动成线,线动成面,面动成体是解决本题的关键.6.B【分析】根据有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案.【详解】解:根据棱柱的定义可得①符合棱柱定义的有第一、二、四个几何体都是棱柱,共3个,其余都不是棱柱.故选①B.【点睛】本题考查棱柱的定义,属于基础题,掌握基本的概念是关键.7.A【分析】把流星视为点,流星的轨迹是一条线,符合点动成线的原理.【详解】①把流星视为点,流星的轨迹是一条线,符合点动成线的原理①选A.【点睛】本题考查了点动成线的原理,正确理解题意是解题的关键.8.D【分析】此题考查面与体的关系,正确理解面与体的关系是解题的关键.由平面图形绕某条直线旋转一周可得到体,据此依次判断.【详解】解:将直角三角形绕一边所在的直线旋转一周形成的几何体不一定是圆锥,以斜边所在的直线为轴旋转一周所得到的几何体是两个圆锥组成的组合体,不是圆锥故选:D9.C【分析】根据圆锥的定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥,进行判断即可.【详解】解:A、不是圆锥,故错误;B、不是圆锥,故错误;C、是圆锥,故正确;D、不是圆锥,故错误;故选C.【点睛】本题主要考查了圆锥的定义,解题的关键在于能够熟练掌握圆锥的定义.10.D【详解】解:①球体只有一个曲面,故球体不是多面体;①柱体,圆柱有三个面,故柱体不一定是多面体;①锥体,圆锥有两个面,故锥体不一定是多面体;①棱柱至少有两个底面,三个侧面,故棱柱是多面体;①棱锥至少有一个底面,三个侧面,故棱锥是多面体.故选D.11.B【分析】根据题意利用n棱柱中棱的条数为3n,由棱的总条数为18,进行计算即可求出答案.【详解】解:n棱柱有3n条棱,又18÷3=6,因此底面是六边形.故选:B.【点睛】本题考查认识立体图形,熟练掌握棱柱的顶点、面数和棱的条数是正确判断的前提.12.B【分析】根据点动成线,线动成面,面动成体进行判断即可.【详解】解:绕轴旋转一周,可得到图中所示的立体图形的是:故选:B.【点睛】此题主要考查了点、线、面、体,关键是掌握面动成体.点、线、面、体的运动组成了多姿多彩的图形世界.13.612 8【分析】根据正方体的特征:正方体有6个面、12条棱、8个顶点,每个面都是正方形,而且面积相等,每条棱的长度都相等,正方体是特殊的长方体.据此解答.【详解】解:正方体有6个面,有12条棱,有8个顶点,一个正方体所有面的大小相等;每条棱长度都相等;故答案为6,12,8.【点睛】本题考查正方体,解题关键是理解并掌握正方体的特征.14.点动成线【分析】根据点,线,面,体的关系得出答案.【详解】绚烂的烟花可以看成由点运动形成的,这个现象说明了点动成线.故答案为:点动成线.15.96π或144π【分析】由题意易得可分两种情况进行求解,即①若以长方体的长为轴,旋转一周,则得到高为6,底面半径为4的圆柱,①若以长方体的宽4为轴,旋转一周,则得到高为4,底面半径为6的圆柱;然后进行求解即可.【详解】解:①若以长方体的长为轴,旋转一周,则得到高为6,底面半径为4的圆柱,其体积为24696ππ⨯⨯=;①若以长方体的宽4为轴,旋转一周,则得到高为4,底面半径为6的圆柱,其体积为264144ππ⨯⨯=.故答案为:96π或144π.【点睛】本题主要考查几何初步,关键是由平面图形得到几何体,进而求解即可.16.9 16 9 四棱锥四棱柱【详解】观察这个几何体可知,它有9个面,16条棱,9个顶点,它是由简单的几何体四棱锥和四棱柱组成的.17.315或1【分析】根据题意列出式子,进行计算即可【详解】解:设长方体浸入水面的高度为xcm,则水面升高了(x-8)cm 当以15 cm,10 cm为底面积浸入水中时:30308+1510x=3030x⨯⨯⨯⨯解得:3 x=95故水面升高了:339-8=155(cm)当以10 cm,10 cm为底面积浸入水中时:30308+1010x=3030x⨯⨯⨯⨯解得:x=9故水面升高了:9-8=1(cm)故答案为:315或1【点睛】此题主要考查了有理数乘除的应用,根据题意得出式子进行计算是解题关键.18.几何体的体积为:96πcm3或128πcm3或76.8πcm3.【分析】根据三角形旋转是圆锥,可得几何体;根据圆锥的体积公式,分类讨论可得答案.【详解】解:以8cm为轴,得:以8cm为轴体积为13×π×62×8=96π(cm3);以6cm为轴,得:以6cm为轴的体积为13×π×82×6=128π(cm3);以10cm为轴,得以10cm 为轴的体积为13×π(245)2×10=76.8π(cm 3). 故几何体的体积为:96πcm 3或128πcm 3或76.8πcm 3.【点睛】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.19.见解析【分析】本题考查了点线面体,熟记各种图形旋转得出的立体图形是解题关键.直角三角形绕直角边旋转一周得到的立体图形是圆锥,长方形绕一边旋转一周得到的立体图形是圆柱,直角梯形绕如图所示的一边旋转一周得到的立体图形是圆台,半圆绕直径旋转一周得到的立体图形是球.【详解】解:如图所示:20.(1)圆柱(2)396cm π 3144cm π【分析】(1)根据平面图形中矩形旋转一周可得到圆柱求解即可;(2)根据绕长方形的长旋转一周得到圆柱的高为6cm ,圆柱底面半径为4cm ;绕长方形的宽旋转一周得到的圆柱的高为4cm ,底面半径为6cm ,分别利用圆柱的体积公式求解即可.【详解】(1)解:由题意可得,旋转后将得到圆柱答:旋转后将得到的几何体是圆柱;(2)解:由题意可得,绕长方形的长旋转一周得到圆柱的高为6cm ,圆柱底面半径为4cm①236496V cm ππ=⨯⨯=圆柱绕长方形的宽旋转一周得到的圆柱的高为4cm ,底面半径为6cm①2246144V cm ππ=⨯⨯=圆柱答:旋转后两个几何体的体积分别为396cm π 3144cm π.21.(1)12;30(2)用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.【分析】本题考查了几何体中点、棱、面之间的关系以及二元一次方程组的应用与整除问题,解题的关键是审清题意.(1)根据每一个面有三条棱,每二个面共用一条棱即可求解,即:棱数=面数32⨯÷.(2)设一个足球有黑皮x 块,白皮y 块,根据二个面共用一条棱,结合题意可列方程组,求得每个足球黑皮块数与白皮块数;然后再设用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意建立方程组,求得m 与n 的最大整数值,并检验是否符合题意即可得到答案.【详解】(1)解:①正八面体的每一个面都是三角形,则每一个面有三条棱,故八个面共有2438=⨯条棱,但每两个面共用一条棱,因此正八面体棱数是:24212÷=(条).①根据①的思路可知,正十二面体共有棱数:125302⨯=(条). 故答案为:12;30.(2)设一个足球有黑皮x 块,白皮y 块,根据题意得: 5690232x y x y +=⨯⎧⎨+=⎩,解得:1220x y =⎧⎨=⎩ 设630张牛皮中,用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意得:63030201220m n m n +≤⎧⎪⎨=⎪⎩,解得:180450m n ≤⎧⎨≤⎩(m 、n 为整数) m 、n 取最大的整数并经过检验知,180,450m n ==正好符合题意①最多制作2045020n =(个)足球,且正好将630张牛皮全部用完. 答:用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.22.(1)6,6;(2)V+F -E=2;(3)7.【分析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)代入(2)中的式子即可得到面数【详解】解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230(2)观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(3)由题意得:F+F-12=2,解得F=7.故答案为:(1)6,6;(2)V+F-E=2;(3)7.【点睛】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.23.(1)8;6(2)V+F-E=2(3)这个多面体的面数为16【分析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)将所给数据代入(2)中的式子即可得到面数.【详解】(1)解:观察图形,长方体的定点数为8;正八面体的顶点数为6;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230故答案为:8;6;(2)解:观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(3)解:由题意得:F+F-30=2解得F=16①这个多面体的面数为16.【点睛】本题主要考查多面体的顶点数,面数,棱数之间的关系及灵活运用,正确理解题意是解题的关键.。
北师大版七年级数学上月考预测拔高试题.docx
马鸣风萧萧初中数学试卷马鸣风萧萧月考预测拔高试题1、填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是 ____________2、下图为某周上海股市的股指变化折线统计图:股指+60+50+40+30+20+10一二三四五星期以 1900点为原点(1)用正数表示比前一天上涨,负数表示比前一天下跌,完成下表:星期一二三四五股指变化(点)(2)本周五股指与上周五相比有何变化?变化值是多少?3、水库管理人员为掌握水库蓄水情况,需要观测水库水位变化,下表是一周内水位高低的变化情况,用正数表示水位比前一天上升数,用负数表示水位比前一天下降数.星期一二三四五六七水位变化(米)0.12-0.02-0.13-0.20-0.08-0.020.32 问水库的水位在本周内是上升还是下降,幅度是多少米?这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?马鸣风萧萧4、已知 A, B 在数轴上分别表示数a, b.( 1)对照数轴填写下表:(2)若 A, B 两点间的距离记为 d ,试问 d 与 a, b 有何数量关系?(3)在数轴上找到所有符合条件的整数点P,使它到 5 和 -5 的距离之和为 10,并求出所有这些整数的和.(4)若数轴上点 C表示的数为 x,当点 C 在什么位置时,① |x+1| 的值最小?② |x+1|+|x-2| 的值最小?5、若 x 的相反数是3, y 的绝对值是5,则 x-y 的值为 ________6、如图,哪一个是左边正方体的展开图()D.A.B.C.7、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是__________8、如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是______2mm.马鸣风萧萧.9、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数( F)、棱数( E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:( 1)根据上面多面体模型,完成表格中的空格:多面体顶点数( V)面数( F)棱数( E)四面体 4 4长方体8 6 12正八面体8 12正十二面体 20 12 30你发现顶点数(V)、面数( F)、棱数( E)之间存在的关系式是.( 2)一个多面体的面数比顶点数大8,且有 30 条棱,则这个多面体的面数是.( 3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24 个顶点,每个顶点处都有 3 条棱,设该多面体外表三角形的个数为x 个,八边形的个数为y 个,求 x+y 的值.10、3.14π = 绝对值最小的数是在有理数中最大的负整数是,最小的正整数是,最小的非负整数是,最小的非负数马鸣风萧萧是。
2022-2023学年北师大版七年级数学上册阶段性(1-1-2-8)综合训练题(附答案)
2022-2023学年北师大版七年级数学上册阶段性(1.1-2.8)综合训练题(附答案)一、选择题(每小题3分,共36分)1.2022的倒数是()A.2022B.﹣2022C.D.﹣2.如果一个直棱柱有七个面,那么它一定是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱3.下面几何体的截面图不可能是三角形的是()A.三棱柱B.正方体C.圆柱D.圆锥4.下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个5.角可以看成是由一条射线绕着它的端点旋转而成的,这体现了()A.点动成线B.线动成面C.面动成体D.线线相交得点6.图中表示的数轴正确的是()A.B.C.D.7.一次军事训练中,一架直升机“停”在离海面80米的空中,一艘潜水艇潜在水下50米处,设海平面的高度为0米,若规定海平面上方为正,则用正负数表示该直升机和潜水艇的高度为()A.+80m,﹣50m B.+80m,+50m C.﹣80m,﹣50m D.﹣80m,+50m 8.在一个正方体的玻璃容器内装了一些水,随意倾斜该玻璃容器,容器内水面的形状不可能是()A.钝角三角形B.等腰梯形C.五边形D.正六边形9.如图,是由6个相同的小立方块搭成的几何体,那么从上面看到的图形是()A.B.C.D.10.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣3|与﹣|﹣3|D.﹣|+2|与+(﹣2)11.若x是3的相反数,|y|=2,则x﹣y的值为()A.﹣5B.﹣1C.﹣5或﹣1D.5或112.如图的图形是()正方体的展开图.A.B.C.D.二、填空题(每小题3分,共15分)13.如果盈利50元记作+50元,那么﹣20元表示.14.在长方形ABCD中,AB=4,BC=3,以边所在直线为轴旋转一周所得几何体的体积是.(结果保留π)15.如图,两滴墨水滴在数轴上,根据图中的数值,判断被墨迹盖住的整数有个.16.如果|a|=5,|b|=2,a﹣b<0,则a+b=.17.现规定一种新运算※,运算法则为a※b=﹣2ab,例如﹣3※(﹣4)=﹣2×(﹣3)×(﹣4),则由此运算法则可得※[﹣9※(﹣)]=.三、计算题(每小题4分,共16分)18.(1)3+(﹣10)+9+(﹣12)+7;(2)1+(﹣2)++;(3)(+﹣)×(﹣60);(4)×(﹣7)÷(﹣)×7.四、解答题(共53分)19.将下列各数填在相应的集合里.﹣3.8,﹣10,4.3,﹣|﹣|,﹣4,0,﹣(﹣)整数集合:{…},分数集合:{…},正数集合:{…},负数集合:{…}.20.画出数轴,把下列各数0,2,(﹣1)2,﹣|﹣3|,﹣2.5在数轴上表示出来,并用“<”号把这些数连接起来.21.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面、左面看到的这个几何体的形状图.22.把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:颜色红黄蓝绿白紫花的朵数123456如图,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体.问长方体的下底面共有多少朵花?23.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上AB两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和﹣5两点之间的距离是;(2)数轴上表示x和﹣1的两点A、B之间的距离是,如果AB=2,那么x为多少?(3)若x表示一个有理数,且|x﹣1|+|x+2|=5,则x=.24.截至2021年2月14日,携程共享租车业务已覆盖北京、上海、广州、成都一线城市,并由此辐射天津、烟台、中山、眉山等周边城市.在成都工作的小张昨天用APP租了一辆单价为110元/小时的共享汽车在东西走向的大道上行驶,如果规定向东为正,向西为负,小张4小时行车情况如下(千米):+11、﹣2、+15、﹣12、+10、﹣11、+5、﹣15、+18、﹣16.(1)小张最后一个目的地到租车点的距离为多少千米?(2)请问小张在行驶过程中离租车点最远多少千米?(3)小张所在区域的出租车费用大约为5元每公里(包含起步价),请问小张租用共享汽车比乘坐出租车节约了多少钱?参考答案一、选择题(每小题3分,共36分)1.解:2022的倒数是.故选:C.2.解:如果一个直棱柱有七个面,那么它一定是五棱锥.故选:C.3.解:A、平行三菱柱底面的平面可以截出三角形,故A不符合题意,B、正方体可以截出三角形、四边形、五边形、六边形、七边形,故B不符合题意,C、圆柱不能截出三角形,故C符合题意,D、圆锥可以截出三角形,故D不符合题意.故选:C.4.解:(1)正方体是棱柱,长方体不是棱柱,故原题说法错误;(2)正方体是棱柱,长方体也是棱柱,故原题说法正确;(3)正方体是柱体,圆柱也是柱体,故原题说法正确;(4)正方体不是柱体,圆柱是柱体,故原题说法错误.故选:B.5.解:角可以看成是由一条射线绕着它的点旋转而成的,这体现了:线动成面,故选:B.6.解:A、没有正方向,故选项错误;B、单位长度没有统一,故选项错误;C、不符合数轴右边的数总比左边的数大的特点,故选项错误;D、符合数轴的特点,故选项正确.故选:D.7.解:若海平面的高度为0,则海平面以上为正,以下为负,根据题意,直升机“停”在离海面80米的空中,故记作+80m,潜水艇在水下50米处,故记作﹣50m,故选:A.8.解:在一个正方体的玻璃容器内装了一些水,随意倾斜该玻璃容器,容器内水面的形状不可能是钝角三角形,故选:A.9.解:从上面得到的图形是故选:B.10.解:A.|+1|=1,|﹣1|=1,不符合题意;B.﹣(﹣1)=1,不符合题意;C.|﹣3|=3,﹣|﹣3|=﹣3,3与﹣3互为相反数,符合题意;D.﹣|+2|=﹣2,+(﹣2)=﹣2,不符合题意;故选:C.11.解:∵x是3的相反数,|y|=2,∴x=﹣3,y=2或﹣2,∴x﹣y=﹣3﹣2=﹣5或x﹣y=﹣3﹣(﹣2)=﹣3+2=﹣1,故选:C.12.解:如图:是的正方体展开图.故选:B.二、填空题(每小题3分,共15分)13.解:∵盈利50元记作+50元,∴﹣20元表示亏损20元,故答案为:亏损20元.14.解:①当r=3,h=4时,圆柱体积=π×32×4=36π;②当r=4,h=3时,圆柱体积=π×42×3=48π.几何体的体积为:36π或48π.故答案为:36π或48π.15.解:∵﹣2.3<﹣2<﹣1<0<1,∴被左侧的墨盖住的整数是﹣2,﹣1,0,∵1<2<3<3.1,∴被右侧的墨盖住的整数是2,3,∴被墨盖住的整数一共有5个,故答案为:5.16.解:∵|a|=5,|b|=2,a﹣b<0,∴a=﹣5,b=﹣2或a=﹣5,b=2,∴a+b=﹣5﹣2=﹣7或a+b=﹣5+2=﹣3,故答案为:﹣7或﹣3.17.解:※[﹣9※(﹣)]=※[﹣2×(﹣9)×(﹣)]=※(﹣3)=﹣2×(﹣)×(﹣3)=﹣4.故答案为:﹣4.三、计算题(每小题4分,共16分)18.解:(1)原式=(3+9+7)+(﹣10﹣12)=19+(﹣22)=﹣3;(2)原式=(1+)+(﹣2+)=2+(﹣2)=0;(3)原式=×(﹣60)+×(﹣60)﹣×(﹣60)=﹣45﹣35+70=﹣80+70=﹣10;(4)原式=×7×7×7=49.四、解答题(共53分)19.解:在﹣3.8,﹣10,4.3,﹣|﹣|,﹣4,0,﹣(﹣)中,整数集合:{﹣10,﹣4,0 …},分数集合:{﹣3.8,4.3,﹣|﹣|,﹣(﹣)…},正数集合:{4.3,﹣(﹣)…},负数集合:{﹣3.8,﹣10,﹣|﹣|,﹣4…}.20.解:∵(﹣1)2,=1,﹣|﹣3|=﹣3,在数轴上表示如下图:∴﹣|﹣3|<﹣2.5<0<(﹣1)2<2.21.解:如图所示.22.解:由各个小正方体所露出的面所标出的情况可知,“紫”的邻面有“黄、白、绿、蓝”,因此“紫”的对面是“红”,“白”的邻面有“黄、紫、红、绿”,因此“白”的对面是“蓝”,因此“绿”的对面是“黄”,在下面的4个面的颜色分别为:红,蓝、黄、绿,因此长方体的下底面花的朵数为:1+3+2+4=10,答:长方体的下底面共有10朵花.23.解:(1)∵|﹣2﹣(﹣5)|=3,∴表示﹣2和﹣5两点之间的距离是3,故答案为:3;(2)数轴上表示x和﹣1的两点A、B之间的距离是|x﹣(﹣1)|=|x+1|,∵AB=2,∴|x+1|=2,∴x=2﹣1=1或x=﹣2﹣1=﹣3,∴x的值为1或﹣3,故答案为:|x+1|;(3)∵|x﹣1|+|x+2|表示数轴上表示x的点与表示1、﹣2的点的距离之和,∵1与﹣2的距离是3,∴当x≥1或x≤﹣2时,|x﹣1|+|x+2|≥3,当x>1时,x=2时,|x﹣1|+|x+2|=5;当x<﹣2时,x=﹣3时,|x﹣1|+|x+2|=5;故答案为:2或﹣3.24.解:(1)+11﹣2+15﹣12+10﹣11+5﹣15+18﹣16=3(千米),答:小张最后一个目的地到租车点的距离为3千米;(2)第1次离租车点11千米;第2次离租车点:11﹣2=9(千米);第3次离租车点:9+15=24(千米);第4次离租车点:24﹣12=12(千米);第5次离租车点:12+10=22(千米);第6次离租车点:22﹣11=11(千米);第7次离租车点:11+5=16(千米);第8次离租车点:16﹣15=1(千米);第9次离租车点:1+18=19(千米);第10次离租车点:19﹣16=3(千米);∴小张在行驶过程中离租车点最远24千米;(3)5×(|+11|+|﹣2|+|+15|+|﹣12|+|+10|+|﹣11|+|+5|+|﹣15|+|18|+|﹣16|)=5×115=575(元),575﹣110×4=135(元),答:小张租用共享汽车比乘坐出租车节约了135元.。