平面四杆机构的基本类型及应用
平面四杆机构类型介绍课件
03
应用:汽车转向机构、自行车脚踏板机构等
04
优点:结构简单,运动可靠,易于实现各种运动规律
双摇杆机构
组成:两个摇杆和 一个连杆 1
特点:结构简单,运 动灵活,但运动轨迹 4 复杂,设计难度较大
运动:两个摇杆 2 可以同时摆动,
连杆随之运动
应用:汽车转向 3 系统、飞机起落
架等
3
平面四杆机构的 应用
构
05
平行四杆机构:由四个平行杆组成的机构
06
空间四杆机构:由四个空间杆组成的机构
平面四杆机构的特点
由四个构件组成,其中至少有一个构件是活 动构件 构件之间通过转动副或移动副连接
机构的运动是通过构件之间的相对运动实现 的
机构的运动具有确定的运动规律,可以通过 分析机构的几何关系和运动学原理来研究
2
平面四杆机构的 类型
曲柄摇杆机构
02
03
04
优点:结构简单、运动 平稳、易于控制和实现 自动化
应用:广泛应用于各种 机械设备中,如汽车、 飞机、船舶等
特点:曲柄和摇杆的 运动轨迹为圆弧
01
组成:曲柄、摇杆、 连杆和机架
双曲柄机构
01
组成:两个曲柄和一个连杆
02
特点:两个曲柄可以同时转动,连杆只能做摆动运动
能满足强度要求
设计合理的传动比,
2
避免过大的传动比导
致机构过载
优化结构设计,减少
3
应力集中和疲劳破坏
满足加工工艺要求
01
04
设计机构时,要考虑到成 本控制的要求,如采用何 种材料、加工方法等。
03
设计机构时,要考虑到维 修工艺的要求,如采用何 种维修方法、维修工具等。
平面四杆机构的类型特点及应用概念
平面四杆机构的类型特点及应用概念平行四杆机构的特点是固定杆和活动杆平行且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现平行移动,适用于汽车悬挂系统、工艺机械等领域。
正交四杆机构的特点是固定杆和活动杆相交且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现直线运动,适用于推动机械、绞车等领域。
菱形四杆机构的特点是固定杆和活动杆两两相交且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现平行移动和旋转运动,适用于啮合机构、制造机械等领域。
推动机构的特点是固定杆和活动杆两两平行且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现直线运动,适用于传动机构、物料输送机械等领域。
平面四杆机构的应用非常广泛。
它可以用于制造机械、工艺机械、汽车悬挂系统、绞车、传动机构、物料输送机械等领域。
在制造机械中,平面四杆机构常用于构建精密机床,如铣床、钻床等。
在工艺机械中,平面四杆机构常用于构建织机、纺机等。
在汽车悬挂系统中,平面四杆机构可以实现汽车悬挂系统的运动,提高汽车悬挂性能。
在绞车中,平面四杆机构可以用于提升和绞丝等工作。
在传动机构中,平面四杆机构可以用于实现直线传动和转动传动。
在物料输送机械中,平面四杆机构可以用于实现物料的输送和分拨。
总之,平面四杆机构具有多种类型和特点,适用于多个领域的应用。
它可以实现复杂的运动轨迹,广泛应用于制造机械、工艺机械、汽车悬挂系统、绞车、传动机构、物料输送机械等领域。
平面四杆机构的基本类型
平面四杆机构是一种常见的机械结构,由四个连杆组成,可以实现转动和传递力量。
根据其连杆排列方式和运动特点,平面四杆机构可以分为以下几种基本类型:
四杆平行机构:四个连杆平行排列的机构,常见的形式是平行四边形。
四杆平行机构具有简单结构和稳定性好的特点,在工程和机械设计中广泛应用。
四杆平行滑块机构:四个连杆中有一个是滑块,可以在平面内作直线运动。
这种机构常见的应用是在平面上实现直线运动,如印刷机的工作台。
四杆旋转机构:四个连杆可以围绕一个固定点旋转,形成一个封闭的轨迹。
这种机构常见的形式是摇杆机构或曲柄摇杆机构,常用于发动机的活塞运动转化为旋转运动。
四杆转动滑块机构:四个连杆中有一个是滑块,可以在平面内作转动运动。
这种机构常见的应用是实现旋转运动和直线运动的转换,如某些机床的进给机构。
这些基本类型的平面四杆机构都具有不同的运动特点和应用场景。
根据具体的工程需求和设计要求,可以选择合适的平面四杆机构类型,并进行优化和改进,以满足特定的运动和力学要求。
常用机构(四连杆机构)
械
设 转动导杆机构:
计 基
BC>AB
础 导杆可作360º回转
摆动导杆机构:
BC<AB 导杆在小于360º范围内摆动。
(牛头刨床的主传动机构)
平
面
4
连 杆 机 构
3 C
3 C
33 3 C
C3 C3
242 2 22 242
3C C3
C3
4224 B
4224
3C
4 2 21 22 2 4
C3 4
4
3 C
A CC
——双摇杆机构
最新课件
11
二、铰链四杆机构的演化
机
械
设
计 基
机构演化方法
础
平 改变杆件长度,用移动副取代回转副
面 连 杆
扩大回转副 变更机架等
机
构
连杆
2 连架杆 B
C 连架杆
3
1
A
4
D
最新课件
12
机 (1)改变杆件长度 —— 曲柄滑块机构
械
设 计
曲线导轨曲柄滑块机构
基
C
础
C
平
2
面
连
B
杆1
机
机
械
设
计
基
础
内容
平 面
• 平面四杆机构的基本类型
连 杆
• 平面四杆机构的演化
机 构
• 平面四杆机构的特点及设计
了解常用四杆机构的基本类型和应用。 对急回特性、传动角、压力角、死点位置等有明确概念。
最新课件
1
机 一、铰链四杆机构
械 设 计 基 础
平
面
连
简述平面四杆机构的类型特点和应用
简述平面四杆机构的类型特点和应用一、平面四杆机构的类型:1. 平衡四杆机构:该机构有能力保持平衡,即使受到外部干扰也能够回到原来的位置。
这种机构被广泛用于稳定系统和开放环境。
2. 驱动四杆机构:该机构可以转化旋转运动为线性运动或反之。
这种机构广泛应用于机械工程、模具制造和自动化工程中。
3. 可逆四杆机构:该机构可以逆向工作,在不同的任务中灵活应用。
这种机构被广泛用于机器人工程和自动化工程中。
4. 变位四杆机构:该机构可以在不同位置自动调整,以适应不同的应用需求。
这种机构被广泛用于自动化机械和精密制造领域。
二、平面四杆机构的特点:1. 平面四杆机构可以转换不同类型的运动,包括旋转、线性、摆动等。
2. 平面四杆机构结构简单,易于制造和维护,具有良好的可靠性和稳定性。
3. 平面四杆机构可以通过组装多个单元来实现更高级别的机械结构,例如机器人、自动化系统等。
4. 平面四杆机构广泛应用于机械、汽车、制造、物流、自动化等领域,并逐渐成为机器人、智能装备的重要组成部分。
三、平面四杆机构的应用:1. 发动机连杆机构:由于发动机需要将旋转运动转化为线性运动来驱动汽车轮胎,平面四杆机构被广泛应用于汽车发动机的连杆机构中。
2. 物流设备:平面四杆机构可以逆向工作,可以将线性运动转化为旋转运动,这使得物流设备可以保持高速和精度,如自动包装线、调料机等。
3. 机械手:平面四杆机构的结构简单,稳定性好,这使得它成为机器人手臂的优选部件之一,广泛应用于各个制造领域。
4. 印刷机械:平衡四杆机构可以使印刷平台始终稳定,特别是在高速印刷时,它可以保持印刷品的精度和质量。
5. 飞控系统:平衡四杆机构被广泛应用于飞控系统的调节器中,以帮助控制飞行器的稳定性。
总的来说,平面四杆机构具有结构简单、稳定性好、运动特性多样等特点,可以在各个行业发挥重要的作用。
(完整版)平面四杆机构的基本类型及其演化
第三讲课题:§3-1 平面四杆机构的基本类型及其演化教学目的:理解平面四杆机构的各种类型及其应用。
教学重点: 铰链四杆机构类型及其演化,理解曲柄存在条件。
教学难点:导杆机构教学方法:课堂演示、多媒体教学互动:每个知识点后提问或讨论。
教学安排:§3-1 平面四杆机构的基本类型及其演化复习旧课:机构组成,运动副,运动简图等。
平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。
因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。
一、四杆机构的类型1.曲柄摇杆机构两连架杆一为曲柄,一为摇杆。
功能:将等速转动转换为变速摆动或将摆动转换为连续转动。
应用:雷达天线机构、缝纫机踏板机构。
2.双曲柄机构两连架杆都为曲柄功能:将等速转动转换为等速同向、不等速同向、不等速反向转动。
应用:惯性筛机构若两曲柄的长度相等,连杆与机架的长度也相等,则该机构称为平行双曲柄机构。
如铲斗机构还有反平行四边形机构,例:公共汽车车门启闭机构3.双摇杆机构两连架杆都为摇杆功能:一种摆动转换为另一种摆动。
应用:鹤式起重机、飞机起落架二、铰链四杆机构的曲柄存在条件证明:结论:铰链四杆机构存在一个曲柄的条件是:1.最短杆与最长杆长度之和小于或等于其余两杆长度之和2.曲柄为最短杆。
铰链四杆机构存在曲柄的条件是:1.最短杆与最长杆长度之和小于或等于其余两杆长度之和2.机架或连架杆为最短杆。
三、四杆机构类型判别否Lmax+Lmin< L' +L"是不可能有曲柄可能有曲柄最短杆对边最短杆最短杆邻边双摇杆机构曲柄摇杆机构双曲柄机构四、铰链四杆机构的演化1.曲柄滑块机构2.偏心轮机构3.导杆机构①摆动导杆机构(牛头刨床)②转动导杆机构③移动导杆机构4.摇块机构小结:本次课主要熟悉四杆机构的各种类型,了解它们的应用作业:预习下次课内容。
平面四杆机构的基本类型及其应用
一、特点
全低副(面接触),利于润滑,故磨损小、压强小,传载 大、寿命长;几何形状较简单,易加工,制造成本低等。
不能精确实现复杂的运动规律,设计计算较复杂,惯性 力不易平衡等。
二、应用 实现已知运动规律; 实现给定点的运动轨迹。
§8–2 平面四杆机构的类型和应用
平面连杆机构-平面机构+低副连接 (转动、移动副) 最常用→平面四杆机构( 四个构件→四根杆)
三、双移动副机构
正弦机构
正切机构
双转块机构 (十字滑块机构)
动画
双滑块机构 椭圆仪
四、偏心轮机构
• 对心式曲柄滑块机构
• 偏心轮机构
B
1
2
A
3
C
B副扩大
4
B
1 A
2
3
C 4
五、四杆机构的扩展
手动冲床
双摇杆机构 摇杆滑块机构
筛料机构 双曲柄机构
曲柄滑块机构
连杆
2
C 连架杆
3
4
D
机架
(按连架杆类型)
铰链四杆机构
曲柄摇杆机构
双曲柄机构
双摇杆机构
一曲一摇
二曲
二摇
1.曲柄摇杆机构: 连架杆┌曲柄→(一般)原动件→匀速转动
└摇杆→(一般)从动件→变速往复摆动
雷达调整机构
(天线→摇杆)→调整天线 俯仰角的大小
搅拌器机构 缝纫机踏板 刮雨器
B 1 A
C 2
3
4
基本类型
→铰链四杆机构(全由转动副相联)
→最简单,应用广泛,组成多杆机构的基础。
一、铰链四杆机构基本类型
-全由转动副相联的平面四杆机构
§8—2平面四杆机构的类型及应用
图8-3
振动筛机构
在双曲柄机构中,有两种特例: 1)平行四边形机构:其相对两杆平行且相等,如图8-7a 所示。
其运动特性是:
①两曲柄作等速同向转动; ②连杆作平移运动。
图8-7a
应用实例: 图8-8所示的机车车轮的联动机构就利用了特性① ;
图8-8
如图所示的摄影平台升降机构和图8-9 b所示的播种 机料斗机构则是利用了特摇杆长度相等。 图8-12b所示的汽车、拖拉机前轮的转向机构。
图8-12b
二、平面四杆机构的演化型式
(Evolution of Planar Four-bar Linkage)
1、四杆机构演化的目的: 满足运动方面的要求、改善受力状况、满足结构设 计上的要求。 2、四杆机构的演化方法: 1)改变构件的形状和运动尺寸
在图8-14,b所示的曲柄滑块机构中,B点相对于C 点的运动轨迹是αα。
连杆2做成滑块
αα 做成导轨
图8-14 b)
曲柄滑块机构 演化
图8-15 a) 双滑块机构
连杆长→∞,
αα →直线
图8-15 b)
正弦机构s=LABsinψ
2)改变运动副的尺寸
扩大转动副B的半径
使之超过曲柄的长度
图8-16 a) 图8-16 b) 演化 偏心轮机构
摇杆3做成滑块 ββ做成导轨
具有曲线导 轨的曲柄滑 块机构
图8-13 a )
图8-13 b )
图8-13 a )
摇杆长→∞, ββ →直线 摇杆3 →滑块, 转动副D →移动副 偏置(eccentric or e≠0
offset)
对心(in-line) e=0 图8-14 曲柄滑块机构
曲柄滑块机构(slider-crank mechanism)常用在冲床、 内燃机、空压机等机械中。
平面四杆机构的基本类型及应用-精品文档
图3-16b
图3-19
图3-20
• 若选用曲柄滑块机构中滑块3作机架(图316c),即演化成移动导杆机构(或称定块 机构)。 • 它应用于手摇卿筒(图3—21)和双作用式 水泵等机械中。
图3—21
图3-16c
(3)变化双移动副机构的机架
• 在图3-15和图3-22a所示的具有两个移动副的四杆机 构中,是选择滑块4作为机架的,称之为正弦机构, 这种机构在印刷机械、纺织机械、机床中均得到广 泛地应用,例如机床变速箱操纵机构、缝纫机中针 杆机构(图3—22d);
铰链四杆机构可分为以下三种类型
1、曲柄摇杆机构
• 铰链四杆机构的两连架杆中一个能作整 周转动,另一个只能作往复摆动的机构。
2、双曲柄机构
铰链四杆机构的两连架杆均能作整周转 动的机构。
• 在双曲柄机构中,若相对两杆平行相 等,称为平行双曲柄机构(图3-9)。 这种机构的特点是其两曲柄能以相同 的角速度同时转动,而连杆作平行移 动。图3-10a所示机车车轮联动机构 和图3-10b所示的摄影平台升降机构 均为其应用实例。
图3-15
图3—22
• 若选取构件1为机架(图3-22b), 则演化成双转块机构,它常应用 作两距离很小的平行轴的联轴器, 图3-22e所示的十字滑块联轴节为 其应用实例;
图3-22b
图3-22e
• 当选取构件3为机架(图3-22c)时, 演化成双滑块机构,常应用它作椭圆 仪(图3—22f)。
图3-22
图 3-11
3、双摇杆机构
双摇杆机构:铰链四杆机构中的两连架杆均不能作 整周转动的机构。
如 图 3 - 12 所 示 鹤 式 起 重 机 的 双 摇 杆 机 构 ABCD,它可使悬挂重物作近似水平直线移动, 避免不必要的升降而消耗能量。在双摇杆机构 中,若两摇杆的长度相等称等腰梯形机构,如 图3—13中的汽车前轮转向机构。
机械原理NO[1].12 8-3 平面四杆机构的基本知识--2
工程上也常利用死点来工作。
夹具
机械原理
第8章 平面连杆机构及其设计
四、铰链四杆机构的连杆曲线 Coupler-curve of four-bar linkages
在四杆机构运动时,其连杆平面上的每一点均描绘出一条曲线, 称为连杆曲线(coupler curves)
B型
水滴型
面包型
瘦长型
伪椭圆型
三角型
机构尺寸: 各运动副之间的相对位置尺寸(或
角度)以及描绘连杆上某点(该点实现 给定运动轨迹)的位置参数等。
平面连杆机构设计的基本要求:
1。要求从动件满足预定的运动规律要求(函数生成问题); 2。满足预定的连杆位置要求(刚体导引问题); 3。满足预定的轨迹要求(轨迹生成问题)。
机械原理
第8章 平面连杆机构及其设计
最多能解五个精确位置,多于五个位置只能近似求解,少于五个位置可有无穷解。
机械原理
第8章 平面连杆机构及其设计
2。按预定的运动规律设计四杆机构(函数综合)
1)按预定的两连架杆对应位置设计四杆机构:
要求: 3i f (1i ) , i =1、2、…、k
(已知条件)
取杆长的相对变量 a/a=1 , b/a=l, c/a=m , d/a=n 为设计参数,不影响各构件的相对 转角关系,故杆长的设计变量为l、m、 n ,再加上0 、0共5个设计变量。
• (2)改变运动副的尺寸;
• (3)选不同的构件为机架;
• (4)运动副元素的逆换。
机械原理
第8章 平面连杆机构及其设计
• 4.平面四杆机构有曲柄的条件: • (1)各杆长满足杆长条件:最短杆与最长杆的长度之和
应小于或等于其余两杆长度之和; • (2)最短杆为连架杆或机架。 • 5.急回运动及行程速度变化系数: • (1) 急回运动: • 当连机构的主动件为等速回转时,从动件空回行程的平
平面四杆机构的基本类型及应用
图3-15
图3—22
• 若选取构件1为机架(图3-22b), 则演化成双转块机构,它常应用 作两距离很小的平行轴的联轴器, 图3-22e所示的十字滑块联轴节为 其应用实例;
图3-22b
图3-22e
• 当选取构件3为机架(图3-22c)时, 演化成双滑块机构,常应用它作椭圆 仪(图3—22f)。
图3-22
图3-9
图3-10
• 在图3-11a所示双曲柄机构中,虽然其对应边长度 也相等,但BC杆与AD杆并不平行,两曲柄AB和 CD转动方向也相反,故称其为反平行四边形机构。 • 图 3-11b所示的车门开闭机构即为其应用实例, 它是利用反平行四边形机构运动时,两曲柄转向相 反的特性,达到两扇车门同时敞开或关闭的目的。
• 一、平面四杆机构的基本类型及应用
• 全部运动副为转动副的四杆机构称为铰链四杆机构, • 它是平面四杆机构的最基本型式(如图3-4a所示)
图3-4a
a—曲柄: 与机架相联并且作整周转动的构件; b—连杆:不与机架相联作平面运动的构件; c—摇杆:与机架相联并且作往复摆动的构件; d—机架: a、c—连架杆。
图 3-11
3、双摇杆机构
双摇杆机构:铰链四杆机构中的两连架杆均不能作 整周转动的机构。
如 图 3 - 12 所 示 鹤 式 起 重 机 的 双 摇 杆 机 构 ABCD,它可使悬挂重物作近似水平直线移动, 避免不必要的升降而消耗能量。在双摇杆机构 中,若两摇杆的长度相等称等腰梯形机构,如 图3—13中的汽车前轮转向机构。
转动导杆机构
摆动导杆机构
• 它可用于回转式油泵、牛头刨床及插床 等机器中。图3-17所示小型刨床和图3— 18 中的牛头刨床,分别是转动导杆机构 和摆动导杆机构的应用实例。
平面四杆机构ppt课件
contents
目录
• 平面四杆机构简介 • 平面四杆机构类型 • 平面四杆机构的设计与优化 • 平面四杆机构的特性分析 • 平面四杆机构的实例分析 • 平面四杆机构的未来发展与挑战
01 平面四杆机构简介
定义与特点
定义
平面四杆机构是一种由四个刚性 杆通过铰链连接形成的平面机构 。
3D打印技术
利用3D打印技术,实现复杂结构的设计和快速原型制造。
智能化与自动化
传感器和执行器的集成
01
在机构中集成传感器和执行器,实现实时监测和控制。
智能化控制算法
02
采用先进的控制算法,如模糊控制和神经网络控制,以提高机
构的动态性能和稳定性。
自动化系统集成
03
将机构与自动化系统集成,实现远程监控、故障诊断和预测性
详细描述
摄影升降装置中的平面四杆机构由支架、滑轨、连杆和摄像设备组成。通过电机驱动,滑轨带动连杆运动,使摄 像设备实现升降。平面四杆机构在摄影升降装置中保证了摄像设备的稳定性和精确性,为拍摄高质量的画面提供 了保障。
06 平面四杆机构的未来发展 与挑战
新材料的应用
高强度轻质材料
采用高强度轻质材料,如碳纤维复合材料和铝合 金,以提高机构的强度和减轻重量。
运动特性分析
运动特性
分析平面四杆机构的运动特性, 包括运动范围、运动速度和加速 度等,以及各杆件之间的相对运
动关系。
运动轨迹
研究平面四杆机构中各点的运动轨 迹,包括曲线的形状、变化规律和 影响因素。
运动学分析
通过建立平面四杆机构的运动学方 程,分析其运动规律,为机构的优 化设计提供理论依据。
受力特性分析
实例二:搅拌机
平面四杆机构的类型及应用
连杆机构的特点:优点:运动副单位面积所受的压力小且面接触受力小,便于润滑,磨损小;制造方便。
缺点:设计复杂误差大。
工作效率低。
平面四杆机构的基本类型——铰链四杆机构1、曲柄摇杆机构(1)曲柄:1作360°周转运动,(2)摇杆:3作往复摆动,主动件可以为曲柄,也可以为摇杆。
右面机构中摇杆的摆角为60°,作小于360的运动(3)连杆:连接曲柄与摇杆的杆件(4)连架杆:连接机架与连杆的杆件。
曲柄摇杆机构:两连架杆中一个为曲柄另一个为摇杆的铰链四杆机构双曲柄机构:两连架杆均为曲柄的铰链四杆机构双摇杆机构:两连架杆均为摇杆的铰链四杆机构平行四边形机构平行四边形机构是双曲柄机构的一个特例。
组成四边形对边的构件长度分别相等。
从动曲柄3和主动曲柄1的回转方向相同,角速度时时相等双摇杆机构:构件1和3都作往复摆动,一般主动摇杆作等速摆动,从动摇杆作变速摆动。
平面四杆机构的演化形式(Ⅰ)——含一个移动副的四杆机构曲柄滑块机构正置曲柄滑块机构滑块(slider)铰链点的运动方位线通过曲柄转动中心,滑块动程(pitch)等于两倍曲柄1的长度,无急回运动特性。
主动件可以为曲柄,也可以为滑块。
偏置曲柄滑块机构滑块铰链点的运动方位线不通过曲柄转动中心,偏距(offset)为e,滑块动程大于两倍曲柄长度,有急回运动特性导杆机构转动导杆机构曲柄1和导杆3都能作360°周转运动,主动曲柄作等速转动,从动导杆作变速转动,摆动导杆机构曲柄1作360°周转运动,摆动导杆3作往复摆动,且有较大的急回运动特性曲柄摇块机构移动导杆机构构件2作往复摆动,构件4在滑块中作往复移动。
2 平面连杆机构的工作特性1、转动副为整转副的充分必要条件急回运动和行程速比系数原动曲柄转动一周过程中,有两次与连杆共线,即重叠共线和拉直共线,摇杆两个极限位置分别为C1D和C2D。
曲柄AB以等角速度ω顺时针转过α1角由位置AB1转到位置AB2,摇杆从C1D摆到C2D,摆角为φ,所需时间为t1,C点平均速度为V1。
平面四杆机构
这些机构生活有哪些作用
机械手臂:在机械手臂中,通 常会使用双摇杆机构来驱动手 臂的伸缩和旋转,以实现机械
手臂的各种动作
汽车门窗:在汽车中,门窗的 开合机构通常会使用曲柄摇杆 机构或双曲柄机构来实现,以 提供稳定且平滑的开合体验
儿童玩具:许多儿童玩具中也 会使用到平面四杆机构,例如 玩具车、玩具飞机等,以实现
平面四杆机构在各种生活和工业应用中有着广泛的作用。由于其结构简单,易于制造 和调节,因此被广泛应用于实现各种运动规律和运动轨迹。以下是几种常见的应用
摄影机或摄像机:在摄影机或摄像机的镜头伸缩装置中,通常会使用双曲柄机构或双 摇杆机构来驱动镜头的伸缩,以实现精确控制和稳定的拍摄效果
打印机和复印机:在打印机和复印机的打印头或扫描头部分,可能会使用到曲柄摇杆 机构或双曲柄机构来驱动打印头或扫描头的移动,以实现高精度的打印和复印效果
有哪些地方用到的原理
总的来说,平面四杆 机构是一种非常有用 的机械元件,它的原 理被广泛应用于各种 不同的机械系统和设 备中
-
THANKS
20xx
平面四杆机构
汇报人:xxx
-
1
平面四杆机构分类那些机构
2
这些机构生活有哪些作用
3
有哪些地方用到的原理
1 平面四杆机构分类那 些机构
平面四杆机构分类那些机构
平面四杆机构是一种常 见的机械机构,它由四 个刚性杆组成,且所有
杆件在同一直线上
根据杆件的不同组合和 运动特征,平面四杆机 构可以分为以下几类
01
曲柄摇杆机构: 曲柄为主动件, 摇杆为从动件, 曲柄的转动转化 为摇杆的摆动
平面四杆机构分类那些机构
02
双曲柄机构:两 个曲柄协同转动, 其中一个是主动 件,另一个是从 动件
平面四杆机构.
基本特性
双曲柄存在的条件 急回特性 传动角和压力角 死点位置 运动连续性
平面四杆机构的基本特征
平面四杆机构的基本特征
上式两两相加得: l1≤l2 , l1≤l3, l1≤l4, 即AB为最短杆。
平面连杆机构有曲柄的条件: 1)连架杆与机架中必有一杆为四杆机构中的最 短杆; 2)最短杆与最长杆之和应小于或等于其余两杆 的杆长之和。(杆长和条件) (Grashof 定理)
平面四杆机构的基本特征
杆长条件ቤተ መጻሕፍቲ ባይዱ
机架条件
机构类型
最短杆相邻的杆为机架 曲柄摇杆机构
满足杆长之 和条件
最短杆本身为机架
双曲柄机构
最短杆相对的杆为机架 双摇杆机构(I)
不满足杆长 之和条件
任意杆为机架
双摇杆机构(II)
作业 书P38(3-1、3-2、3-6)
谢谢!
End
双曲柄机构的运动特点:
普通双曲柄机构 平行双曲柄机构 反向双曲柄机构
主动曲柄等速转动 从动曲柄变速转动 两曲柄转动的角速度始终相等 双曲柄的转向相反,且长度也相等
2.双曲柄机构
平行四边形机构的运动不确定性 当四杆共线时会出现运动不确定现象
2.双曲柄机构
解决方法:
1、惯性飞轮 2、加虚约束 3、靠自重
往复摆动;当以摇杆为原动件时,可将摇杆的往复摆动变成曲柄的 连续转动。
2.双曲柄机构
特征:两个连架杆,均为 为曲柄
特点:可将原动件的匀速转动变
成从动件的变速转动。
2.双曲柄机构
应用:
2.双曲柄机构
平行四边形机构:
当相对两杆平行且相等,称为平行四边形机构。
B B’
C C’
平面四杆机构的基本类型及应用
总结:平面连杆机构的演化
感谢下 载
可编辑
图 3-11
3、双摇杆机构
双摇杆机构:铰链四杆机构中的两连架杆均不能作 整周转动的机构。
如图3-12所示鹤式起重机的双摇杆机构ABCD, 它可使悬挂重物作近似水平直线移动,避免不 必要的升降而消耗能量。在双摇杆机构中,若 两摇杆的长度相等称等腰梯形机构,如图3— 13中的汽车前轮转向机构。
二、平面连杆机构的演化
铰链四杆机构可分为以下三种类型
1、曲柄摇杆机构
铰链四杆机构的两连架杆中一个能作整 周转动,另一个只能作往复摆动的机构。
2、双曲柄机构
铰链四杆机构的两连架杆均能作整周转 动的机构。
在双曲柄机构中,若相对两杆平行相 等,称为平行双曲柄机构(图3-9)。 这种机构的特点是其两曲柄能以相同 的角速度同时转动,而连杆作平行移 动。图3-10a所示机车车轮联动机构 和图3-10b所示的摄影平台升降机构 均为其应用实例。
前面介绍的三种铰链四杆机构, 还远远满足不了实际工作机械的 需要,在实际应用中,常常采用 多种不同外形、构造和特性的四 杆机构,这些类型的四杆机构可以看作是由铰链
四杆机构通过各种方法演化而来的。
这些演化机构扩大了平面连杆机构的应用,丰 富了其内涵。
1、改变相对杆长、转动副演化为移动副
在曲柄摇杆机构中,若摇杆的杆长增大至无穷长,则
其与连杆相联的转动副转化成移动副。 ——曲柄滑块机构
曲柄滑块机构——偏心轮机构
当曲柄的实际尺寸很 短并传递较大的动力 时,可将曲柄做成几 何中心与回转中心距 离等于曲柄长度的圆 盘,常称此机构为偏 心轮机构。
双滑块机构
若继续改变图3—14b中对心曲柄滑块机构中杆 2长度,转动副C转化成移动副,又可演化成双 滑块机构(图3-15)。该种机构常应用在仪 表和解算装置中。
平面四杆机构的基本类型及应用
平面四杆机构的基本类型及应用
平面四杆机构是机械设计中常用的连杆机构之一,由于其简单可靠和使用方便,广泛应用于各种机械设备中。
平面四杆机构是由四个链杆组成的,其中至少有一个链杆是固定的。
四个链杆的联接点构成了四个运动副,包括一对转动副和一对平动副,它们通过固定的连杆来互相联系。
平面四杆机构可以实现转动或直线运动,同时可实现正、反、重复运动。
本文将主要介绍平面四杆机构的基本类型及应用。
1. 凸轮机构型平面四杆机构
凸轮机构型平面四杆机构是一种基于凸轮的平面四杆机构,由于其能够产生不同形状的凸轮运动来实现转动或直线运动,因此在机械设备中广泛应用。
例如,凸轮式压力机、凸轮式磨床、凸轮式切削机和凸轮式卷板机等机器均采用了凸轮机构型平面四杆机构。
双曲线机构型平面四杆机构是一种基于双曲线运动的平面四杆机构,由于其具有双曲线重复运动的性质,因此在多运动副平面机构中应用较为广泛。
例如,位移量较小的曲柄滑块机构,就采用了这种结构。
此外,双曲线机构型平面四杆机构还被广泛应用于推动旋转工件的机械系统中。
心轮机构型平面四杆机构是一种基于心轮的平面四杆机构,其构造相比其他机构稍微复杂,但具有较高的可靠性和灵敏度,因此被广泛应用于重要的机械装置中。
例如,用于驱动自动调焦装置、扫描仪输送装置、医院电梯系统等机器的传动装置均采用了心轮机构型平面四杆机构。
总之,平面四杆机构广泛应用于机械设计中的各个领域,包括制造业、食品加工、印刷、医疗和各种运动设备等。
不同类型的平面四杆机构各具特点,可根据使用情况和需要选择。
平面四杆机构的类型,特点及应用概念
平面四杆机构的类型,特点及应用概念平面四杆机构是一种重要的机械构件,具有固定点簇、连杆及活动点簇等关键组成部分。
根据不同的连接方式和功能需求,平面四杆机构可以分为平行四杆机构、菱形四杆机构、双曲线四杆机构、半圆四杆机构等多种类型。
下面本文将对这些机构类型的特点及应用进行相关介绍。
一、平行四杆机构平面四杆机构中的平行四杆机构,最为常见。
平行四杆机构由两对等长连杆组成,各自平行滑动,所以叫做平行四杆机构。
平行四杆机构的特点是连接点严格固定,适合转动相同方向的连续运动,如车床上的顶轴和平面磨床的进给机构就采用了平行四杆机构。
二、菱形四杆机构菱形四杆机构是由一对等长的对边固定的菱形和一对等长杆件组成的机构。
其中,两个杆件与菱形的对角线相连,另外两个杆件则与菱形两条平行线相连。
通过这样的联结方式,菱形四杆机构可以实现不同方向的运动,如旋钮开关,废乳机械的减速机构等都采用了菱形四杆机构。
三、双曲线四杆机构双曲线四杆机构是由双曲面、两个相交的固定点、两个关节和两个等长杆组成的平面四杆机构,主要是用来实现一定的负载传递和动力,例如工件阻力和重力等。
双曲线四杆机构的优点在于具有一定的自适应能力,可以自动调整杆长度,达到更稳定的运动效果。
应用领域包括夹持,钻床等。
四、半圆四杆机构半圆四杆机构是由两条半圆弧及两对连杆构成的平面四杆机构。
通过调整连接点的位置及杆长度,可以实现转轴轨迹的变化。
半圆四杆机构在工业生产中被广泛应用,如水平挖掘机,转子泵等。
在应用平面四杆机构的过程中,大多数机构的运动往往还需要与其它机构进行配合才能实现更复杂多变的功能。
此外在机器人领域中,四杆机构也得到了广泛应用,如各类机器人的手臂,就是利用四杆机构的特性来完成精细灵活的动作。
总的来说,平面四杆机构是机械领域中一类非常基础且重要的构件。
通过不同的连接方式和调整,可以实现多样化的运动功能,并被广泛应用在工业生产及机器人领域中。
平面四杆机构的类型和应用
θ 180°+θ
180°-θ
思考题: 对心曲柄滑块机构的急回特性如何? 导杆机构的急回特性 应用:空行程节省运动时间,如牛头刨、往复式输送机等。
对于需要有急回运动的机构,常常是根据需要的行程速比系数K, 先求出θ ,然后在设计各构件的尺寸。
3.四杆机构的压力角与传动角
切向分力: Pt= Pcosα = Psinγ
AA
DD
当∠BCD最小或最大时, 都有可能出现γmin
此位置一定是:
主动件与机架共线两处之一。
由余弦定律有: ∠B1C1D=arccos[b2+c2-(d-a)2]/2bc
若∠B1C1D≤90°,则 γ1=∠B1C1D ∠B2C2D=arccos[b2+c2-(d+a)2]/2bc
若∠B2C2D>90°, 则 γ2=180°-∠B2C2D
曲柄滑块机构
偏心曲柄滑块机构
s
φ
s=l sin φ
双滑块机构
正弦机构
(2)改变运动副的尺寸
(3)选不同的构件为机架
偏心轮机构
B
1
2 3
A
4C
曲柄滑块机构
B
1
2 3
A
4C
摆动导杆机构
导杆机构 转动导杆机构
应用实例
6E
C
3
2
B 41
A 5
D
小型刨床
D
3 B2 C
C2
4 C1
1
A
牛头刨床
(3)选不同的构件为机架
解得相对长度: P0 =1.533, P1=-1.0628, P2=0.7805
形状简单、易加工。
②连杆曲线丰富。可满足不同要求。
知识点解析一平面四杆机构的基本类型.
项目二 任务一 平面四杆机构的基本类型1.1 预备知识点 平面四杆机构的概念平面连杆机构是指该机构上各构件均在同一平面或平行平面内运动的机构。
这种机构结构简单,易于加工,能近似完成各种给定的运动或轨迹,而且各构件为面接触,压力强度和磨损较小,使用寿命较长,因此它被广泛应用在各行各业的工程机械中,在轮机工程中也应用很多,如活塞式空气压缩机和柴油机的曲柄连杆机构、液压舵机和回转式油泵中的导杆机构、示功器中的直接导路机构等。
1.2 知识点 平面四杆机构的基本类型◆运动副的概念及分类1、运动副:使两构件直接接触而又能产生一定相对运动的可动联接。
低副 转动副2、运动副类型 (面接触)(平面运动副) 移动副高副:滑动、滚动或其组合运动(点、线接触)◆平面四杆机构的基本形式(低副都是转动副的称为铰链四杆机构)铰链四杆机构,全部低副都是转动副的平面四杆机构,如图2-1-2所示。
杆AD 固定不动,称为机架(frame );杆AB 、CD 连着机架,称为连架杆;杆BC 连着两连架杆、与机架相对,称为连杆(connecting rod )。
如果连架杆能作360°转动的称为曲柄(crank ),对应的转动副称为回转副,在运动简图中用单向圆弧箭头表示;若仅能在小于360°范围内摆动,则称为摇杆(rocking bar )或摆杆,对应的转动副称为摆动副,在运动简图中用双向圆弧箭头表示。
按连架杆中是否有曲柄存在,可将铰链四杆机构分为三种基本形式:即曲柄摇杆机构、双曲柄机构和双摇杆机构。
判断曲柄存在条件有两个,即:条件一:四杆机构中最短杆与最长杆的长度之和小于或等于其它二杆长度之和;条件二:机架或连架杆中必有一个为最短杆。
铰链四杆机构基本类型的判别:(1)在满足曲柄存在条件一的情况下:图2-1-2 铰链四杆机构若以最短杆的邻边为机架——曲柄摇杆机构若以最短杆本身为机架——双曲柄机构若以最短杆对边为机架——双摇杆机构(2)在不满足曲柄存在条件一的情况下,则无论以何杆为机架,都是双摇杆机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转动导杆机构
摆动导杆机构
• 它可用于回转式油泵、牛头刨床及插床 等机器中。图3-17所示小型刨床和图3— 18中的牛头刨床,分别是转动导杆机构 和摆动导杆机构的应用实例。
图3-17
图3—18
• 若选用构件2为机架,滑块3仅能绕机架上 铰链C作摆动,此时演化成曲柄摇块机构 (图3-16b);它广泛应用于机床、液压 驱动及气动装置中,图3-19所示为Y54 插齿机中驱动插齿刀的机构和图3-20所 示的自卸卡车的翻斗机构,均是曲柄摇块 机构应用实例。
图3-16b
图3-19
图3-20
• 若选用曲柄滑块机构中滑块3作机架(图316c),即演化成移动导杆机构(或称定块 机构)。 • 它应用于手摇卿筒(图3—21)和双作用式 水泵等机械中。
图3—21
图3-16c
(3)变化双移动副机构的机架
• 在图3-15和图3-22a所示的具有两个移动副的四杆机 构中,是选择滑块4作为机架的,称之为正弦机构, 这种机构在印刷机械、纺织机械、机床中均得到广 泛地应用,例如机床变速箱操纵机构、缝纫机中针 杆机构(图3—22d);
图 3-11
3、双摇杆机构
双摇杆机构:铰链四杆机构中的两连架杆均不能作 整周转动的机构。
如 图 3 - 12 所 示 鹤 式 起 重 机 的 双 摇 杆 机 构 ABCD,它可使悬挂重物作近似水平直线移动, 避免不必要的升降而消耗能量。在双摇杆机构 中,若两摇杆的长度相等称等腰梯形机构,如 图3—13中的汽车前轮转向机构。
图3-9
图3-10
• 在图3-11a所示双曲柄机构中,虽然其对应边长度 也相等,但BC杆与AD杆并不平行,两曲柄AB和 CD转动方向也相反,故称其为反平行四边形机构。 • 图 3-11b所示的车门开闭机构即为其应用实例, 它是利用反平行四边形机构运动时,两曲柄转向相 反的特性,达到两扇车门同时敞开或关闭的目的。
总结:平面连杆机构的演化
铰链四杆机构可分为以下三种类型
1、曲柄摇杆机构
• 铰链四杆机构的两连架杆中一个能作整 周转动,另一个只能作往复摆动的机构。
2、双曲柄机构
铰链四杆机构的两连架杆均能作整周转 动的机构。
• 在双曲柄机构中,若相对两杆平行相 等,称为平行双曲柄机构(图3-9)。 这种机构的特点是其两曲柄能以相同 的角速度同时转动,而连杆作平行移 动。图3-10a所示机车车轮联动机构 和图3-10b所示的摄影平台升降机构 均为其应用实例。
2、选用不同构件为机架
原理:各构件间的相对运动保持不变 (1)变化铰链四杆机构的机架
• 如图3-4所示的三种铰链四杆机构,各杆件间的相对运动和 长度都不变,但选取不同构件为机架,演化成了具有不同结 构型式、不同运动性质和不同用途的以下三种机构。
图3-4
(2)变化单移动副机构的机架
• 若将图3-14b所示的对心曲 柄滑块机构,重新选用不同 构件为机架,又可演化成以 下具有不同运动特性和不同 用途的机构。
• 一、平面四杆机构的基本类型及应用
• 全部运动副为转动副的四杆机构称为铰链四杆机构, • 它是平面四杆机构的最基本型式(如图3-4a所示)
图3-4a
a—曲柄: 与机架相联并且作整周转动的构件; b—连杆:不与机架相联作平面运动的构件; c—摇杆:与机架相联并且作往复摆动的构件; d—机架: a、c—连架杆。
图3-15
图3—22
• 若选取构件1为机架(图3-22b), 则演化成双转块机构,它常应用 作两距离很小的平行轴的联轴器, 图3-22e所示的十字滑块联轴节为 其应用实例;
图3-22b
图3-22e
• 当选取构件3为机架(图3-22c)时, 演化成双滑块机构,常应用它作椭圆 仪(图3—22f)。
图3-22
在曲柄摇杆机构中,若摇杆的杆长增大至无穷长,则 其与连杆相联的转动副转化成移动副。 ——曲柄滑块机构
曲柄滑块机构——偏心轮机构
Hale Waihona Puke • 当曲柄的实际尺寸很 短并传递较大的动力 时,可将曲柄做成几 何中心与回转中心距 离等于曲柄长度的圆 盘,常称此机构为偏 心轮机构。
双滑块机构
• 若继续改变图3—14b中对心曲柄滑块机构中杆 2长度,转动副C转化成移动副,又可演化成双 滑块机构(图3-15)。该种机构常应用在仪 表和解算装置中。
图3-14b
图3-16
• 若选构件1为机架(图3-16a),虽然各构件 的形状和相对运动关系都未改变,但沿块3将 在可转动(或摆动)的构件4(称其为导杆) 上作相对移动,此时图3-14b所示的曲柄滑 块机构就演化成转动(或摆动)导杆机构(图 3-16a);差异? 摆动导杆 机构能否 回复为曲 柄滑块机 构??
二、平面连杆机构的演化
• 前面介绍的三种铰链四杆机构, 还远远满足不了实际工作机械的 需要,在实际应用中,常常采用 多种不同外形、构造和特性的四 杆机构,这些类型的四杆机构可以看作是由铰链 四杆机构通过各种方法演化而来的。 • 这些演化机构扩大了平面连杆机构的应用,丰 富了其内涵。
1、改变相对杆长、转动副演化为移动副